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Abstract. There are very few examples of the generation of efficient compilers from 
denotational specifications. Usually such compilers generate code which is orders of 
magnitude slower than from hand-written ones. However, as has been demonstrated 
by our DML (Denotational Meta Language) compiler generation system, through 
appropriate single-threading analysis it is possible to obtain code of comparable 
quality to hand-written compilers. Another problem with denotational specifications 
is, because of their denotational nature, the need to introduce complicated power 
domains to model non-determinism and parallelism. In this work we have used a more 
practical two-level approach: use denotational specifications to model the meaning of 
the source language in terms of an abstract machine of low-level operations, including 
data-parallel operations. Then use operational semantics for the specification of this 
abstract machine. 

This paper reports experience from building a prototype compiler for a small Algol- 
like parallel language using a version of the DML system called DML-P, which has 
been extended to support data-parallel operations. The final code contains calls to a 
portable data-parallel vector code library (VCODE CVL). The speed of generated 
compilers are within a factor of three from handwritten ones. Extensive benchmarks 
of a DML-P generated compiler are presented. 

1 Introduct ion 

The high abstraction level of denotational semantics makes it attractive as a language 
specification formalism. However, many efforts to generate compilers from denotational 
semantics specifications, starting with the SIS system by Peter Mosses 1979 [12], have 
resulted in compilers and code that run very slowly - often 100 to 1000 times slower 
compared to commercial compilers, and that also do not interface to commercial product- 
quality parsers or code generators. The situation has gradually improved through the work 
of several researchers, e.g. Sethi [25], Paulson [15], Raskovsky [20], Wand [30], Appel[1], 
Jouvelot[9], and later work by Mosses [13], until Lee [11] and Petterson [16] demonstrated 
the first practical compiler generation systems accepting denotational specifications. 

In comparison with the MESS [11] system, the DML system goes several steps further. 
It interfaces well with standard tools and it automatically generates a code generator that 
emits intermediate quadruple code. DML can handle denotational specifications in 
continuation-passing style, which is well suited for specifying arbitrary control structures. 
The high code quality obtained using DML-generated compilers for Algol-like languages is 
possible due to escape-analysis of the intermediate representation, which removes all 
closures that would otherwise be present at run-time. 
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However, languages with non-determinism or parallelism are awkward and complicated to 
specify using denotational semantics since power domains have to be introduced. In order 
to cope with such languages in a practical way, we have instead turned to a two-level 
approach: use a denotational specification to model the meaning of the source language in 
terms of an abstract machine of low-level operations including data-parallel operations, then 
use operational semantics to specify the abstract machine. In this paper we report some 
experience of using this approach, including benchmarks obtained from generated 
compilers. The DML-P (P for parallel) compiler generator system provides a prototyping 
environment for the design of efficient compilers for data parallel computers. This system 
has been developed from an early version of the original DML-S (S for Sequential) system. 
This system implements the SML core language plus structures and signatures. It also 
includes constructs that make the implementation of a denotational specification easier. The 
development is done by adding support for data parallel operations as well as a more 
complete set of primitive operators and types in the target intermediate language. 

First we briefly describe data parallel languages using a Predula Nouveau example, 
which is the subject language in this report. Then follows a brief introduction to denotational 
semantics including some excerpts of the Predula Nouveau denotational specification, after 
which we discuss two target data-parallel abstract machines. We continue by giving a 
description of the implementation of the DML-P compiler generator and the CPS-graph 
module. This graph is the internal representation for compiled programs. Finally we present 
benchmarks for generated compilers followed by conclusions and future work. 

2 Data Parallel Languages 

The data-parallel programming paradigm [6] has become popular in recent years since it 
exploits massive parallelism while preserving a simple deterministic programming style. 
Many algorithms can be expressed as operations on collections of similar data objects. 
Therefore languages containing data parallel programming constructs are called collection- 
oriented languages [2]. In this paper we use a small data-parallel Algol-like language called 
Predula Nouveau (a successor to Predula, PaRallel EDUcational LAnguage [21]) as a test 
case in our work on compiler generation for data parallel languages. This language includes 
a number of constructs operating on arrays, allowing the utilization of parallelism when 
operating in parallel on elements of such arrays. 

