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There is a growing need for effective ways 

to organize.., distributed programs [14]. 

1 In t roduc t ion  

Languages with the ability to generate arbitrary networks of processes are increasingly a focus of research. 

Little effort has been directed, however, towards abstractions of the resulting topologies; failure to support 

such abstractions can lead to chaotic programs that are difficult to understand and maintain. We propose 

graph grammar-based abstractions as a means for imposing structure on topologies. This paper introduces 

GARP (Graph --Abstractions for Concurrent Programming), a notation based on graph grammars [11] for 

describing dynamic interconnection topologies. 

Graph grammars are similar to string grammars, except that (1) the body of a production is a graph 

and (2) the rewriting action is the replacement of a vertex by a graph. 
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The purpose of GARP is to replace arbitrary dynamic communication patterns with abstractions in the 

same sense that  Dijkstra [6] replaced goto-ridden spaghetti code with structured control constructs. There 

is a cost to this, of course. Just as there are some sequential programs that  are difficult to write in a 

programming language without gotos, there are topologies that  are difficult if not impossible to specify 

using GARP. There is, however, a major difference between the graph grammar approach taken in GARP 

and the adding of structured programming constructs to sequential programming languages'. In the latter 

ease, a fixed set of constructs are always used, while in the former we know that  we need abstractions, but 

not what  specific patterns to provide. So in GARP the grammar is used to give a set of patterns for a 

particular program, not for all programs. 

GARP uses graph grammars as follows. For a graph generated from a graph grammar, each vertex is 

interpreted as a process (which we call an agent). Agents have ports through which they can send and receive 

messages, Edges in the graph provide asynchronous communications paths between ports. Rewriting of an 

agent by a production corresponds to the spawning of a graph of new processes as defined in the body of 

the production, and connecting these into the process topology to replace the agent being rewritten using a 

connection strategy specified in the production. The agents perform all computation (including the initiation 

of rewrites on the graph) while the graph grammar acts as an abstraction structure that  describes the legal 

process topologies. 

To illustrate the use of the GARP framework we adopt a model in which GARP agents are Scheme [19] 

programs augmented with port  operations (definable in terms of core scheme and a bag data type) and 

operations to control rewriting (defined in terms of graph grammar theory). We emphasize tha t  this model 

of agents is not central to our use of graph grammars to control process topology complexities; our ideas 

are equally applicable to other proposals for process models, including Actors [2], Cantor [4], NIL [20] and 

Argus [14]. 

Section 2 defines the agents component of GARP, section 3 defines graph grammars and section 4 shows 

how graph grammars are adapted into the GARP programming formalism. Section 5 discusses the Scheme 

implementation of our ideas and illustrates GARP with two examples. Section 6 summarizes GARP in 

the light of the examples. Section 7 compares GARP to related work, especially Actor systems and other 

applications of graph grammars to distributed systems. 
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l e t  m = a message (contents are irrelevant) 
b = a bag. The internal representation for the Message Handler. 

-- an empty bag 
o p e r a t i o n s  

(M-receive b m) =~b +-- (® m b) 
(M-empty b)  ==~ (i:f ( =  b [ ] )  true false) 
(M-send b) =~ (choice  b) and b *- ( r e s t  b) 

end  

Figure 1: Semantics for Message Handlers 

2 Message Handlers, Ports and Agents 

Computation in GARP is performed by groups of agents. Agents communicate among themselves by writing 

messages to or reading messages from ports. Messages written on ports are stored by a message handier 

until read by another agent. 

A message handler represents the pool of messages tha t  have been sent to it, but not yet delivered to any 

agent, as a bag. If a is an item that  can be inserted into a bag and b and c are bags, the operations on bags are: 

(® a b) (insertion), (E a b) (membership), (-- b c) (equality), (choice  b) ,  (which nondeterministically 

chooses an element of b) and ( r e s t  b) (which returns the remainder of the bag after a choose). Manna 

and Waldinger [15] give a theory of bags. 

Message handlers are an abstraction built on top of bags. The operations on message handlers, together 

with their semantics, are given in figure 1. These operations are atomic. An additional level of detail is 

needed if sending a message to a port  is to be a broadcast operation; this is a simple extension and the 

details are omitted. 

