
18

Implementation and Performance Enhancement
of a PC Based LAN/WAN Router with a
Differential QOS Feature

S. V.R. Anand and A. Kumar
Department of Electrical Communication Engineering
Indian Institute of Science
Bangalore-560012, INDIA
e-mail : anand, anurag@ece. iisc. ernet.in

Abstract

In this paper we describe our approach to, and experiences in, developing a
PC based IEEE 802.3 LAN- X.25 WAN IP router. The basic router function­
ality is achieved by integrating a commercially available synchronous serial port
card for the PC-AT bus, and our enhancements of public domain or licensed
pre-production source code for the communication protocols. The router im­
plements a strategy developed in [Kumar et al., 92] for providing differential
QOS to bulk transfer and interactive traffic on WAN links. Various link level
policies are studied to further improve the QOS. Several other performance is­
sues that we encountered while developing the router are discussed. We study
various task handling strategies for the router software to arrive at the ideal
combination that gives the peak performance. The issues, and their resolutions
for physical interface handling are detailed. Experimentation done to compare
the various alternatives for resolving these issues are reported.

Keywords

PC based router, CLNS over CONS internetworking, X.25, RFC 877

1 INTRODUCTION

In a typical LAN-WAN interconnection with slow WAN links (less than 64kbps),
to support network traffic with different performance requirements, the router
should have the capability of providing differential QOS on the slow WAN links.
The absence of this capability can be felt when we try doing telnet from a LAN
node while ftp is in progress from another node on the same LAN, both using

S. V. Raghavan et al. (eds.), Computer Networks, Architecture and Applications
© Springer Science+Business Media Dordrecht 1995

Implementation, performance enhancement of a PC based IAN/WAN router 323

the same WAN link to reach a host on a remote LAN. The response times seen
by the telnet user can be quite annoying. A detailed study of this issue can
be found in (Kumar et al., 92], wherein various internetworking strategies have
been considered. From this paper we learn that a CONS based WAN can beef­
fectively used to support services with varied network demands. The study was
made in the context of LANs running a CLNS network protocol. Preliminary
experimental results were given that validated the theoretical results.

In this paper we present our approach to, and experiences in developing a
PC based IEEE 802.3 LAN-X.25 WAN router, that implements the strategies
discussed in (Kumar et al., 92].

At the time of this report, we have implemented and successfully tested our
router software in the lab environment. The system is stable and has been
deployed in four places; further installations are planned.

With the commercially available routers (including Cisco's router) it has
been observed that the response of an interactive application is very poor in the
presence of file transfers, both using the slow WAN(X.25) link. In those imple­
mentations we found that all the IP traffic is treated alike, and the packets are
queued in a single FCFS queue after routing packets onto the WAN link. This
in turn giving rise to the problem mentioned. In this aspect our implementa­
tion is different from the existing routers. We make use of the X.25 connection
management effectively to support differential QOS required by the IP traffic.

In section 2, we give some of the implementation details. These include the
platform on which the router was built, the software development, and the main
features of the software package. In section 3, we discuss the performance issues
that were considered regarding support for differential QOS and our approach
to resolve these. We also report the experiments done to further improve QOS.
Section 4 pertains to performance issues such as task scheduling and physical
interface handling. We present the approach we have taken to resolve these
issues by looking at the performance bottlenecks in the router software. In the
light of this, a description of various strategies considered is presented. Then we
describe in detail the experiments conducted, and evaluate the strategies and
discuss the results. We conclude the paper by summarizing the achievements
of the work done and outline the future work underway.

2 IMPLEMENTATION

Our router software has been built on an i386 based PC-AT running DOS.
Presently the router supports IP and X.25 protocols. The two physical interfaces
we handle are an Ethernet interface,and a synchronous serial interface. The
hardware for the Ethernet interface is a Western Digital (WD8003) compatible
add-on card. For the serial interface we have used a commercially available
i82530 SCC based card that can support link speeds upto 19200 bps. This card
does not have an on-board memory and hence relies on the host's services.

