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It is the aim to deal with codes having unconditional security, which means that the 
security is independent of the computing power. .4nalogously to the theory of uncon- 
ditional secrecy due to  Shannon (121, Simmons developed a theory of unconditional 
authentication [lo]. In this paper we give some new bounds and constructions for au- 
thentication/secrecy codes with splitting. 

Consider a transmitter who wants to communicate a source to a remote receiver by 
sending messages through an imperfect communication channel. Then there are two 

fundamentally different ways in  which the receiver can be deceived. The channel may 
be noisy so that the symbols in the transmitted message can be received in error, or 
the channel may be under control of an opponent who can either deliberately modify 
legitimate messages or else introduce fraudulent ones. Simmons [ lo]  showed that both 
problems could be modeled in complete generality by replacing the classical noisy com- 
munications channel of coding theory with a game - theoretic noiseless channel in which 
an intelligent opponent, who knows the system and can observe the channel, plays so as 
to optimize his chances of deceiving the receiver. To provide some degree of immunity 
to deception (of the receiver), the  transmitter also introduces redundancy in this case, 
but does so in such a way that, for any message the transmitter may send, the altered 
messages that the opponent would introduce using his optimal strategy are spread ran- 
domly. Authentication theory is concerned with devising and analizing schemes (codes) 
to achieve this "spreading". 

In the mathematical model there are three participants: a transmitter, a receiver and 
an opponent. The transmitter wants to communicate some information to the receiver. 
The opponent wanting to  deceive the receiver, can either impersonate the receiver, ma- 
king him accept a fraudulent message as authentic, or, modify a message which has 
been sent by the transmitter. 
Let s denote the set of k source states, iM the set of v messages and E the set of b 
encoding rules. 
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A source state s E S is the information that the transmitter wishes to communicate to 
the receiver. The transmitter and receiver will have secretly chosen an encoding rule 
e E E beforehand. An encoding rule e will be used to determine the message e ( s )  to be 
sent to communicate any source state s. In a model with splitting, several messages can 
be used to  determine a particular source state. However, in order for a receiver to be 
able to  uniquely determine the source state from the message sent, there can be at most 
one source state which is encoded by any given message m E M ,  for a given encoding 
rule e E E (this means: e(s) # e(s') if s # 3'). 

An opponent will play impersonation or substitution. When the opponent plays 
impersonation, he sends a message to the receiver, attempting to have the receiver ac- 
cept the message as authentic. When the opponent plays substitution, he waits until a 
message m has been sent, and then replaces m with another message m', so that the 
receiver is misled as to  the state of source. More generally, an opponent can observe i 
(2 0) distinct messages being sent over the channel knowing that the same key is used 
to transmit them, but ignoring this key. If we consider the code as a secrecy system, 
then we make the assumption that the opponent can only observe the messages being 
sent. Our goal is that  the opponent be unable to determine any information regarding 
the i source states from the i messages he has observed. 

We shall use the following notations. Given an encoding rule e,  we deiine M ( e )  = 

{e ( s ) l s  E S } ,  i.e. the set of messages permitted by encoding rule e, and let IM(e)l = 

k ( e ) .  For a set of distinct messages M' c M and an encoding rule e, deiine f,(M') = 

(s E Sle(s) E M'), i.e. the set of source states which will be encoded under encoding 
rule e by a message in M'. Define also E ( M ' )  = {e E EIM' E M ( e ) } ,  i.e. the set of 
encoding rules under which all the messages in M' are permitted. 

The following scenario for authentication is investigated. After the observation of 2 

messages M' c M ,  the  opponent sends a message m' to the receiver, m' # M',  hoping 
to have i t  accepted as authentic. This is called a spoofing attack of order i [6], with 
the special cases i = 0 and i = 1 corresponding respectively to the impersonation and 
substitution game. The  last games have been studied extensively by several authors 

(see 121, [51, P O I ,  ~ 3 1 ) .  
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For any i, there will be a probability on the set of i source states which occur. We 
ignore the order in which the i source states occur, and assume that no source state 
occurs more than once. Also, we assume that any set of i source states has a non-zero 
probability of occuring. Given a set of i source states, we define p ( S )  to be the proba- 
bility that the source states in S occur. 

Given the probability distributions on the source states described above, the receiver 

and transmitter will choose a probability distribution for E ,  called an encod ing  s t ra-  
tegy.  If splitting occurs, then they will also determine a sp l i t t ing  s t ra tegy  to determine 
m E M ,  given s E S and e E E (this corresponds to non-deterministic encoding). The 
transmitterlreceiver will determine these strategies to minimize the chance that an OP- 

ponent can deceive them. 

Once the transmitter/receiver have chosen encoding and splitting strategies, we can 
define for each i 2 0 a probability denoted Pd;, which is the probability that the oppo- 
nent can deceive the transmitter/receiver with a spoofing attack of order i. We denote 
by AC(k,  v ,  b )  an authentication system with k source states, v messages and b encoding 
rules. 

1 Secrecy 

Considering the secrecy of a code, we desire no information be conveyed by the obser- 
vation of the messsages. A code has per f ec t  L - f o l d  secrecy (Stinson [14]) if, for every set 
MI of at most L messages observed in the channel, and for every set S1 of at most IMII 
source states, we have p(Sl/Ml) = p(Sl). This means that observing a set of at most L 
messages in the channel does not help the opponent to determine the L source states. 
On the other hand, a code is said to be Cartesian ([2], [13]) if any message uniquely 
determines the source state, independent of the particular encoding rule being used . 