Agents communicate by reading from and writing to ports. They can be implemented in any language, 

but  must support the following minimal set of porthandling constructs (with behaviour in terms of the 

message handling commands in figure 1: 

• ( send p o r t  message) is interpreted as (M-recieve p o r t  message). 

• (meg? p o r t )  is interpreted as (not  (M-empty p o r t ) ) .  

• (on p o r t  body) is interpreted as wait until (meg? p o r t )  is true, then apply body to the result of 

(M-send port). 

With these operations, more sophisticated operations can be defined, such as: 



!94 

* (on-and p o r t l i s t  body). Wait until each port. in the p o r t l i s t  has a message, and then apply the 

body to the message(s). 

* (on-or  ( { (po r t  body)}*)) .  Nondeterministically choose a po r t  with a message, and apply the 

corresponding body to the message. 

• Looping versions of on, on-or  and on-and. 

An agent can be thought of as a closure whose parameters include the ports through which it will 

communicate with other agents~ and is similar to a process in CSP [10] or NIL, an actor in Actor Systems, 

an object in Cantor, a guardian in Argus or a task in Ada 1 [1]. As in Actor Systems, Cantor and NIL, 

communication among agents is asynchronous, and the arrival order of messages at a port  is nondeterministic. 

By asynchronous we mean that  the sending process does not know the state of the intended reciever, as 

opposed to a synchronous communication~ in which the reeiever must be ready and willing to recieve a 

message before the sender can transmit it. 

The interconnections among agents are determined using the graph grammar formalism described in the 

following section. 

3 Graph Grammars 

Graph grammars are similar in structure to string grammars. There is an alphabet of symbols, divided into 

three (disjoint) sets called the terminals, nonterminals and portsymbols. Productions have a nonterminal 

symbol as the goal (the same nonterminal may be the goal of many productions), and the right-hand side of 

the production has two parts: a graph (called the bodygraph) and an embedding rule. Each vertex in the 

bodygraph is labeled by a terminal or nonterminal symbol, and has associated with it a set of portsymbols. 

Any portsymbol may be associated with many terminals or nonterminals. 

The rewriting action on a graph (the host graph) is the replacement of a vertex labeled with a nonterminaI 

by the bodygraph of a production for which that  nonterminal is the goal, and the embedding of the bodygraph 

into the host graph. This embedding process involves connecting (ports associated with) vertices in the 

bodygraph to (ports associated with) vertices in the host graph. The embedding process is restricted so 

tha t  when a vertex v is rewritten, only vertices tha t  are in the neighborhood of v-- those connected to v by 

a path of unit length--can be connected to the vertices in the bodygraph that  replaces v. 

1Ada is a trademark of the United States Goveramen~ Ada Joint Program Office. 
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Because we use these graph grammars as an abstraction construct for concurrent programming, we call 

them concurrent abstraction grammars (CAGs). 

Each symbol in the alphabet of terminals and nontermlnals has associated with it a set of symbols called 

portsymbols. The same portsymbol may be associated with several terminals or nonterminals. We denote 

terminals and nonterminals by uppercase characters X, Y,--. and portnames by Greek characters c,, fl , . .- .  

Vertices are denoted v, w,- . .  and the symbol labeling a vertex v is identified by Lab~. P S x  denotes the set 

of portsymbols associated with the (terminal or nonterminal) symbol X. 

For any graph G, let VG denote the vertices in G and E~ the edges of G. Each vertex v can be qualified 

by the portsymbols in PSLab~ to form a port-identifier. Edges are denoted by pairs of port-identifiers~ for 

example (v.a,w.fl). For any vertex v in a graph G, the neighborhood of v, )/,, is {w t (v,w) 6 Ea}. 

D e ~ i t i o n  1 A concurrent abstraction graph grammar is a tuple CA G : (N, T, S, P, Z), where N is a finite 

set of symbols called the nonterminals of the grammar, T is a finite set of symbols called the terminals of the 

grammar and S is a finite set of symbols called the portsymbols of the grammar such that T A N -- N A S = 

T n S = O; P is a set of productions, where productions are defined in definition B below; and Z is a unique 

distinguished nonterminal known as the axiom of the grammar. 

The axiom g is the goal of exactly one production and may not appear in any bodygraph. This 

requirement is not a restriction in practice as one can always augment a grammar with a distinguished 

production that  satisfies this requirement. 

