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Abstract 
A Problem Solving Environment (PSE) is a complete, integrated com­
puting environment for composing, compiling and running applications 
in a specific problem area or domain. We describe a visual code de­
velopment tool within a PSE, which enables computational scientists 
to construct applications by connecting components. The granularity 
of each component can vary from being a complete code, to a mathe­
matical routine such as a matrix or PDE solver. We first outline the 
requirements of such an environment, illustrating these with our imple­
mentation. The implementation of a computational electro-magnetic 
solver is then described using this code development tool, based on a 
2D boundary element code. We emphasise lessons learned, and the 
importance of using such an environment to support new application 
development. 
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1. INTRODUCTION 

A Problem Solving Environment (PSE) is a complete, integrated com­
puting environment for composing, compiling, and running applications 
in a specific area [10]. PSEs have been available for several years for cer­
tain specific domains, but most of these have supported different phases 
of application development, and cannot be used cooperatively to im­
prove a scientists' productivity, primarily due to the lack of a framework 
for tool integration and ease-of-use considerations. 

The modern concept of a PSE for computational science [11] is based 
on the availability of high performance computing resources, coupled 
with specialised software tools and application specific knowledge. PSEs 
have the potential to greatly improve the productivity of scientists 
and engineers, particularly with the advent of web-based technologies, 
such as CORBA and Java, enabling access to remote computers and 
databases. 

The aim of our PSE is to provide the ability to build up scientific ap­
plications by connecting or plugging software components together, and 
to provide an intuitive way to construct scientific applications. Hence, 
a PSE must contain: (1) application development tools that enable an 
end user to construct new applications, or integrate libraries from ex­
isting applications, (2) development tools that enable the execution of 
the application on a set of resources. In this definition, a PSE must 
include resource management tools, in addition to application construc­
tion tools, albeit in an integrated way. Based on the types of tools 
supported within a PSE, we can identify two types of users: (1) applica­
tion scientists/engineers interested primarily in using the PSE to solve 
a particular problem (or domain of problems), (2) programmers and 
software vendors who contribute components to achieve the objectives 
of the category (1) users. The PSE infrastructure must support both 
types of users, and enable integration of third party products, in addi­
tion to application specific libraries. In this paper we are concentrating 
on category (1) users. 

Our application interface to the PSE is called the Visual Compo­
nent Composition Environment (VCCE). The VCCE contains a Pro­
gram Composition Tool (PCT), which enables a user to construct sci­
entific applications by combining components obtained from local or re­
mote component repositories. All components have interfaces defined in 
XML, based on a PSE-wide data model. A project investigating the use 
of XML for defining component properties and interfaces is OSD [22], 
which supports 'push'-based applications to automatically trigger the 
download of particular software components as new versions are devel-
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oped. Hence, a component within a data flow may be automatically 
downloaded and installed, when a new or enhanced version of the com­
ponent is created. This approach is linked to event handlers, with spe­
cific events to identify when a new version of a particular component is 
available. The use of this description format is principally aimed at in­
stalling new versions of existing components, and does not facilitate the 
discovery or description of properties of a given component. Another 
component description scheme is IBM's BeanML [3], which enables a 
user to describe the properties of a component, using a specialised data 
model, and which is subsequently translated to Java code. This descrip­
tion scheme is primarily based on developing graphical components, and 
primarily aimed at Java. The Koala project [16] at INRlA is aimed at 
providing an object markup language, to enable serialization of a Java 
object. It has primarily focused on developing graphics applications, and 
has not been used for encoding properties of objects, such as execution 
constraints associated with a given object, or groups of objects. There is 
also work by the OMG in creating a CORBA Component Model (CCM) 
in XML, enabling an XML description to be automatically translated 
into CORBA IDL [5], and vice versa. A "component" is defined as a 
new basic meta-type in CCM, enabling components to be defined by 
extensions to standard IDL, and be either 'standard' or 'extended' com­
ponent types. A CORBA component interacts with a 'Container', and 
provides support for call backs and a Portable Object Adapter (POA). 
Our component model is more generic, supporting both data types in a 
particular lanaguage (such as Java), and also execution specific details 
to be added to a component description. Hence, a component in our 
system can be a wrapped code, or compiled Java bytecode, with con­
straints defining what the code needs to run (such as whether it is an 
MPI code, and therefore requires MPI libraries to be available on the 
system), and constraints on the types of platforms on which the code 
can be run. Components are wrapped as binary codes, and the source 
code is not manipulated in any way - as in many instances, the source 
code is proprietary and not accessible. In the case of compound compo­
nents, binary codes are integrated together, and the source code of the 
individual components is not involved. Component repositories must 
be statically connected to the PCT, prior to launching the VCCE. A 
user can also register new components with the local repositories which 
contain instances of local or remote components. The component model 
and a more detailed description of the VCCE architecture can be found 
in [14]. 