The software is derived by integrating two modules: Retix's X.25 ((Retix,
88]) and CMU's PC/IP. The initial work involved in integrating these two soft­
ware packages was to change the model of the PC/IP code from small to large.
This was due to the large memory requirements of the router. The design and

324 Part Five Performance Studies

the implementation of PC/IP follows the now popularly known thread mech­
anism([Tanenbaum, 92]). PC/IP realises a multi-tasking environment using
this mechanism. The tasks are non-preemptive. The tasks are scheduled in a
round robin fashion. There are no priorities associated with the tasks. We have
customised the scheduler to some extent so that a priority based scheduling is
possible.

The main advantage with the thread approach is that one can create various
tasks based on some functionality, and these will be executing independently
using their own stacks. This independent stack makes task switching possible
at any point of execution. Resumption of the task execution continues from
where it was left. For the non-preemptive multi-tasking environment that we
have, based on an event, a task can be programmed to yield to another task,
may be high priority one, at any point of the execution. Since modularity is
inherent, the addition and deletion of tasks can be done without intervening in
other tasks. Thus it is easy to add or remove functionality without affecting the
overall system. It is possible to build a customised scheduler to schedule tasks
according to some performance criteria. Since it is possible to make a task
sleep, a better CPU utilisation is achieved. From the developer's view point
debugging becomes very simple and stack overflow problem can be localised
and corrected just by looking at one task.

Considering the advantages with this approach, especially for a router en­
vironment, we have changed the main Retix functional modules to threads. A
function can be changed to a thread by giving it a stack frame, so that the
function executes as an independent entity. Realising that the CMU package
was designed for a host, and not for a router, additional functionality had to be
introduced for routing purposes. This required an attachment of an additional
logical link interface at IP, apart from the existing Ethernet interface.

We have included the TCP task along with other tasks to support telnet
service at the router. The independent buffer and timer managements of both
the pieces of software have been retained for the simplicity of integration.

For the PC/IP- X.25 interface (SNDCF in OSI terminology) we have imple­
mented the RFC 0877 specification [RFC877, 83]. The mapping of destination
IP addresses to X.25 DTE addresses has been done at this interface. We have
given a provision for establishing an X.25 connection directly to a remote router
more than a hop away. This is useful because it avoids IP packets requiring
processing at the IP layer of the intermediate routers, thus improving switching
efficiency.

Interoperability tests with the Cisco(MGS) router have been done success­
fully. In fact Cisco router has throughout been a part of our experimental
test-bed, on which all our performance related experiments were conducted. So
far as X.25 connection establishment is concerned, we have used flow control
negotiation facilities for packet size and window size. These parameters are
useful not only to support differential QOS, but also to determine the router
performance.

Finally, many performance related issues have been experimentally studied
to enhance the performance. From these, we have incorporated the strategies
that gave the best results. We have also attempted to explain the experimental

Implementation, peiformance enhancement of a PC based IAN/WAN router 325

observations.

2.1 Main Features

• Our implementation supports differential QOS required for bulk transfer
vs. interactive traffic. The window flow control that is required for this
purpose is configurable. These window sizes are directly related to the
QOS given to each service class. The details of this issue will be discussed
later.

• On the router console we provide the utilities ping and telnet. These are
useful in managing the network. For one thing, we can use ping to check
for reachability. We can alter the link level parameters by telnetting to
other router(s), among the other things.

• The software comes with a customisation package to configure various pa­
rameters pertaining to each layer. The channel management menu enables
one to set parameters that govern QOS. Some typical configurable param­
eters are: window sizes, timeouts, and number of retransmissions for X.25
and LAPB layers. Of course the serial card can be configured to have an
external or an internal clock. The serial line bit rates can be chosen upto
a maximum of 19200 bps.

• The routing customisation can be done in a simple way by specifying the
mapping information. We can also make use of X.25 switching thus avoid­
ing IP processing if the intermediate routers to a destination support X.25
switching.

• Debugging facilities can be enabled to observe the data movement at dif­
ferent layers of the router stack. The information provided is related to
packet and frame information and the state information at LAPB and X.25
layers.

