
Control Flow Based Pointcuts for Security
Hardening Concerns

Marc-Andre Laverdiere, Azzam Mourad, Andrei Soeanu, and Mourad
Debbabi *

Computer Security Laboratory,
Concordia Institute for Information Systems Engineering,

Concordia University, Montreal (QC), Canada
•Cma.laver,mourad,a_soeanu,debbabi}Qciise.Concordia.ca

Abstract. In this paper, we present two new control flow based point-
cuts to Aspect-Oriented Programming (AOP) languages that are needed
for systematic hardening of security concerns. They allow to identify
particular join points in a program's control flow graph (CFG). The
first proposed primitive is the G A Flow, the closest guaranteed ances
tor, which returns the closest ancestor join point to the pointcuts of
interest that is on all their runtime paths. The second proposed prim
itive is the GDFlow, the closest guaranteed descendant, which returns
the closest child join point that can be reached by all paths starting
from the pointcuts of interest. We find these pointcuts to be necessary
because they are needed to perform many security hardening practices
and, to the best of our knowledge, none of the existing pointcuts can
provide their functionalities. Moreover, we show the viabihty and cor
rectness of our proposed pointcuts by elaborating and implementing
their algorithms and presenting the results of a testing case study.

1 Motivations &: Background

In today 's computing world, security takes an increasingly predominant role.
The industry is facing challenges in public confidence at the discovery of vul
nerabilities, and customers are expecting security to be delivered out of the
box, even on programs tha t were not designed with security in mind. The chal
lenge is even greater when legacy systems must be adapted to networked/web
environments, while they are not originally designed to fit into such high-risk
environments. Tools and guidelines have been available for developers for a few
years already, bu t their practical adoption is limited so far. Software maintain-
ers must face the challenge to improve program security and are often under-
equipped to do so. In some cases, little can be done to improve the situation,

* This research is the result of a fruitful collaboration between CSL (Computer Se
curity Laboratory) of Concordia University, DRDC (Defence Research and Devel
opment Canada) Valcartier and Bell Canada under the NSERC DND Research
Partnership Program.

Please use the following format when citing this chapter:

Laverdiere, M.-A., Mourad, A., Soeanu, A. and Debbabi, M., 2007, in IFIP International Federation for Information
Processing, Volume 238, Trust Management, eds. Etalle, S., Marsh, S., (Boston: Springer), pp. 301-316.

302 Laverdiere, Mourad, Soeanu, Debbabi

especially for Commercial-Off-The-Shelf (COTS) software products that are no
longer supported, or for in-house programs for which their source code is lost.
However, whenever the source code is available, as it is the case for Free and
Open-Source Software (FOSS), a wide range of security improvements could be
applied once a focus on security is decided.

Very few concepts and approaches emerged in the literature to help and
guide developers to harden security into software. In this context, AOP ap
pears to be a promising paradigm for software security hardening, which is an
issue that has not been adequately addressed by previous programming mod
els such as object-oriented programming (OOP). It is based on the idea that
computer systems are better programmed by separately specifying the various
concerns, and then relying on underlying infrastructure to compose them to
gether. The techniques in this paradigm were precisely introduced to address
the development problems that are inherent to crosscutting concerns. Aspects
allow us to precisely and selectively define and integrate security objects, meth
ods and events within application, which make them interesting solutions for
many security issues [3, 5, 9, 16, 17].

However, AOP was not initially designed to address security issues, which
resulted in many shortcomings in the current technologies [11, 7]. We were
not able to apply some security hardening activities due to missing features.
Such limitations forced us, when applying security hardening practices, to per
form programming gymnastics, resulting in additional modules that must be
integrated within the application, at a definitive runtime, memory and develop
ment cost. Moreover, the resulting code after applying this strategy of coding
is of higher level of complexity as regards to auditing and evaluation.

The specification of new security-related pointcuts is becoming a very chal
lenging and interesting domain of research [14, 4, 10]. Pointcuts are used in
order to specify where code should be injected, and can informally be defined
as a subset of the points in a programs' execution fiow. In this context, we
propose in this paper AOP pointcuts that are needed for security hardening
concerns and allow one to identify join points in a program's control flow graph
(CFG). The proposed primitives are GAFlow, and GDFlow. GAFlow returns
the closest ancestor join point to the pointcuts of interest that is on all their
runtime paths. GDFlow returns the closest child join point that can be reached
by all paths starting from the pointcuts of interest. These poincuts are needed
to develop many security hardening solutions. Moreover, we combined all the
deployed and proposed pointcuts in the literature, and, as far as we know, were
not able to find a method that would isolate a single node in our CFG that
satisfies the criteria we define for GAFlow and GDFlow.

