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Chen S-L, Huang Y-H, Kao Y-L, Chen G-D, Cheng C-L, Peng
H-Y, Liao J-M, Huang P-C, Tsai S-J, Lin T-B. Acute anal stretch
inhibits NMDA-dependent pelvic-urethra reflex potentiation via spi-
nal GABAergic inhibition in anesthetized rats. Am J Physiol Renal
Physiol 295: F923–F931, 2008. First published July 16, 2008;
doi:10.1152/ajprenal.90254.2008.—The impact of acute anal stretch on
the pelvic-urethra reflex potentiation was examined in urethane-anesthe-
tized rats by recording the external urethra sphincter electromyogram
activity evoked by the pelvic afferent stimulation. Test stimulation (1
stimulation/30 s) evoked a baseline reflex activity with a single action
potential that was abolished by gallamine (5 mg/kg iv). On the other
hand, the repetitive stimulation (1 stimulation/1 s) induced spinal reflex
potentiation (SRP) that was attenuated by intrathecal 6-cyano-7-
nitroquinoxaline-2,4-dione (a glutamatergic �-amino-3-hydroxy-5-
methyl-4-isoxazoleproprionat receptor antagonist, 100 �M, 10 �l)
and D-2-amino-5-phosphonovalerate [a glutamatergic N-methyl-D-as-
partate (NMDA) antagonist, 100 �M, 10 �l]. Acute anal stretch using
a mosquito clamp with a distance of 4 mm exhibited no effect,
whereas distances of 8 mm attenuated and 12 mm abolished the
repetitive stimulation-induced SRP. Intrathecal NMDA (100 �M, 10
�l) reversed the abolition on SRP caused by anal stretch. On the other
hand, pretreated bicuculline [�-aminobutyric acid (GABA) A receptor
antagonist, 100 �M, 10 �l] but not hydroxysaclofen (GABAB recep-
tor antagonist) counteracted the abolition on the repetitive stimula-
tion-induced SRP caused by the anal stretch. All of the results
suggested that anal stretch may be used as an adjunct to assist voiding
dysfunction in patients with overactive urethra sphincter and that
GABAergic neurotransmission is important in the neural mechanisms
underlying external urethra sphincter activity inhibited by anal stretch.

spinal cord; voiding dysfunction; glutamate; bicuculline; hydroxy-
saclofen

THE MECHANISM INVOLVED IN micturition, which is the result of
coordination between bladder detrusor and outlet, is intricate.
Both elements, the detrusor and outlet, maintain a sound cycle of
storage and evacuation that is controlled by a group of reflex and
voluntary actions (54). During the storage phase of a micturition
cycle, detrusor relaxes and urethra contracts to produce conti-
nence; while the detrusor contracts, with sphincter relaxes to void

urine during the evacuation phase. Inhibition of external urethra
sphincter (EUS) activity during evacuation is essential for suffi-
cient bladder emptying (18, 49). The absence of suppression on
EUS activity during voiding is one feature of the pathological
condition referred to as detrusor-sphincter dyssynergia (51). Such
a dyssynergic sphincter contraction results in high intravesical
pressure and residual urine. Therefore, to achieve near-normal
voiding function in patients with detrusor-sphincter dyssynergia,
outlet resistance should be reduced.

Arising from the puborectalis muscle, EUS innervated by
the perineal branch of the pudendal nerve and external anal
sphincter (EAS) innervated by the rectal branch of the puden-
dal nerve are both striated skeletal muscles that contract and
relax voluntarily. A study investigating the coordination be-
tween the EUS and EAS muscles demonstrated these muscles
shared in reflex actions as in dilatation and closing anal reflexes
(53). It is interesting that inserting examining fingers in anus
for anal stretch caused marked inhibition of the electromyo-
gram (EMG) activity in both EUS and EAS (48). In able-
bodied persons, EMG recording from the EUS and EAS during
micturition and cystometry also showed simultaneous electric
activity in these muscles (1, 50, 62). Results coming from
clinical studies suggested anal stretch could be a useful tech-
nique to facilitate voiding in overactive urethra sphincter pa-
tients (15, 36, 38). However, the effects of anal stretch to EUS
in normal individuals have not yet been established in the
literature.

