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Abstract 

In this paper we describe our approach to, and experiences in, developing a 
PC based IEEE 802.3 LAN- X.25 WAN IP router. The basic router function­
ality is achieved by integrating a commercially available synchronous serial port 
card for the PC-AT bus, and our enhancements of public domain or licensed 
pre-production source code for the communication protocols. The router im­
plements a strategy developed in [Kumar et al., 92] for providing differential 
QOS to bulk transfer and interactive traffic on WAN links. Various link level 
policies are studied to further improve the QOS. Several other performance is­
sues that we encountered while developing the router are discussed. We study 
various task handling strategies for the router software to arrive at the ideal 
combination that gives the peak performance. The issues, and their resolutions 
for physical interface handling are detailed. Experimentation done to compare 
the various alternatives for resolving these issues are reported. 
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1 INTRODUCTION 

In a typical LAN-WAN interconnection with slow WAN links (less than 64kbps), 
to support network traffic with different performance requirements, the router 
should have the capability of providing differential QOS on the slow WAN links. 
The absence of this capability can be felt when we try doing telnet from a LAN 
node while ftp is in progress from another node on the same LAN, both using 
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the same WAN link to reach a host on a remote LAN. The response times seen 
by the telnet user can be quite annoying. A detailed study of this issue can 
be found in (Kumar et al., 92], wherein various internetworking strategies have 
been considered. From this paper we learn that a CONS based WAN can beef­
fectively used to support services with varied network demands. The study was 
made in the context of LANs running a CLNS network protocol. Preliminary 
experimental results were given that validated the theoretical results. 

In this paper we present our approach to, and experiences in developing a 
PC based IEEE 802.3 LAN-X.25 WAN router, that implements the strategies 
discussed in (Kumar et al., 92]. 

At the time of this report, we have implemented and successfully tested our 
router software in the lab environment. The system is stable and has been 
deployed in four places; further installations are planned. 

With the commercially available routers (including Cisco's router) it has 
been observed that the response of an interactive application is very poor in the 
presence of file transfers, both using the slow WAN(X.25) link. In those imple­
mentations we found that all the IP traffic is treated alike, and the packets are 
queued in a single FCFS queue after routing packets onto the WAN link. This 
in turn giving rise to the problem mentioned. In this aspect our implementa­
tion is different from the existing routers. We make use of the X.25 connection 
management effectively to support differential QOS required by the IP traffic. 

In section 2, we give some of the implementation details. These include the 
platform on which the router was built, the software development, and the main 
features of the software package. In section 3, we discuss the performance issues 
that were considered regarding support for differential QOS and our approach 
to resolve these. We also report the experiments done to further improve QOS. 
Section 4 pertains to performance issues such as task scheduling and physical 
interface handling. We present the approach we have taken to resolve these 
issues by looking at the performance bottlenecks in the router software. In the 
light of this, a description of various strategies considered is presented. Then we 
describe in detail the experiments conducted, and evaluate the strategies and 
discuss the results. We conclude the paper by summarizing the achievements 
of the work done and outline the future work underway. 

2 IMPLEMENTATION 

Our router software has been built on an i386 based PC-AT running DOS. 
Presently the router supports IP and X.25 protocols. The two physical interfaces 
we handle are an Ethernet interface,and a synchronous serial interface. The 
hardware for the Ethernet interface is a Western Digital (WD8003) compatible 
add-on card. For the serial interface we have used a commercially available 
i82530 SCC based card that can support link speeds upto 19200 bps. This card 
does not have an on-board memory and hence relies on the host's services. 

The software is derived by integrating two modules: Retix's X.25 ((Retix, 
88]) and CMU's PC/IP. The initial work involved in integrating these two soft­
ware packages was to change the model of the PC/IP code from small to large. 
This was due to the large memory requirements of the router. The design and 
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the implementation of PC/IP follows the now popularly known thread mech­
anism([Tanenbaum, 92]). PC/IP realises a multi-tasking environment using 
this mechanism. The tasks are non-preemptive. The tasks are scheduled in a 
round robin fashion. There are no priorities associated with the tasks. We have 
customised the scheduler to some extent so that a priority based scheduling is 
possible. 