This paper is organized as follows: we first cast a quick glance at security
hardening and the problem that we address in Section 2. In Sections 3 and 4 we
show the usefulness of our proposal and its advantages. Afterwards, in Section
5, we describe and specify the GAFlow and GDFlow pointcuts. In Section 6,
we present the algorithms necessary for implementing the proposed pointcuts,
together with the required hierarchical graph labeling method. This section also

Control Flow Based Pointcuts for Security Hardening Concerns 303

shows the results of our implementation in a case study. We move on to the
related work in Section 7, and then conclude in Section 8.

2 Security Hardening

In our prior work [12], we proposed that software security hardening be de
fined as any process, methodology, product or combination thereof that is used
to add security functionalities and/or remove vulnerabilities or prevent their
exploitation in existing software. This definition focuses on the solving of vul
nerabilities, not on their detection. In this context, the following constitutes the
classification of security hardening methods:

Code-Level Hardening Changes in the source code in a way that prevents
vulnerabilities without altering the design. For example, we can add bound-
checking on array operations, and use bounded string operations.

Software Process Hardening Addition of security features in the software
build process without changes in the original source code. For instance,
the use of compiler-generated canary words and compiler options against
double-freeing of memory would be considered as Software Process Hard
ening.

Design-Level Hardening Re-engineering of the application in order to inte
grate security features that were absent or insufficient. Design-level changes
would be, for example, adding an access control feature, changing commu
nication protocol, or replacing temporary files with interprocess communi
cation mechanisms.

Operating Environment Hardening Improvements to the security of the
execution context (network, operating systems, libraries, utilities, etc.) that
is relied upon by the software. Examples would be deploying l i b safe, using
hardened memory managers and enabling security features of middleware.

Security hardening practices are usually applied manually by injecting se
curity code into the software [2, 8, 15, 18]. This task requires from the security
architects to have a deep knowledge of the code inner working of the software,
which is not available all the time. In this context, we elaborated in [13] an
approach based on aspect orientation to perform security hardening in a sys
tematic and automatic way. The primary objective of this approach is to allow
the security architects to perform security hardening of software by applying
proven solutions so far and without the need to have expertise in the low-level
security solution domain. At the same time, the security hardening is applied
in an organized and systematic way in order not to alter the original function
alities of the software. This is done by providing an abstraction over the actions
required to improve the security of the program and adopting AOP to build
our solutions. The result of our experimental results explored the usefulness of
AOP to reach the objective of having systematic security hardening. During our
work, we have developed security hardening solutions to secure connections in a

304 Laverdiere, Mourad, Soeanu, Debbabi

client-server application, added access control features to a program, encrypted
memory contents for protection and corrected some low-level security issues in
C programs. On the other hand, we have also concluded the shortcomings of the
available AOP technologies in security and the need to elaborate new pointcuts
for security hardening concerns.

3 Usefulness of GAFlow and GDFlow for Security
Hardening

Many security hardening practices require the injection of code around a set
of join points or possible execution paths [2, 8, 15, 18]. Examples of such cases
would be the injection of security library initialization/deinitialization, privilege
level changes, atomicity guarantee, logging, etc. The current AOP models only
allow us to identify a set join points in the program, and therefore inject code
before, after and/or around each one of them. However, to the best of our
knowledge, none of the current pointcuts enable the identification a join point
common to a set of other join points where we can inject the code once for all
of them. In the sequel, we present briefly the necessity and usefulness of our
proposed pointcuts for some security hardening activities.

3.1 Security Library Initialization/Deinitialization

In the case of security library initialization (e.g. access control, authorization,
cryptography, etc.), our primitives allow us to initialize the needed library only
for the branches of code where they are needed by identifying their GAFlow
and/or GDFlow. Having both primitives would also avoid the need to keep
global state variables about the current state of library initialization. We use as
example part of an aspect that we elaborated for securing the connections of a
client application. With the current AOP pointcuts, the aspect targets the main
as the location for the TLS library initialization and deinitialization as depicted
in Listing 1. Another possible solution could be the loading and unloading of
the library before and after its use, which may cause runtime problems since
api-specific data structures could be needed for other functions. However, in the
case of large applications, especially for embedded ones, the two solutions create
an accumulation of code injection statements that would create a significant,
and possibly useless, waste of system resources. In listing 2, we see an improved
aspect that would yield to more efl̂ icient and wider applicable result using the
proposed pointcuts.