Figure 1 shows a small Predula Nouveau program that calculates the inner product. The 

main() is 
a, b : array 0.,5 of integer; 
c : integer; 

begin 
for i in 0..5 loop 

a(i) := i; (* a := (0, i, 2, 3, 4, 5) *) 
b(i) := 5-i; (* b := (5, 4, 3, 2, i, 0) *) 

end; 
(* First perform elementwise multiplication. Then add the 

products together into the c variable. *) 
c := reduce(op +, each(op *, a, b)); 
write(c,"\n"); 

end; 

Fig. l. Im,erproduct-asmallPredula Nouveauexample ~dam-paralleHsm. 
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arrays a and b contain source vectors which are used when calculating the inner product. 
This is done by applying the r e d u c e  function on the elementwise products of the elements 
in the two arrays. This intermediate array is calculated by the e a c h  function using the 
multiplication operator. The e a c h  and r e d u c e  operators are data parallel in that they 
apply their operator argument to all array elements at the same time. 

2.1 Data-Parallel Operators 

One of the earliest programming languages which included collection oriented 
programming capabilities is APL [8], which is centered around a vector-like data type. 
Numerous modem data parallel languages have followed this style of a collection data type 
together with a set of associated operations. Predula Nouveau includes a parallel version of 
the array data type found in the Algol family of languages. The reduce, scan, each, and 
enumerate operators are used in Predula Nouveau. 

For example, the reduce operator takes an operator and an array as arguments. The 
intuitive meaning is to put the argument operator between the array elements and then to 
evaluate the resulting expression. This operator must be associative in order not to give a 
result that depends on the topology of the evaluation tree. It also must have an identity 
element. This value is returned if an empty array is supplied to reduce. Denotational 
definitions of reduce and some other data-parallel operators like scan, each, and enumerate 
can be found in [22]. 

3 Denotational Semantics 

In a denotational specification, the meaning of a program is a mapping from an abstract 
syntax to denotations. Domains that form the source of this mapping are called syntactic 
domains. Domains that form the denotations are called semantic domains. For a detailed 
discussion of the foundations of this area, see [26,28]. A more practically oriented 
introduction is found in [4]. 

We want to describe a computer language including the operational behaviour of parallel 
programs while avoiding unnecessary detail, but we also want to be able to automatically 
generate a compiler for the language. Our approach is to describe the static semantics and 
part of the dynamic semantics of a programming language using a denotational semantics 
and to describe the remaining dynamic semantics using an operational semantics. These two 
parts are from now on named high-level and low-level semantics. We name the operational 
part low-level, since it is closer to the target machine. The most well-known example of a 
language specified by a denotational specification is Scheme [19]. Another example is 
OCCAM, which uses a combination of a denotational specification for the sequential part 
of the language and a CSP-based method for the parallel part [7]. 

3.1 Compiler Generation from Denotational Semantics 

Figure 2 illustrates the compiler generation process. The specification of the low level 
intermediate language could be formally defined using some operational semantics 
formalism, see e.g. [18]. However, here we adopt a more pragmatic approach by mapping 
the intermediate representation directly to quadruples which are emitted in the form of calls 
to the VCODE [3] library together with simple C statements. 
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Lexical and I 
Syntax 
Specification 
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High Level - -~  
Specification 

Low Level ~ 
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Program Text 
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analysis [ Lexical Specification 

Syntax Source Language 
analysis Grammar Specification 

Abstract Syntax Trees as 
""! ............................................................ Syntactic Domain Objects 

Semantic [ Source Language 
analysis I Denotational Specification 

Intermediate Code as 
..,,I ............................................................ Nodes in Semantic Domains 

(CPS Graph) 
Code Target Code 
generation 
(CPS module) Specification 

Object Code 

Fig. 2. The translation of a source program to object code by a compiler generated by the DML 
system. The kinds of specification formalism are shown for the modules. 