The main advantage with the thread approach is that one can create various 
tasks based on some functionality, and these will be executing independently 
using their own stacks. This independent stack makes task switching possible 
at any point of execution. Resumption of the task execution continues from 
where it was left. For the non-preemptive multi-tasking environment that we 
have, based on an event, a task can be programmed to yield to another task, 
may be high priority one, at any point of the execution. Since modularity is 
inherent, the addition and deletion of tasks can be done without intervening in 
other tasks. Thus it is easy to add or remove functionality without affecting the 
overall system. It is possible to build a customised scheduler to schedule tasks 
according to some performance criteria. Since it is possible to make a task 
sleep, a better CPU utilisation is achieved. From the developer's view point 
debugging becomes very simple and stack overflow problem can be localised 
and corrected just by looking at one task. 

Considering the advantages with this approach, especially for a router en­
vironment, we have changed the main Retix functional modules to threads. A 
function can be changed to a thread by giving it a stack frame, so that the 
function executes as an independent entity. Realising that the CMU package 
was designed for a host, and not for a router, additional functionality had to be 
introduced for routing purposes. This required an attachment of an additional 
logical link interface at IP, apart from the existing Ethernet interface. 

We have included the TCP task along with other tasks to support telnet 
service at the router. The independent buffer and timer managements of both 
the pieces of software have been retained for the simplicity of integration. 

For the PC/IP- X.25 interface (SNDCF in OSI terminology) we have imple­
mented the RFC 0877 specification [RFC877, 83]. The mapping of destination 
IP addresses to X.25 DTE addresses has been done at this interface. We have 
given a provision for establishing an X.25 connection directly to a remote router 
more than a hop away. This is useful because it avoids IP packets requiring 
processing at the IP layer of the intermediate routers, thus improving switching 
efficiency. 

Interoperability tests with the Cisco(MGS) router have been done success­
fully. In fact Cisco router has throughout been a part of our experimental 
test-bed, on which all our performance related experiments were conducted. So 
far as X.25 connection establishment is concerned, we have used flow control 
negotiation facilities for packet size and window size. These parameters are 
useful not only to support differential QOS, but also to determine the router 
performance. 

Finally, many performance related issues have been experimentally studied 
to enhance the performance. From these, we have incorporated the strategies 
that gave the best results. We have also attempted to explain the experimental 
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observations. 

2.1 Main Features 

• Our implementation supports differential QOS required for bulk transfer 
vs. interactive traffic. The window flow control that is required for this 
purpose is configurable. These window sizes are directly related to the 
QOS given to each service class. The details of this issue will be discussed 
later. 

• On the router console we provide the utilities ping and telnet. These are 
useful in managing the network. For one thing, we can use ping to check 
for reachability. We can alter the link level parameters by telnetting to 
other router(s), among the other things. 

• The software comes with a customisation package to configure various pa­
rameters pertaining to each layer. The channel management menu enables 
one to set parameters that govern QOS. Some typical configurable param­
eters are: window sizes, timeouts, and number of retransmissions for X.25 
and LAPB layers. Of course the serial card can be configured to have an 
external or an internal clock. The serial line bit rates can be chosen upto 
a maximum of 19200 bps. 

• The routing customisation can be done in a simple way by specifying the 
mapping information. We can also make use of X.25 switching thus avoid­
ing IP processing if the intermediate routers to a destination support X.25 
switching. 

• Debugging facilities can be enabled to observe the data movement at dif­
ferent layers of the router stack. The information provided is related to 
packet and frame information and the state information at LAPB and X.25 
layers. 

• We have developed a program that can be used to remotely monitor the 
health of the router. e.g., one can find the buffer occupancy on both LAN 
and WAN interfaces. We have extended this feature to control router 
parameters from a remote host. 

• We also support SNMP agent on our router based on CMU's implementa­
tion. 

3 DIFFERENTIAL QOS FOR IP TRAFFIC 

In a LAN-WAN environment like ours where the WAN link speeds are less than 
64 kbps (typically 9600 bps), and the serial line quality is poor requiring an 
ARQ protocol, the delays experienced by a LAN user who is remotely logged­
in to a host on a remote LAN can be quite annoying in the presence of file 
transfers between other nodes on the same two LANs. The reasons for this are 
the following: 
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(i) Packet sizes for the file transfers are large (552 bytes typical) when com­
pared to interactive traffic where typical packet sizes are 64 bytes (we assume 
that the user is typing characters on the terminal). Each file transfer packet 
can give rise to several link packets depending on the Maximum Transmission 
Unit (MTU) of the link. 