Listing 1. Excerpt of Hardening Aspect for Securing Connections Using GnuTLS

advice execution ("'/.uuinainu (• • •) u")
hardening_socketInfoStoragelnit ()
"tjp -> proceed () ;
hardening.deinitGnuTLSSubsystem ()
•tjp -> result () = 0;

}

around () {
, hardening,initGnuTLSSubsystem(NONE) ;

,hardening.socketinfoStorageDeinit () ;

Control Flow Based Pointcuts for Security Hardening Concerns 305

Listing 2. Excerpt of Improved Hardening Aspect for Securing Connections Using
GnuTLS

advice gaf low (call ("'/.uconnect (...)") II call ("'/.usend (...)") II call("'/,u
recv (...)")) : before()-C

hardening.socketinfoStoragelnit(); hardening^initGnuTLSSubsystem(NONE);
}

advice gdf low (call ('"/.u connect (...)") II call ("'/.u send (...)") II call("'/,u
recv(...)") II call("7.uclose(. ..)••)) : after(){

hardening.deinitGnuTLSSubsystem(); hardening.socketInfoStorageDeinit();
}

3.2 Principle of Least Privilege

For processes implementing the principle of least privilege, it is necessary to
increase the active rights before the execution of a sensitive operation, and to
relinquish such rights directly after it was accomplished. Our primitives can
be used to deal with a group of operations requiring the same privilege by
injecting the privilege adjustment code at the GAFlow and GDFlow join points.
This is applicable only in the case where no unprivileged operations are in the
execution path between the initialization and the deinitialization points. The
example in Listing 3 (made using combined code examples from [8]) shows an
aspect implementing a lowering of privilege around certain operations. It uses
restrict tokens and the SAFER API available in Windows XP. This solution
injects code before and after each of the corresponding operations, incurring
overhead, particularly in the case where the operations a, b and c would be
executed consecutively. This could be avoided by using GAFlow and GDFlow,
as we show in Listing 4.

Listing 3. Hypothetical Aspect Implementing Least Privilege

pointcut abc: call ("'/.ua (...)") I I call ('"/.ub (...)") I I call ("'/.uc (...)") ;

advice abc: around(){
SAFER.LEVEL.HANDLE hAuthzLevel;
// Create a normal user level.
if (SaferCreateLevel(SAFER_SCOPEID_USER , SAFER_LEVELID_CONSTRAINED ,

0, &hAuthzLevel, NULL)){
// Generate the restricted token that we will use.
HANDLE hToken = NULL;
if (SaferComputeTokenPromLevel(hAuthzLevel, NULL, fehToken,0,NULL)){

//sets the restrict token for the current thread
HANDLE hThread = GetCurrentThread();
if (SetThreadToken(&hThread,hToken)){

tjp->proceed();
SetThreadToken(&hThread,NULL); //removes restrict token

>
else-C//error handling }

}
SaferCloseLevel(hAuthzLevel);

>
}

306 Laverdiere, Mourad, Soeanu, Debbabi

Listing 4. Improved Aspect Implementing Least Privilege

point cut abc: call ("'/.ua (...)") II call ('"/.ub (...)") II call ('"/.uC (...)") ;

advice gaflow(abc): before(){
SAFER_LEVEL_HANDLE hAuthzLevel ;
// Create a normal user level.
if (SaferCreateLevel(SAFER.SCOPEID.USER, SAFER.LEVELID.CONSTRAINED ,

0, fehAuthzLevel, NULL)){
// Generate the restricted token that we will use.
HANDLE hToken = NULL;
if (SaferComputeTokenFromLevel(hAuthzLevel, NULL, fehToken,0,NULL)){

//sets the restrict token for the current thread
HANDLE hThread = GetCurrentThread();
SetThreadToken(fehThread,NULL);

}
SaferCloseLevel(hAuthzLevel);

}
}
advice gdflow(abc): after(){

HANDLE hThread = GetCurrentThread();
SetThreadToken(fehThread,NULL); //removes restrict token

}

3.3 Atomicity

In the case where a critical section may span across multiple program elements
(such as function calls), there is a need to enforce mutual exclusion using tools
such as semaphores around the critical section. The beginning and end of the
critical section can be targeted using the GAFlow and GDFlow join points.