The DML system encapsulates the mapping to target code in a Continuation Passing Style 
(CPS) graph. The nodes in this graph are lambda calculus expressions. By the way the 
continuation is constructed, lambda abstractions can be stack allocated [18]. This makes it 
easier for the backend to generate efficient code. 

When generating a compiler, e.g. for a tiny subset of C, the original CPS-graph [16] 
module from the DML-S system can be used, but for Predula Nouveau it is necessary to add 
extensions for the parallel part of the language, as will be shown later. 

3.2 A Comment on the Denotationai Specification Notation 

Most work on denotational semantics use the Oxford School notation. A very concise 
notation using one letter identifiers in the greek alphabet is usually used. This is nice for 
articles and short examples, but not practical for large machine-processable language 
specifications. Therefore we have adopted Standard ML [5] syntax. Examples of 
transformations between Oxford School notation and SML are given below. 

Oxford School 

P! 

s s s 
XP 
k~.a 
(~,~) 

l e t x - y m z  
1 Elnt 
1 inC 

notation SML notation 
envl 
if pred then expl else exp2 
dcont env 
fn x => x 
(a,b) 
[a,b,c] 
let val x = y in z end 
(expressed by SML pattern matching) 
(expressed by SML constructors) 
(expressed by SML pattern matching) 

(variable ref.) 
(conditional) 
(application) 
( t a ~  ) 
( tuple formation) 
(sequences) 
(local binding) 
(membership check) 
(injection) 
(projection) 
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4 The Predula Nouveau Specification 

Syntax and semantics are specified using different methods. Abstract syntax is described 
using syntactic domains. Semantics is expressed using a continuation passing style 
denotational semantics. This part of the specification is built using CPS primitives which 
are expressed in a CPS back end module. 

4.1 Syntax 

The concrete syntax is implemented as a scanner and a parser generated by ML-Lex and 
ML-YACC. The parser builds elements in syntactic domains from an input program. These 
domains correspond to classes of abstract-syntax objects. There are five flat syntactic 
domains for literals and identifiers. 

L e Nml (integer numerals) L e Real (reals) n r 
L e Char (characters) L e Str (strings) 
I c ~ Ide (identifiers) s 

Uatng these definitions it is now possible to build non-flat domains: 

D e Decl (declarations) 
T eTExpr (types) 
F e Param (item in function prototype parameter list) 
E ~ Expr (expressions) 
C e Cmd (statements) 

At the top level a Predula Nouveau program is a D value. Abstract syntax are equations on 
syntactic domains. Let us define some equations: 

O ::-null l t y p e l r l v a r l T [ v a r i I T E [ v a r i c l r E l f u n l P T C [ D 1 D  2 
P : : - v a r I T M  [ v a r c l T M  I P* 
M ::-no Ivar  

T : : - tvarI  I arrT 1T 2 IT* 
E : : -L  [ L [ L I L I I I  un E, E 2 I binE 1 E 2 E 3 Iapp E I E* c n r s 1 
C ::-skip loopiC loopdDEC I break t cont [ returnE 

I de l E I expr EI  r E C I C 1 C 2 
G : : - E C  I G* 

Variable declarations have three summands: uninitialized, initialized, and constant 
initialized declarations. Arrays are composed of two types. The first type is the index type 
and the second is the element type. Definite loops are composed of an induction-variable 
declaration (including the loop range), a count step expression, and the loop body. 

4.2 Semantics 

In the semantics specification function domains are used in addition to sum, product, and 
sequence domains that build the syntactic domains. We concentrate on the part of the 
predefined environment that specifies data-parallel operators. 