Def in i t i on  2 A production in a GAG is defined as: p : Lp --* Bp, F~ where, p is a unique label; Lp 6 N is 

called the goal of the production; Bp is an arbitrary graph (called the bodygraph of the production}, where 

each vertex is labeled by an element o f T  U N; and Fp is the embedding rule of the production: a set of pairs 

(X.a, Lp.7) or [X.a,Y.fl], where X labels a vertex in Bp,a E PSx , f l  6 P S y , 7  e PSLp. 

The same symbol may appear several times in a bodygraph; this is resolved by subscripting the symbol 

with an index value to allow them to be distinguished [22]. 

Def in i t ion  3 The rewriting (or refinement) of a vertex v in a graph G constructed from a GAG by a 

production p for which Labv is the goal is performed in the following steps: 

• The neighborhood Xv is identified. 

• The vertex v and all edges incident on it are removed from G. 

. The bodygraph Bp is instantlated to form a daughter-graph, which is inserted into G. 
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• The daughter graph is embedded as follows. For each pair in Fp of the form (X.c~, Lv.'y) an edge is 

placed from the c~ port of each vertex in the daughter-graph labeled by X to whatever v. ff was connected 

to before the start of the rewriting. For each pair in Fp of the form IX.a, Y.fl] an edge is placed from 

the a port of each vertex in the daughter-graph labeled by X to the fl port of each vertex in the set 

{w I w e J¢v and Lab~ = Y} .  

Note there are two ways to specify an embedding pair, using 0 or [] notation. The former is often more 

convenient, but more restrictive as it gives no way to take a port-identifier with several inputs and split 

those over the vertices in the bodygraph when rewriting. 

The most important property tha t  CAGs should have is confluence. Such a property would mean that  

any vertices in the graph can be rewritten in parallel. Unfortunately~ we will prove that  two vertices that  are 

in one another's neighborhoods cannot be rewritten in parallel (although the graphs are otherwise confluent). 

This important result means tha t  the rewriting action must be atomic. We approach the proof of this result 

in two steps: first we prove an intermediate result about the restriction of the extent of embeddings; the 

limited confluence result follows. 

Def in i t ion  4 By recursive rewriting of a vertex v we mean possibly rewriting v to some graph--the instan- 

tlation of the bodygraph Bp of some rule p for which v is the goal--and then rewriting recursiveIy the vertices 

in that graph. 

Def in i t ion  5 For any vertex v in a graph G, let N~ denote the universe of possible neighbourhoods of v 

that could arise by rewriting (recursively} the vertices of N~; G~ denote the universe of graphs obtainable 

by all possible recursive rewrltings of v; and let St* = G~ - (G - {v}), 2 i.e., S~ is lust the set of subgraphs 

constructable from v in the recursive rewriting. 

Lernrna  6 Given a vertex v in a graph G, any (recursive) rewriting of v will not introduce edges from the 

vertices of the daughter graph of v (or any daughter graph recursively introduced into that daughter graph} 

to any vertex that is not in N~ U S*: 

Proof :  By intluction on the rewriting strategy. 

Basis :  Consider a graph G with a nonterminal vertex v. Refine v by a production p for which Labv is 

the goal. By definition of CAGs, all the vertices in G to which the vertices of the daughter-graph may be 

connected are in Nv. Therefore the base case does not contradict the theorem. 

I n d u c t i v e  Step:  Consider now the graph G ~ with a vertex v ~, where G t has been formed from G by a 

2Note this is set difference so the ~-~ does not distribute. 
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series of refinements (starting with a vertex v), and v ~ has been introduced into the graph by one of these 

refinements. Nvt will include only vertices introduced into G by the refinement(s) from v to v ~, and vertices 

in N~. Now rewrite v ~. Only vertices in Nv, can receive edges as the result of embedding the new daughter- 

graph~ so the statement of the theorem remains true under the effect of the rewriting. This completes the 

proof. 