(ii) The packet rate into the router for file transfer is much higher, because 
TCP window sizes can be quite large and disk access times can be ignored due 
to the parallelism we get with the low speed WAN. 

Because of these reasons we find that the link window is hogged by the file 
transfer packets, thus causing intolerable response times for the interactive user. 
Hence we have an unfair sharing of the link, in a QOS sense, i.e., two services are 
sharing a facility, each with different QOS requirements, and one gets relatively 
better QOS than the other. 

Note that simple priority before the link level window will not be enough to 
help the interactive traffic if the link window is large. Since interactive traffic 
arrives slowly, with a high probability, interactive packets find the link window 
full of file transfer packets. Thus even if this arriving packet is given priority 
before entry into the link window, it will still be delayed by a window full of file 
transfer packets. For a link packet size of 512 bytes, and link window of 7, this 
can be as much as 1.5 sees. at a link speed of 2400 bps. Inserting the arriving 
interactive packet at the head of the transmitter's queue is infeasible as then all 
sequence numbers of packets admitted into link window will have to be altered. 

If the serial link card has buffering and runs the ARQ protocol, then provision 
of priority will require modification of the card. For analysis and simulation of 
this issue see [Kumar et al., 92]. 

An alternative is to limit the number of file transfer packets that can be 
outstanding on the link. This can be achieved by segregating the file transfer 
traffic into a window controlled connection thus limiting the number of file 
transfer packets that can occupy the link window. This is easily done with a 
standard protocol, i.e., X.25. Note that simple priority (to telnet) before link 
insertion is not adequate since the telnet packets will have to wait for a link 
window full of ftp link packets anyway; and the link window can be large to 
support a range of link packet sizes. If the link window is small, say 2, then 
priority before insertion into link window should be enough. 

There is another issue, however, that our approach addresses; the provision 
of fair bandwidth sharing between, for example two ftps one originating from a 
LAN and the other from a slow serial link attached to the router, both being 
multiplexed onto the slow outgoing link (see [Kumar et al., 92]). Further, the 
X.25 interface permits us to connect the router to a Cisco and to the public 
X.25 network. 

There are differences between our work and the existing work on QoS control 
in high speed networks. The latter work assumes that quantifiable, hard QoS 
guarantees are required for the various traffic classes; hence very fine grained 
control strategies are proposed and studied in this context ([Demers et al., 90]). 
Implementation of these strategies requires complex nonstandard procedures, 
and may even require hardware support. The services that we are concerned 
with (namely, ftp and telnet) do not have any hard QoS requirements. The 
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Figure 1: Setup for the QOS experiment 

objective is simply to provide reasonably low response times for telnet, high 
throughput for ftp, fairness among services of the same class, and all this while 
efficiently utilising link bandwidth. We have realised this objective by utilising 
the existing protocol support in routers. 

Since predominant number of hosts that provide Internet services do not 
make use of Type Of Service (TOS) field in the IP header to indicate the QOS 
class of the IP packet, we cannot make use of this field to identify the service 
class and provide the required QOS. Hence to circumvent this problem and iden­
tify the service class of the Internet service, we have used TCP port numbers 
which are globally unique for most of the popular services. At the router, apart 
from parsing IP header for routing purposes we also parse the TCP header. 
Once we identify the end-application, and thereby service class, we open an 
X.25 connection with an appropriate window size negotiation facility. Thus, for 
example, we open one connection for ftp packets, and another connection for 
telnet/rlogin packets, and so on. We find that the response time of an interac­
tive application decreases dramatically with little decrease in ftp throughput. 
This corroborates the analysis in [Kumar et al., 92]. To appreciate this better, 
quantitative measures have been shown here. 

In the current implementation we classify three classes of traffic, namely, 
ftp, telnet/rlogin and others, and thus we have three X.25 connections with 
corresponding flow control parameters. 