Cross-talk via the convergent neural pathways within the
lumbosacral spinal cord is important for the normal regulation
of sexual, bowel, and bladder functions (22, 45). Alterations in
these convergent neural pathways cause a pathological mech-
anism by which injury or inflammation in one organ may lead
to modifications in the function of other organs (4). In the
pelvis, chemical and mechanical irritation in urethra may
enhance the activity of not only striated urethra sphincter muscle
itself but also EAS, implying that a neural-mediated cross-talk
existed between external anal and urethra sphincter (60).

The pelvic-urethra reflex activity is presumed to be involved in
the development of urethral resistance (14). Recent studies on
pelvic-urethra reflex, using intact spinal cord preparations, have
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demonstrated a glutamatergic N-methyl-D-aspartate (NMDA)-de-
pendent spinal reflex potentiation in which the activity of this
reflex was dynamically potentiated by repetitive (29) and
tetanic (30) afferent inputs. Because pathological potentiation
in this reflex activity was suggested to underlie the hyperactive
urethra (10, 11, 26–28), the activity-dependent spinal reflex
potentiation seems to be a novel animal model for studying
urethra continent function (12, 13, 28, 39, 41–44).

The identity of neurotransmitters responsible for EUS sup-
pression during micturition, acting at receptors either on moto-
neurons, interneurons, or central sensory afferent terminals, is not
well known (55). GABAergic terminals have been shown on EUS
motoneuron cell bodies and dendrites of motoneurons within
Onuf’s nucleus (46). In both human studies (37, 56) and animal
experiments (32, 33), administration of the �-aminobutyric
acid (GABA) agonist baclofen has been shown to decrease not
only limb reflex output but also bladder and EUS activity. It
has also been reported that intrathecal injection of GABAergic
antagonists promotes the micturition reflex (21). All of these
studies suggested GABAergic neurons are involved in the
inhibitory pathway of EUS.

To shed light on the issue whether anus distension may
relieve or attenuate detrusor-urethra sphincter dyssynergia by
suppressing the urethra activity, we investigated the impact of
anal stretch on the induction of spinal reflex potentiation in the
pelvic-urethra reflex activity. In addition, the possible neuro-
transmitters involved were also studied to clarify the mecha-
nisms underlying this phenomenon.

EXPERIMENTAL PROCEDURES

Animal Preparations

Adult female Wistar rats weighing 200–250 g were anesthetized
using an intraperitoneal injection of urethane (1.2 g/kg). The animal
care and the experimental protocol were in accordance with the
guidelines of the National Science Council of Taiwan and the guide-
lines of the National Institutes of Health’s Care and Use of Laboratory
Animals (NIH Publications No. 80–23) revised in 1996. All efforts
were made to minimize both animal suffering and the number of
animals used throughout this study. This study was reviewed and
approved by the Institutional Review Board of Chung-Shan Medical
University in Taichung, Taiwan. The trachea of the animal was
intubated to keep the airway clear. A PE-50 catheter (Portex; Hythe,
Kent, UK) was placed in the left femoral vein for administration of
anesthetics when needed. A midline abdominal incision was made to
expose the pelvic viscera. A wide-bore bladder cannula (PE-50) was
inserted in the lumen of the urinary bladder from the apex of the
bladder dome and was secured with cotton thread. The right pelvic
nerve was dissected carefully from the surrounding tissues and was
then transected as distally as possible for stimulations, whereas the left
pelvic nerve was left intact. In experiments exploring the effect of anal
stretch on the pelvic-urethra reflex activity, the end of the cannula was
left open to the air and drained freely (Fig. 1A) to avoid urine
accumulation in the bladder during experiment, which may alter the
reflex activity. In cystometry experiments, after the trigone was
ligated, the intravesical catheter was connected to a volume reservoir
and a pressure transducer to test the effect of anal stretch on the
urethra activity under bladder distension with both pelvic nerves intact
(see Fig. 5A). The rats were monitored for the corneal reflex and a
response to noxious stimulation to the paw throughout the experiment.
If either was present, a supplementary dose of anesthetics (0.4 g/kg
urethane) was given through the venous catheter. At the end of the
experiment, the animals were killed by an intravenous injection of
potassium chloride saturation solution under deep anesthesia.