O 

T h e o r e m  7 Two vertices v and w in each oLher's neighbourhood ~.e. v E J¢~o and w @ JOy) may not be 

rewritten in parallel 

Proof :  Suppose that  it were possible to rewrite the two vertices in parallel and that  any rewrite of w would 

introduce a new vertex x such that  Labw = Labs, that  would connect to v by the embedding rule, and vice 

versa. Suppose further tha t  once the daughter-graph replacing w hs been instantiated, but  before the edge 

to v has been placed, the rewriting of v begins by removing v from the graph. Clearly at this point there 

is no vertex v to which to perform the embedding. Therefore it cannot be possible to rewrite two vertices 

tha t  are in one another 's  neighbonrhoods in parallel. 

[] 

C o r o l l a r y  8 Given a graph G constructed from a CAG, the vertices in G may be rewritten in any order. 

P r o o f :  Follows from previous theorem and !emma. 

[3 

4 Relating Graph Grammars  and Agents 

A GARP program has two parts: a CAG and code for each agent. Vertices in the graph grammar represent 

agents. Each agent name is either a terminal or nonterminal symbol of the grammar. We extend the 

reportoire of the agents to include a r e w r i t e  operation with form: 

( r e w r i t e  name exp . . . )  

where name is the label of a production that  has the name of the agent about to be rewritten as goal and the 

exp . . .  are parameters to the production. The interpretation of this operation is the definition of rewriting 

given in section 3. The r e w r i t e  action must be the agent's last, because the model of rewriting requires 

tha t  the agent be replaced by the agents in the bodygraph of the production used in the rewriting. 

We extend the production labels of graph grammars to have a list of formal parameters. Each element 

of the list is a pair <agent .  parameter>,  which identifies the agent in the bodygraph of the production to 
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which the parameter must be passed, and the specific formal parameter for that  agent that  should be used. 

When rewriting, the agents specified in the parameter list are passed the appropriate actual parameter when 

they are created. This ability to pass arguments from an agent to the agents that  replace it provides a way 

to pass the state of the agent to its replacements. This feature is not unique to our agent system and can 

be found in Actors and Cantor. 

5 Examples 

This section of the paper illustrates the use of GARP with two examples written in GARP/Scheme, a version 

of GARP that  uses Scheme as the underlying language for agents. In this system, agents and productions are 

implemented as first-class scheme objects; we can therefore experiment with parallel programming and our 

ideas on process struture while retaining all the advantages of a small but extremely powerful programming 

language s. All the features of a programming language required for GARP agents have been implemented 

in Scheme using that  language's powerful macro facilities to provide rewrite rules into core Scheme. There 

is nothing about the implementation that  is unique to Scheme, however; another implementation using the 

object-oriented language MELD [13] as an underlying framework is under development. 

The first example gives a GARP program for quicksort as a tutorial: this is not the most efficient way to 

sort a stream of numbers, but the GARP program is easy to understand. The second example demonstrates 

a systems application: this GARP program takes as input an encoding of a dataflow program, generates a 

dataflow machine tailored for it, and then executes it. This could be useful in allocating processors in a 

large MIMD machine to dataflow tasks. 

The graph grammar for the quicksort example is found in figure 2~ and the code for the agents in figure 3. 

There are two further agents, not shown~ modeling standard input and output. This program takes a stream 

of numbers from standard input, sorts them using divide and conquer, and then passes the result to standard 

output. The program executes recursively: When the s o r t - a b s  agent receives a message that  is not the 

end-of-file object, it rewrites itself to a so r t -body  bodygraph, passing the message just read as a seed value 

to the s p l i t  vertex introduced in the rewrite. This s p l i t  vertex passes all values received by it that  are 

greater than the seed through the h i  port, all other values through the lo  port, and the seed itself through 

the seedpor t .  The j o i n  agent waits for messages on its lo,  h i  and seed ports and passes the concatenation 

of these three messages to its ou t  port. The lo  and h i  ports are connected to s o r t - a b s  agents, which in 

turn rewrite themselves to s o r t - b o d y  graphs on receipt of an appropriate message. When end-of-file is 

3A copy of this implementation is available from ~he first author. 
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,roduction axiom )roduction sort-body < Split, seed > 
sort-abs - >  

Embeddlngs: 
(Sptit.ln - -  sort-abs.in) 
(Join.out - -  sort-sbs.out) 

Figure 2: Sort Example - Graph Grammar 

encountered, it is propagated through the graph and the s o r t - a b s  agents left in the graph send the empty 

list as a "result ~ value. The axiom production starts  the program running. 