We now present the results obtained from some experiments. We have used 
an i386 machine running at 33 Mhz clock to run our router software. The 
testbed is shown in Figure 1. Since ping delays can be measured, we use ping 
to emulate a telnet like session. ping packets are 64 bytes long including the 
IP header. The serial link speed is set to 19200 bps. The ftp packet size is 552 
bytes. At the serial interface with no fragmentation done at X.25, the lengths 
of ping and ftp packets become 69 and 557 bytes respectively with the inclusion 
of X.25 and LAPB headers. 
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Figure 2: Traffic streams at Link level and X.25 

Single X.25 connection: 

To start with, we have taken throughput and delay measurements indepen­
dently for ftp and ping with X.25 window size 2, and LAPB window size 7. The 
following are the results. 

ftp throughput (in bytes/sec): 1970 
ping average response time (in millisecs.) : 270 

Next, we have done a similar experiment with both ftp and ping initiated 

simultaneously. 
ftp throughput (in bytes/sec): 1910 

ping average response time (in millisecs.) : 1300 
We can clearly see the high ping response times once a bursty file transfer is 

in progress. 

Multiple X.25 connections: 

We now see ping delays by opening multiple X.25 connections with X.25 
windows for ftp, and ping being 2 and 7 respectively. LAPB window size is 7 

as in the earlier case. The following results were obtained. 

ftp throughput (in byte/sec) : 1828 
ping average response time (in millisecs.) : 518 

It can be seen that even in the presence of ftp traffic, the response times for 
ping are quite low thus encouraging one to go for X.25 based WAN and have 
service based network connections. Note that we are not hurting the ftp traffic 
as can be seen from the less than 5% fall in ftp throughputs. 

3.1 Link Level Scheduling 

To attempt to enhance the QOS further, we assigned priorities to the multiple 

data streams obtained from the various X.25 connections. We thus provided 
priority based queues. When the link protocol gets credits, it serves these queues 
on a priority basis with the highest priority queue served first. The number of 
elements served will be equal to the number of credits. We have given the 
highest priority to the interactive traffic, and the lowest to the ftp traffic. The 
rest of the traffic such as UDP is assigned a medium priority. 
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We have implemented FCFS, Round-Robin and Exhaustive policies. In the 
FCFS policy, we serve the data streams in the order of their arrival to the 
priority queues. In other words this amounts to serving a single queue and 
treating the traffic alike. For Round-Robin policy, we serve the queues by taking 
one element from each queue. If there are no elements in a particular queue, and 
there are credits available, the server then serves the remaining queues in the 
order of priority within the remaining queues. For the Exhaustive policy, the 
server serves all the elements in the queue it is currently serving before serving 
the next queue. Segregation of traffic streams is shown in Figure 2. The first 
part of the figure shows the case of a single X.25 connection with a single queue 
at the link level. The data stream cannot be segregated at the link level since 
the order of packet transmission has already been decided at X.25 which assigns 
the sequence numbers for the packets. The second part of the same figure shows 
multiple data streams being put into a single link level queue. However, in this 
part traffic segregation has been done at the X.25 level. Both these parts depict 
the FCFS policy at the link level. The third part shows the traffic on multiple 
X.25 connections, and also the segregation done at the link level based on the 
priority given to the data streams. 

In this context it should be mentioned that the policy that was employed by 
Retix's X.25 implementation was FCFS. During this experiment we also observe 
the delay and throughputs at the LAN end systems for various X.25 window 
sizes for the connection corresponding to ftp. Table 1 shows the experiments 
and the results obtained. From Table 1 we note that once the traffic is segre­
gated into different channels, we get all the obtainable QOS improvement. The 
link level scheduling policy did not give any further appreciable improvement. 

Table 1 Effect of Link Level Scheduling on QOS 

Link Scheduling X.25 Window ftp Throughput 
Policy for ftp (bytes/sec) 

FCFS 2 1828 
4 1828 
7 1828 

Round Robin 2 1828 
4 1828 
7 1828 

Exhaustive 2 1828 
4 1828 
7 1818 

Ping Delay 
( milli sees) 

516 
515 
522 

524 
518 
518 

514 
523 
521 
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4 TASK SCHEDULING IN THE ROUTER SOFTWARE 

The software of any router comprises parts tha.t handle the transmission and 
reception of packets a.t the physical interface, and parts tha.t handle the move­
ment of packets between these physical interfaces. Let us go through the soft­
ware structure and see how various tasks ha.ve been handled. In doing so we 
identify the performance bottlenecks in the system. We experiment with various 
strategies for task scheduling to improve performance a.t these bottlenecks. 

