
Garp : Graph Abstractions for Concurrent Programming

Simon M. Kaplan*

University of Illinois

Depar tment of Computer Science

Urbana, IL 61081

Gall E. Kaiser t

Columbia University

Depar tment of Computer Science

New York~ NY 10027

Abs t rac t : Several research projects are investigating parallel processing languages where dynamic pro-

cess ~opologies can be constructed. Failure to impose abstractions on interprocess connection patterns can

resull; in arbitrary interconnection topologies that are difficult to understand. We propose the use of a

graph-grammar based formalism to control the complexities arising from trying to program such dynamic

networks.

keywords: abstraction, actors, concurrency, distributed system, graph grammar, message passing,

object-oriented system, parallel processing

There is a growing need for effective ways

to organize.., distributed programs [14].

1 In t roduc t ion

Languages with the ability to generate arbitrary networks of processes are increasingly a focus of research.

Little effort has been directed, however, towards abstractions of the resulting topologies; failure to support

such abstractions can lead to chaotic programs that are difficult to understand and maintain. We propose

graph grammar-based abstractions as a means for imposing structure on topologies. This paper introduces

GARP (Graph --Abstractions for Concurrent Programming), a notation based on graph grammars [11] for

describing dynamic interconnection topologies.

Graph grammars are similar to string grammars, except that (1) the body of a production is a graph

and (2) the rewriting action is the replacement of a vertex by a graph.

"Netmail: kaplan~a.cs.uluc.edu. Supported in part by a grant from the AT&T Corporation.
tNetmail: kaiser~es.columbia.edu. Supported in par~ by grants from the AT&T Foundation, Siemens Research and Tech-

nology Laboratories, and New York State Center for Advanced Technology - - Computer & Information Systems, and in part
by a Digital Equipment Corporation Faculty Award.

192

The purpose of GARP is to replace arbitrary dynamic communication patterns with abstractions in the

same sense that Dijkstra [6] replaced goto-ridden spaghetti code with structured control constructs. There

is a cost to this, of course. Just as there are some sequential programs that are difficult to write in a

programming language without gotos, there are topologies that are difficult if not impossible to specify

using GARP. There is, however, a major difference between the graph grammar approach taken in GARP

and the adding of structured programming constructs to sequential programming languages'. In the latter

ease, a fixed set of constructs are always used, while in the former we know that we need abstractions, but

not what specific patterns to provide. So in GARP the grammar is used to give a set of patterns for a

particular program, not for all programs.

GARP uses graph grammars as follows. For a graph generated from a graph grammar, each vertex is

interpreted as a process (which we call an agent). Agents have ports through which they can send and receive

messages, Edges in the graph provide asynchronous communications paths between ports. Rewriting of an

agent by a production corresponds to the spawning of a graph of new processes as defined in the body of

the production, and connecting these into the process topology to replace the agent being rewritten using a

connection strategy specified in the production. The agents perform all computation (including the initiation

of rewrites on the graph) while the graph grammar acts as an abstraction structure that describes the legal

process topologies.

To illustrate the use of the GARP framework we adopt a model in which GARP agents are Scheme [19]

programs augmented with port operations (definable in terms of core scheme and a bag data type) and

operations to control rewriting (defined in terms of graph grammar theory). We emphasize tha t this model

of agents is not central to our use of graph grammars to control process topology complexities; our ideas

are equally applicable to other proposals for process models, including Actors [2], Cantor [4], NIL [20] and

Argus [14].

Section 2 defines the agents component of GARP, section 3 defines graph grammars and section 4 shows

how graph grammars are adapted into the GARP programming formalism. Section 5 discusses the Scheme

implementation of our ideas and illustrates GARP with two examples. Section 6 summarizes GARP in

the light of the examples. Section 7 compares GARP to related work, especially Actor systems and other

applications of graph grammars to distributed systems.

193

l e t m = a message (contents are irrelevant)
b = a bag. The internal representation for the Message Handler.

-- an empty bag
o p e r a t i o n s

(M-receive b m) =~b +-- (® m b)
(M-empty b) ==~ (i:f (= b []) true false)
(M-send b) =~ (choice b) and b *- (r e s t b)

end

Figure 1: Semantics for Message Handlers

2 Message Handlers, Ports and Agents

Computation in GARP is performed by groups of agents. Agents communicate among themselves by writing

messages to or reading messages from ports. Messages written on ports are stored by a message handier

until read by another agent.