Visual Programming is also an active research discipline, and various 
languages and tools have been developed within the community - a list 
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of projects can be found at [28]. In the context of a PSE, various vi­
sual composition tools can be utilised, generally a user can construct 
an application by combining "program blocks" with a particular func­
tion, such as in AVS, Khoros and IRIS Explorer. In these systems the 
emphasis is on integrating blocks written in a particular programming 
language (such as C), or a particular scripting language (such as Scheme 
or Python). Visual programming tools to support parallel program con­
struction have also been investigated, primarily as tools to combine lan­
guage blocks from a particular parallel programming library, such as 
HeNCE [15] for PVM, to support specialiased data partition for array 
based computations [2), or to enable the management and description 
of specialised data structures [4]. The visualisation in these latter envi­
ronments has primarily been aimed at facilitating program development 
and integration from different modules. These environments are very 
specialised, and involve blocks containing low level descriptions of pro­
gram statments that need to be combined to generate a single program. 
Higher level component composition environments also exist, which in­
volve modules which can range from complete applications to specialised 
language statements - albeit for a specific language, and generally in 
the context of a particular application domain, such as CLEMENTINE 
(for data mining). Each of these environments supports constructs to 
combine 'nodes' into a data flow graph, and enable the construction 
either of new functionality, or of a complete application. These tools 
provide support for managing conditionals, loops and compound com­
ponents to varying extents. In our system we borrow concepts of data 
flow based composition from some of these environments, but also en­
able the description of specialised services, such as an 'events' service, 
which enables the execution of components either on a single machine, 
or a parallel computer. The event service interacts with a resource man­
ager which can manage execution on a parallel machine. Our approach 
can therefore support binary components which support a specialised 
functionality (such as a mathematical library), or a complete applica­
tion. We therefore borrow from existing work in visual programming 
languages, but provide support for checking component properties based 
on a system wide data model. Our approach is also more general, and 
can encapsulate approaches taken by systems specific to a given pro­
gramming model, or to a specific application domain. We support the 
latter by providing specialised components that are specific to a given 
domain (such as components for reading from a structured database -
for data mining [25]) and general purpose for visualising the 
results of an experiment, and writing the results to a file, for instance. 
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1.1. RELATED WORK 
We outline some existing PSE projects, which have become popular, 

and employ some aspects of the infrastructure described previously: 

• The Gateway project [9] introduces a component based system 
implemented using JavaBeans and utilising dataflow techniques to 
represent the application as a directed graph. The Gateway system 
chooses to use the Abstract Task Descriptor (ATD) as its lowest 
level of granularity of instruction and to build up the instructions 
that define the application. 

• The Adaptive Distributed Virtual Computing Environment (AD­
ViCE) project [13] is another system that provides a graphical 
user interface that enables a user to develop distributed applica­
tions and specify the computing and communication requirements 
of each task within the task graph. Unlike the Gateway system, 
but similar to our own, the ADViCE system has its own scheduler 
that allocates tasks to resources at run time. 

• The Arcade project [1] uses a slightly different approach in that the 
system has a three tier architecture, with the first tier consisting of 
a number of Java Applets that are used individually to specify the 
tasks (either visually or through a scripting language), to specify 
resource needs, and to provide monitoring and steering. Each of 
these Applets then interacts with a CORBA interface which in 
turn interacts with the final execution user modules distributed 
over a heterogeneous environment. 