Intrathecal Catheter

The occipital crest of the skull was exposed, and the atlanto-
occipital membrane was incised at the midline with the tip of an
18-gauge needle. A PE-10 catheter was inserted through the slit and
passed caudally to the dorsal arachnoid space at the T13 vertebrae
level (which is the level at the L5-S2 spinal cord). The volume of fluid
within the cannula was kept constant at 10 �l in all experiments. A
single, 10-�l volume of drug solution was administered followed by
a 10-�l flush of vehicle solution. At the end of each experiment, the
location of the injection site was marked by an injection of Alcian
blue (10 �l, 2%), and a laminectomy was performed to verify the
location of the cannula tip. The volume of drug injected in the spinal
cord in this experiment has been reported to spread from 0.5 to 1.5
mm from the site of injection as described previously (12). The data
obtained from animals whose cannula tip deviated by �0.5 mm from
the upper and lower limits of the dorsal aspect of the arachnoid space
along L5 to S2 were excluded from the statistical analysis.

EMG Recordings

Epoxy-coated copper wire (50 �m; Giken, Tokyo, Japan) EMG
electrodes were placed into the periurethra area intra-abdominally
using a 30-gauge needle with a hooked EMG electrode positioned at
the tip. The needle was inserted in the sphincter �1–2 mm lateral to
the urethra and then was withdrawn, leaving the EMG wires embed-
ded in the muscle. The EMG activity was amplified 20,000-fold,
filtered (high-frequency cut-off at 3,000 Hz and low at 30 Hz) by a
preamplifier (model 7P1; Grass, Cleveland, OH), and then continu-
ously displayed on an oscilloscope (TDS 3014; Tectronics, Wilson-
ville, OR) and the recording system (MP30; Biopac, Santa Barbara,
CA). The dissected nerve and the stimulating/recording electrodes
were bathed in a pool of warm paraffin oil (37°C) to prevent drying.

Application of Drugs

Drugs dissolved in artificial cerebrospinal fluid with pH adjusted to
7.4 were used for intrathecal injections. Drugs used in the experiment
were gallamine triethiodide (GL, 5 mg/kg), 6-cyano-7-nitroquinoxa-
line-2,4-dione [CNQX, a glutamatergic �-amino-3-hydroxy-5-methyl-4-
isoxazoleproprionat receptor antagonist; 100 �M, 10 �l; Sigma], D-2-
amino-5-phosphonovalerate (APV, a glutamatergic NMDA receptor
antagonist; 100 �M, 10 �l; Sigma), L-glutamate (100 �M, 10 �l;
Sigma), NMDA (100 �M, 10 �l; Sigma), bicuculline [GABAA

receptor antagonist; 100 �M, 10 �l; Sigma], and hydroxysacrofen (a
GABAB receptor antagonist; 100 �M, 10 �l; Sigma). A solution of
identical volume to the tested agents was dispensed intrathecally to
serve as a vehicle. At the end of the experiment, the location of the
injection site was marked by an injection of Alcian blue (2%, 10 �l).
The volume of drug injection in the spinal cord in such experiment
was reported to spread 0.5–1.5 mm from the site of injection (12).
Therefore, a cannula positioned �0.5 mm away from the intended site
of injection was not included in the statistical analysis.

Experimental Arrangement

Recording the numbers of action potentials evoked by the electric
shocks assessed the pelvic-urethra reflex activity. The schematic arrange-
ment of external urethra sphincter electromyogram (EUSE) recording and
the pelvic afferent nerve fiber stimulation are shown in Fig. 1A. In the
beginning of all experiments, we manipulated the stimulation intensity,
and an electric intensity that caused a single spike action potential in the
reflex activity was used to standardize the baseline reflex activity. This
intensity was then used for stimulation throughout each experiment. The
protocol for assessing the effects of electrical stimulation and different
kinds of reagent/maneuver on the reflex activity was as follows.

Protocol 1: Pelvic afferent nerve test stimulation. Single shock at a
fixed suprathreshold strength was repeated at 30-s intervals (1 stimula-
tion/30 s) and given through a pair of stimulation electrodes for 30 min.
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This frequency of stimulation was chosen for sampling data because it
did not result in response facilitation.

Protocol 2: Pelvic afferent nerve repetitive stimulation. After a
baseline period (usually 30 min), the repetitive stimulation (1 stimula-
tion/1 s, lasting for 30 min) with intensity identical to the test stimulation
was applied to induce reflex potentiation.

Protocol 3: Glutamatergic agonists/antagonists. After the equilib-
rium (usually 30 min), the glutamatergic agonist glutamate or NMDA
was injected intrathecally 1 min before test stimulation onset to test their
effects. In the experiment, the effects of the glutamatergic antagonist
CNQX or APV injected intrathecally 1 min before repetitive stimulation
onset were determined.