A message handler represents the pool of messages tha t have been sent to it, but not yet delivered to any

agent, as a bag. If a is an item that can be inserted into a bag and b and c are bags, the operations on bags are:

(® a b) (insertion), (E a b) (membership), (-- b c) (equality), (choice b) , (which nondeterministically

chooses an element of b) and (r e s t b) (which returns the remainder of the bag after a choose). Manna

and Waldinger [15] give a theory of bags.

Message handlers are an abstraction built on top of bags. The operations on message handlers, together

with their semantics, are given in figure 1. These operations are atomic. An additional level of detail is

needed if sending a message to a port is to be a broadcast operation; this is a simple extension and the

details are omitted.

Agents communicate by reading from and writing to ports. They can be implemented in any language,

but must support the following minimal set of porthandling constructs (with behaviour in terms of the

message handling commands in figure 1:

• (send p o r t message) is interpreted as (M-recieve p o r t message).

• (meg? p o r t) is interpreted as (not (M-empty p o r t)) .

• (on p o r t body) is interpreted as wait until (meg? p o r t) is true, then apply body to the result of

(M-send port).

With these operations, more sophisticated operations can be defined, such as:

!94

* (on-and p o r t l i s t body). Wait until each port. in the p o r t l i s t has a message, and then apply the

body to the message(s).

* (on-or ({ (po r t body)}*)) . Nondeterministically choose a po r t with a message, and apply the

corresponding body to the message.

• Looping versions of on, on-or and on-and.

An agent can be thought of as a closure whose parameters include the ports through which it will

communicate with other agents~ and is similar to a process in CSP [10] or NIL, an actor in Actor Systems,

an object in Cantor, a guardian in Argus or a task in Ada 1 [1]. As in Actor Systems, Cantor and NIL,

communication among agents is asynchronous, and the arrival order of messages at a port is nondeterministic.

By asynchronous we mean that the sending process does not know the state of the intended reciever, as

opposed to a synchronous communication~ in which the reeiever must be ready and willing to recieve a

message before the sender can transmit it.

The interconnections among agents are determined using the graph grammar formalism described in the

following section.

3 Graph Grammars

Graph grammars are similar in structure to string grammars. There is an alphabet of symbols, divided into

three (disjoint) sets called the terminals, nonterminals and portsymbols. Productions have a nonterminal

symbol as the goal (the same nonterminal may be the goal of many productions), and the right-hand side of

the production has two parts: a graph (called the bodygraph) and an embedding rule. Each vertex in the

bodygraph is labeled by a terminal or nonterminal symbol, and has associated with it a set of portsymbols.

Any portsymbol may be associated with many terminals or nonterminals.

The rewriting action on a graph (the host graph) is the replacement of a vertex labeled with a nonterminaI

by the bodygraph of a production for which that nonterminal is the goal, and the embedding of the bodygraph

into the host graph. This embedding process involves connecting (ports associated with) vertices in the

bodygraph to (ports associated with) vertices in the host graph. The embedding process is restricted so

tha t when a vertex v is rewritten, only vertices tha t are in the neighborhood of v-- those connected to v by

a path of unit length--can be connected to the vertices in the bodygraph that replaces v.

1Ada is a trademark of the United States Goveramen~ Ada Joint Program Office.

t95

Because we use these graph grammars as an abstraction construct for concurrent programming, we call

them concurrent abstraction grammars (CAGs).

Each symbol in the alphabet of terminals and nontermlnals has associated with it a set of symbols called

portsymbols. The same portsymbol may be associated with several terminals or nonterminals. We denote

terminals and nonterminals by uppercase characters X, Y,--. and portnames by Greek characters c,, fl , . .- .

Vertices are denoted v, w,- . . and the symbol labeling a vertex v is identified by Lab~. P S x denotes the set

of portsymbols associated with the (terminal or nonterminal) symbol X.

For any graph G, let VG denote the vertices in G and E~ the edges of G. Each vertex v can be qualified

by the portsymbols in PSLab~ to form a port-identifier. Edges are denoted by pairs of port-identifiers~ for

example (v.a,w.fl). For any vertex v in a graph G, the neighborhood of v,)/,, is {w t (v,w) 6 Ea}.