• We have developed a program that can be used to remotely monitor the
health of the router. e.g., one can find the buffer occupancy on both LAN
and WAN interfaces. We have extended this feature to control router
parameters from a remote host.

• We also support SNMP agent on our router based on CMU's implementa­
tion.

3 DIFFERENTIAL QOS FOR IP TRAFFIC

In a LAN-WAN environment like ours where the WAN link speeds are less than
64 kbps (typically 9600 bps), and the serial line quality is poor requiring an
ARQ protocol, the delays experienced by a LAN user who is remotely logged­
in to a host on a remote LAN can be quite annoying in the presence of file
transfers between other nodes on the same two LANs. The reasons for this are
the following:

326 Part Five Performance Studies

(i) Packet sizes for the file transfers are large (552 bytes typical) when com­
pared to interactive traffic where typical packet sizes are 64 bytes (we assume
that the user is typing characters on the terminal). Each file transfer packet
can give rise to several link packets depending on the Maximum Transmission
Unit (MTU) of the link.

(ii) The packet rate into the router for file transfer is much higher, because
TCP window sizes can be quite large and disk access times can be ignored due
to the parallelism we get with the low speed WAN.

Because of these reasons we find that the link window is hogged by the file
transfer packets, thus causing intolerable response times for the interactive user.
Hence we have an unfair sharing of the link, in a QOS sense, i.e., two services are
sharing a facility, each with different QOS requirements, and one gets relatively
better QOS than the other.

Note that simple priority before the link level window will not be enough to
help the interactive traffic if the link window is large. Since interactive traffic
arrives slowly, with a high probability, interactive packets find the link window
full of file transfer packets. Thus even if this arriving packet is given priority
before entry into the link window, it will still be delayed by a window full of file
transfer packets. For a link packet size of 512 bytes, and link window of 7, this
can be as much as 1.5 sees. at a link speed of 2400 bps. Inserting the arriving
interactive packet at the head of the transmitter's queue is infeasible as then all
sequence numbers of packets admitted into link window will have to be altered.

If the serial link card has buffering and runs the ARQ protocol, then provision
of priority will require modification of the card. For analysis and simulation of
this issue see [Kumar et al., 92].

An alternative is to limit the number of file transfer packets that can be
outstanding on the link. This can be achieved by segregating the file transfer
traffic into a window controlled connection thus limiting the number of file
transfer packets that can occupy the link window. This is easily done with a
standard protocol, i.e., X.25. Note that simple priority (to telnet) before link
insertion is not adequate since the telnet packets will have to wait for a link
window full of ftp link packets anyway; and the link window can be large to
support a range of link packet sizes. If the link window is small, say 2, then
priority before insertion into link window should be enough.

There is another issue, however, that our approach addresses; the provision
of fair bandwidth sharing between, for example two ftps one originating from a
LAN and the other from a slow serial link attached to the router, both being
multiplexed onto the slow outgoing link (see [Kumar et al., 92]). Further, the
X.25 interface permits us to connect the router to a Cisco and to the public
X.25 network.

There are differences between our work and the existing work on QoS control
in high speed networks. The latter work assumes that quantifiable, hard QoS
guarantees are required for the various traffic classes; hence very fine grained
control strategies are proposed and studied in this context ([Demers et al., 90]).
Implementation of these strategies requires complex nonstandard procedures,
and may even require hardware support. The services that we are concerned
with (namely, ftp and telnet) do not have any hard QoS requirements. The

Implementation, performance enhancement of a PC based LAN/WAN router 327

PC Router Cisco Router
Destination

ftp IP IP end syste m

Ethern t X.25 X.25 Ethern t

I I I I I I
I

pmg

Figure 1: Setup for the QOS experiment

objective is simply to provide reasonably low response times for telnet, high
throughput for ftp, fairness among services of the same class, and all this while
efficiently utilising link bandwidth. We have realised this objective by utilising
the existing protocol support in routers.