4.1 Software Structure 

The software design used in building the router is inherited from CMU's PC/IP 
and is based on the well known concept of threads. This concept has helped us 
to create a. cooperative multi-tasking environment under DOS. The implementa­
tion involved integration of CMU's PC/IP, and Retix's X.25 packages. Of these 
two main modules, PC/IP inherently follows the thread a.pproa.ch. We ha.ve 
introduced a. task structure into Retix code to comply with the overall design 
philosophy. The main tasks created in the overall system are: Ethernet packet 
reception, Ethernet packet processing, serial interface reception, serial interface 
processing, and timer recovery. Ethernet packet processing include routing, and 
forwarding for packets coming from LAN. These functions are achieved through 
function calls from within the sa.me task. The frame and packet level processing 
for the serial interface are done in the similar wa.y from the corresponding task. 

We address some of the performance issues considered for the transmission 
and reception mechanisms on the interfaces. We give their resolutions tha.t en­
hance the router performance. 

As is generally the case, there are different mechanisms for transmission and 
reception: blocked mode polling, unblocked mode polling, and using interrupt 
mode. In order to describe these, let us consider a. transmission or a. reception 
on a. physical interface to be an event. In blocked mode polling, after initiating 
an event, CPU polls a. status register till the status of the completed event is 
obtained. Thus the task from which the event was initiated blocks all the other 
tasks. In unblocked mode polling, the task which ha.d generated the event polls 
a. status register a.t regular time intervals to obtain the status of the completed 
event. In between the polling intervals the scheduler can schedule other tasks. 
For the interrupt mode, the status of the completed event is posted by an 
interrupt from the physical interface responsible for the event. Interrupt mode 
is unblocked and polling is completely avoided. 

4.2 Ethernet Interface 

Transmission: 

In our implementation, the transmission discipline on the Ethernet interface 
is blocked polling. After initiating a. transmission on the Ethernet interface, 
the CPU will be polling for an event tha.t indicates the status of the completed 
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transmission. Considering the non-preemptive multi-tasking structure, this es­
sentially results in a blocked task. However, the blocking delay can be ignored 
since we are dealing with the Ethernet speeds and a moderate load on our 
Ethernet LAN. Further, this delay is negligible compared to the slower serial 
interface. Hence, blocked mode transmission at the Ethernet interface cannot 
be the bottleneck for the system performance. 

Reception: 

The reception process is inherently asynchronous, and hence it is natural to 
prefer interrupt mode. The Ethernet adapter is programmed to post the event 
and interrupt the CPU. The pending reception event can also be known by 
polling a register of the Ethernet adapter. This method is adopted to take care 
of the possible missed interrupts at the CPU. The polling interval is suitably 
chosen so as not to overly ta.x the host. 

On a heavily loaded network, incoming Ethernet packets arrive back to back. 
This results in a condition wherein one interrupt can correspond to multiple 
messages buffered at the receiver. On an interrupt, we do a batch transfer 
of messages from the Ethernet adapter to the host buffers. Thus we prevent 
receiver overflow and the consequential dropping of packets. 

4.3 Serial Interface 

It is clear that the performance bottleneck in LAN-WAN interconnection over 
low speed links is the serial link itself [Kumar et al., 92]. It is therefore im­
perative in the design of the router software that the link is utilised as best as 
possible. Thus, for example, no time should be wasted between the completion 
of one frame transmission on the serial link and the initiation of the next one. 
On the other hand since the link is slow, and it takes long to transmit a packet, 
and the software should not block while a frame is being transmitted but should 
proceed with other activities. These rather obvious requirements need special 
attention, however, in the DOS environment in which multiprocessing does not 
come naturally. In fact, since we integrated two existing pieces of software to 
build our router we were initially confronted with decisions made by the original 
software modules that were not necessarily optimal for our application. 

In order to ascertain the best combination of strategies we experimented 
with several. Before moving on to the experiments, and the results obtained we 
mention the strategies considered. In our implementation, the end of transmis­
sion or reception will be notified through an interrupt from the serial device. 
We use this event to wake up the respective tasks. Based on our discussion 
on the Ethernet interface, we can think of similar service modes for serial line 
handling. 