The graph grammar for the dataflow example is given in figure 4 (the agent code is omitted due to 

space restrictions). In this system, the c o n t r o l l e r  agent reads dataflow programs as input messages, and 

passes them to the prog node, which immediately rewrites itself to a new prog, an o u t - h a n d l e r  and a df 

agent. The new prog waits for another dataflow program~ while the d~ node rewrites itself to a dataflow 

machine (using the a r i t h m e t i c ,  i d e n t i t y  and i f - s t a t e m e n t  productions, and the o u t - h a n d l e r  waits for 

the output from the dataflow machine. At each stage of this construction process the df agent looks at  its 

program parameter, decides what sort of construct to rewrite to, breaks up the program accordingly, and 

passes the components to the new agents via the parameters of the production used in the rewriting. For 

example, when an arithmetic operation is identified, the program can be broken up into the operation, a 

~left" program fragment and a "right" program fragment. The df agent recognizes these components and 

rewrites itself using the a r i t l m e t i c  production~ passing the operation to the a r i t h o p  agent and the "left ~ 

and ~right" program fragments to the appropriate new agents. Leaf values, such as constants, are handled 

internally by the df agent (and therefore are in no production explicitly). 

Only a simple dataflow language is supported in this example; extension to more complex constructs is 

not difficult. Once the dataflow machine has been built, it executes the program for which it was constructed 

and then passes the results to the o u t - h a n d l e r  agent. 

GARP is also particularly well suited to the large class of adaptive grid programs, such as linear differential 

equation solvers[21]. In such a program, a grid is constructed and the function solved at each point in the 
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(agent s o r t - a b s t  
(ports inport outport) 
(on inport (lambda (message) 

(if (eq? message eel-object) 
(send outport '()) 
(rewrite sort-body message))))) 

(agent split 
(a rgs  seed) 
(ports in hi seedport Io) 
(send seedport seed) 
(loop in (lambda (in) 

(if (not (eq? in eof-object)) 
(begin 

(if (< in seed) 
(send io in) 
(send hi in))) 

(begin 
(send hi eof-object) 
(send io eof-object) 
(break)))))) 

(agent  j o i n  
( p o r t s  h i  seed lo  out)  
(on-a_ud ( h i s  seed lo)  

(lambda (h i  seed lo)  
(send out (append Io (list seed) hi))))) 

Figure 3: Sort Example - Agent Code 

grid. Grid points in each other's neighborhood then transmit their solutions to one another. If there is too 

large a discontinuity between results at any point, that  point is rewritten to a finer grid and the process 

repeated. Solutions to such problems find natural expression in CARP. 

6 Graphs and Abstract ions  

We can now summarize how CAGs help control network topologies. Rather than allowing agents to connect 

to other agents in arbitrary ways, the interconnections are taken care of by the CAG. We see several 

advantages to this approach. First, it forces .grouping of agents (via productions) that  will cooperate 

together to perform some aspect of the computation. It is easy to see which agents will work together; one 

just  has to look at the CAG. Second, interconnection topologies are determined at the level of the CAG, not 

at the level of individual agents. This means that  setting up topologies becomes the province of the designer 

rather than of the programmers implementing the agents, as good software engineering practice dictates. 
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)roduction axiom 

production splitter <dr ,  program> 

Embedding: 
(prog$1.prog - -  prog.prog) 
(df.input -- nil) 

production arithmetic < arithop~ op > 
<df$1, program> <df$2~ program> 

d r -  

Embedding:  
(arithop.result - -  df.output) 

I (df$1.input - -  df.lnput) 
L(dfd$2.inpnt - -  df.input) 

production <df$1, program> if-strut 
<df$2, program> 

< df$3, program > < df$4, program > 

df - >  

t .a% ) ( ~) ~ am 

Embedding: 
if-result.output - -  df.output) 
df$4.input - -  dLinput) 

~roduction identity 

df - >  

Embedding: 
(ident.output - -  df.output) 
(ident.input - -  all.input) 

Figure 4: Dataflow Example - Graph  Grammar  
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7 Related Work 

There is a large body of literature on graph grammars (see, for example, [7]). Some researchers have 

developed very powerful formalisms where graphs can be rewritten to graphs rather than just rewriting 

vertices [8] [17]. This work is quite attractive on the surface, but would be almost impossible to implement: 

identifying the graph to be rewritten is NP-hard, and it is not clear how to synchronize the mutual rewriting 

of the vertices in the graphs. The primary focus of these researchers has been on theoretical issues such 

as the confluence of various classes of graph grammars and the hardness of the recognizability problem. 