• SCIRun [17],[18] provides a programming environment to support 
interactive construction, de-bugging, and steering of large-scale 
scientific applications. The focus in SCIRun is on computational 
steering, supporting application, algorithm and performance steer­
ing. 

• The Distributed Problem Solving Environment Component Archi­
tecture Toolkit (CAT) [19] is a component-based toolkit for in­
tegrating heterogeneous software components. Aimed specifically 
at science and engineering, a CAT component can be dynamically 
inserted into the system and be made to interact with other CAT 
components, regardless of differences between architecture, oper­
ating system, and programming language. The end-user interacts 
with this PSE through a graphical interface, which provides a vi­
sual workspace in which components can be created and connected. 
Before the user can decide which components and machines to 
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employ, she must have access to information about the hardware 
and software resources available on the system. This facility is 
provided by the CAT Resource Information Service (RIS). The 
RIS comprises an "Information Server" which maintains an LDAP 
database, and stores hardware and software meta-data, and an 
"Information Browser", a graphical tool packaged with the CAT 
that allows a user to search and browse the contents of the LDAP 
database. 

• The Netsolve project [20] enables the user to define problems in a 
specialised language, not dissimilar to Matlab. Interfaces are also 
provided for Fortran, C and Java. Netsolve also supports access 
to both hardware and software based computational resources dis­
tributed across a network, supporting load-balancing and resource 
discovery using a collection of interacting agents . 

• The Parallel ELLPACK project [21] is a PSE for PDE based appli­
cations. Implemented using the ELLPACK language and sequen­
tial solver libraries, it also contains finite element methods, third 
party solvers, and a graphical interface for problem specification. 
Support is also provided for running the generated application on 
parallel machines. 

Other projects which share features of a PSE, but do not provide both 
a program integration/generation tool and a resource manager include 
PARD IS [23], PAWS [24], and various resource management systems. 
Based on existing projects, a PSE must therefore: (1) allow a user to 
construct domain applications by plugging together independent com­
ponents. Components may be written in different languages, placed at 
different locatiuns, or exist on different platforms. Components may be 
created from scratch, or wrapped from legacy codes; (2) provide a vi­
sual application construction environment; (3) support web-based task 
submission; (4) employ an Intelligent Resource Management System to 
schedule and efficiently run the constructed applications; (5) make good 
use of industry standards such as middleware (CORBA), document tag­
ging (XML); (6) must be easy for users to extend within their domain. 

2. BOUNDARY ELEMENT CODE 
The boundary element code described in this paper is called be2d. 

The code is a two dimensional boundary element simulation code for 
the analysis of electro-magnetic wave scattering. The main inputs to 
the program are a closed two dimensional contour and a control file 
defining the characteristics of the incident wave. The contour file con-
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sists of a series of x, y coordinate pairs and is generated by a separate 
mesh generation program. The control file is a series of property values 
for the wave and consists of values for the wave frequency in Hertz, the 
wave direction in radians and a complex number representing the am­
plitude. For the computation of the matrix elements, the code uses a 
two dimensional formulation of Rau-Wilton-Glisson elements [26]. The 
outer integrations use one-point quadrature, while the inner integrations 
use two-point quadrature. A direct LV decomposition solver is used for 
computing the field. 

The code is written in Fortran and to run the original version, the user 
first runs the mesh generator from the command line. This produces the 
data file that represents the two dimensional contour. The user then has 
to run the be2d solver from the command line, ensuring that the contour 
data file and the wave control file are in the same directory. The solver 
produces two output files, one containing the radar cross section data 
and the other the surface current. 

In the version of the code that we use from within the PSE, various 
parts of the code and data generators are wrapped as CORBA objects. 
The components that make up the complete assembled code are: 

• The mesh generator, for generating the ellipse curve which defines 
the example 'model' or geometry for the be2d program. This is the 
original mesh generator with a CORBA wrapper that generates a 
CORBA object representing the data set, instead of writing the 
data to a file. 

• The wave control component that defines the characteristics of 
the incidence wave, frequency and angle. This is a simple object 
representation of the control file. This component has two outputs, 
the frequency of the wave and it's angle. 