D e ~ i t i o n 1 A concurrent abstraction graph grammar is a tuple CA G : (N, T, S, P, Z), where N is a finite

set of symbols called the nonterminals of the grammar, T is a finite set of symbols called the terminals of the

grammar and S is a finite set of symbols called the portsymbols of the grammar such that T A N -- N A S =

T n S = O; P is a set of productions, where productions are defined in definition B below; and Z is a unique

distinguished nonterminal known as the axiom of the grammar.

The axiom g is the goal of exactly one production and may not appear in any bodygraph. This

requirement is not a restriction in practice as one can always augment a grammar with a distinguished

production that satisfies this requirement.

Def in i t i on 2 A production in a GAG is defined as: p : Lp --* Bp, F~ where, p is a unique label; Lp 6 N is

called the goal of the production; Bp is an arbitrary graph (called the bodygraph of the production}, where

each vertex is labeled by an element o f T U N; and Fp is the embedding rule of the production: a set of pairs

(X.a, Lp.7) or [X.a,Y.fl], where X labels a vertex in Bp,a E PSx , f l 6 P S y , 7 e PSLp.

The same symbol may appear several times in a bodygraph; this is resolved by subscripting the symbol

with an index value to allow them to be distinguished [22].

Def in i t ion 3 The rewriting (or refinement) of a vertex v in a graph G constructed from a GAG by a

production p for which Labv is the goal is performed in the following steps:

• The neighborhood Xv is identified.

• The vertex v and all edges incident on it are removed from G.

. The bodygraph Bp is instantlated to form a daughter-graph, which is inserted into G.

196

• The daughter graph is embedded as follows. For each pair in Fp of the form (X.c~, Lv.'y) an edge is

placed from the c~ port of each vertex in the daughter-graph labeled by X to whatever v. ff was connected

to before the start of the rewriting. For each pair in Fp of the form IX.a, Y.fl] an edge is placed from

the a port of each vertex in the daughter-graph labeled by X to the fl port of each vertex in the set

{w I w e J¢v and Lab~ = Y} .

Note there are two ways to specify an embedding pair, using 0 or [] notation. The former is often more

convenient, but more restrictive as it gives no way to take a port-identifier with several inputs and split

those over the vertices in the bodygraph when rewriting.

The most important property tha t CAGs should have is confluence. Such a property would mean that

any vertices in the graph can be rewritten in parallel. Unfortunately~ we will prove that two vertices that are

in one another's neighborhoods cannot be rewritten in parallel (although the graphs are otherwise confluent).

This important result means tha t the rewriting action must be atomic. We approach the proof of this result

in two steps: first we prove an intermediate result about the restriction of the extent of embeddings; the

limited confluence result follows.

Def in i t ion 4 By recursive rewriting of a vertex v we mean possibly rewriting v to some graph--the instan-

tlation of the bodygraph Bp of some rule p for which v is the goal--and then rewriting recursiveIy the vertices

in that graph.

Def in i t ion 5 For any vertex v in a graph G, let N~ denote the universe of possible neighbourhoods of v

that could arise by rewriting (recursively} the vertices of N~; G~ denote the universe of graphs obtainable

by all possible recursive rewrltings of v; and let St* = G~ - (G - {v}), 2 i.e., S~ is lust the set of subgraphs

constructable from v in the recursive rewriting.

Lernrna 6 Given a vertex v in a graph G, any (recursive) rewriting of v will not introduce edges from the

vertices of the daughter graph of v (or any daughter graph recursively introduced into that daughter graph}

to any vertex that is not in N~ U S*:

Proof : By intluction on the rewriting strategy.

Basis : Consider a graph G with a nonterminal vertex v. Refine v by a production p for which Labv is

the goal. By definition of CAGs, all the vertices in G to which the vertices of the daughter-graph may be

connected are in Nv. Therefore the base case does not contradict the theorem.