The DVal domain contains values that can be denoted in a Predula Nouveau program. 
Predefined value and type environments are defined by the following domain equations: 
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VEnv =- Ide --4 DVal x Type TEnv - Ide ~ Type Env =- VEnv • TEnv 

Denotable values are bound to names in VEnv and denotable types are bound to names in 
TEnv. This defines two separate name spaces for Predula value and type identifiers in a 
natural way. For the pairs in VEnv the Type domain component is the type of the denotable 
value. The following function builds TEnv values when partially applied: 

mktyp (ide,t) tenv ide2 =- if  ide=ide2 then t else tenv ide2 

For example, raktyp ([[" s  IntType) produces a value in the TEnv --4 TEnv domain. 
Larger environment segments are built by function composition on such values. Compare 
this to symbol tables in traditional compilers. 

4.2.1 Definition of the Data.Parallel Functions in Predula Nouveau 

We are now ready to define the Predula Nouveau data-parallel operators in the predefmed 
environment. In order to do this we use the mkopr function in analogy to the m/ayp function 
above to build the value environment. One important observation is that the parallel 
operational semantics does not have to be specified anywhere in the denotational semantics. 
The second argument position of mkopr in the definition below contains a type checking 
function for the operator. The third and fourth positions define parameter and result modes. 
The last position maps to operators in the CPS graph. The Predula Nouveau s c a n ,  
r e d u c e ,  and e a c h  functions are overloaded: they come in integer, real, and boolean 
versions, The integer versions, including e n u m e r a t e ,  are shown below: 

iparoprs =-- mkopr ([[" enumerate  "]], enumtc intT, I_ENUM) o 
mkopr([["each"]],  eachtc 1 intT, I._EACH1)o 
mkopr([["each"]], eachtc 2 intT, I__EACH2)o 
rakopr ([[ " s c a n  "]], scandtc intT, I_SCAND ) o 
mkopr([["scan"]], scansdtc intT, I_SCANSD)o 
mkopr ([[" scan "]]. scanstc intT, I_SCANS) o 
mkopr([["reduce"]],  reduceutc intT, I_REDUCE) o 
mkopr([["reduce"]],  reducestc intT, I_REDUCES) 

For a definition of the binding of real and boolean data parallel functions (together a total of 
22) and a more detailed discussion of the type checking functions that are used in the 
composition, see [22]. 

4.3 Data-Parallel Extensions in Predula Nouveau 

Most of the extensions are introduced to support data parallelism. These extensions consist 
of the addition of a number of data-parallel functions, like chum, scan, reduce, and each, that 
work on the array type. 

Currently only one-dimensional arrays of scalar or real values are possible. Still, we feel 
that this set, which however probably is too small to be used in real-life data-parallel 
programming, is large enough to demonstrate the feasibility of compiler generation for data- 
parallel programming languages from denotational specifications. 
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5 Data Parallel Target Codes 

5.1 VCODE and Paris 

The VCODE system [3] implements an abstract machine of data-parallel vector operations. 
It is portable between several parallel architectures including the CRAY and CM-2, but also 
sequential architectures, such as the Sun workstation. The VCODE operations are 
implemented on top of a library of C routines, the C Vector Library (CVL).VCODE is a 
single assignment stack-based language where all instructions operate on arrays. There are 
no free scalars, not even on the stack. The data-parallel functions are limited to arrays of 
scalars and floating-point numbers: it is not possible to directly build nested arrays or 
multidimensional arrays. Instead the VCODE data-parallel functions can handle segmented 
arrays. 

Both VCODE and the CM-2 Paris library [29] are cumbersome to use due to the many 
implementation details that need to be incorporated in such programs. This applies ~ 
especially to Pads. VCODE, on the other hand, is limited due to its single-assignment 
vector-stack, i.e. vectors on the stack cannot be destructively updated. There also is no way 
to store scalars except as unit vectors, and there are no global or heap stores to complement 
the stack. Also, to manage multidimensional or nested arrays it is necessary to keep the array 
topology in a separate segment array. Array decomposition for massively-parallel 
computers is an active research area: see for example [10]. 