• The be2d boundary element solver. This is the original solver, 
modified to accept input data from CORBA objects and which 
outputs a radar cross section as a CORBA object. 

• The database component, for storing the output from the solver. 
This component was not part of the original code, it takes multiple 
output objects from the solver and stores them in a database. 

Each of these CORBA components is used through a CORBA server 
object, called the ActionFactory, based upon the Abstract Factory de­
sign pattern [12]. This pattern abstracts the object creation and execu­
tion details behind a factory interface, when the user selects a component 
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for instantiation, the PSE connects to an instance of the be2d ActionFac­
tory server. The factory object is then responsible for instantiating and 
executing that component. In this way the PSE does not need to know 
details about object instantiation or execution. The Actionfactory has a 
single method exec() which accepts a number of parameters, including 
the name of the process to execute, a set of input parameters and some 
details about the execution of the process, and returns a result set. 

A typical call to the ActionFactory would be: 

short[] result = factory_.exec(action_name_. 
numBddETag. 
parameter. 
fact_machine_name_. 
fact_obj_name_. 
fact_port_number_); 

Where action..name_ represents the name of the command to be ex­
ecuted, for instance ActionReadMesh is the action that generates the 
mesh object, the return value for which is a reference to a CORBA object 
representing the mesh. ActionComputeRCS is the action that executes 
the solver, it returns another reference to the CORBA object that repre­
sents the radar cross section result set. numBddETag and parameter are 
arrays representing the input data for this component, the value of these 
is either a simple data type as in the case of the wave frequency and angle, 
or a reference to a CORBA object in the case of the mesh. The action 
factory is responsible for deliverying input datasets to the appropriate 
components to be executed to complete a given action. The final param­
eters, fact..machine..name_, fact_obj ..name_ and fact_port..number _ are 
values that the ActionFactory uses to decide what component to execute 
and where to run it. All of these values are stored in the XML com­
ponent definitions, which are parsed by the PSE and represented by a 
proxy component. Hence, running a particular component is achieved 
by a single function call to the ActionFactory instance, found at compo­
nent instantiation time, passing in the values stored in the proxy together 
with any output parameters from the previous component in the graph. 

3. USING THE PSE 
When the PSE is started, the VCCE first checks in the component 

directory or directories for all defined components. The directories that 
the application examines are defined in an application meta-data file. 
The XML component definitions are parsed, the proxy components cre­
ated and added to the component tree ready to be selected by the user. 
Illustrated in Figure 1. 
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Figure 1 VCCE with loaded component directory 
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Figure 2 A constructed work flow graph 

To assemble a set of components into an executable task graph, the 
user simply selects a component, from the tree with the mouse, and 
clicks on the scratch pad on the right of the screen. This intuitive se­
lection process has the same features as many visual programming or 
windows based environments, such as mouse based selection and "drag 
and drop". Once the desired components have been selected and placed 
on the scratch pad, they can be connected together using the connection 
menu button. The user clicks this button then selects two components, 
parent first then child, the PSE then establishes a data flow connection 
from the parent to the child. Repeating this process allows the user 
to connect the components together into a task graph. The final task 
the user has to perform before executing the graph, is to assign a start 
node or nodes. A graph can have more than one start point, if there 
are two initial input generating components for instance. The assem­
bled and connected be2d graph is illustrated in Figure 2. To execute the 
completed graph the user simply presses the start button to initiate the 
simulation. 

The solver is combined with a graph generator (JChart [27]) as a third 
party component. The output generated from the code is illustrated in 
figure 3. 

One of the features of the PSE is to provide the ability to perform 
iterations over components in a task graph. A more complex task graph 



A Collaborative Code Development Environment 129 

Figure 3 Solver Output 

containing two control components in addition to the components needed 
for the solver is illustrated in figure 4. When these control components 
are connected to another component, the user is prompted with a selec­
tion of control input parameters that are suitable for iteration. In the 
case of be2d, the two input parameters to the wave component are the 
frequency and angle of incidence, being floating point values, these are 
suitable for iteration and there is a separate control component for each. 
The user can set the start, finish and iteration values for each parame­
ter. When the graph executes, the PSE will loop over the components 
iterating the input parameters according to the user defined values. 

