
INTELLIGENT AND DYNAMIC
PLUGGING OF COMPONENTS - AN

EXAMPLE FOR NETWORKED
ENTERPRISES APPLICATIONS

MoisCs L. Dutra; Ricardo J. Rabelo
Federal University o f Santa Catarina, BRAZIL

moises@floriaa.com. br: rabelo@,das. u f ic. br

This paper presents an approach to minimize the problem of reduced
functional flexibility in the complex industrial systems, where they are bought
as a whole package or module, quite expensive, even though they are not used
at all or ab notjit the enterprise S needs completely. The approach is based on
the idea of a dynamic and intelligent plugging of software components. This
plugging will occur only when the components functionalities are effectively
needed, adapted to the current computing environment in use. The plugging is
made on demand, applying a new perspective to the Application Service
Providers, under the form of a Federation of Application Providers.

Keywords: Conponents, Application Service Providers, Plugging on Demand,
Functional Flexibility.

1. INTRODUCTION

Substantial investment on financial, technological and computing resources has been
required from the companies to deal with the problem of increasing complexity of
enterprise systems. This is even more problematic if it is taken into account that
more than 90% of the companies are small ones, implying that most of the systems
solutions that might leverage their competitiveness cannot be acquired.

This paper presents an approach to that problem, providing a model where the
system to be used by a company is dynamically and intelligently built up and
adapted at execution time according to the current user needs, having the system's
kernel as the basis. The envisaged scenario is based on the systems paradigm where
the user should work only with the necessary software functionalities, only when
(s)he needs, at the necessary environment (Dutra et al., 2003).

In spite of some results achieved by a number of international initiatives 1
research projects towards larger systems functional flexibility, the situation can still
be considered primary. The best that software vendors have been doing nowadays is
to offer smaller, less cost and easier installable versions of their software (e.g. ERP
systems) in the form of "My system", more adapted to the needs of a given company.

220 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS

Actually, this business model does not solve the essential problem. Software
modules remain with a high degree of granularity and they are made available just as
instances of a wider system, i.e. companies have to buy them with their full subset of
functionalities no matter what their effective needs are. This is a very important
aspect as practice shows that most of the software functionalities are not used by the
end-users. Therefore, if they do not use them, why should companies pay for them
and waste computing resources to host them?

The proposed approach increases very much the functional flexibility of a
system, where companies can use only the functionalities they need, when they need
and at the required computing environment (PC, palm, etc.). The system is no longer
developed as a monolithic system but rather as a set of small software components,
independent and logically integrated, providing the full set of the system
functionalities when put together. In this approach a new vision ,of Application
Service Providers is given, transforming them into distributed Application Providers
of components.

The model has been validated in a scenario of virtual enterprises, where the
supporting tools used by its members to manage businesses can be adapted to
members' current needs.

This paper is organized as follows: Section 2 stresses the main technologies
used. Section 3 addresses the dynamic plugging technique. Section 4 presents the
proposed model. Section 5 depicts the implemented prototype and preliminary
results. Section 6 provides the main conclusions.

2. INVOLVED TECHNOLOGIES

This section depicts the three main technologies used as the basis for the proposed
approach. These t ethnologies have b een chosen as they allow the c onstruction o f
open, interoperable, adaptive systems, providing a larger system life cycle.

2.1 Components

A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies, whch can be deployed independently
and is subject to composition by third parties (Szyperski, 1997). A component-based
development provides a more flexible approach than the traditional software
development method, in which the system is designed globally by deploying and
integrating small modules inside the same application.

Components can be designed to execute simple or complex tasks, with variable
granularity, i.e., they can be implemented as simple functions or even as larger and
complex modules. (Beneken et. al, 2003) see several advantages of using
components: they can run in adaptive environments; can be exchanged or partly
deployed partly without failure of the whole; can be written in different languages,
using different technologies, in different operating systems; explicit interfaces allow
to connect and decouple cooperating parts of the overall system.

2.2 Application Service Providers

According to (Dewire, 2002), an Application Service Provider (ASP) provides a

Intelligent and dynamic plugging of components 22 1

contractual software-based service for hosting, managing, and providing access to an
application from a centrally managed facility. For a certain periodically fee, the ASP
provides content and other services for users connected through the Internet or any
other network platform, and the users do not need to be c oncerned with s oftware
versions and upgrades. ASP provides access to applications that are located outside
the client work environment. Several specialists believe that, with the appearance of
the Internet, it would make more sense to provide software as a service than to sell it
as a product "closed in a box" (Stardock Corporation, 2000).