Since predominant number of hosts that provide Internet services do not
make use of Type Of Service (TOS) field in the IP header to indicate the QOS
class of the IP packet, we cannot make use of this field to identify the service
class and provide the required QOS. Hence to circumvent this problem and iden­
tify the service class of the Internet service, we have used TCP port numbers
which are globally unique for most of the popular services. At the router, apart
from parsing IP header for routing purposes we also parse the TCP header.
Once we identify the end-application, and thereby service class, we open an
X.25 connection with an appropriate window size negotiation facility. Thus, for
example, we open one connection for ftp packets, and another connection for
telnet/rlogin packets, and so on. We find that the response time of an interac­
tive application decreases dramatically with little decrease in ftp throughput.
This corroborates the analysis in [Kumar et al., 92]. To appreciate this better,
quantitative measures have been shown here.

In the current implementation we classify three classes of traffic, namely,
ftp, telnet/rlogin and others, and thus we have three X.25 connections with
corresponding flow control parameters.

We now present the results obtained from some experiments. We have used
an i386 machine running at 33 Mhz clock to run our router software. The
testbed is shown in Figure 1. Since ping delays can be measured, we use ping
to emulate a telnet like session. ping packets are 64 bytes long including the
IP header. The serial link speed is set to 19200 bps. The ftp packet size is 552
bytes. At the serial interface with no fragmentation done at X.25, the lengths
of ping and ftp packets become 69 and 557 bytes respectively with the inclusion
of X.25 and LAPB headers.

328 Part Five Performance Studies

IP IP IP

u X.25 u u u X.25 u u u X.25
..... / u t

u LAPB LAPB LAPB

Figure 2: Traffic streams at Link level and X.25

Single X.25 connection:

To start with, we have taken throughput and delay measurements indepen­
dently for ftp and ping with X.25 window size 2, and LAPB window size 7. The
following are the results.

ftp throughput (in bytes/sec): 1970
ping average response time (in millisecs.) : 270

Next, we have done a similar experiment with both ftp and ping initiated

simultaneously.
ftp throughput (in bytes/sec): 1910

ping average response time (in millisecs.) : 1300
We can clearly see the high ping response times once a bursty file transfer is

in progress.

Multiple X.25 connections:

We now see ping delays by opening multiple X.25 connections with X.25
windows for ftp, and ping being 2 and 7 respectively. LAPB window size is 7

as in the earlier case. The following results were obtained.

ftp throughput (in byte/sec) : 1828
ping average response time (in millisecs.) : 518

It can be seen that even in the presence of ftp traffic, the response times for
ping are quite low thus encouraging one to go for X.25 based WAN and have
service based network connections. Note that we are not hurting the ftp traffic
as can be seen from the less than 5% fall in ftp throughputs.

3.1 Link Level Scheduling

To attempt to enhance the QOS further, we assigned priorities to the multiple

data streams obtained from the various X.25 connections. We thus provided
priority based queues. When the link protocol gets credits, it serves these queues
on a priority basis with the highest priority queue served first. The number of
elements served will be equal to the number of credits. We have given the
highest priority to the interactive traffic, and the lowest to the ftp traffic. The
rest of the traffic such as UDP is assigned a medium priority.

Implementation, perfonnance enhancement of a PC based LAN/WAN router 329

We have implemented FCFS, Round-Robin and Exhaustive policies. In the
FCFS policy, we serve the data streams in the order of their arrival to the
priority queues. In other words this amounts to serving a single queue and
treating the traffic alike. For Round-Robin policy, we serve the queues by taking
one element from each queue. If there are no elements in a particular queue, and
there are credits available, the server then serves the remaining queues in the
order of priority within the remaining queues. For the Exhaustive policy, the
server serves all the elements in the queue it is currently serving before serving
the next queue. Segregation of traffic streams is shown in Figure 2. The first
part of the figure shows the case of a single X.25 connection with a single queue
at the link level. The data stream cannot be segregated at the link level since
the order of packet transmission has already been decided at X.25 which assigns
the sequence numbers for the packets. The second part of the same figure shows
multiple data streams being put into a single link level queue. However, in this
part traffic segregation has been done at the X.25 level. Both these parts depict
the FCFS policy at the link level. The third part shows the traffic on multiple
X.25 connections, and also the segregation done at the link level based on the
priority given to the data streams.