6 I m p l e m e n t a t i o n  o f  the Compiler Generator 

The SML/NJ system is used to generate implementations from denotational semantics 
specifications. Specifications can almost be transformed verbatim to SML/NJ: very few 
transformations are necessary. 

6.1 The module design 

The specification is partitioned into three groups of modules, as is shown in Figure 3. The 
figure also shows the generation of a compiler from specification modules. The language 
specification part contains language specific modules. The general functions part consists 
of a module that contains definitions which are independent of both the specified language 
and the target platform. This module includes the definition of some auxiliary functions in 
the denotational definition. The lower right part contains implementation dependent 
specification modules. 

All these modules together generate the lower left part in Figure 3 which shows the 
modules in the generated compiler. The generated F r o n t  module transforms the input 
program to an abstract syntax tree. H i d  transforms the abstract syntax tree to a CPS graph 
through the M semantic function. Back transforms the graph to target code (in our case 
ANSI C quadruples and calls to the CVL library). Currently the SML/NJ module system is 
used to implement the module composition. 

We claim that this way of building the system offers two important benefits. First, the 
division between the denotational part and the operational part of the language specification 
is. expressed in a natural and flexible way that makes automatic generation of a compiler 
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Generated ] tsact< r '" Dependent 
Compiler I I Auxiliary Functions 

module export ~ compiler generation .............. ,,,. 

Fig. 3. The module structure of typical language specifications, the DML-P compiler generator, 
and the generated compiler. 

practical�9 Second, the strong modularisation makes it possible to reuse parts of the 
specification between different languages. Currently, only the CPS-graph module has been 
used for more than one language since it also has been used to specify the Tiny-C language 
in the DML-S system. 

6.2 The  Predula  N o u v e a u  L a n g u a g e  Specif icat ion 

The Predula Nouveau abstract syntax domain definition, midend main specification, and 
type domain definition (the modules in the dashed box in Figure 3) are written in 
denotafional semantics. The abstract syntax definition is used by both the grammar 
specification and by the midend. The type domain definitions module contains denotational 
definitions of the type system. The midend main specification module contains most of the 
Predula Nouveau semantics including the M (as in meaning) semantic function. 

6.3 The  C P S - G r a p h  Speci f icat ion 

The CPS-graph specification module generates part of the Back part of the generated 
compiler in Figure 3. The module interface includes a number of constructors which builds 
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datatype Opr = ... 
[ I_ENUM 
I R_EACHI I R_EACH2 
[ R_REDUCE [ R_REDUCES 

I R_SCAN I R_SCANS I R_SCANSD 

val Lambda : Typ * (Val -> Cont) -> Kont 

val Halt : unit -> Cont 
val Return : Val -> Cont 
val Call : Func * Val list * Kont -> Cont 
val Cond : Val * Cont * Cont -> Cont 
val New : bool * Typ * Kont -> Cont (* Build a new location *) 
val Send : Val * Kont -> Cont (* Send value to command cont *) 
val Update : Val * Val * Cont -> Cont (* Update location *) 
val Fetch : Val * Kont -> Cont (* Fetch value in a location *) 
val VIndex : Val * Val list * Val list * Kont -> Cont (* Get arr loc *) 
val PrimFunc : Opt -> Func (* Func from primitive operator *) 

(* Terminate *) 
(* Return from function *) 

val fix cont : (Cont -> Cont) -> Cont 
val fix_func : Typ * bool list * (Val list -> Func -> Cont) -> Func 

val codgen : Cont -> unit 

Fig. 4. Declaration of Operators and Basic Term Building Blocks of the CPS module of DML-P 

a CPS lambda expression. The most important constructors are shown in Figure 4. Inside 
the module these constructors build a graph. The CPS graph consists of three kinds of nodes. 
C o n t  nodes are lambda expressions that do not bind a value to a new name. K o n t  nodes 
are used to bind values to new names. The third kind of node, named F u n c  in the figure, is 
functions. These functions can be either primitive or user-defined. Primitive functions are 
created by the p r  s  constructor from primitive operators. User-defined functions can 
only be defined via the f i x  f u n c  constructor. This constructor also binds function 
parameters. 