Despite being a good model, it presents some relevant limitations when observed
under the envisaged functional flexibility scenario: its processing is logically and
physically centralized (the component is executed in the ASP); the granularity of its
modules is very large; and they usually are not adapted at all to the client needs.

Peer-to-Peer (P2P) is an architecture where the resources and service sharing are
made directly among the involved system peers, without the intervention of a central
server (Parameswaran et al., 2001). The term "peer-to-peer" refers to a class of
systems and applications that employ distributed resources to perform a function in a
decentralized manner (Milojicic et al., 2002). Therefore, a P2P-based system is
suitable to support large scale and geographically distributed / decentralized
systems.

3. DYNAMIC PLUGGING OF COMPONENTS

In traditional approaches of component-based systems, the final system is "fully
integrated" during design time. Each component is a "mini subsystem", which can
be developed, deployed and tested separately. Its replacement by another component
does not affect the global system operation, thus supporting some level of functional
flexibility.

However, this flexibility is not as large as it could be. Firstly, because the
traditional plugging of components is static and manually done. Secondly, because
once plugged, the component remains in the same system even if it is no longer
needed.

Some authors have made contributions in that direction, such as (Lauder, 1999)
(Seiter et al., 1999), applying patterns for dynamic plugging. These patterns were
based in generic frameworks to support the plugging (usually of an inherited class)
in runtime. However, in the approach proposed in this paper, the dynamic plugging
of components occurs transparently to the user, without any framework and on
demand. The plugging is intelligent as it should adapt itself to the current computing
environment (hardware and software), to the sources of download and to the type of
components.

3.1 Designing Dynamic Components

Dynamic components need to be f ~ s t l y adaptable to several types of hardware and
operating systems, including PCs and mobile devices. As said before, the

222 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS

components granularity can vary substantially. The focus in this work is on
components of small granularity in order to better fit the needs of the client system.

The two main component models are the Enterprise Java Beans (EJB) (Sun
Microsystems, 2002) and the CORBA Component Model (CCM) (OMG, 2002). In
both models a structure called Container is required to support the plugging and the
components execution. A container provides supporting services for the component
life cycle, transactions management, communication security, and events
notification. In the dynamic model proposed in this paper, the container is no longer
required. This provides a more agile transfer and component plugging, and it creates
the basis for a solution independent of technologic, thus enlarging the system life
cycle. The same direction has been followed by some international efforts (Agedis,
2003) (Adapt, 2004).

The communication between the application and the components (dynamically
plugged in) can be carried out in several ways, e.g. by changing registered messages
in the operating system, by Application Programming Interfaces (APIs) (Coach
2004), by Dynamically Linked Libraries (DLLs), by local components management
(like COM) and distributed models (like CORBA) (Calim 2001) (Combine 2002),
and simply by direct access (Liang et al., 1998), where the component
functionalities are used directly, without the need of an integration middleware.

An application that enables dynamic plugging is composed of its core
functionalities and "pluggable" areas where the components can be plugged in by
means of their interfaces, which enables the communication between the component
and the external world. The components' interfaces must be extremely well defined
(parameters, generality and communication) so that plugging can be accomplished
successfully.

4. PROPOSED APPROACH

In general, the proposed approach works as follows (Figure 1). The company has the
software kernel, comprising its essential functionalities. When the client (user or
groups) calls for a system option / functionality whose code is not presented in the
kernel, a requisition for the associated code component is dispatched to the
representative (Coordinator) of a central of components (Federation of Application
Providers - FAP) that will search, over the Internet, for the most suitable repository
(Application Provider - AP) that can supply that particular need / component. Once
it has been found, a peer-to-peer communication is established between the
application and the repository, and the component is sent out to the client application
to be plugged in, in a transparent way, according to the requisition's specifications.

Intelligent and dynamic plugging of components

Figure 1 - Global Architecture

4.1 Application Provider (AP)

An AP is a repository of components. Unlike the traditional Application Service
Providers (ASP), here the components dynamically plugged in run at the client's
host, meaning that APs do not provide services but rather applications / components.
Moreover, the proposed model is totally distributed, with the components coming
from several APs located at different places, selected based on some decision criteria
(e.g. geographic distance, bandwidth). Different versions 1 implementation models
of the same component can be available in the APs, but all of them must follow the
pre-designed component's interface.

