
Learnability of Constrained Logic Programs

Sago Dgeroski 1, Stephen Muggleton 2, Stuart Russell 3

1 Institut Jo~ef Stefan, Jamova 39, 61111 Ljubljana, Slovenia
Oxford University Computing Laboratory, 11 Keble Road, Oxford OX1 3QD, UK
3 Computer Science Division, University of California, Berkeley, CA94720, USA

A b s t r a c t . The field of Inductive Logic Programming (ILP) is concerned
with inducing logic programs from examples in the presence of back-
ground knowledge. This paper defines the ILP problem and describes
several syntactic restrictions that are often used in ILP. We then de-
rive some positive results concerning the learnability of these restricted
classes of logic programs, by reduction to a standard propositional learn-
ing problem. More specifically, k-literal predicate definitions consisting
of constrained, function-free, nonrecursive program clauses are polyno-
mially PAC-learnable under arbitrary distributions.

1 Introduct ion

The theory of Probably Approximately Correct (PAC) learning has been applied
principally to propositional concept classes. Despite their successes, propositional
learning approaches suffer from the limited expressiveness of their hypothesis
language. Learning systems that use more expressive languages, have recently
attracted a substantial amount of research in the machine learning community.
As the learned hypothesis most often takes the form of a logic program, the field
has been named Inductive Logic Programming (ILP) [10].

In this paper we will concentrate on the problem of learning a single concept
or target predicate. Other work in ILP has focussed on learning several, pos-
sibly interdependent, concepts [14, 2]. Few PAC-learnability results have been
established for either case (see Section 2), although the multiple-concept learning
methods of [14] and [2] identify the correct concept in the limit.

Some ILP systems, such as LINUS [7], FOIL [12], and mFOIL [3], work by
extending propositional approaches to a first-order framework. While FOIL and
mFOIL use heuristic search techniques from propositional learning to construct
first-order clauses directly, LINUS explicitly converts the first-order representa-
tion to a propositional one by defining an appropriate set of Boolean features.

In the paper, we use the transformation approach to obtain learnability re-
sults for logic programs by direct application of existing propositional PAC-
learnability results. Section 2 defines the ILP problem and some syntactic re-
strictions, illustrating them in the context of a simple example. Section 3 shows
how an ILP problem can be transformed to a propositional problem, and Sec-
tion 4 gives the principal results. Section 5 discusses ways in which the imposed
restrictions might be relaxed and suggests topics for further research.

343

2 I n d u c t i v e L o g i c P r o g r a m m i n g

In the rest of this paper, we will assume that the reader is familiar with logic
programming terminology as defined in the standard textbook of Lloyd [8]. In the
logical framework we have adopted, a concept is a predicate. When expressed as
a logic program, a concept (predicate) definition is a set of clauses, each having
the same (target) predicate in its head.

The task of ILP is defined as follows. Given is a set E = E+UE - of positive E+
and negative E- examples of a target predicate, represented as ground literals.
Background knowledge B, a set of normal program clauses, typically including
further facts describing the examples in E+ and E- , is also given. The task is to
find a hypothesis 7/, also a set of normal program clauses, such that BA7/ ~ E+
(where ~ is the relation of logical entailment), and Ve C E- : B A 7/ ~ e. We
define l to be the number of distinct predicates pl . . .pl in B, and n to be the
arity (number of arguments) of the target predicate q.

In practice, ILP systems work within various syntactic restrictions in order
to limit the complexity of the problem. In a k-literal predicate definition each
clause has at most k literals in its body. A k-clause predicate definition consists
of up to k clauses. A k-clause definition corresponds to a first-order k-term DNF
formula and a k-literal definition to a first-order k-DNF formula.

Several additional restrictions are defined below. First of all, we assume an
integer constant j is given. We consider only problems where all predicates in
B are of arity not greater than j . We also require the background knowledge B
to be efficient. We call B e]ficient if all atomic queries to it can be answered in
time polynomial in the arity of the query predicate.