4. COMPONENT INSTANTIATION AND 
GRAPH EXECUTION 

The be2d components used as the example in this paper are CORBA 
components. When the components are instantiated by the PSE upon 
selection by the user, the PSE has to establish a connection to the 
CORBA ORB that has a running instance of the be2d factory and get 
a reference to the factory from that ORB. The XML component def­
initions contain information about where to find the factory, the host 
machine, the port number and the name of the factory object as well 
as the CORBA version, in this case Orbacus.The PSE automatically 



130 ARCHITECTURE OF SCIENTIFIC SOFTWARE 

H 
-

-- f Compol! t Ion Eiivl ronment - -- I, :,1 
;11 I IS lI B! J. <III! 

Cl PSE CO"1looont. 
< 

Dbe2d 
.. 

D BE20AFMeSll 
oop 

C.nom SI",. 
DBE20AFRCS arameler 
D BE20AFStore 51..,: M 
DAFTest Stop; 25.0 

D BE20AFW ... Increnitletlt: '.0 

D b.2dDIta CUI'ent: 0.0 
: 

\. D eurVlew 1 D dUlTlTtt • 
Drcsvlew oop 
DLoop C ""ent Slale 

, Il!me; Arnplnu,," 
SIart: !.OE7 
Stop: !.OE8 , In( remd .... : 1.OE7 

ClXrent: , .. )f7 1 BE2DAFM .. h I 
: 

I'¥ : 

: 

: 1 DE2DArtlCS I : 

1 
, 

1m 
, 

Figure 4 A work flow graph with control components 



A Collaborative Code Development Environment 131 

performs the connection to the ORB and retrieves a reference to the 
be2d ActionFactory when a proxy component is added to the scratch 
pad. When the proxy is told to execute by the PSE, it calls the exec () 
method on the instance of the factory it has a reference to, see the 
previous section on the be2d code 2 for more specific details. 

In more general terms when a task graph is executed, each of the 
components in the graph is told to execute in turn, starting with the 
component or components that have been identified by the user as the 
starting point for the graph. After component has executed it sends 
back an event to the VCCE to say that it has finished executing. At 
this point the VCCE will transfer the output parameters from the com­
pleted component to the input parameters of the next component to be 
executed and then call that components execute method. 

When the control components are introduced into a task graph, by 
connecting them to a suitable component, they provide the input to that 
component. In the case of the example in this paper, see figure 4, there 
are two control components. One to control the angle of the wave and 
the other to control the frequency. These control components work in a 
similar manner to the traditional "for ... next" loop in most programming 
languages, stepping through a series of values from a start value until 
an end value is reached incrementing by a set value. At each iteration of 
the loop the PSE checks that the halting condition has not been reached 
and then passes the current loop value to the connected component. In 
the case of the wave component, this value is simply passed straight 
through to it's output parameter, where it becomes one of the input 
values for the solver. When, as in this example, there are more than 
one control components connected to a single component, the execution 
is equivalent to a nested loop and the execution will continue until the 
halting condition on the outer loop is reached. The inner loop value 
is reset to it's starting value every time the outer loop performs an 
iteration. 

4.1. ERROR HANDLING 
Error handling in the PSE is undertaken by a Program Analysis Tool, 

which performs a set of checks on the components. It checks that: 

• The data types for input and output ports on components are 
consistent. The first check involves ensuring that the syntax for the 
data types match, based on the XML based component description 
provided. It then checks that the cardinality of the data types 
match, and finally, whether the input/output is streamed int%ut 
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of a component, or whether it needs to be read/written from/to a 
file. 

• A log file exists for recording Execution errors, maintained local to 
the point where the component is being executed. Hence, regard­
less of where the ActionFactory undertakes component execution, 
the log file is maintained at the same place where the execution is 
undertaken. 

• Component constraints have not been violated by the component 
execution tool. These constaints can relate to the availability of 
specialised programming libraries (such as MPI or PVM), the ex­
istence of specialised operating systems (such as Solaris) or the 
availability of specialised system requirements, such as memory. 