In this context it should be mentioned that the policy that was employed by
Retix's X.25 implementation was FCFS. During this experiment we also observe
the delay and throughputs at the LAN end systems for various X.25 window
sizes for the connection corresponding to ftp. Table 1 shows the experiments
and the results obtained. From Table 1 we note that once the traffic is segre­
gated into different channels, we get all the obtainable QOS improvement. The
link level scheduling policy did not give any further appreciable improvement.

Table 1 Effect of Link Level Scheduling on QOS

Link Scheduling X.25 Window ftp Throughput
Policy for ftp (bytes/sec)

FCFS 2 1828
4 1828
7 1828

Round Robin 2 1828
4 1828
7 1828

Exhaustive 2 1828
4 1828
7 1818

Ping Delay
(milli sees)

516
515
522

524
518
518

514
523
521

330 Part Five Performance Studies

4 TASK SCHEDULING IN THE ROUTER SOFTWARE

The software of any router comprises parts tha.t handle the transmission and
reception of packets a.t the physical interface, and parts tha.t handle the move­
ment of packets between these physical interfaces. Let us go through the soft­
ware structure and see how various tasks ha.ve been handled. In doing so we
identify the performance bottlenecks in the system. We experiment with various
strategies for task scheduling to improve performance a.t these bottlenecks.

4.1 Software Structure

The software design used in building the router is inherited from CMU's PC/IP
and is based on the well known concept of threads. This concept has helped us
to create a. cooperative multi-tasking environment under DOS. The implementa­
tion involved integration of CMU's PC/IP, and Retix's X.25 packages. Of these
two main modules, PC/IP inherently follows the thread a.pproa.ch. We ha.ve
introduced a. task structure into Retix code to comply with the overall design
philosophy. The main tasks created in the overall system are: Ethernet packet
reception, Ethernet packet processing, serial interface reception, serial interface
processing, and timer recovery. Ethernet packet processing include routing, and
forwarding for packets coming from LAN. These functions are achieved through
function calls from within the sa.me task. The frame and packet level processing
for the serial interface are done in the similar wa.y from the corresponding task.

We address some of the performance issues considered for the transmission
and reception mechanisms on the interfaces. We give their resolutions tha.t en­
hance the router performance.

As is generally the case, there are different mechanisms for transmission and
reception: blocked mode polling, unblocked mode polling, and using interrupt
mode. In order to describe these, let us consider a. transmission or a. reception
on a. physical interface to be an event. In blocked mode polling, after initiating
an event, CPU polls a. status register till the status of the completed event is
obtained. Thus the task from which the event was initiated blocks all the other
tasks. In unblocked mode polling, the task which ha.d generated the event polls
a. status register a.t regular time intervals to obtain the status of the completed
event. In between the polling intervals the scheduler can schedule other tasks.
For the interrupt mode, the status of the completed event is posted by an
interrupt from the physical interface responsible for the event. Interrupt mode
is unblocked and polling is completely avoided.

4.2 Ethernet Interface

Transmission:

In our implementation, the transmission discipline on the Ethernet interface
is blocked polling. After initiating a. transmission on the Ethernet interface,
the CPU will be polling for an event tha.t indicates the status of the completed

Implementation, performance enhancement of a PC based IAN/WAN router 331

transmission. Considering the non-preemptive multi-tasking structure, this es­
sentially results in a blocked task. However, the blocking delay can be ignored
since we are dealing with the Ethernet speeds and a moderate load on our
Ethernet LAN. Further, this delay is negligible compared to the slower serial
interface. Hence, blocked mode transmission at the Ethernet interface cannot
be the bottleneck for the system performance.

Reception:

The reception process is inherently asynchronous, and hence it is natural to
prefer interrupt mode. The Ethernet adapter is programmed to post the event
and interrupt the CPU. The pending reception event can also be known by
polling a register of the Ethernet adapter. This method is adopted to take care
of the possible missed interrupts at the CPU. The polling interval is suitably
chosen so as not to overly ta.x the host.