Several types of restrictions can be imposed on the clauses that form the~,
hypothesis. A clause is constrained if all variables in its body also appear in the
head. A clause is function-free if it mentions no function symbols. A clause is non-
recursive if the predicate symbol in its head does not appear in any of the literals
in its body. A predicate definition is constrained/function-free/nonrecursive if all
the clauses in it are constrained/function-free/nonrecursive. Although mutually
recursive predicate definitions are not considered recursive above, this causes no
problems as we are concerned with learning a definition of a single predicate,
given definitions of some other predicates.

Let us illustrate the above definitions on the ILP problem of learning the
daughter relationship. The task is to define the target relation daughter(X, Y),
which states that person X is a daughter of person Y, in terms of the background
knowledge predicates female and parent, the latter being defined in terms of
the relations mother and father. All these relations are given in Table 1. There
are two positive and two negative examples of the target relation.

A 1-clause definition of the target predicate in terms of the specified back-
ground knowledge predicates is: daughter(X, Y) ~-- female(X),parent(Y, X).
In the above terminology, this hypothesis is nonrecursive, constrained and func-
tion-free. It is also a 2-literal definition, where the maximum arity of background
knowledge predicates is 2 (k = 2, j = 2).

344

Training examples Background knowledge
daughter(sue, ann). @ mother(ann, sue). parent(X, Y) ~-- female(ann).
daughter(eve, tom). @ mother(ann,tom), mother(X,Y), female(eve).
daughter(tom, ann). 0 father(tom, eve). parent(X, Y) ~-- female(sue).
daughter(eve, ann). 0 father(tom, jim). father(X, Y).

Table 1. A simple ILP problem: learning family relationships.

Given the above definitions, we can state the following prior results. Page and
Frisch [11] have shown that a single constrained, nonrecursive definite program
clause is PAC-learnable. D~eroski and Lavra~ [4] have shown that the prob-
lem of learning constrained nonrecursive function-free program clauses can be
transformed into a propositional learning problem. D~eroski et al. [5] prove that
k-clause determinate function-free nonrecursive definitions are PAC-learnable
under simple distributions.

The work reported here is based on the latter results, and extends the for-
mer, replacing the single constrained nonrecursive definite clause with a set of
nonrecursive constrained function-free program clauses. The class of constrained
programs considered in this paper is a proper subset of the class of determinate
programs considered in [5]. However, the learnability results for determinate
programs are distribution-dependent, i.e., they hold for the class of simple dis-
tributions only, whereas the results presented here are distribution-free.

3 T r a n s f o r m i n g I L P p r o b l e m s t o p r o p o s i t i o n a l f o r m

Our learnability results are based on transforming an ILP problem to a propo-
sitional form, then using propositional learnability results. We consider only the
problem of learning nonrecursive constrained function-free program clauses. To
solve the problem of constructing a definition for the target predicate
q(X1, X2, ..., X,~) by transforming it to propositional form proceed as follows.

A lgo r i t hm 1

Inpu t : Examples for target predicate q(X1, X2 , . . . , Xn) and definitions of pred-
icates Pl ~ P2, ...,Pl.
Ou t pu t : A propositional learning task, i.e., a set of features and a set of exam-
ples (vectors of feature values).

1. F = { pr(Y~,g~, ...,Yrj)IPr E {pl, ...,pz},Yi E {X1, ...,Xn}}
2. for each q(al, a2, ..., an) E g + and each ",q(al, a2, ..., an) e E- do

- set the values of X1, ...,Xn to al, . . . ,an,

- determine f , the vector of truth values of the literals in F, by posing the
corresponding ground queries from F to the background knowledge,

- f is an example of a propositional concept c (positive if q(at, a2, ..., an)
or negative if -~q(at, a2, ..., a,~))

345

First, construct a list F of all literals that use predicates from the background
knowledge and variables from the set {X1, X2, ..., X,~}. This is the list of features
used for propositional learning. Second, transform the examples to propositional
form. For each example, the truth value of each of the propositional features is
determined by calls (queries) to the background knowledge. These two steps are
done by Algorithm 1.