Protocol 4: Anal stretch. After a reflex potentiation has been estab-
lished by the repetitive stimulation, anal stretch was carried out at 20 min
following stimulation onset and maintained. Because balloon distension
may cause vertical displacement that interferes the recording electrodes
located in the urethra, we stretched the anus horizontally using a mosquito
clamp, the tip of which was inserted in the anus for �2 cm. The distances
used for anal stretch were 4, 8, or 12 mm.

Protocol 5: GABAergic antagonists. After the equilibrium (usually
30 min), the GABAA or GABAB antagonist bicuculline or hydroxy-
sacrofen was injected intrathecally 1 min before repetitive stimulation
onset. Next, the repetitive stimulation associated with anal stretch was
tested as in protocol 4.

Statistics

All data in the text and Figs. 1–5 are mean values � SE. Statistical
analysis of the data was performed by means of ANOVA. In all cases,
a P value of �0.05 was considered to indicate statistical significance.

RESULTS

Baseline Reflex Activity and Reflex Potentiation

As shown in Fig. 1C, a single pulse of pelvic afferent nerve
test simulation (1 stimulation/30 s) evoked a stable baseline
reflex activity with single action potential in the EUSE activity.

Fig. 1. Baseline pelvic-urethra reflex activity and reflex
potentiation. A: experimental arrangements showing the
external urethra sphincter electromyogram (EUSE) activ-
ity was recorded under the urinary bladder as it drains
freely. B: summarized data showing the mean spike num-
ber evoked by each pulse of the test stimulation (TS)
varied little over the stimulation period, whereas that
evoked by the repetitive stimulation (RS) increased
shortly following stimulation onset, reached a rather con-
stant level, and maintained at that level until the cessation
of stimulation (**P � 0.01 to TS, n � 35 animals).
C: single pulses of pelvic afferent nerve TS (1 stimula-
tion/30 s, indicated by the marks at the bottom) evoked a
baseline reflex activity with single action potentials that
was abolished by neuromuscular blockage using gal-
lamine (TS 	 GL). In animals that received no gallamine
injection, TS evoked a baseline reflex activity, whereas
RS (1 stimulation/1 s, indicated by the marks at the
bottom) gradually induced reflex potentiation in the EUSE
activity. Intrathecal glutamate (TS 	 GLU) and N-methyl-
D-aspartate (NMDA; TS 	 NMDA) both exhibited exci-
tation on the TS-elicited reflex activities. Moreover, intra-
thecal 6-cyano-7-nitroquinoxaline-2,4-dione (CNQX) and
D-2-amino-5-phosphonovalerate (APV) both exhibited in-
hibition on the RS-induced reflex potentiation. D: sum-
marized data showing the mean spike number averaged at
30 min following stimulation onset evoked by TS and TS
with intrathecal application of glutamate (TS 	 GLU) or
NMDA (TS 	 NMDA) as well as RS and RS with
intrathecal CNQX (RS 	 CNQX) or APV (RS 	 APV).
**P � 0.01 to TS, ##P � 0.01 to RS, n � 7.
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In three animals, gallamine (5 mg/kg) was administrated intra-
venously after we connected these animals to a ventilator.
Gallamine injection abolished the reflex activity evoked by the
test stimulation. On the other hand, in animals that received no
gallamine injection, repetitive stimulation (1 stimulation/1 s)
induced reflex potentiation in the EMG (EUSE) activity in
contrast to the test stimulation evoked in the baseline reflex
activity. The summarized data in Fig. 1B show that the mean
spike number evoked by the test stimulation varied little over
the stimulation period (P � 0.05, n � 35), whereas that done
by the repetitive stimulation increased shortly following onset
of stimulation, reached a rather constant level, and maintained
at that level until the cessation of stimulation. Moreover, the
mean spike numbers evoked by the repetitive stimulation were
significantly higher than that done by the test stimulation (P �
0.01, n � 7).