Listing 5. Aspect Adding Atomicity

static Semaphore sem = new Semaphored);

point cut abc: call ('"/.ua (...)") || call ("'/.ub (...)") ||

advice abc: before()-C
try{

sem.acquire () ;
} catch (InterruptedException e) {.//...}

}

advice abc: after(){
sem.release () ;

}

call("y.uc(. ..)");

Listing 5, although correct-looking, can create unwanted side effects if two
calls (say, a and b) were intended to be part of the same critical section (i.e.
in the same execution path), as the lock would be released after a, and ac
quired again before b, allowing for the execution of another unwanted critical
section, possibly damaging b's internal state. Improving this aspect to deal with
this case requires knowledge of the program's flow of event, contradicting the
core principle of separation of concerns, and thus complicating maintenance
and preventing aspect reuse. Using our proposal, however, the lock is acquired
and released independently of the individual join points, but guarantees that

Control Flow Based Pointcuts for Security Hardening Concerns 307

they will be, altogether, considered as one critical section. Listing 6 shows this
improvement.

Listing 6. Improved Aspect Adding Atomicity

pointcut abc : call ("7,ua (•••)") && call ("*/,ub (.

advice gaflow(abc): before()-C
static Semaphore sem = new Semaphored);
try{
sem.acquire () ;
} catch(InterruptedException e) {//...}

>

advice gaflow(abc): after(){
sem.release () ;

}

.)") && call("y.uc(. .) ") ;

3.4 Logging

It is possible that a set of operation are of interest for logging purposes, but
that their individual log entry would be redundant or of little use. This is why
it is desirable to use G A Flow and/or GDFlow in order to insert log statements
before or after a set of interesting transactions.

4 General Advantages of G A Flow and GDFlow

It is clear that our proposed primitives support the principle of separation of
concerns by allowing to implement program modification on sets of join points
based on a specific concern (as previously exemplified). We now present some
general advantages of our proposed pointcuts:

- Ease of use: Programmers can target places in the application's control
flow graph where to inject code before or after a set of join points without
needing to manually determine the precise point where to do so.

- Ease of Maintenance: Programmers can change the program structure
without needing to rewrite the associated aspects that were relying on ex
plicit knowledge of the structure in order to pinpoint where the advice code
would be injected. For example, if we need to change the execution path to
a particular function (e.g. when performing refactoring), we also need to find
manually the new common ancestor and/or descendant, whereas this would
be done automatically using our proposed pointcuts.

- Optimization: Programmers can inject certain pre-operations and post-
operations only where needed in the program, without having to resort to
injection in the catch-all main. This can improve the apparent responsiveness
of the application. Certain lengthy operations (such as library initialization)
can be avoided if the branches of code requiring them are not executed, thus
saving CPU cycles and memory usage. Also, this avoids the execution of the

308 Laverdiere, Mourad, Soeanu, Debbabi

pre-operations and post-operations needed around each targeted join point,
which is the default solution using actual AOP techniques. This is replaced
by executing them only once around the G A Flow and GDFlow.

- Raising the Abstraction Level: Programmers can develop more abstract
and reusable aspect libraries.

5 Pointcut Definitions

We provide here the syntax that defines a pointcut p after adding our proposed
pointcuts:

p : := c a l l (s) I execut ion(s) I gaflow(p) I gdflow(p) I p I Ip I pfe&p

where 5 is a function signature. The G A Flow and the GDFlow are the new
control flow based pointcut primitives. Their parameter is also a pointcut p.

The GAFlow primitive operates on the CFG of a program. Its input is a
set of join points defined as a pointcut and its output is a single join point.
In other words, if we are considering the CFG notations, the input is a set of
nodes and the output is one node. This output is the closest common ancestor
that constitutes (1) the closest common parent node of all the nodes specified
in the input set (2) and through which passes all the possible paths that reach
them. In the worst case, the closest common ancestor will be the starting point
in the program.

The GDFlow primitive operates on the CFG of a program. Its input is a
set of join points defined as a pointcut and its output is a join point. In other
words, if we are considering the CFG notations, the input is a set of nodes and
the output is one node. This output (1) is a common descendant of the selected
nodes and (2) constitutes the first common node reached by all the possible
paths emanating from the selected nodes. In the worst case, the first common
descendant will be the end point in the program.

6 Algorithms and Implementation

In this section, we present the elaborated algorithms for graph labeling, GAFlow
and GDFlow. We assume that our CFG is shaped in the traditional form, with
a single start node and a single end node. In the case of program with multiple
starting points, we consider each starting point as a different program in our
analysis. In the case of multiple ending points, we also consider them as one
end point. Most of these assumptions have been used so far [6]. With these
assumptions in place, we ensure that our algorithms will return a result (in the
worst case, the start node or the end node) and that this result will be a single
and unique node for all inputs.