Next, apply a propositional learning algorithm to the propositional version of
the problem. Finally, transform the induced propositional concept definition to
program clause form. In this step, each feature in the propositional description
is replaced with the corresponding literal.

The background knowledge B may take the form of a set of ground facts or a
nonground logic program. Only ground (membership) queries have to be posed
to B. (NB: These are not queries to the example distribution!) The arguments
of the target and background knowledge predicates may be sorted (or typed),
as in LINUS [7], in which case the number of propositional features involved is
greatly reduced [4].

To illustrate the transformation process, Table 2 gives the propositional ver-
sion of the ILP problem from Table 1. In Table 2, d, f and p stand for daughter,
female and parent, respectively. To outline the transformation from a propo-
sitional DNF formula to a predicate definition, suppose a propositional learner
induces the concept c ~ xl A x~ from the examples in Table 2. The feature xl is
replaced with the literal f emale (X) , the feature x5 with the literal parent(Y, X)
and the definition obtained is: daughter(X, Y) *-- f emale (X) , parent(Y, X) .

Propositional features
d(X,Y) X Y f (Z) f (Y) p (X ,X) p(X, Y) p(Y, X) p(Y, Y)

C Xl X2 ~3 X4 X5 X6

1 sue unn 1 1 0 0 1 0
1 eve tom 1 0 0 0 1 0
0 tort unn 0 1 0 0 1 0
0 eve ann 1 1 0 0 0 0

Table 2. Propositional form of the daughter relationship problem.

4 Resul t s

T h e o r e m 1. Algorithm 1 transforms the ILP problem of learning a set of con-
strained nonrecursive function-free program clauses defined by a set of m ex-
amples ~ of the target predicate q(X1,X2, . . . ,Xn) , and background predicates
Pl,p2,. . . ,pt of maximum arity j , to a propositional form in (9(poly(j)mlnJ),
time, if each query to the background knowledge takes O(poly(j)) to answer.

Proof i The number of features in F (step 1 of the algorithm) is bounded
by N = In j , as the arity of the background predicates is bounded by j , and for

346

each of the l background predicate there can be at most n j features. The trans-
formation of a single example to propositional form takes O(poly(j)N) time to
determine the truth values of features in F. For m examples, the transformation
process takes O(poly(j)mlnJ) time. []

T h e o r e m 2. k-literal nonrecursive predicate definitions consisting of constrained
function-free normal program clauses are polynomially PAC-learnable under ar-
bitrary distributions.

Proofi After transforming the problem to a propositional form, we use the
algorithm for learning k-DNF outlined in [6]. The transformation from proposi-
tional k-DNF to a k-literal definition takes O(h) time, where h is the size of the
induced propositional formula, which is at most O((2N) k+l) time. The learn-
ability under arbitrary distributions of k-literal predicate definitions consisting
of nonrecursive constrained function-free program clauses then follows from the
polynomial PAC-learnability of k-DNF. []

5 Discussion and further work

We have proved a positive learnability result for a restricted class of logic pro-
grams. The complexity analysis indicates that our approach would scale well
with the arity of the target predicate and the number of predicates in the back-
ground knowledge, but not with the maximum number of literals in a clause and
the maximum arity of background knowledge predicates.

Despite the imposed restrictions, the considered class of logic programs in-
cludes many interesting and nontrivial concept definitions. These include con-
cepts from chess, such as position illegality in a chess endgame [12, 7, 3], and
qualitative models of dynamic systems [3]. Such concepts have been successfully
induced by existing ILP systems.