I n d u c t i v e Step: Consider now the graph G ~ with a vertex v ~, where G t has been formed from G by a

2Note this is set difference so the ~-~ does not distribute.

t97

series of refinements (starting with a vertex v), and v ~ has been introduced into the graph by one of these

refinements. Nvt will include only vertices introduced into G by the refinement(s) from v to v ~, and vertices

in N~. Now rewrite v ~. Only vertices in Nv, can receive edges as the result of embedding the new daughter-

graph~ so the statement of the theorem remains true under the effect of the rewriting. This completes the

proof.

O

T h e o r e m 7 Two vertices v and w in each oLher's neighbourhood ~.e. v E J¢~o and w @ JOy) may not be

rewritten in parallel

Proof : Suppose that it were possible to rewrite the two vertices in parallel and that any rewrite of w would

introduce a new vertex x such that Labw = Labs, that would connect to v by the embedding rule, and vice

versa. Suppose further tha t once the daughter-graph replacing w hs been instantiated, but before the edge

to v has been placed, the rewriting of v begins by removing v from the graph. Clearly at this point there

is no vertex v to which to perform the embedding. Therefore it cannot be possible to rewrite two vertices

tha t are in one another 's neighbonrhoods in parallel.

[]

C o r o l l a r y 8 Given a graph G constructed from a CAG, the vertices in G may be rewritten in any order.

P r o o f : Follows from previous theorem and !emma.

[3

4 Relating Graph Grammars and Agents

A GARP program has two parts: a CAG and code for each agent. Vertices in the graph grammar represent

agents. Each agent name is either a terminal or nonterminal symbol of the grammar. We extend the

reportoire of the agents to include a r e w r i t e operation with form:

(r e w r i t e name exp . . .)

where name is the label of a production that has the name of the agent about to be rewritten as goal and the

exp . . . are parameters to the production. The interpretation of this operation is the definition of rewriting

given in section 3. The r e w r i t e action must be the agent's last, because the model of rewriting requires

tha t the agent be replaced by the agents in the bodygraph of the production used in the rewriting.

We extend the production labels of graph grammars to have a list of formal parameters. Each element

of the list is a pair <agent . parameter>, which identifies the agent in the bodygraph of the production to

198

which the parameter must be passed, and the specific formal parameter for that agent that should be used.

When rewriting, the agents specified in the parameter list are passed the appropriate actual parameter when

they are created. This ability to pass arguments from an agent to the agents that replace it provides a way

to pass the state of the agent to its replacements. This feature is not unique to our agent system and can

be found in Actors and Cantor.

5 Examples

This section of the paper illustrates the use of GARP with two examples written in GARP/Scheme, a version

of GARP that uses Scheme as the underlying language for agents. In this system, agents and productions are

implemented as first-class scheme objects; we can therefore experiment with parallel programming and our

ideas on process struture while retaining all the advantages of a small but extremely powerful programming

language s. All the features of a programming language required for GARP agents have been implemented

in Scheme using that language's powerful macro facilities to provide rewrite rules into core Scheme. There

is nothing about the implementation that is unique to Scheme, however; another implementation using the

object-oriented language MELD [13] as an underlying framework is under development.

The first example gives a GARP program for quicksort as a tutorial: this is not the most efficient way to

sort a stream of numbers, but the GARP program is easy to understand. The second example demonstrates

a systems application: this GARP program takes as input an encoding of a dataflow program, generates a

dataflow machine tailored for it, and then executes it. This could be useful in allocating processors in a

large MIMD machine to dataflow tasks.

The graph grammar for the quicksort example is found in figure 2~ and the code for the agents in figure 3.

There are two further agents, not shown~ modeling standard input and output. This program takes a stream

of numbers from standard input, sorts them using divide and conquer, and then passes the result to standard

output. The program executes recursively: When the s o r t - a b s agent receives a message that is not the

end-of-file object, it rewrites itself to a so r t -body bodygraph, passing the message just read as a seed value

to the s p l i t vertex introduced in the rewrite. This s p l i t vertex passes all values received by it that are

greater than the seed through the h i port, all other values through the lo port, and the seed itself through

the seedpor t . The j o i n agent waits for messages on its lo, h i and seed ports and passes the concatenation

of these three messages to its ou t port. The lo and h i ports are connected to s o r t - a b s agents, which in

turn rewrite themselves to s o r t - b o d y graphs on receipt of an appropriate message. When end-of-file is

3A copy of this implementation is available from ~he first author.

t99

,roduction axiom)roduction sort-body < Split, seed >
sort-abs - >

Embeddlngs:
(Sptit.ln - - sort-abs.in)
(Join.out - - sort-sbs.out)

Figure 2: Sort Example - Graph Grammar

encountered, it is propagated through the graph and the s o r t - a b s agents left in the graph send the empty

list as a "result ~ value. The axiom production starts the program running.