On a heavily loaded network, incoming Ethernet packets arrive back to back.
This results in a condition wherein one interrupt can correspond to multiple
messages buffered at the receiver. On an interrupt, we do a batch transfer
of messages from the Ethernet adapter to the host buffers. Thus we prevent
receiver overflow and the consequential dropping of packets.

4.3 Serial Interface

It is clear that the performance bottleneck in LAN-WAN interconnection over
low speed links is the serial link itself [Kumar et al., 92]. It is therefore im­
perative in the design of the router software that the link is utilised as best as
possible. Thus, for example, no time should be wasted between the completion
of one frame transmission on the serial link and the initiation of the next one.
On the other hand since the link is slow, and it takes long to transmit a packet,
and the software should not block while a frame is being transmitted but should
proceed with other activities. These rather obvious requirements need special
attention, however, in the DOS environment in which multiprocessing does not
come naturally. In fact, since we integrated two existing pieces of software to
build our router we were initially confronted with decisions made by the original
software modules that were not necessarily optimal for our application.

In order to ascertain the best combination of strategies we experimented
with several. Before moving on to the experiments, and the results obtained we
mention the strategies considered. In our implementation, the end of transmis­
sion or reception will be notified through an interrupt from the serial device.
We use this event to wake up the respective tasks. Based on our discussion
on the Ethernet interface, we can think of similar service modes for serial line
handling.

Reception on the serial line is through DMA, and after the reception of a
frame, the CPU will be notified by an interrupt. Interrupt routine then wakes
up the task designated to do further frame processing. Hence this reception
process is asynchronous. There are no significant delays involved while receiving
incoming frames. We now look at the possible variations for handling serial
transmission.

332 Part Five Performance Studies

1. Blocked mode transmission:

A call to transmit routine gets blocked within the routine till all the frames
pending get transmitted. This method hurts the performance, especially on
slow links as other activities get locked out while transmission on the serial link
is proceeding. We also see from our experimental results the conditions in which
this mode does not hurt the performance seriously.

2. Non-Blocked mode transmission:

As the term implies, the transmitter initiates transmission but does note
wait for completion of transmission. We have introduced a task which is woken
up once the frame gets transmitted. This high priority task will then initiate
further transmissions. This is to minimise the delay between the link access
times. Let us call this the transmiLtask. Though a better method than the
earlier one in terms of CPU utilisation, there is still some finite delay between
frame transmissions. The scheduler can schedule the transmiLtask only when
the currently running task yields to the scheduler. Thus there will be times
when the serial interface will be idling. This in turn gives rise to the under
utilisation of the serial interface.

3. Asynchronous initiation of transmission from within the Inter­
rupt Service Routine:

Here, instead of just posting an event for the scheduler, as in the earlier
case, the end of transmission interrupt routine will trigger further transmission
of frames from the LAPB transmit queue. Hence we no longer need the addi­
tional transmit_task just for frame transmissions. Certainly this should be the
best mechanism compared to the other two options. From the software engi­
neering point of view, we take care of the possible race condition at the shared
transmit queue. LAPB accesses this queue, to insert outbound frames, as does
the asynchronous occurrence of an interrupt, which causes an element to be
removed from the same queue. We use the semaphore mechanism to prevent
simultaneous access.

In section 4.4 we present the experiments that were carried out for comparing
the above mentioned strategies.

4.4 Test-bed for Studying Serial Line Handling Issues

For these set of experiments we have used i286 based PC-AT to run our router
software as our main i386 platform was out of order during this experimenta­
tion. We have used ftp throughputs as the performance measure. We measured
throughputs by doing file transfers between two end systems on LANS con­
nected by routers as shown in Figure 1 (ignoring the machine labelled "ping").
We have conducted two sets of experiments. The first two options mentioned for
the serial line will be studied in our first test. The results have been tabulated
in Table 2 and Table 3.