Let us now discuss how these restrictions can be removed. Removal of the
function-free restriction is straightforward, because any clause containing func-
tion symbols can be flattened, that is, rewritten in function-free form with the
addition of one background clause per function symbol [13]. However, a con-
strained clause with function symbols can yield a flattened clause with new vari-
ables. Thus, the restrictions to constrained and function-free clauses are tightly
coupled. Fortunately, the new variables introduced by the flattening process are
determinate, i.e., have uniquely determined values, given the values of the old
variables.

In a separate paper [5], we relax both restrictions and prove that k-clause
function-free determinate predicate definitions are learnable under a broad class
of distributions, called simple distributions [9]. However, the learnability re-
sults for the determinate (possibly recursive) case, require sampling according to
the noncomputable universal distribution rn [9], or its polynomial-time version,
whereas the results presented here are distribution-free.

The restriction to non-recursive clauses is a more fundamental one. It can
be relaxed if we allow the use of queries [5] about the target predicate. These

347

results are also derived for simple distributions under the assumption of sampling
according to the universal distribution m. Further research should concentrate on
removing the determinacy restriction and the restriction to simple distributions.

Only positive results can be obtained using our t ransformation approach.
Namely, the hardness of a transformed propositional problem does not guar-
antee tha t the original first-order problem cannot be solved efficiently by some
other means. Page and Frisch [11] show positive results for constrained clauses,
also showing negative results for sorted theories. An advantage of our approach,
however, is that new propositional PAC-learnability results, such as [1], can be
transferred to the ILP framework.

A c k n o w l e d g e m e n t s
The work reported in this paper is part of the ESPRIT BRA Project 6020 Inductive
Logic Programming. Thanks to Luc De Raedt for his comments on the paper.

References

1. D. Angluin, M. Frazier and L. Pitt. Learning conjunctions of Horn clauses. Ma-
chine Learning, 9(2): 147-164, 1992.

2. L. De Raedt. Interactive Theory Revision: An Inductive Logic Programming Ap-
proach. Academic Press, London, 1992.

3. S. D~,eroski and I. Bratko. Handling noise in inductive logic programming. In Proc.
Second International Workshop on Inductive Logic Programming. ICOT TM-1182,
Tokyo, 1992.

4. S. D~eroski and N. Lavra~. Refinement graphs for FOIL and LINUS. In
S.H. Muggleton, editor, Inductive Logic Programming, pages 319-333, Academic
Press, London, 1992.

5. S. D~.eroski, S. Muggleton and S. Russell. PAC-learnability of determinate logic
programs. In Proc. Fifth ACM Workshop on Computational Learning Theory,
pages 128-135, ACM Press, Baltimore, MD, 1992.

6. D. Haussler. Quantifying inductive bias: AI learning algorithms and Valiant's
model. Artificial Intelligence, 36(2): 177-221, 1988.

7. N. Lavra~, S. D~eroski and M. Grobelnik. Learning nonrecursive definitions of re-
lations with LINUS. In Proc. Filth European Working Session on Learning, pages
265-281, Springer, Berlin, 1991.

8. J. W. Lloyd. Foundations o]Logic Programming (2nd edn), Springer, Berlin, 1987.
9. M. Li and P. Vits Learning simple concepts under simple distributions. SIAM

Journal of Computing, 20(5): 911-935, 1991.
10. S. H. Muggleton. Inductive Logic Programming, Academic Press, London, 1992.
11. C. D. Page and A. M. Frisch. Generalization and learnability: a study of con-

strained atoms. In S. H. Muggleton, editor, Inductive Logic Programming, pages
29-61, Academic Press, London, 1992.

12. J. R. Quinlan. Learning logical definitions from relations. Machine Learning, 5(3):
239-266, 1990.

13. C. Rouveirol. Extensions of inversion of resolution applied to theory completion.
In S.H. Muggleton, editor, Inductive Logic Programming, pages 63-92, Academic
Press, London, 1992.

14. E. Y. Shapiro. Algorithmic Program Debugging, The MIT Press, Cambridge, MA,
1983.