The graph grammar for the dataflow example is given in figure 4 (the agent code is omitted due to

space restrictions). In this system, the c o n t r o l l e r agent reads dataflow programs as input messages, and

passes them to the prog node, which immediately rewrites itself to a new prog, an o u t - h a n d l e r and a df

agent. The new prog waits for another dataflow program~ while the d~ node rewrites itself to a dataflow

machine (using the a r i t h m e t i c , i d e n t i t y and i f - s t a t e m e n t productions, and the o u t - h a n d l e r waits for

the output from the dataflow machine. At each stage of this construction process the df agent looks at its

program parameter, decides what sort of construct to rewrite to, breaks up the program accordingly, and

passes the components to the new agents via the parameters of the production used in the rewriting. For

example, when an arithmetic operation is identified, the program can be broken up into the operation, a

~left" program fragment and a "right" program fragment. The df agent recognizes these components and

rewrites itself using the a r i t l m e t i c production~ passing the operation to the a r i t h o p agent and the "left ~

and ~right" program fragments to the appropriate new agents. Leaf values, such as constants, are handled

internally by the df agent (and therefore are in no production explicitly).

Only a simple dataflow language is supported in this example; extension to more complex constructs is

not difficult. Once the dataflow machine has been built, it executes the program for which it was constructed

and then passes the results to the o u t - h a n d l e r agent.

GARP is also particularly well suited to the large class of adaptive grid programs, such as linear differential

equation solvers[21]. In such a program, a grid is constructed and the function solved at each point in the

200

(agent s o r t - a b s t
(ports inport outport)
(on inport (lambda (message)

(if (eq? message eel-object)
(send outport '())
(rewrite sort-body message)))))

(agent split
(a rgs seed)
(ports in hi seedport Io)
(send seedport seed)
(loop in (lambda (in)

(if (not (eq? in eof-object))
(begin

(if (< in seed)
(send io in)
(send hi in)))

(begin
(send hi eof-object)
(send io eof-object)
(break))))))

(agent j o i n
(p o r t s h i seed lo out)
(on-a_ud (h i s seed lo)

(lambda (h i seed lo)
(send out (append Io (list seed) hi)))))

Figure 3: Sort Example - Agent Code

grid. Grid points in each other's neighborhood then transmit their solutions to one another. If there is too

large a discontinuity between results at any point, that point is rewritten to a finer grid and the process

repeated. Solutions to such problems find natural expression in CARP.

6 Graphs and Abstract ions

We can now summarize how CAGs help control network topologies. Rather than allowing agents to connect

to other agents in arbitrary ways, the interconnections are taken care of by the CAG. We see several

advantages to this approach. First, it forces .grouping of agents (via productions) that will cooperate

together to perform some aspect of the computation. It is easy to see which agents will work together; one

just has to look at the CAG. Second, interconnection topologies are determined at the level of the CAG, not

at the level of individual agents. This means that setting up topologies becomes the province of the designer

rather than of the programmers implementing the agents, as good software engineering practice dictates.

201

)roduction axiom

production splitter <dr , program>

Embedding:
(prog$1.prog - - prog.prog)
(df.input -- nil)

production arithmetic < arithop~ op >
<df$1, program> <df$2~ program>

d r -

Embedding:
(arithop.result - - df.output)

I (df$1.input - - df.lnput)
L(dfd$2.inpnt - - df.input)

production <df$1, program> if-strut
<df$2, program>

< df$3, program > < df$4, program >

df - >

t .a%) (~) ~ am

Embedding:
if-result.output - - df.output)
df$4.input - - dLinput)

~roduction identity

df - >

Embedding:
(ident.output - - df.output)
(ident.input - - all.input)

Figure 4: Dataflow Example - Graph Grammar

202

7 Related Work

There is a large body of literature on graph grammars (see, for example, [7]). Some researchers have

developed very powerful formalisms where graphs can be rewritten to graphs rather than just rewriting

vertices [8] [17]. This work is quite attractive on the surface, but would be almost impossible to implement:

identifying the graph to be rewritten is NP-hard, and it is not clear how to synchronize the mutual rewriting

of the vertices in the graphs. The primary focus of these researchers has been on theoretical issues such

as the confluence of various classes of graph grammars and the hardness of the recognizability problem.