Glutamatergic Agonists and Antagonists

As shown in Fig. 1C, test stimulation on the pelvic afferent
nerve evoked a baseline reflex activity with single action
potential. Intrathecal pretreatments of glutamate (100 �M, 10
�l) and NMDA (100 �M, 10 �l) both induced a longer-lasting
reflex potentiation. On the other hand, repetitive stimulation
produced a long-lasting potentiation in the reflex activity.
Intrathecal pretreatments of CNQX (100 �M, 10 �l) and APV
(100 �M, 10 �l) both blocked the repetitive stimulation-
induced reflex potentiation. The summarized data in Fig. 1D
shows that pretreatments of glutamate and NMDA significantly
increased the mean spike numbers evoked by the test stimulation
averaged within 1 min counted at 30 min following stimulation
onset (test stimulation, P � 0.01 to test stimulation, n � 7).
Moreover, pretreatment of CNQX and APV significantly de-

Fig. 2. Anal stretch inhibited the RS-induced reflex po-
tentiation. A: single action potentials in the EUSE were
evoked by the TS (1 stimulation/30 s, indicated by the
arrow on bottom) at the pelvic afferent nerve, whereas a
longer-lasting reflex potentiation was induced by RS (1
stimulation/1 s, indicated by the arrows on bottom). Onset
and 30 min indicate the reflex activity at the first 6 s and 30
min following stimulation onset. Anal stretch with a dis-
tance of 4 mm (RS 	 D4) failed to affect while with
distances of 8 mm (RS 	 D8) attenuated and of 12 mm
(RS 	 D12) abolished the RS-induced reflex potentiation.
Intrathecal NMDA (RS 	 D12 	 NMDA) reversed the
abolition on reflex potentiation caused by anal stretch with
a distance of 12 mm (RS 	 D12 	 NMDA). B: summa-
rized data showing the mean spike numbers evoked by the
TS, RS, RS 	 D4, RS 	 D8, and RS 	 D12. Acute anal
stretch with distances wider than 8 mm significantly in-
hibited the RS-induced reflex potentiation (##P � 0.01 to
RS, n � 7).
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creased the mean spike numbers evoked by the repetitive stimu-
lation (P � 0.01 to repetitive stimulation, n � 7).

Effects of Anal Stretch

As shown in Fig. 2A, after a reflex potentiation has been
established by the repetitive stimulation, anal distension at 20
min following stimulation onset with a distance of 4 mm had
no effect, whereas that with a distance of 8 mm attenuated the
repetitive stimulation-induced reflex potentiation. Moreover,
the established reflex potentiation was completely abolished by
anal stretch with a distance of 12 mm. Mean spike number
evoked by repetitive stimulation with anal stretch with dis-
tances of 4, 8, and 12 mm was summarized in Fig. 2B. The
stepwise increment of the distance of anal stretch attenuated
and eventually abolished the repetitive stimulation-induced
reflex potentiation when the distances of anal stretch were
wider than 8 mm (P � 0.05, n � 7).

NMDA Agonist

As shown in Fig. 2A, repetitive stimulation induced reflex
potentiation in the EMG activity that is abolished by anal

stretch with a distance of 12 mm. After the repetitive stimula-
tion-induced reflex potentiation has been abolished, intrathecal
NMDA injection reversed such an abolition caused by anal
stretch.

GABAergic Antagonists

As shown in Figs. 3A and 4A, the repetitive stimulation-
induced reflex potentiation was abolished by anal stretch with a
distance of 12 mm; intrathecal pretreatment of hydroxy
saclofen, a GABAB receptor antagonist, exhibited no effect on the
abolition caused by anal stretch (Fig. 4A). On the other hand, as
shown in Fig. 3A, pretreatment with bicuculline, a GABAA

receptor antagonist, partly restored the reflex potentiation. The
summarized data in Figs. 3B and 4B show bicuculline (P � 0.05,
n � 7) but not hydroxysaclofen (P � 0.05, n � 7) reversed the
attenuation in the mean spike number caused by anal stretch with
a distance of 12 mm.

Cystometric Investigation

In three animals, after a ligation was made at the bladder
trigone, the urinary bladder was connected to a volume reser-

Fig. 3. Bicuculline, a GABAA antagonist, reversed the
inhibition on the RS-induced reflex potentiation caused
by anal stretch. A: pelvic afferent nerve TS (1 stimula-
tion/30 s, indicated by the arrow on bottom) evoked a
single action potential, whereas RS (1 stimulation/1 s,
indicated by the arrows on bottom) induced a long-
lasting reflex potentiation in the EUSE activity that was
abolished by RS 	 D12. Moreover, intrathecal bicucul-
line pretreatment reversed the inhibition exhibited by
anal stretch (RS 	 D12 	 BCL). B: summarized data
show the mean spike number evoked by each pulse
averaged with 1 min at 30 min following stimulation
onset, elicited by the TS, RS, RS 	 D12, and RS 	
D12 	 BCL. **P � 0.01 to TS, ##P � 0.01 to RS, and
		P � 0.01 to RS 	 D12, n � 7.
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voir and a pressure transducer (Fig. 5A) as described elsewhere
(26). As shown in Fig. 5A, no spontaneous firing was recorded
in the EMG activity when the pressure reservoir was positioned
at the level identical to the urinary bladder (control). We then
elevated and held the volume reservoir at the level 16 cm
higher than the urinary bladder, and this maneuver caused
firing in the EMG activity. Anal stretch with a distance of 12
mm attenuated and eventually abolished the firing caused by
bladder distension.