Since the component source code is not modified, verification of com­
ponent behaviour is not undertaken within the PSE. It is assumed that 
each component has been verified and operates accorded to specifica­
tions provided by the component developer. A user can however place 
specialised components, such as a 'loop' components to undertake pa­
rameter tests, prior to using the component in an application. Results 
of these runs can be recorded into a file, and analysed for discrepancies 
between the specified output (by the component developer) and the ex­
pected output (by the component user). The output can also be analysed 
by specialised statistical components to undertake correlations between 
different experimental runs. 

5. SUMMARY AND CONCLUSIONS 
A PSE is aimed at supporting an application scientist in solving a 

problem within a given application domain. The "problem solving" 
process involves a range of activities from both a user's point of view, 
and a systems point of view. The intention being to abstract details of 
software and hardware, which correspond to the system point of view, 
from the application scientist. The user's point of view relates to being 
able to specify the problem in a decompositional manner, whereby an 
application is composed of interacting components, each of which un­
dertakes a particular function. The data flow approach of combining 
components to compose applications is perhaps the most intuitive way 
to construct applications, and has been used by a range of other tools 
(such as AVS Explorer and Khorous) - others being a "declarative spec­
ification", "script based specification", and a "high-level programming 
language based specification". We feel the graphical approach adopted 
within our PSE is more generic, and can be used to extract a script 
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in XML. We provide support for handling "conditionals" and "itera­
tors" within the data flow approach, in addition to hierarchy to com­
pose "compound" components. Additional details of these can be found 
in [7]. Wrapping legacy codes as components within a PSE is a non­
trivial undertaking, particular when making use of CORBA and Java 
based implementations. For instance, in order to support interoperabil­
ityacross programming languages, CORBA supports the minimal subset 
of data types across these. This could lead to data type incompatibility 
when wrapping Fortran or C codes, in terms of numerical precision and 
supported operations on particular data types such as complex numbers. 
The way in which legacy codes are wrapped can also affect the reusabil­
ity of the resultant component. Wrapping the entire code as a single 
monolithic component is more straightforward, but smaller decomposed 
components may be more effectively reused in this way [8]. 

The VCCE simplifies the process of running a complex scientific code, 
using the intuitive visual programming paradigm. The application scien­
tist does not need to configure software components, and can concentrate 
on undertaking parameter runs or visualising output from a solver. Var­
ious components are provided to achieve some of these functions, which 
may be local to the scientist or refer to components held at other sites. 

Although there is an obvious overhead in having a legacy code 
wrapped as a CORBA object, the cost is not as great as it might appear. 
We have undertaken performance comparisons of wrapped legacy codes 
on both workstation clusters [8] and dedicated parallel machines [6]. 
The most time consuming part of using a CORBA object is the initial 
"handshaking" with the ORB. The VCCE performs the CORBA con­
nection at component instantiation and not execution time. The user 
is still performing the process of building the graph at this time, so the 
cost in time is not really noticed. Once the graph comes to execution, 
the CORBA connections are already in place and the speed of execution 
is not affected by a discernible amount compared to the original code 
executed via the command line. 
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DISCUSSION 