2 Bounds on Pdi and b 

Bounds on Ph and Pdl for authentication codes with splitting depending on the entropies 
of the various probability distributions can be found in j2], [9], [ lo] ,  1131 and 1141. The 
most important bounds are given by: 
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and for a substitution with secrecy 

The following bounds for an impersonation, resp. a substitution game are proven in 

(41: 

k ( e )  PQ 2 mineEE- (see also [9] [lo]), 
V 

For codes without splitting this results in the known bounds PQ >_ klv and p d l  >_ 

These bounds can also be generalized for a spoofing attack of order i [4] to 
(k: - w v  - 1) ( ~ 1 ,  1131, ~ 4 1 ) .  

An authentication system which achieves equality Vi, 0 5 i 5 L ,  is called L-fold secuTe 
against spoofing (this is a generalization of the definition for codes without splitting, see 

[GI, ~ 4 1 ) .  

The number of keys is basically influenced by the following two aspects: (i) the 

distribution on the source states and (ii) the secrecy of the code. In [4] we obtain the 
following bound: 
If a code achieves perfect L-foZd secrecy and is ( L  - I)-foZd secure against spoofing, then 

v - ( v  - n a x , , s l e ( s ) l ) - - - ( v  - ( L -  1 ) . m a ~ , ~ s l e ( s ) l ) .  
L! b2 

Analogously as for codes without splitting [14], we define an optimal L-code t o  be a code 
which achieves perfect L-fold secrecy, which is (L - 1)-fold secure against spoofing and 
which meets equality in the foregoing formula. 
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3 Constructions for authentication codes "with arbi- 
trary source distribution 

3.1 Authentication codes derived from partial geometries 

A (finite) partial g e o m e t r y  (PG) is an incidence structure G = ( P , B , I )  in which P and 
B are disjoint (nonempty) sets of objects called points and lines resp., and for which I 
is a symmetric point-line incidence relation satisfying the following axioms: 

1. Each point is incident with 1 + t lines ( t  2 1) and two distinct points are incident 
with at most one line. 

2. Each line is incident with 1 + s points (s  2 1) and two distinct lines are incident 
with at most one point. 

3. If z is a point and L a line not incident with z, then there are exactly a ,  
(a 2 1) points zl,zz,. . . ,z, and a lines L1,  L2,. . . ,La such that z I L; I z; I L ,  
i = 1 , 2  ,...) a.  

Partial geometries were introduced by R. C. Bose. The partial geometries with a = 1 
are the generalized quadrangles  (GQ).  

There holds ]PI = (s  + l)(st  + a ) / a ,  131 = ( t  + l ) ( s t  t Q)/Q, 

Q(S + t + 1 - a ) ( s t ( s  + l ) ( t  + 1) and (s + 1 - 2a)t 5 (s - l)(s + 1 - C K ) ~  (and dually). 
We remark that the dual incidence structure G' = (P' ,B' ,I ' ) ,  P' = B ,  3' = P, I' = I ,  
is a partial geometry with parameters t' = 3, s' = t and a' = a. 

Further information about PG and G Q  can be found in [7]. 

1. From a generalized quadrangle of order (s, t),  s, t > 1, we can define the following 
two authentication codes without splitting [3]. 

A GQ of order  ( s , t )  def ines  a Cartesian A C ( t - 1 , ( t + l ) s , t s 2 )  which is U-fold 
secure agains t  spoofing and  for which Pd, = l j s .  

If the GQ conta ins  a regular point ,  the foregoing code can be improved t o  a n  

A C ( t + l , ( t + l ) s , ( t + l ) s * )  which is 0-fold secure against spoofing, which has 
perfect  1 - fo ld  secrecy, a n d  for which Pd, = l/s. 
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2. APGwithparameterss , t  2 l , a  > 1 definesanAC(t+l,(t+l)s,(t+l)st(s+I- 
a)) code which has O-fold security against spoofing and which has perfect 1-fold 
secrecy [4]. 

3. A spread of a P G  G is a set R of lines of such.that each point of S is incident 

with a unique line of 72. Hence there holds 1721 = ( s t  + a)/&. 
Let 0 be a PG with parameters s , t  > 1, a >_ 1, containing a spread R. Then we 
can define the following authentication codes. 

0 For a > 1, 

0 For a = 1, S defines a n  optimal l-code without splitting 131. 

defines a n  optimal l-code with splitting [4]. 

3.2 Authentication codes derived from designs 

Consider an a f i n e  resolvable BIB-design. This is a 2427, k, A )  design ’D =(P,B, I )  for 
which there exists a partition of B = B1 u Bz . . . B, of the block set, IB;I = n, such that 
each point occurs exactly once in the blocks of any set B;, 1 5 i 5 T and any two blocks 
of different sets have exactly p, p > 0, points in common [I]. There holds IBI = r n ,  
IPI = kn, X = ~ ( k  - l ) / ( n k  - 1) and k = ~ T L .  

In [4) we construct the following authentication code with splitting: 

An a f i n e  resolvable design 27 defines an A C ( n , k n , ( r  - l)nz) which is O-fold secure 
against spoofing, which has l - fold secrecy, and for which Pdl = X/(T - 1). 
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