Control Flow Based Pointcuts for Security Hardening Concerns 309

6.1 Graph Labeling

Algorithms that operate on graphs have been developed for decades now, and
many graph operations (such as finding ancestors, finding descendants, finding
paths and so on) are considered to be common knowledge in computer science.
Despite this theoretical richness, we are not aware of existing methods allowing
to efficiently determine the G A Flow and GDFlow for a particular set of join
points in a CFG by considering all the possible paths. Some approaches use
lattice theory to efficiently compute a Least Upper Bound (LUB) and Greatest
Lower Bound (GLB) over lattices [1]. However, their results do not guarantee
that all paths will be traversed by the results of LUB and GLB, which is a
central requirement for G A Flow and GDFlow. Moreover, the lattices do not
support the full range of expression provided by the CFG, as the latter can be
a directed cyclic graph. In order to determine the GAFlow and GDFlow, we
chose to use a graph labeling algorithm developed by our colleagues that we
slightly modified in order to meet our requirements. Algorithm 1 describes our
graph labeling method.

Each node down the hierarchy is labeled in the same manner as the table
of contents of a book (e.g. L, l.L, L2., L2.L, ...), as depicted by Algorithm
1, where the operator -]-c denotes string concatenation (with implicit operand
type conversion). To that effect, the labeling is done by executing algorithm 1
on start node with label "0.", thus recursively labeling all nodes.

We implemented Algorithm 1 and tested it on a sample hypothetical CFG.
The result is displayed in Figure L This example will be used throughout the
rest of this paper.

6.2 GAFlow

In order to compute the GAFlow, we developed a mechanism that operates on
the labeled graph. We compare all the hierarchical labels of the selected nodes
in the input set and find the largest common prefix they share. The node labeled
with this largest common prefix is the closest guaranteed ancestor. We insured
that the GAFlow result is a node through which all the paths that reach the
selected nodes pass by considering all the labels of each node. This is elaborated
in Algorithm 2. Please note that the FindCommonPref ix function was specified
recursively for the sake of simplicity

Moreover, we implemented Algorithm 2 and we applied it on the labeled
graph in Figure 1. We selected, as case study, some nodes in the graph for
various combinations. Our results, are summarized in Table 1 and Figure 2.

6.3 GDFlow

The closest guaranteed descendant is determined by elaborating a mechanism
that operates on a labeled CFG of a program. By using Algorithm 3, we obtain
the sorted list of all the common descendants of the selected nodes in the input

310 Laverdiere, Mourad, Soeanu, Debbabi

9
10
11
12
13
14
15
16
17
18
19
20
21:
22
23
24
25
26
27:
28
29

labelNode(Node s, Label /):
s.labels ^- s.labels U {/}
childrenSequence — s.childrenQ
for /c = 0 to \childrenSequence\ — 1 do

child <— childrenSequencek
if -^hasProperPrefix{child, s.labels) then

labelNode{child^ / +c A; -f c "•")5
end if

end for

hasProperPrefix(Node s, LabelSet parent Labels):
if s.label = e then

return false
end if
if 3s G Pre fixes {s.label) : s G parentLabels then

return true
else

return false
end if

Prefixes (Label I):
StringSetlabels <— 0
Stringcurrent <<—""
for z -H- 0 to l.lengthQ do

cur rent.append{l.char At(i)
if Label!.charAt{i) = ' / then

labels.add{current.clone{))
end if

end for

Selected Nodes
N2, N8, N13
N6, N i l
N14, N13
N14, N15

GAFlow
Nl
N2
Nl
N14

Table 1. Results of the Execution of Algorithm 2 on Figure 1

list of the point cut. The principle of this algorithm is to calculate the set of
descendants of each of the input nodes and then perform the intersection op
eration on them. The resulting set contains the common descendants of all the
input nodes. Then, we sorted them based on their pa th lengths.