Implementation, peifonnance enhancement of a PC based LAN/WAN router 333

4.5 Discussion

Description of various columns of Tables 2 and 3 is the following. The first
column shows the service strategy for the incoming frame processing on the
serial line. It indicates whether the task that does frame processing services all
the frames (exhaustive) or processes one frame before yielding to other tasks.
The second column is the mode of frame transmission on the serial line. The
Ethernet packet receive strategy is shown in the third column. The interpreta­
tion of the notation given for column 1, is also applicable here with respect to
the Ethernet packet processing. The last column gives the ftp throughputs for
various combination of strategies. Rows 1 to 4 of the Tables 2 and 3 give the
measurements obtained for the blocked mode transmission on the serial link.
Rows 5 to 8 of these tables give the measurements for non-blocked frame trans­
mission on the serial link. The Ethernet packet transmission delays are ignored
because of the moderate load on our Ethernet LAN.

Table 2 ftp throughput for various reception and transmission strategies at
the interfaces.
Configuration : LAPB window 7, X.25 window 7, Baudrate 19200 bps

Sr.No. Frame Reception Frame Transmission Ethernet Packet ftp thruput
on Serial on Serial Reception in bytes/sec

1. Single Blocked Single 1360

2. Single Blocked Exhaustive 1458

3. Exhaustive Blocked Single 1758

4. Exhaustive Blocked Exhaustive 1458

5. Single Non-Blocked Single 1734

6. Single Non-Blocked Exhaustive 1734

7. Exhaustive Non-Blocked Single 1734

8. Exhaustive Non-Blocked Exhaustive 1734

334 Part Five Performance Studies

Table 3 ftp throughput for various reception and transmission strategies at
the interfaces
Configuration : LAPB window 2, X.25 window 7, Baudrate 19200 bps

Sr. No. Frame Reception Frame Transmission Ethernet Packet ftp thruput
on Serial on Serial Reception in bytes/sec

1. Single Blocked Single 1834

2. Single Blocked Exhaustive 1834

3. Exhaustive Blocked Single 1808

4. Exhaustive Blocked Exhaustive 1808

5. Single Non-Blocked Single 1734

6. Single Non-Blocked Exhaustive 1734

7. Exhaustive Non-Blocked Single 1734

8. Exhaustive Non-Blocked Exhaustive 1734

From the tables we see that for a large LAPB window size (i.e. 7 in Table
2), non-blocked frame transmission on the serial line gives a better performance
irrespective of the kind of reception strategies followed for the serial and Eth­
ernet interfaces. For small LAPB window size (i.e. 2 in Table 3), non-blocking
transmission mode hurts the performance compared to the blocking mode, since
with non blocked transmission the transmit_task keeps yielding to other tasks
more frequently after the initiation of the transmission. Because of the non­
preemptive nature of the task scheduler even the high priority transmit_task
has to wait till the currently executing task gives up control to the scheduler.
This causes link access delays and therefore we get low ftp throughput.

In our next experiment we try the option wherein the serial link transmis­
sion is asynchronously triggered from the interrupt service routine, and there is
no blocking while transmission is in progress. This option eliminates the CPU
idling or the starvation of the serial link, and the link access delays are min­
imised. Hence we expect encouraging results from this experiment. Considering
the results obtaiil.ed from the previous experiment we have fixed the servicing
strategies for the incoming message processing on the two physical interfaces to
be exhaustive. Apart from studying the influence of serial line handling we also
see how X.25 window affects the performance. The results are shown in Table
4.

We compare the best ftp throughput obtained in Tables 2 and 3 with that
obtained in Table 4. We see a remarkable improvement in the performance.
LAPB window size does not matter since we always get back the acknowledge­
ment by the time the LAPB frame gets transmitted. This causes one more

Implementation, peiformance enhancement of a PC based LAN/WAN router 335

frame to enter the transmit queue, which will be immediately transmitted. A
larger X.25 size improves the performance further because of the parallelism
that is obtained at the X.25 protocol processing while the serial line is busy
sending frames.