DISCUSSION

In this in vivo animal study, we make the first direct
demonstration that acute anal stretch may abolish NMDA-
dependent repetitive stimulation-induced pelvic-urethra reflex
potentiation, which is presumed to be involved in the devel-
opment of urethra hyperactivity. In addition, pharmacological
tests showed that intrathecal injection of low-dose bicuculline
and NMDA both counteracted the abolition on the reflex
potentiation caused by the anal stretch. These data suggest

acute anal stretch may reflexively inhibit NMDA-dependent
reflex potentiation via GABAAergic neurotransmssion at the
spinal cord level.

GABA, which is readily accepted as a vital inhibitory
neurotransmitter (7), exhibits presynaptic or postsynaptic inhi-
bition on the primary afferent fibers at the spinal cord level (2,
3, 17). GABA elicits inhibitory effects on the superficial dorsal
horn neurons through activation of the chloride-permeable
GABAA receptors (61) or G protein-coupled GABAB receptors
(6). GABA has also been identified as a critical inhibitory
neurotransmitter for the spinal micturition circuitry and exerts
its effect via activating either GABAA or GABAB receptors
(21, 32, 63). GABAergic neurotransmission is known to have
an inhibitory action on urethral function via effects on motor
neurons to the urethra sphincter. When evacuation takes place,
impulses descending from the pontine micturition center in-
hibit the motor neurons innervating the urethra sphincter via
projections to the GABAergic premotor interneurons of Onuf’s
nucleus (5).

Fig. 4. Hydroxysacrofen, an GABAB antagonist, failed
to reverse the inhibition on the RS-induced reflex po-
tentiation caused by anal stretch. A: pelvic afferent
nerve TS (1 stimulation/30 s, indicated by the arrow on
bottom) evoked a single action potential, whereas RS (1
stimulation/1 s, indicated by the arrows on bottom)
induced a long-lasting reflex potentiation in the EUSE
activity that was abolished by RS 	 D12. Intrathecal
hydroxysaclofen pretreatment failed to reverse the inhi-
bition exhibited by anal stretch (RS 	 D12 	 SCF).
B: summarized data showing the mean spike number
evoked by each pulse averaged within 1 min at 30 min
following stimulation onset caused by the TS, RS, RS 	
D12, and RS 	 D12 	 SCF. **P � 0.01 to TS, ##P �
0.01 to RS, and 		P � 0.01 to RS 	 D12, n � 7.
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Not only the spinal integrated reflex activity but GABAergic
neurotransmission may also affect activity-dependent reflex
potentiation. In studies investigating long-term potentiation, a
well-known form of activity-dependent reflex potentiation,
GABAergic presynaptic and postsynaptic inhibitions were ob-
served in rat hippocampal neurons (19). It is well established
that activation of GABA receptor activity may attenuate or
abolish the NMDA-dependent reflex potentiation via presyn-
aptic or postsynaptic inhibition on the glutamatergic NMDA
receptors (8). All of these results were quite correlated with the
present study in which pretreatment with the GABAA receptor

antagonist bicuculline reversed the attenuation on the induction
of NMDA-dependent spinal reflex potentiation, indicating spi-
nal GABAAergic neural inhibition plays a role in the abolition
of the induction of reflex potentiation caused by anal stretch.
However, despite injecting GABA antagonist intrathecally
with a volume of 10 �l, the possibility of such a low dose of
test agents exhibiting effects on the higher brain center was
minor. Because we did not transect the spinal cord in this
study, the possibility of descending modulation coming from a
higher neurological center to inhibit spinal pelvic-urethra reflex
potentiation cannot be ruled out.