Algorithm 4 determines the closest guaranteed descendant. It takes first
the result of Algorithm 3, which its considers as its list of possible solutions.
Then, it i terates on the list until it reaches the node for which all pa ths coming
from the selected nodes pass through it. During the verification, we operates on

Control Flow Based Pointcuts for Security Hardening Concerns 311

A l g o r i t h m 2 Algorithm to determine GAFlow
Require: SelectedNodes is initialized with the contents of the pointcut match
Require: Graph has all its nodes labeled
1: gaflow(NodeSet SelectedNodes):
2: Labels ^ 0
3: for all node E SelectedNodes do
4: Labels <— Labels U node.labelsQ
5: end for
6: return GetNodeByLabel{FindCommonPrefix{Labels))
7:
8: FindCommonPref ix (LabelVector Labels):
9: if Labels,sizeQ = 0 then

10: return error
11: else if Labels.sizei) = 1 then
12: return Labels.removeHeadQ
13: else
14: Labell <— Label s.removeHeadQ
15: Label2 <e— Label s.removeHeadQ
16: if Labels.sizeQ = 2 then
17: for i <r— 0 to min{Label.lengthQ^Label2.lengthQ do
18: if Labell.char At (i) ^ Label2.charAt{i) then
19: return Labell.substring{0,i — 1)
20: end if
21: end for
22: return Labell.substring{0^ m.in{Label.lengthQ, Label2.lengthQ)
23: else
24: Partial Solution <— FindCommonPref ix{Labelly Label2)
25: Label s.Append{Partial Solution)
26: return FindCommonPrefix{Labels)
27: end if
28: end if

A l g o r i t h m 3 Algorithm to Determine the Common Descendants
Require: SelectedNodes is initialized with the contents of the pointcut match
Require: Graph has all its nodes labeled

1: f indCoimnonDesceiidants(NodeSet SelectedNodes):
2: PossibleSolutions <— Graph.allNodesQ
3: for all node G SelectedNodes do
4: PossibleSolutions <«— PossibleSolutions n node.AllDescendantsQ
5: end for
6: Create OrderedSolutions by sorting PossibleSolutions by increasing path length

between the solution and the nodes in SelectedNodes
7: return OrderedSolutions

312 Laverdiere, Mourad, Soeanu, Debbabi

1 startp.] 1

V
I Nip.O.] 1

^^^nr^
1 N2[0.0.0.] 1 1 NSp.O.I.] 1 N4[0.0.2.] 1

it^ 1 I T
N6[0.0.0.0.] 1 N7[0.0.0.1.] 1 1 NSip.O.I.O.] 1 1

/ 1 1 1 it^
1 V , ^ _ _ _ ^ 1 N11 [0.0.0.1.0.] 1 1 N12[0.0.1.0.0., 0.0.2.0.0.] 1

^̂ ^̂ ^̂ -̂ ^̂ :::>̂ \ .^

N9[D.0.2.0.] 1

j N14[0.0.0.0.0., 0.0.0.1.0.0., 0.0.1.0.0.0., 0.0.2.0.0.0., 0.0.3.0.0.0.] 1

T

n N5P.0.3.] j

T
1 N10(0.0.3.0.] 1

•
1 N13[0.0.3.0.0.] 1

\ . , ^ ^ ^ ^ 1 N15[0.0.0.0.0.0., 0.0.0.1.0.0.0., 0.0.1.0.0.0.0., 0.0.2.0.0.0.0., 0.0.3.0.0.0.0.] 1

""" '—~'~~-* 1
1 N16[0.0.0.0.0.0.0., 0.0.0.0.1., 0.0.0.1.0.0.0.0., 0.0.1.0.0.0.0.0., 0.0.2.0.0.0.0.0., 0.0.3.0.0.0.0.0.] 1

T
1 N17[0.0.0.0.0.0.0.0., 0.0.0.0.1.0., 0.0.0.1.0.0.0.0.0., 0.0.1.0.0.0.0.0.0., 0.0.2.0.0.0.0.0.0.

T

0.0.3.0.0.0.0.0.0.] 1

1 end[O.O.0.O.O.O.0.O.O., 0.0.0.0.1.0.0., 0.0.0.1.0.0.0.0.0.0., 0.0.1.0.0.0.0.0.0.0., 0.0.2.0.0.0.0.0.0.0., 0.0.3.0.0.0.0.0.0.0.] 1

Fig. 1. Labeled Graph

Fig. 2. Excerpt of Graph Illustrating the GAFlow of N4 and N7

the labels of each node in the list, which we call candidate. For each selected
node, we count the number of labels of the candidate that have proper pr-efixes
identical to the labels of the considered selected node. The resulting candidate
of the first iteration is the first encountered node with the largest label count.
This candidate is the starting one of the next iteration and so on until all the
selected nodes are examined. The final candidate of the last iteration is returned
by the algorithm as the closest guaranteed descendant.