The module also exports the c o d g e n  function which generates object code from the 
CPS lambda expression. Presently, this code is an ANSI-C program that together with the 
VCODE CVL is sent to the C compiler for compilation to object code. Section 7 gives a 
more detailed discussion of the code generation module concentrating on the data-parallel 
extensions compared to the CPS-graph module in the DML-S system. A discussion of the 
technical detail of  the interface and implementation of the module is also found in Appendix 
A of  [18]. 

6.4 Using the CPS Module Constructors 

Let us illustrate using the I_ENUM integer data-parallel enumeration operator. Assume we 
want to apply this operator to its arguments. This is done using the C a l l  constructor." 

Call ( PrimFunc I_ENUM, args, kont ) 

The first argument to C a l l  is the function to be applied. This is the I_ENUM operator 
injected into the F u n c  domain. The second argument a r g  is a sequence of evaluated left 
or right value arguments to C a l l .  The last argument is the expression continuation that 
receives the result of the application." For a user-defined function, the call constructor 
instead uses a value in the F u n c  domain defined by the f i x _ f u n c  constructor. 
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The f i x _ c e n t  constructor is used to express fixpoints of loops. The f i x _ c e n t  and 
f i x _ f u n c  constructors are the only ones that can be used to express recursion. The 
F e t c h  constructor fetches an atomic value from a location. The VIndex  operation sends 
a location in an array to an expression continuation. Combining these two it is possible to 
fetch an element from an array location: 

VIndex(arr, [offset] , [index] , Lambda(x, Fetch(x, kent) ) ) 

VIndex sends its location result to Fetch using a Lambda binding. Work is ongoing to 

generalise VIndex  to multidimensional and nested arrays. 

7 The New Code Generation Module for Data-Parallel Operations 

Here we shortly talk about the internals of the code generation module and the modifications 
that were necessary to make to the original DML-S system CPS module able to generate 
data-parallel code [18]. 

First, new primitive operators have been added. The original module contained 11 
operators. These operators were created with the goal of compiling a small subset of the C 
language. The extended module in DML-P contains a total of 83 operators. This larger 
amount is partly due to the increased number of types that is supported by the module, but 
also because the operator domain includes 22 new data-parallel operators, counting 
different types. The truncated definition of the operator semantic domain in Figure 4 
includes some of these data-parallel operators. 

Second, the new module can handle a greater range of types than ,the original module. 
This includes characters, strings, and floating point numbers. This also made it necessary to 
add new constructors for literals. 

Third, the data-parallel extensions make it necessary to implement arrays more carefully. 
Currently only fixed size arrays are supported, but work is ongoing to support arrays with 
dynamically determined size. 

Fourth, the most important extension is the addition of the VCODE CVL. This is done 
as external C calls to the library operations. This library is linked with the generated object 
code. 

From a code generation point of view, the CPS-graph module linearizes the graph into a 
sequence of instructions. In the original module this is done in two phases. First the graph 
nodes are marked. This includes counting of references. If a Cen t  node is referenced by 



258 

#include <stdio.h> 
#include <math.h> 
#include "datapar.h" 

typedef struct{long body{6]; 
} ttl; 

void tl(){ 
long t23; 
long t29; 
long t32; 
long *t31; 
long *t34; 
char t27; 
long *t18; 
long t38; 
long *t17; 
long t39; 
long t41; 
long *t40; 
long t42; 
ttl *t16; 
ttl t43; 
long t45; 
long *t44; 
long t46; 
ttl *tll; 
ttl t47; 
long t49; 
long *t48; 
long tSO; 
ttl *t6; 
ttl t51; 
t6=&t51; 
t48=&t50; 
*(t48)=0; 

t49=6; 
{long t52; 
for(t52=O;t52<t49;t52++){ 
t6->body[t52]- *t48; 
}] 
tll=&t47; 

t44=&t46; 
*(t44)=0; 

t45=6; 
{long t53; 
for(t53=O;t53<t45;t53++)[ 
tll->body[t53] = *t44; 
)) 
t16=&t43; 
t40=&t42; 
*(t40)=O; 

t41=6; 
{long t54; 
for(t54=O;t54<t41;t54++)[ 
t16->body[t54]= *t40; 

t17=&t39; 
*(t17)-O; 

tlS=&t38; 
*(t18)=O; 