We have instead based GAGs on a more limited form of graph grammar~ Node Label Controlled (NLC) 

grammars [11]. The basic difference between GAG and NLC grammars is each GAG production has its 

own embedding rule. Our "semi-confluence" theorem does not, to our knowledge, appear in the literature. 

GARP can be viewed as an extension of NLC grammar research into a more practical domain. 

Kahn and MacQueen [12] have investigated a parallel programming model in which individual processes 

are replaced by networks; while our work is similar, the major difference is tha t  we have a formal way of 

modelling the network topologies tha t  are created. 

Degano and Montanari [5] have used a graph grammar formalism similar to CAG as the vehicle for 

modeling distributed systems. Although their work differs from ours in several respects--a more restricted 

model of embedding is used, there is no model of communication among processes, graphs in their formalism 

carry history information, and the grammars are used to model programs rather than as a programming 

formalism in their own r ight- - i t  is still an interesting complement to our work, and we believe that  many 

of their results will be transferable. 

GARP is most similar to Actors 4 [3] [9]. An important difference is tha t  in GARP communications 

patterns are defined in the grammar, whereas in actors they are set up by passing of addresses among 

Actors. We believe that  this lack of structure is potentially dangerous, as it relies on the goodwill and 

cooperation of the programmers building the system. As long as the programmers continue to cooperate 

successfully~ the system will work; but the smallest error in propagation of Actor addresses could lead 

to chaos. Experience with large software systems written in sequential programming languages strongly 

suggests tl~at lack of suitable structuring constructs for the network will cause serious software engineering 

problems. An attempt to address this problem using receptionists allows the programmer to break up the 

Actors into groups by convention only; a mischevious programmer may still break the system by passing 

Sinternal ~ Actor addresses out to other Actors. In GARP this cannot happen. 

4Space dictates that we assume the reader is familiar with Actor systems 
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The distinction between the process spawning supported by Actors and by GARP is analogous to the 

replacement of conditional and unconditional branches in sequential programming languages with structured 

control constructs. The distinction between the communication patterns is analogous to the distinction 

between dynamic and lexical scoping. 

Two other ways of describing parallel networks--CCS [16] and Petri Nets [181--are also related to our 

work. With CCS we share the concept of ports and the idea of a network of processes; however~ we 

use asynchronous communication where CCS is synchronous and needs no notion of global time, It also 

seems that the application of CCS is limited to fixed topology networks. Petri nets use asynchronous 

communication, but are also limited to fixed topology. 

There are several other approaches to concurrent programming that we have cited in the text: Ada 

focuses on providing a good language model for a process, and all but ignores interprocess topology issues; 

Cantor is interested in parallel object-oriented programming and gives the same support for topology control 

as does Actor Systems; and Argus focuses on issues of atomicity and robustness, These issues are orthagonal 

to those addressed in this paper. 

8 C o n c l u s i o n s  

MIMD computer systems make inevitable the development of large parallel programs. At present there 

are no adaquate ways to specify the interconnections among processes in these programs. We believe that 

this wili lead to a situation in which programs can generate completely arbitrary process topologies. Such 

programs will be difficult to debug, verify, or maintain. This problem is analogous to the ~goto problem" of 

the 1960's, and we propose an analogous solution: rather than being able to construct arbitrary networks, 

abstractions should be imposed that control network structure. However~ unlike the "goto problem ~ ~ we do 

not believe that it will be possible to derive a set of standard form similar to the ~if' and ~do ~ forms used 

in sequential programming; rather, we believe that for each parallel program, the designer should identify a 

set of interconnection topology templates and use those as the abstractions for that program, 

Graph grammars provide an excellent medium in which to encode these templates, and in the GARP 

system we have shown that a mechanical interpretation of a subclass of graph grammars - CAG grammars 

- does indeed allow the specification of interprocess connections and their automatic use in a parallel 

programming system. 
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