Control Flow Based Pointcuts for Security Hardening Concerns 313

A l g o r i t h m 4 Algorithm to Determine the GDFlow
Require: SelectedNodes is initialized with the contents of the pointcut match
Require: Graph has all its nodes labeled
1: gdf low(NodeSet SelectedNodes):
2: Possiblesolutions -<— findCommonDescendants(SelectedNodes)
3: Candidate <— 0
4: for all node G SelectedNodes do
5: Candidate <r— findBestCandidate{PossibleSolutions, Candidate, node)
6: end for
7: return Possibles olutions candidate
8:
9: findBest Candidate (NodeQueue possibles olutions, int Candidate, Node

selectedN ode)
10: PreviousFoundPrefixes -e— 0
11: for i <— Candidate to possibles olutions. si ze{) — 1 do
12: sol <r- possibles olutions i
13: foundPrefixes ^r— countProperPrefixes{sol, node)
14: if [PreviousFoundPrefixes < foundPrefixes) V Bchild e soLchildrenQ :

hasProperPrefix{sol, child.label si)) then
15: Candidate -H- i
16: end if
17: end for
18: return Candidate
19:
20: countProperPref ixes(Node candidate, Node selectedN ode):
21: count <~ 0
22: for all candidate Label G candidate.I abelsQ do
23: for all selectedN ode Label G selectedN ode.label s{) do
24: if 3p G pre fixes (candidate Label) : p = selectedN ode Label then
25: count -\- +
26: end if
27: end for
28: end for
29: return count

We used the same implementation of Algorithm 1 and case study illustrated
in Figure 1. Wi th this, we first implemented Algorithm 3 to determine the list
of common descendants for different selected nodes, as summarized in Table
2. Then, we implemented Algorithm 4 to calculate the GDFlow for the list
of common descendants previously computed by applying the aforementioned
conditions. Table 2 contains the results for this algorithm. Figures 3 and 4
illustrate these as well.

314 Laverdiere, Mourad, Soeanu, Debbabi

Selected Nodes
N2, N8, N13
N6, N i l
N14, N13
N14, N15

Common Descendants
N14, N15, N16, N17, end
N14, N15, N16, N17, end
N15, N16, N17, end
N16, N17, end

GDFlow
N16
N16
N15
N16

Table 2. Results of the Execution of Algorithm 3 and 4 on Figure 1

Fig. 3. Illustration of the GDFlow of N4 and N7 as N14

Fig. 4. Illustration of the GDFlow of N4 and N6 as N16

7 Related Work

Many shortcomings of AOP for security concerns have been documented and
some improvements have been suggested so far. In the sequel, we present the
most noteworthy.

A dataflow pointcut that is used to identify join points based on the origin
of values is defined and formulated in [11] for security purposes. This poincut is
not fully implemented yet. For instance, such pointcut detects if the data sent
over the network depends on information read from a confidential file.

In [7], Harbulot and Gurd proposed a model of a loop pointcut that explores
the need for a loop join point that predicts infinite loops, which are used by
attackers to perform denial of service of attacks.

Control Flow Based Pointcuts for Security Hardening Concerns 315

Another approach, that discusses local variables set and get poincut, has
been proposed in [14]. He claims that this pointcut is necessary to increase
the efficiency of AOP in security since it allows to track the values of local
variables inside a method. It seems that this poincut can be used to protect the
confidentiality of local variables.

In [4], Boner discussed a poincut that is needed to detect the beginning of a
synchronized block and add some security code that limits the CPU usage or the
number of instructions executed. He also explored in his paper the usefulness
of capturing synchronized block in calculating the time acquired by a lock and
thread management. This usefulness applies also in the security context and
can help in preventing many denial of service attacks.

A predicted control flow (pcf low) pointcut was introduced by Kiczales in a
keynote address [10] without a precise definition. Such pointcut may allow to
select points within the control flow of a join point starting from the root of the
execution to the parameter join point. In the same presentation, he introduced
an operator allowing to obtain the minimum of two pcf low pointcuts, but never
clearly defined what this min can be or how it can be obtained. These proposals
could be used for software security, in the enforcement of policies that prohibit
the execution of a given function in the context of the execution of another one.