We have instead based GAGs on a more limited form of graph grammar~ Node Label Controlled (NLC)

grammars [11]. The basic difference between GAG and NLC grammars is each GAG production has its

own embedding rule. Our "semi-confluence" theorem does not, to our knowledge, appear in the literature.

GARP can be viewed as an extension of NLC grammar research into a more practical domain.

Kahn and MacQueen [12] have investigated a parallel programming model in which individual processes

are replaced by networks; while our work is similar, the major difference is tha t we have a formal way of

modelling the network topologies tha t are created.

Degano and Montanari [5] have used a graph grammar formalism similar to CAG as the vehicle for

modeling distributed systems. Although their work differs from ours in several respects--a more restricted

model of embedding is used, there is no model of communication among processes, graphs in their formalism

carry history information, and the grammars are used to model programs rather than as a programming

formalism in their own r ight- - i t is still an interesting complement to our work, and we believe that many

of their results will be transferable.

GARP is most similar to Actors 4 [3] [9]. An important difference is tha t in GARP communications

patterns are defined in the grammar, whereas in actors they are set up by passing of addresses among

Actors. We believe that this lack of structure is potentially dangerous, as it relies on the goodwill and

cooperation of the programmers building the system. As long as the programmers continue to cooperate

successfully~ the system will work; but the smallest error in propagation of Actor addresses could lead

to chaos. Experience with large software systems written in sequential programming languages strongly

suggests tl~at lack of suitable structuring constructs for the network will cause serious software engineering

problems. An attempt to address this problem using receptionists allows the programmer to break up the

Actors into groups by convention only; a mischevious programmer may still break the system by passing

Sinternal ~ Actor addresses out to other Actors. In GARP this cannot happen.

4Space dictates that we assume the reader is familiar with Actor systems

203

The distinction between the process spawning supported by Actors and by GARP is analogous to the

replacement of conditional and unconditional branches in sequential programming languages with structured

control constructs. The distinction between the communication patterns is analogous to the distinction

between dynamic and lexical scoping.

Two other ways of describing parallel networks--CCS [16] and Petri Nets [181--are also related to our

work. With CCS we share the concept of ports and the idea of a network of processes; however~ we

use asynchronous communication where CCS is synchronous and needs no notion of global time, It also

seems that the application of CCS is limited to fixed topology networks. Petri nets use asynchronous

communication, but are also limited to fixed topology.

There are several other approaches to concurrent programming that we have cited in the text: Ada

focuses on providing a good language model for a process, and all but ignores interprocess topology issues;

Cantor is interested in parallel object-oriented programming and gives the same support for topology control

as does Actor Systems; and Argus focuses on issues of atomicity and robustness, These issues are orthagonal

to those addressed in this paper.

8 C o n c l u s i o n s

MIMD computer systems make inevitable the development of large parallel programs. At present there

are no adaquate ways to specify the interconnections among processes in these programs. We believe that

this wili lead to a situation in which programs can generate completely arbitrary process topologies. Such

programs will be difficult to debug, verify, or maintain. This problem is analogous to the ~goto problem" of

the 1960's, and we propose an analogous solution: rather than being able to construct arbitrary networks,

abstractions should be imposed that control network structure. However~ unlike the "goto problem ~ ~ we do

not believe that it will be possible to derive a set of standard form similar to the ~if' and ~do ~ forms used

in sequential programming; rather, we believe that for each parallel program, the designer should identify a

set of interconnection topology templates and use those as the abstractions for that program,

Graph grammars provide an excellent medium in which to encode these templates, and in the GARP

system we have shown that a mechanical interpretation of a subclass of graph grammars - CAG grammars

- does indeed allow the specification of interprocess connections and their automatic use in a parallel

programming system.

204

Acknowledgements

Thanks to Roy Campbell and Steve Costing for frequent discussions on the CARP system and the theory

underlying it, as well as their comments on earlier drafts of this paper.