Speaker: David Walker 

Masaaki Shimasaki : Does VCCE provide the functionality in com­
position of software (Le., network programming) similar to that of the 
AVS system for visualization? 
Richard Fateman : Can you comment on the extent to which the 
PSE/visual programming environment design has drawn on the decades 
of experience in the programming language design community, in partic­
ular, solutions to issues of functional composition, information hiding, 
name spaces, scope, exception handling? 
David Walker : Visual Programming is an active research discipline, 
and various languages and tools have been developed within the commu­
nity - a list of projects can be found at http: / / cui. unige . ch/Visual/. 
In the context of a PSE, various visual composition tools can be utilised, 
generally a user can construct an application by combining "program 
blocks" with a particular function, such as in AVS, Khoros and IRIS 
Explorer. In these systems the emphasis is on integrating blocks written 
in a particular programming language (such as C), or a particular script­
ing language (such as Scheme or Python). Visual programming tools to 
support parallel program construction have also been investigated, pri­
marily as tools to combine language blocks from a particular parallel 
programming library, such as HeNCE for PVM, to support specialiased 
data partition for array based computations, or to enable the manage­
ment and description of specialised data structures. The visualisation in 
these latter environments has primarily been aimed at facilitating pro­
gram development and integration from different modules. These envi­
ronments are very specialised, and involve blocks containing low level 
descriptions of program statments that need to be combined to gener­
ate a single program. Higher level component composition environments 
also exist, which involve modules which can range from complete applica­
tions to specialised language statements - albeit for a specific language, 
and generally in the context of a particular application domain, such 
as CLEMENTINE (for data mining). Each of these environments sup­
ports constructs to combine 'nodes' into a data flow graph, and enable 
the construction either of new functionality, or of a complete applica­
tion. These tools provide support for managing conditionals, loops and 
compound components to varying extents. In our system we borrow 
concepts of data flow based composition from some of these environ­
ments, but also enable the description of specialised services, such as 
an 'events' service, which enables the execution of components either 
on a single machine, or a parallel computer. The event service inter-
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acts with a resource manager which can manage execution on a parallel 
machine. Our approach can therefore support binary components which 
support a specialised functionality (such as a mathematical library), or a 
complete application. We therefore borrow from existing work in visual 
programming languages, but provide support for checking component 
properties based on a system wide data model. Our approach is also 
more general, and can encapsulate approaches taken by systems specific 
to a given programming model, or to a specific application domain. We 
support the latter by providing specialised components that are specific 
to a given domain (such as components for reading from a structured 
database - for data mining) and general purpose components for visu­
alising the results of an experiment, and writing the results to a file, for 
instance. 
Anne Trefethen : When combining a set of modules into a single 
hierarchical module are you creating a single interface to those modules 
or are you combining the modules by manipulating their source code in 
some way? 
Bruce Char : Are there any major efforts in describing components 
(through XML or other means) outside of the scientific computation 
community that problem-solving environment builders should be aware 
of? How close are we to having component description standards that 
would allow components such as commercial document processing or 
databases to be incorporated in this kind of PSE architecture? 
David Walker : A project investigating the use of XML for defin­
ing component properties and interfaces is OSD, which supports 'push'­
based applications to automatically trigger the download of particular 
software components as new versions are developed. Hence, a compo­
nent within a data flow may be automatically downloaded and installed, 
when a new or enhanced version of the component is created. This ap­
proach is linked to event handlers, with specific events to identify when 
a new version of a particular component is available. The use of this 
description format is principally aimed at installing new versions of ex­
isting components, and does not facilitate the discovery or description of 
properties of a given component. Another component description scheme 
is IBM's BeanML, which enables a user to describe the properties of a 
component, using a specialised data model, and which is subsequently 
translated to Java code. This description scheme is primarily based on 
developing graphical components, and primarily aimed at Java. The 
Koala project at INRIA is aimed at providing an object markup lan­
guage, to enable serialization of a Java object. It has primarily focused 
on developing graphics applications, and has not been used for encod­
ing properties of objects, such as execution constraints associated with 
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a given object, or groups of objects. There is also work by the OMG 
in creating a CORBA Component Model (CCM) in XML, enabling an 
XML description to be automatically translated into CORBA IDL, and 
vice versa. A "component" is defined as a new basic meta-type in CCM, 
enabling components to be defined by extensions to standard IDL, and 
be either 'standard' or 'extended' component types. A CORBA com­
ponent interacts with a 'Container', and provides support for call backs 
and a Portable Object Adapter (POA). Our component model is more 
generic, supporting both data types in a particular lanaguage (such as 
Java), and also execution specific details to be added to a component de­
scription. Hence, a component in our system can be a wrapped code, or 
compiled Java bytecode, with constraints defining what the code needs 
to run (such as whether it is an MPI code, and therefore requires MPI 
libraries to be available on the system), and constraints on the types of 
platforms on which the code can be run. Components are wrapped as 
binary codes, and the source code is not manipulated in any way - as 
in many instances, the source code is proprietary and not accessible. In 
the case of compound components, binary codes are integrated together, 
and the source code of the individual components is not involved. Com­
ponent repositories must be statically connected to the PCT, prior to 
launching the VCCE. A user can also register new components with the 
local repositories which contain instances of local or remote components. 
Richard Fateman : It would be useful for designers to be conversant 
with issues of functional programming, functions as first-class objects, 
lexical scope. One reference would be the text "Structure and Interpre­
tation of Computer Programs" by H. Abelson and G. Sussman, McGraw 
Hill/MIT Press. 
David Walker : We agree that functional programming languages pro­
vide an elegant way of describing composition, and in fact have been the 
basis of other work, such as "algorithmic skeletons". The functional pro­
gramming paradigm is however difficult to grasp for many non-computer 
scientists, and there is little suggestion that functional programming 
languages, such as Haskell, Miranda and Hope, have achieved the adop­
tion compared to C or Java. Our emphasis is on visual programming, 
whereby applications can be visually constructed from blocks. There 
is a possibility, however, of translating the visual representation into a 
functional language, and a translator can be written to achieve this. 
Mladen Vonk : Errors committed by users during specification and 
solution engineering using problem-solving environments can be very 
costly. Standard software engineering teaches us that verification and 
validation (V & V) should be an integral part of the specification pro­
cess (this includes both domain-specific, math-specific, and environment-
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predicated V&V). Your system does not appear to have any explicit 
V & V hooks, tools, or process points. Why? Do you plan to incorporate 
them into the system in the future? 
David Walker: Error handling in the PSE is undertaken by a Program 
Analysis Tool, which performs a set of checks on the components. It 
checks that: 