4.2 Federation of Application Providers (FAP)

The FAP was introduced in the model to give scalability to the global architecture. It
represents a cluster of APs from which the components should come. The FAP has a
coordinator (Coordinator of Application Provider - CAP), which is the visible
external entity to the FAP clients. The CAP is in charge of: i) seeking the AP which
better matches the component advertisement; ii) creating a log file of all the received
requests and the respective APs that were selected to supply the components; and iii)
managing the components contract.

A contract is directly related to the business model involving the APs and the
clients. For instance, a company can pay for the components a fixed monthly fee, or
based on the number of components plugged in.

AP Structure
An AP has five cooperative modules (Figure 2). The first module is the CAP
Listener, which receives component requests. Each request is checked by the
SpecEfication Valuator, which analyzes the request, validates it and searches for it in
the Component Repository. The Component Sender makes the component transfer to

224 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS

the client, and the Unsuccessful Message Sender informs the client about the lack of
the component.

CAP Structure
The CAP structure comprises six modules (Figure 3). The Client Listener receives
the component requests £rom the clients. These requests are validated by the Request
Valuator, which analyzes the received specification and verifies the client's contract
terms. The Component Advertisement Researcher seeks the component's
advertisement inside the FAP. The FAP Listener waits for the answer of the
advertisement search, and the Request Forwarder redirects the request to the AP
which has posted the advertisement. The Unsuccessful Message Sender will notify
the client either if the FAP does not have the requested component advertisement or
if the client's request was not approved by the request valuator.

Figure 2 - AP Structure Figure 3 - CAP Structure

4.3 FAP Client

A FAP client is represented by a computer or a group of computers in a local
network which hosts applications that request components from the FAP "server"
(Figure 4). These applications in turn can be i) stand-alone; ii) distributed
applications running either in a single computer or in several computers; and iii) the
same application running its copies in several computers. For the cases ii and iii it is
called grouped client (Figure 5) This allows computers to run more than one FAP-
Client-application, developed in different languages and in different platforms, i.e.
heterogeneous applications can request heterogeneous components no matter their
languages and operating systems are. Grouped clients have just one contract with the
FAP.

A FAP client has a module called Component Management Module, which
manages the entire plugging process and that is composed of four sub-modules:
0 Component Fault Treater: It acts whenever the system recognizes that the

needed component is currently not present in the client. The treater then looks
for the component in the local repository 1 cache. If it is found, a notification is
sent to the Component Plugger. If not, the Request Dispatcher is called.

0 Request Dispatcher: It builds the component request specification based on the
client needs and environment characteristics, and sends the request to the FAP.

Intelligent and dynamic plugging of components 225

0 FAP Listener: It waits for an answer from the FAP concerning the component
that was requested. In the case of a positive answer, the Listener receives the
message that encapsulates the component itself, stores it in the local cache, and
calls the Component Plugger; otherwise a failure notification is sent to the
application.
Component Plugger: It performs the dynamic plugging itself. It loads the
component from the cache so that the application can use it thereafter.

Figure 4 - FAP Client Structure

Figure 5 - Grouped Client

Each FAP client has a central local repository to cache the components already
transferred. Once the components are used they can be later discarded from the
application kernel (depending on the business model in use), but they are kept stored
in the cache for future use, i.e. the client does not need to request it again to the
FAP. This results in lower network latency and provides more agility to the global
plugging process. The components can be transparently added to or removed from
the application without interfering in the other components already plugged in. A
component can be integrated with other (heterogeneous or not) components as well
as with 1 egacy ("re-engineered") systems. For the automatic component updating,

226 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS

the FAP client has a process that frequently asks the CAP about new versions. If a
new version is found close to a certain AP, the same global plugging process is
triggered again.

The approach proposed in this paper has some general similarities with the
model proposed in (Camarinha-Matos et al., 2001) for Virtual Organizations, which
is called service federation. It represents an approach to support the interoperation
among heterogeneous, autonomous and geographically distributed entities. The
services are available at service providers that publish their services in a catalogue
that can be consulted by the users whenever they need and wherever they are. The
service providers form a cluster, composing a federation. Each of those entities
interested to provide services should announces them in a catalogue that will serve
as the central source of information for clients. Once a given client selects a given
service, the catalogue sends the service's interface to the client application so that a
direct 1 remote service invocation can be carried out between the application and the
service provider.