L36:t27= *t18<=5; 
if(it27) goto L35; 
t34=t6->body+( *tlS-O)*l; 
*(t34)= *(tlS); 

t31=tll->body+( *t18-0)*i; 
t32=5- *t18; 
*(t31)=t32; 

t29 = *tlS+l; 
*(tlS)=t29; 

goto L36; 
L35:(each_i_mul(t16,6,t6,tll),t16); 
t23=reduce_i_add(t16,6); 
*(t17)=t23; 

printf("%id", *t17); 
printf("%s","\n"); 
return ; 
} 

int main()[ 
(void)tl(); 
exit(O); 
} 
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8 Benchmarks of a DML-S Generated Compiler for a Sequential C 
Subset 

In order to make a rough comparison between the quality of stand-alone C-based compilers 
generated by the original DML-S system and the quality of commercial compilers, we 
prepared a 1000-line program example in a small C subset called Tiny-C, for which a 
compiler was generated. This program contains function calls, integer and integer array 
arithmetic in addition to control structures such as if-statements, loops, etc. This example is 
measured on a Sparcstation ELC workstation (rated at approximately 20 MIPS). Measured 
time is elapsed time. Code size is measured on the linked executable file. The generated 
compiler frontend is in C, and produces low-level quadruples expressed in C syntax, which 
are fed through the standard SunOS 4.1 CC backend. 

The generated compiler was approximately three times slower in compilation speed than 
the Sun C++ compiler (version 2.1) (the generated compiler processing 1954 lines/minute 
versus 7100 lines/minute for Sun C++ when generating un-optimized code, or 1036 lines/ 
minute versus 2600 lines/minute when generating optimized code). However, the execution 
speed of the generated code was approximately the same, 7.8 seconds for the optimized code 
from the generated compiler versus 7.4 seconds when executing the optimized code from 
Sun's C++ compiler. However, when using the Gnu C compiler as the backend instead of 
the Sun C compiler, the Tiny-C compiler generated code which was about 2.5 time slower 
than code from the Gnu C compiler (3.4 seconds versus 1.4 seconds). Apparently the 
structure of the intermediate code from the Tiny-C compiler precludes some optimizations. 

Gen. Tiny-C compiler with 
Sun CC backend 

Sun C++ only 

Gen Tiny-C compiler + Gnu C 

Gnu C compiler only 

Without back-end 
optimization 

Code Compila- Execution 
size tion time time 
(kb) (seconds) (seconds) 

40 kb 30.7 30.9 

24 kb 8.4 26.5 

40 kb 33.6 8.7 

24 kb 8.9 4.6 

With optimization (-O2) 

Code size 
(kb) 

24 kb 

16kb 

16 kb 

16 kb 

Compila- Execution 
tion time time 
(seconds) (seconds) 

57.9 7.8 

23.1 7.4 

133.5 3.4 

~13.4 1.4 

9 Benchmarks of a DML-P Generated Compiler for Predula Nouveau 

The original DML compiler generation system is implemented in Scheme. It produces 
compilers in Scheme which are translated to C using Bartlett's Scheme-to-C compiler. Thus 
stand alone compilers in C, accepting source programs and producing quadruples, are 
obtained. 

The DML-P system has been developed from the original DML system by porting the 
DML backend to SML/NJ, and by extending the set of low-level operations in the target 
language to include data-parallel vector operations and scalar operations for a larger range 
of primitive types (integers, floating point numbers, strings, characters), and arrays built 
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from the mentioned scalar or real types. DML-S only included support for integers and 
arrays of integers. 