Table 4 Configuration : Baudrate 19200 bps
Servicing incoming messages on the interfaces: exhaustive

LAPB Window X.25 Window ftp thruput
bytes/sec

2 2 1970

2 7 2019

7 2 1970

7 7 2019

5 FINAL RESULT

From the previous section we have observed that the version of the router soft­
ware incorporating asynchronous initiation of frame transmission on serial link
with frame transmissions triggered from within interrupt routine has given the
best performance. Recall that the performance tuning was done on a i286
PC/ AT. We have used this tuned version of the software on i386 m/c and mea­
sured ftp throughput again. We now present the measurement thus obtained
for i386 m/c as the final result. The X.25 window is set to 7, and LAPB window
is set to 2 in accordance with our previous discussion. The serial link speed is
configured to 19200 bps (i.e. 2400 bytes/sec).

ftp throughput (in bytes/sec) : 2170
Compare this result with that obtained from our earlier version prior to the

performance enhancement (see section 3). We clearly see an improvement of
about 10% (from 1970 bytes/sec to 2170 bytes/sec) in the ftp throughput from
our latest version.

6 CONCLUSIONS & FUTURE WORK

We have proposed a feasible method for building LAN/WAN router that pro­
vide differential QOS using the well-known port numbers for Internet applica­
tions, and the channel management introduced at SNDCF. Our implementation
showed an appreciable improvement in the response times for interactive traf­
fic in the presence of bursty ftp traffic. From the measurements we can also
conclude that, once the channeling of the IP traffic is done, the nature of the
link level scheduling policy for the serial interface does not change the perfor­
mance. Of the serial line handling mechanisms considered, and tested, non­
blocking with asynchronous activation of the transmitter has given the best

336 Part Five Performance Studies

performance. We have seen further enhancement in the performance by choos­
ing a larger X.25 window. Also, the servicing strategy at the Ethernet interface
for incoming Ethernet packets, played no role in improving the performance.

We are planning to introduce more serial interfaces to the router to inter­
connect more subnets. Presently we use static routing information. The expan­
sion of the router demands that we use dynamic routing protocols. There is
a thought in this direction to incorporate at least one of the existing dynamic
routing protocols.

References

[Kumar et al., 92] Anurag Kumar, T.V.J.Ganesh Babu and S.V.R.Anand,
"Comparative Performance of Queueing Strategies for LAN-WAN Router
in Packet Data Networks", Proceedings of the International Conference on
Computer Networks, Architectures and Applications, Networks 92.

[Demers et al., 90] A. Demers, S. Keshav, S. Shenker, "Analysis and Simulation
of Fair Queuing Algorithms", Journal of Internetworking Research and Ex­
perience, September 1990, pp. 3-26.

[Retix, 88] Retix Manual on "X.25 Packet Level .Protocol", Retix Inc., Publi­
cation Number 1080057-00-B, March 7, 1988.

[Tanenbaum, 92] Andrew S. Tanenbaum "Modern Operating Systems", Pren­
tice Hall 1992.

[RFC877, 83] J.T. Korb, "A Standard for the Transmission of IP Datagrams
Over Public Data Networks", Internet RFC 0877, September 1983.

BIOGRAPHIES

S.V.R. Anand has a BSC(Hons) from Osmania University, and a B.E. in
Electrical Communication Engg. from the Indian Insititute of Science (liSe).
He is currently working in Education and Research Network project (ERNET)
at liSe.
Anurag Kumar has a B. Tech. in E.E. from the Indian Institute of Technology
at Kanpur, and a PhD from Cornell University. He was a Member of Technical
Staff at AT&T Bell Labs, Holmdel for over 6 years. Since 1988 he has been
with the Indian Institute of Science (liSe), Bangalore, in the Dept. of Electrical
Communication Engineering, where he is now Associate Professor. He is also
the Coordinator at liSe of the Education and Research Network Project, which
has set up a country-wide computer network for academic and research insti­
tutions, and conducts R&D in the area of communication networks. His own
research interests are in the area of modelling, analysis, control and optimisation
problems arising in communication networks and distributed systems.