Both approaches, service federation and the one being proposed here (federation
of application providers - FAP), involve distributed and autonomous clusters of
providers and allow transparent access to what the user I client application requires,
no matter where it is. Yet, both make use of a kind of central broker. However, the
FAP approach presents some differences, namely:

i. FAP does not provide services, but system components.
ii. FAP does not require that providers are previously registered in the "broker"

as the supporting platform that is used (JXTA - see section 5.1) is able to look
for the components in the APs automatically. ...

111. FAP does not provide the services' interfaces to the client application. It finds
the most suitable AP for the required component, a transparent P2P
connection is established between the AP and the application, the plugging
process is carried out, and the "service" is executed locally.

iv. The FAP client application is the one which sees what is missing, therefore
there is no human intervention.

5. PROTOTYPE

In order to test and to preliminary validate the proposed model, a prototype has been
developed taking a virtual enterprise (VE) application into account. This application
consists of a VE management system that provides several functionalities to the end-
user (Rabelo et al., 2002). Applying the proposed FAP approach on that system
meant to rethink it with the objective of defining what would be the system's kernel
(i.e. the FAP client) and hence its "optional" functionalities (i.e. the pluggable
components to be put available in APs).

The prototype was based on only one of the macro-functionalities of the system,
called Ad-hoc Reports, which provides a number of managerial reports about a given
VE (Figure 6). The user has several report options, such as the list of the VE
members, the parts being produced, and the involved sales and shipping orders. The
display of these options is executed by the ad-hoc's kernel. When the user selects,
for instance, the report option sales orders, the system detects that this function is
not there and requests the respective component to the CAP. After the whole
plugging process is accomplished (see Section 4), the component is executed and

Intelligent and dynamic plugging of components 227

then other graphical interfaces are shown, listing all the sales orders related to that
given VE. In this simple case, the purpose of the component is to have access to the
local database and to get those orders using SQL queries. It also has the purpose to
provide the user with detailed data about each of these sales orders (f?om the
database too), shown in the interface in the bottom of the figure 6.

It has to be noted that the way the component's graphical interfaces were shown
(i.e. in HTML in that case) was specified (besides some other basic parameters) in
the requisition for the component sent out by the FAP client regarding its computing
environment and needs. For instance, another component with the same
functionality but built up to run over another operating system (e.g. Linux) and non-
web environment can exist in FAP. Therefore, the system does not need to have all
possibilities to show the ad-hoc reports embedded in its kernel. Only the required
possibility is (dynamically) linked to the kernel and exactly when it is needed,
providing an effective functional flexibility.

3
Using i t

Figure 6 - Prototype Interface

EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS

The JXTA Model
In order to implement the envisaged decentralized 1 distributed model the JXTA
peer-to-peer platform (JXTA Project) was chosen. JXTA is a very recent technology
and it is constituted by a networked programming platform to cope with distributed
computing and interoperable platforms, independent of operating systems and
programming languages (Gong, 2002). JXTA has a set of communication protocols,
each one containing one or more messages. This platform supports the several issues
required in the proposed FAP model, namely location protocols, content search and
transfer of data among peers, also including confidentiality, integrity, authentication,
access control, auditing, cryptography and data security.

Every FAP client is seen as a JXTA peer, possessing a local JXTA Binding to
enable the communication with the other peers. All peers belong to a group called
World Peer Group, which is the logical reference of the JXTA structure. The peers
can also belong to subgroups (Net Peer Groups). In the case of FAP a peer group
was created, called FAPGroup. It means that every AP is part of this group. Yet,
grouped clients (see section 4.3) also are represented as groups, belonging to the
World Peer Group.

The APs' structures are implemented using the JXTA protocols. The
communication process (messages and data transfer) has used the Pipe Binding and
the Peer Discovery protocols. Pipes work as communication channels, and they can
be of type Pipe In and Pipe Out. A pipe in is created to establish a communication
and to wait for external connections, whereas a pipe out is used to locate some pipe
and to connect with it. This localization is done using advertisements, which is the
basic structure to announce the components specifications to the federation of APs.
In the JXTA platform the advertisements are expressed in the XML standard.