Reception on the serial line is through DMA, and after the reception of a 
frame, the CPU will be notified by an interrupt. Interrupt routine then wakes 
up the task designated to do further frame processing. Hence this reception 
process is asynchronous. There are no significant delays involved while receiving 
incoming frames. We now look at the possible variations for handling serial 
transmission. 
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1. Blocked mode transmission: 

A call to transmit routine gets blocked within the routine till all the frames 
pending get transmitted. This method hurts the performance, especially on 
slow links as other activities get locked out while transmission on the serial link 
is proceeding. We also see from our experimental results the conditions in which 
this mode does not hurt the performance seriously. 

2. Non-Blocked mode transmission: 

As the term implies, the transmitter initiates transmission but does note 
wait for completion of transmission. We have introduced a task which is woken 
up once the frame gets transmitted. This high priority task will then initiate 
further transmissions. This is to minimise the delay between the link access 
times. Let us call this the transmiLtask. Though a better method than the 
earlier one in terms of CPU utilisation, there is still some finite delay between 
frame transmissions. The scheduler can schedule the transmiLtask only when 
the currently running task yields to the scheduler. Thus there will be times 
when the serial interface will be idling. This in turn gives rise to the under 
utilisation of the serial interface. 

3. Asynchronous initiation of transmission from within the Inter­
rupt Service Routine: 

Here, instead of just posting an event for the scheduler, as in the earlier 
case, the end of transmission interrupt routine will trigger further transmission 
of frames from the LAPB transmit queue. Hence we no longer need the addi­
tional transmit_task just for frame transmissions. Certainly this should be the 
best mechanism compared to the other two options. From the software engi­
neering point of view, we take care of the possible race condition at the shared 
transmit queue. LAPB accesses this queue, to insert outbound frames, as does 
the asynchronous occurrence of an interrupt, which causes an element to be 
removed from the same queue. We use the semaphore mechanism to prevent 
simultaneous access. 

In section 4.4 we present the experiments that were carried out for comparing 
the above mentioned strategies. 

4.4 Test-bed for Studying Serial Line Handling Issues 

For these set of experiments we have used i286 based PC-AT to run our router 
software as our main i386 platform was out of order during this experimenta­
tion. We have used ftp throughputs as the performance measure. We measured 
throughputs by doing file transfers between two end systems on LANS con­
nected by routers as shown in Figure 1 (ignoring the machine labelled "ping"). 
We have conducted two sets of experiments. The first two options mentioned for 
the serial line will be studied in our first test. The results have been tabulated 
in Table 2 and Table 3. 
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4.5 Discussion 

Description of various columns of Tables 2 and 3 is the following. The first 
column shows the service strategy for the incoming frame processing on the 
serial line. It indicates whether the task that does frame processing services all 
the frames (exhaustive) or processes one frame before yielding to other tasks. 
The second column is the mode of frame transmission on the serial line. The 
Ethernet packet receive strategy is shown in the third column. The interpreta­
tion of the notation given for column 1, is also applicable here with respect to 
the Ethernet packet processing. The last column gives the ftp throughputs for 
various combination of strategies. Rows 1 to 4 of the Tables 2 and 3 give the 
measurements obtained for the blocked mode transmission on the serial link. 
Rows 5 to 8 of these tables give the measurements for non-blocked frame trans­
mission on the serial link. The Ethernet packet transmission delays are ignored 
because of the moderate load on our Ethernet LAN. 

Table 2 ftp throughput for various reception and transmission strategies at 
the interfaces. 
Configuration : LAPB window 7, X.25 window 7, Baudrate 19200 bps 

Sr.No. Frame Reception Frame Transmission Ethernet Packet ftp thruput 
on Serial on Serial Reception in bytes/sec 

1. Single Blocked Single 1360 

2. Single Blocked Exhaustive 1458 

3. Exhaustive Blocked Single 1758 

4. Exhaustive Blocked Exhaustive 1458 

5. Single Non-Blocked Single 1734 

6. Single Non-Blocked Exhaustive 1734 

7. Exhaustive Non-Blocked Single 1734 

8. Exhaustive Non-Blocked Exhaustive 1734 
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Table 3 ftp throughput for various reception and transmission strategies at 
the interfaces 
Configuration : LAPB window 2, X.25 window 7, Baudrate 19200 bps 

Sr. No. Frame Reception Frame Transmission Ethernet Packet ftp thruput 
on Serial on Serial Reception in bytes/sec 