R e f e r e n c e s

[1] Reference Manual for the Ads Programming Language. Technical Report MIL-STD 1815, United States

Department of Defense.

[2] Gul Agha. ACTORS: A Model of Concurrent Computation in Distributed Systems. M.I.T. Press,

Cambridg% Mass., 1986.

[3] Gul Agha. Semantic considerations in the actor paradigm of concurrent computation. In A. W. Roscoe

S. D. Brookes and G. Winskel, editors, Seminar on Concurrency, LNCS 197, pages 151-179, Springer-

Verlag, New York, 1985.

[4] W. C. Athas and C. L. Seitz. Cantor User Report. Technical Report 5232:TR:86, California Institute

of Technology, January 1987.

[5] Pierpaolo Degano and Ugo Montenari. A model for distributed systems based on graph rewriting. J.

ACM, 34(2):411-449, April 1987.

[6] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, N J, 1976.

[7] Hartmut Ehrig, Manfred Nagl, and Grzegorz Rozenberg (eds). Graph Grammars and their Application

to Computer Science, Lecture Notes in Computer Science 158. Springer-Verlag, 1984.

[8] Hartmut Erhig. Introduction to the algebraic theory of graph grammars. In Hartmut Erhig Volker Claus

and Grzegorz Rozenberg, editors~ Graph Grammars and their Application to Computer Science and

Biology, pages 1-69, Springer-Verlag, Heidelberg, 1979.

[9] C. Hewitt, T. Reinhart, G. Agha, and G Attardi. Linguistic support of receptionists for shared re-

sources. In A. W. Roscoe S. D. Brookes and G. Winskel, editors, Seminar on Concurrency, LNCS 197,

pages 151-179, Springer-Verlag, New York, 1985.

[10] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM, 21(8):666-677,

August 1978.

205

[11] Dirk Janssens and Grzegorz Rozenberg. Graph grammars with node-label control and rewriting. In

Hartmut Ehrig, Manfred Nagl, and Grzegorz Rozenberg, editors, Proceedings of the second International

Workshop on Graph Grammars and their Application to Computer Science, LNCS 158~ pages 186-205~

Springer-Verlag, 1982.

[12] G. Kahn and D. MacQueen. Coroutines and networks of parallel processes. In Information PrOCeSsing

77, pages 993-998, Academic Press, 1978.

[13] GaiI E. Kaiser and David Garlan. Melding data flow and object-oriented programming. In Conference

on Object Oriented Programming Systems, Languages, and Applications~ Kissimmee, FL, October 1987.

[14] Barbara Liskov and Robert Scheifler. Guardians and actions: linguistic support for robust, distributed

programs. ACM TOPLAS, 5(3):381-404, July 1983.

[15] Zohar Manna and Richard Waldinger. The Logical Basis for Computer Programming, Volume 1.

Addison-Wesley, Reading, Mass., 1985.

[161 R. Milner. A calculus of communicating systems. In Lecture Notes in Computer Science volume 92,

Springer-Verlag, Berlin, 1980.

[17] Manfred Nagl. A tutorial and bibliographical survey on graph grammars. In Hartmut Erhig

Volker Claus and Grzegorz Rozenberg, editors, Graph Grammars and their Application to Computer

Science and Biology, pages 70-126, Springer-Verlag, Heidelberg, 1979.

[18] C. A. Petri. Concurrency. In Net Theory and Applications, LNCS 84, Springer-Verlag, Berlin, 1980.

[19] J. Rees and W. Clinger (Editors). Revised (3) report on the algorithmic language scheme. Sigplan

Notices, 21(12):37-79, December 1986.

[20] Robert E. Strom and Shaula Yemini. The nil distributed systems programming language: a status

report. In S. D. Brookes, A. W. Roscoe, and G. Winskel, editors, Seminar On Concurrency, LNCS

197, pages 512-523, Springer-Verlag, New York, 1985.

[21] J. F. Thompson, Z.U.A Warsi, and C. W. Mastin. Numerical Grid Generation: Foundations and

Applications. North-Holland, New York, 1985.

[22] William M. Waite and Gerhard Goos. Compiler Construction. Springer-Verlag, New York, 1984.