The generated compiler frontend which is implemented in SML/NJ, accepts Predula 
Nouveau source text, and produces low level quadruple code in C, which is then further 
compiled and linked using the GCC (version 2.4.5) compiler and linker. 

9.1 Compiling performance 

In the first benchmark, the generated compiler is compared to GCC for speed and maximal 
heap size on a Quicksort program. The recursive sorting function in Quicksort is unrolled 
between 0 and 1000 times. 52 logarithmically distributed samples are taken from this range 
resulting in program sizes varying between 10 and 17000 lines of Predula code. Data for the 
benchmark was produced on a Sparcl IPC workstation with 36Mb of primary memory. A 
similar Quicksort program implemented in C is also measured in this way. Measured time 
is user+system time. 

seconds, kb*10 

1000 

• 

100 

10 

xxxXX: 
XX x XXXX +++ 

x~QO(X XX +§247 O0 0 
xXXx x ++Jr + 0 0 

x x x xxxx~xx'~xxx.,o<x +++ o** --~ 
++++++ ~ * * ~  

§ '0- tJ-- 
+++++ o . o ~  I ~  
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+ + + +++++++r ~e@ u~'~ 

t: = t~o*~ ~ PredulaQuicksort toC * 
o o o Predula Quicksort to Machine Code + 

o C Quicksort to Machine Code [] 
Prcdula Frontend maximal Heap Consurnfion • 

. . . . . . . .  i . . . . . . . . . . .  
lO00 lO000 lines 10 

+ 

o 

lOO 

The maximal heap size for the Predula frontend during compilation is about 3.7 Mb up to 
about 1000 lines of source code, where the size starts to grow stepwise up to about 30 Mb. 
The Predula frontend alone is about as fast on smaller Predula Quicksort programs as the 
Gnu compiler is on smaller C Quicksort programs, but the frontend is slower on larger 
programs. Considering the entire Predula compiler, most of the time is spent in GCC. This 
is due to the voluminous code that is currently generated by the Predula frontend. 

Execution 
Code size Compilation time 

(kb) time (seconds) (seconds) 

Predula Nouveau frontend only --- 18.3 --- 

Predula Nouveau frontend with Gnu C -02 backend 24 94 22.4 

Hand-written C program compiled with Gnu C -02 24 39 11.8 
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9.2 Run time performance 

The second benchmark compares a 1000 line unrolled Predula Quicksort program to a 1000 
line unrolled C Quicksort program. Both programs initialize and sort a 1000 element array 
1000 times. The table is measured on a Sparcstation ELC. Measured time is elapsed time 
and code size is measured on the linked executable file. Compilation speed is about 640 
lines/minute for the Predula compiler and about 1540 lines/minute for the Gnu C compiler 
on 1000 line programs. 

I0 Conclusions and Future Work 

The presented system, DML-P, is to our knowledge one of the first denotational semantics 
based compiler generators that automatically generates practical compilers for data parallel 
languages. The system uses a continuation passing style internal representation. This is a 
graph that includes data-parallel operators. One important goal is to arrive at a sufficiently 
genera] set of operators in the intermediate representation to be useful as a target for 
compilers for a wide range of data-parallel languages. However, despite of  being 
prototypes, compilers generated by DML-S or DML-P has demonstrated surprisingly good 
performance. Some directions for future work are shown below: 

�9 Include multi-dimensional and nested/segmented arrays in the Predula Nouveau 
language to evaluate whether DML-P needs any extensions for this. 

�9 Include a Fora11 construct. 

�9 Code generation for a wider range of parallel architectures. 

�9 Further development of the low-level operational semantics and the CPS graph so it can 
handle data-parallel operations with multi-dimensional and nested/segmented arrays. 

Substantial work still needs to be done on the use of optimization techniques in order to 
generate better data-parallel object code. This includes further work on using and 
developing the CPS graph as a formally defined intermediate representation in which data- 
parallel operations can be expressed. 
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