1. Single Blocked Single 1834 

2. Single Blocked Exhaustive 1834 

3. Exhaustive Blocked Single 1808 

4. Exhaustive Blocked Exhaustive 1808 

5. Single Non-Blocked Single 1734 

6. Single Non-Blocked Exhaustive 1734 

7. Exhaustive Non-Blocked Single 1734 

8. Exhaustive Non-Blocked Exhaustive 1734 

From the tables we see that for a large LAPB window size (i.e. 7 in Table 
2), non-blocked frame transmission on the serial line gives a better performance 
irrespective of the kind of reception strategies followed for the serial and Eth­
ernet interfaces. For small LAPB window size (i.e. 2 in Table 3), non-blocking 
transmission mode hurts the performance compared to the blocking mode, since 
with non blocked transmission the transmit_task keeps yielding to other tasks 
more frequently after the initiation of the transmission. Because of the non­
preemptive nature of the task scheduler even the high priority transmit_task 
has to wait till the currently executing task gives up control to the scheduler. 
This causes link access delays and therefore we get low ftp throughput. 

In our next experiment we try the option wherein the serial link transmis­
sion is asynchronously triggered from the interrupt service routine, and there is 
no blocking while transmission is in progress. This option eliminates the CPU 
idling or the starvation of the serial link, and the link access delays are min­
imised. Hence we expect encouraging results from this experiment. Considering 
the results obtaiil.ed from the previous experiment we have fixed the servicing 
strategies for the incoming message processing on the two physical interfaces to 
be exhaustive. Apart from studying the influence of serial line handling we also 
see how X.25 window affects the performance. The results are shown in Table 
4. 

We compare the best ftp throughput obtained in Tables 2 and 3 with that 
obtained in Table 4. We see a remarkable improvement in the performance. 
LAPB window size does not matter since we always get back the acknowledge­
ment by the time the LAPB frame gets transmitted. This causes one more 
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frame to enter the transmit queue, which will be immediately transmitted. A 
larger X.25 size improves the performance further because of the parallelism 
that is obtained at the X.25 protocol processing while the serial line is busy 
sending frames. 

Table 4 Configuration : Baudrate 19200 bps 
Servicing incoming messages on the interfaces: exhaustive 

LAPB Window X.25 Window ftp thruput 
bytes/sec 

2 2 1970 

2 7 2019 

7 2 1970 

7 7 2019 

5 FINAL RESULT 

From the previous section we have observed that the version of the router soft­
ware incorporating asynchronous initiation of frame transmission on serial link 
with frame transmissions triggered from within interrupt routine has given the 
best performance. Recall that the performance tuning was done on a i286 
PC/ AT. We have used this tuned version of the software on i386 m/c and mea­
sured ftp throughput again. We now present the measurement thus obtained 
for i386 m/c as the final result. The X.25 window is set to 7, and LAPB window 
is set to 2 in accordance with our previous discussion. The serial link speed is 
configured to 19200 bps (i.e. 2400 bytes/sec). 

ftp throughput (in bytes/sec) : 2170 
Compare this result with that obtained from our earlier version prior to the 

performance enhancement (see section 3). We clearly see an improvement of 
about 10% (from 1970 bytes/sec to 2170 bytes/sec) in the ftp throughput from 
our latest version. 

6 CONCLUSIONS & FUTURE WORK 

We have proposed a feasible method for building LAN/WAN router that pro­
vide differential QOS using the well-known port numbers for Internet applica­
tions, and the channel management introduced at SNDCF. Our implementation 
showed an appreciable improvement in the response times for interactive traf­
fic in the presence of bursty ftp traffic. From the measurements we can also 
conclude that, once the channeling of the IP traffic is done, the nature of the 
link level scheduling policy for the serial interface does not change the perfor­
mance. Of the serial line handling mechanisms considered, and tested, non­
blocking with asynchronous activation of the transmitter has given the best 
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performance. We have seen further enhancement in the performance by choos­
ing a larger X.25 window. Also, the servicing strategy at the Ethernet interface 
for incoming Ethernet packets, played no role in improving the performance. 

We are planning to introduce more serial interfaces to the router to inter­
connect more subnets. Presently we use static routing information. The expan­
sion of the router demands that we use dynamic routing protocols. There is 
a thought in this direction to incorporate at least one of the existing dynamic 
routing protocols. 
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