• The data types for input and output ports on components are 
consistent. The first check involves ensuring that the syntax for the 
data types match, based on the XML based component description 
provided. It then checks that the cardinality of the data types 
match, and finally, whether the input/output is streamed int%ut 
of a component, or whether it needs to be read/written from/to a 
file. 

• A log file exists for recording Execution errors, maintained local to 
the point where the component is being executed. Hence, regard­
less of where the ActionFactory undertakes component execution, 
the log file is maintained at the same place where the execution is 
undertaken. 

• Component constraints have not been violated by the component 
execution tool. These constaints can relate to the availability of 
specialised programming libraries (such as MPI or PVM), the ex­
istence of specialised operating systems (such as Solaris) or the 
availability of specialised system requirements, such as memory. 

Since the component source code is not modified, verification of com­
ponent behaviour is not undertaken within the PSE. It is assumed that 
each component has been verified and operates accorded to specifica­
tions provided by the component developer. A user can however place 
specialised components, such as a 'loop' components to undertake pa­
rameter tests, prior to using the component in an application. Results 
of these runs can be recorded into a file, and analysed for discrepancies 
between the specified output (by the component developer) and the ex­
pected output (by the component user). The output can also be analysed 
by specialised statistical components to undertake correlations between 
different experimental runs. 
Masaaki Shimasaki : In your development of problem-solving envi­
ronments, are there any specific design features that relate directly to 
electromagnetics computation or to the specific needs of end users? 
David Walker : Our PSE contains specialised components used for 
supporting electromagnetic applications. These include: 
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• The mesh generator, for generating the ellipse curve which defines 
the example 'model' or geometry for the be2d program. This is the 
original mesh generator with a CORBA wrapper that generates a 
CORBA object representing the data set, instead of writing the 
data to a file. 

• The wave control component that defines the characteristics of 
the incidence wave, frequency and angle. This is a simple object 
representation of the control file. This component has two outputs, 
the frequency of the wave and it's angle. 

• The be2d boundary element solver. This is the original solver, 
modified to accept input data from CORBA objects and which 
outputs a radar cross section as a CORBA object. 

• The database component, for storing the output from the solver. 
This component was not part of the original code, it takes multiple 
output objects from the solver and stores them in a database. 

Each of these CORBA components is used through a CORBA server ob­
ject, called the ActionFactory, based upon the Abstract Factory design 
pattern. 
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