Fig. 5. Anal stretch reverses the urethra electromyo-
gram activity caused by bladder distension. A: sche-
matic arrangements showing the EUSE activity was
recorded under the urinary bladder distension using a
volume reservoir connected to the bladder via the blad-
der catheter. B: when the pressure reservoir was posi-
tioned at the level identical to the urinary bladder, there
was no spontaneous firing recorded in the electromyo-
gram activity (control). Elevating and then maintaining
the volume reservoir at the level 16 cm higher than the
urinary bladder caused firing in the electromyogram
activity (BD, arrow indicates initial bladder distention)
that was attenuated and eventually abolished the firing
caused by bladder distension (BD 	 D12, arrow indi-
cates initial anal stretch).
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However, in contrast to bicuculline, hydroxysaclofen, the
GABAB receptor antagonist used in this study, appeared to
have minimal effect on the reversal of the abolition on reflex
potentiation caused by anal stretch. There are several possible
causes that may be taken into account. First, GABAB antago-
nists have limited efficacy in modulating of synaptic transmis-
sion compared with GABAA. It has been reported that appli-
cation of weak GABAB antagonists, such as hydroxysaclofen,
at the soma did not reach the distal synapse of neurons (57). In
addition, postsynaptic GABAB receptors were less important in
the regulation of motor neuron activity. Application of the
GABAB agonist baclofen at a concentration sufficient to de-
press synaptic activity was not associated with changes in
membrane potential, conductance, and excitability in the spinal
motor neurons (16, 23, 25). Another possibility is that GABAB

receptors on the afferent terminals are located extrasynapti-
cally. Under such a condition, activation of extrasynaptic
receptor is only likely to occur during periods of massive
GABA release or reduced reuptake (57). Moreover, GABAB

receptor may require longer exposure or a higher concentration
of GABA for activation than GABAA receptors (40). Further-
more, hydroxysaclofen, the GABAB receptor antagonist, is a
weak antagonist with possible agonistic properties (47). There-
fore, clarification of the GABABergic mechanism involved in
anal stretch requires further investigation.

Arising from the puborectalis muscle, EUS innervated by
the perineal branch of the pudendal nerve and EAS innervated
by the rectal branch of the pudendal nerve are both striated
muscles. In addition to voluntarily contracting or relaxing
while the other does not, both of these muscles reflexively
contract or relax simultaneously (53). Electophysiological ev-
idence demonstrated that basal activity of the external urethral
sphincter was altered by electric stimulation of the EAS in
healthy volunteers (52). In addition, vigorous distension of anal
sphincter led to inhibition of urethra and anal sphincter activity
in most spinal cord-injured patients (48). Furthermore, a recent
study investigating urodynamic responses to anal stretch in
patients with detrusor-sphincter dyssynergia also revealed that
anal distension for 30 s could significantly reduce the spasticity
of the EUS without affecting the detrusor pressure (20). Not
only the reflex activity of the urethra itself, in this study, we
also demonstrated that anal distension attenuated and eventu-
ally abolished the pelvic-urethra reflex potentiation, a novel
form of activity-dependent reflex potentiation, in a dose-
dependent manner. This result implying anal stretch may also
modulate the activity-dependent physiological/pathological re-
sponse of the urethra via cross-organ innervation at the lum-
bosacral spinal cord levels.

Incomplete bladder emptying in patients with detrusor-
sphincter dyssynergia is often related to an increase in the EUS
activity during detrusor contraction. Such a dyssynergic
sphincter contraction increases outlet resistance, which in turn
contributes to an increased intravesical pressure and residual
urine (64). In the present study, cystometric investigation
demonstrated that anal distension may abolish the EMG activ-
ity of the urethra induced by bladder distension. These data
offer neurophysiological evidence that anal distension can be
an effective way to relax EUS when the urinary bladder was
filled and may be used as an adjunct to assist voiding in
patients with detrusor-sphincter dyssynergia. In addition,
GABAergic neurotransmission seem to be a possible adjuvant

therapeutic target for the treatment of voiding dysfunction
caused by dyssynergic or overactive sphincter.

In summary, the results in this study demonstrated that anal
stretch might abolish the repetitive stimulation-induced poten-
tiation in the pelvic-urethra reflex, which is presumed to be
essential for establishing urethra resistance. These data offer
neurophysiological evidence that anal stretch can be an effec-
tive way to relax overactive EUS. In addition, GABAergic
inhibitory neurotransmission is important in the neural mech-
anisms underlying EUS activity inhibited by anal stretch.
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