8 Conclusion

AOP appears to be a very promising paradigm for software security hardening.
However, this technology was not initially designed to address security issues
and many research work showed its limitations in such domain. Similarly, we
explored in this paper the shortcomings of the AOP in applying many security
hardening practices and the need to extend this technology with new pointcuts.
In this context, we proposed two new pointcuts to AOP for security hardening
concerns: The G A Flow and GDFlow. The G A Flow returns the closest ancestor
join point to the pointcuts of interest that is on all their runtime paths. The
GDFlow returns the closest child join point that can be reached by all paths
starting from the pointcuts of interest. We first showed the limitations of the
current AOP languages for many security issues. Then, we illustrated the use
fulness of our proposed pointcuts for performing security hardening activities.
Afterwards, we defined the new pointcuts and we presented their elaborated
algorithms. Finally, we presented our implementation of pointcuts and a case
study that explore their correctness.

References

1. Hassan Ait-Kaci, Robert S. Boyer, Patrick Lincoln, and Roger Nasr. Efficient
implementation of lattice operations. Programming Languages and Systems^
11(1):115-146, 1989.

316 Laverdiere, Mourad, Soeanu, Debbabi

2. Matt Bishop. How Attackers Break Programs, and How to Write More Secure Pro
grams, h t tp : / /nob.cs .ucdavis .edu/~bishop/secprog/sa i is2002/ index.html
(accessed 2007/04/19).

3. Ron Bodkin. Enterprise security aspects, 2004. h t t p : / / c i t e s e e r . i s t . p s u . e d u /
702193.html (accessed 2007/04/19).

4. J. Boner. Semantics for a synchronized block join
point, 2005. h t t p : / / j onasboner. coin/2005/07/18/
semant ics - fo r -a - synchron ized-b lock- jo in t -po in t / (accessed 2007/04/19).

5. B. DeWin. Engineering Application Level Security through Aspect Oriented Soft
ware Development PhD thesis, Katholieke Universiteit Leuven, 2004.

6. Ernesto Gomez. Cs624- notes on control flow graph, h t tp : / /www.csc i .csusb .
edu/egomez/cs624/cfg.pdf.

7. B. harbulot and J.R. Gurd. A join point for loops in Aspect J. In Proceedings
of the 4th workshop on Foundations of Aspect-Oriented Languages (FOAL 2005),
March, 2005.

8. Michael Howard and David E. Leblanc. Writing Secure Code. Microsoft Press,
Redmond, WA, USA, 2002.

9. M. Huang, C. Wang, and L. Zhang. Toward a reusable and generic security aspect
hbrary. In AOSD:AOSDSEC 04-' AOSD Technology for Application level Security,
March, 2004.

10. G. Kiczales. The fun has just begun, keynote talk at AOSD 2003,
2003. h t tp : / /www.cs .ubc.ca/~gregor /papers /k iczales-aosd-2003.ppt (ac
cessed 2007/04/19).

11. H. Masuhara and K. Kawauchi. Dataflow pointcut in aspect-oriented program
ming. In Proceedings of The First Asian Symposium on Programming Languages
and Systems (APLASW), pages 105-121, 2003.

12. A. Mourad, M-A. Laverdiere, and M. Debbabi. Security hardening of open source
software. In Proceedings of the 2006 International Conference on Privacy, Security
and Trust (PST 2006). ACM, 2006.

13. A. Mourad, M-A. Laverdiere, and M. Debbabi. Towards an aspect oriented ap
proach for the security hardening of code. In To appear in the Proceedings of
the 3rd IEEE International Symposium on Security in Networks and Distributed
Systems. IEEE Press, 2007.

14. Andrew C. Myers. JFlow: Practical mostly-static information flow control. In
Symposium on Principles of Programming Languages, pages 228-241, 1999.

15. R. Seacord. Secure Coding in C and C-h-h. SEI Series. Addison-Wesley, 2005.
16. Viren Shah. An aspect-oriented security assurance solution. Technical Report

AFRL-IF-RS-TR-2003-254, Cigital Labs, 2003.
17. Pawel Slowikowski and Krzysztof Zielinski. Comparison study of aspect-oriented

and container managed security. In Proceedings of the EC COP workshop on Anal
ysis of Aspect-Oriented Software, 2003.

18. D. Wheeler. Secure Programming for Linux and Unix HO WTO - Creating Secure
Software vS.OlO. 2003. http://www.dwheeler.coin/secure-prograins/ (accessed
2007/04/19).

http://nob.cs.ucdavis.edu/~bishop/secprog/saiis2002/index.html
http://citeseer.ist.psu.edu/
http://www.csci.csusb
http://www.cs.ubc.ca/~gregor/papers/kiczales-aosd-2003.ppt
http://www.dwheeler.coin/secure-prograins/