This prototype has been developed using the following tools: Java SDK 1.4.2.02,
E T A platform version 2.1.1, Borland database Interbase 6.0, webserver Tomcat
5.0.16 and JDBC driver FireBirdSQL I.O.O., in the Windows XP environment.

6. CONCLUSIONS AND NEXT STEPS

This paper presented an approach called Federation of Application Providers (FAP)
as a more flexible alternative to the Application Service Providers (ASP) existing in
the market. Using FAP an application can be seen as a building block system, where
its functionalities - implemented as software components - are dynamically plugged
into the system in the exact moment they are required, adapted to the current
computing environment. This approach creates rooms for new business models as
the components come from a group of distributed, interoperable and autonomous
application providers, whlch supply components, not services. Moreover, this
approach makes it p ossible for small c ompanies to acquire modem s oftware (e.g.
EWs), usually too costly and with many unnecessary functionalities.

The development of dynamic and multi-platform components, with rigorous
specifications, has been seen as a prominent approach to maximize code reusability.
More comprehensive scenarios can arise from when large repositories of generic
components were built up, especially if they were based on reference models for
processes, information and ontologies. The preliminary results reached with the

Intelligent and dynamic plugging of components 229

developed prototype showed that the FAP model seems very promising in
supporting systems functional flexibility.

The model is strongly based on the JXTA platform, which supports most of the
system requirements in a generic peer-to-peer scenario.

Further research should involve a deeper reflection on business models and the
contracts b etween the F AP and their c lients, and o n how these a spects should b e
connected with the dynamic plugging and unplugging processes (specially in Java-
based components), without human intervention. Yet, a more complex application
should be developed to comprise multi-language components and hence to evaluate
their interoperability.

Acknowledgements
This work was partially supported by CNPq - The Brazilian Council for Research
and Scientific Development and in the scope of the IFM project (www.ifm.org.br).

7. REFERENCES

1. Adapt, Middleware Technologies for Adaptive and Composable Distributed Components -
http:llada~t.ls.fi.u~m.es/ada~t.htm, in March 2004.

2. Agedis, Automated Generation and Execution of Tests Suites for Distributed Component-based
SofnYare - http://www.aaedis.del, in March 2004.

3. Beneken, G., Harnmerschall, U., Broy, M., Cengarle, M. V., Jiirjens, J., Rumpe, B., Schoenmakers, M,
Componentware - State of the Art 2003. In Understanding Components Workshop of the CUE
Initiative at the Univerita Ca' Foscari di Venezia, Venice - Italy, October 7th-9th 2003.

4. Calim (2001) - Corba Architecture for Legacy Integration and Migration - htto:Ndbs.cordis.lulfe~-
c~I/~~c~~~~~~?ACTION=D&SESSION= I 18262004-3-
5&1)0(:=2&TBL=EN PROJ&RCN=EP RCN:53593&CAI.LER=IST UNIIWDSRCH, in March
2004.

5. Camarinha-Matos, L. M., Afsarmanesh, H., Kaletas, E., Cardoso, T. F. (2001), Service Federation in
Virtual Organizations, in Proceedings of IFIP TC5 / WG5.2 & WG5.3 Eleventh Int. PROLAMAT
Con$ On Digital Enterprise - New Challenges, Kluwer Academic Publishers, pp 305-324, Hungary,
2001.

6. Coach (2004) - Component Based Open Source Architecture for distributed Telecom Applications
http://dbs.cordis.lu/fep-cgi/srchidadb?ACTION=D&SESSION=l2l472OO4-3-
5&DOC=1 I&TBL=EN PROJ&RCN=EP RCN:61829&CALLER=IST UNIFIEDSRCH, March
2004.

7. Combine Project (2002) - htt~://www.o~enmouv.ordcombine/ove~iew.h, March 2004.
8. Dewire, D. T., Application Service Providers - Enterprise Systems Integration, 2nd Edition, pag.449-

457. Auerbach Publications, 2002.
9. Dutra, M. L., Rabelo, R. J., Dynamic Functional Instantiation of Industry Systems [in Portuguese], in

proceedings of VI Brazilian Symposium of Intelligent Automation, Brazil, September 2003.
10. Gong, L., Project JXTA: A Technology Overview - Sun Microsystems, Inc., October 29,2002.
l I. JXTA Project - http:l!ww.ixta.ord - in February 2004.
12. Lauder, A., C++ Report Magazine, Pluggable factory in Pratice, pp. 27-32, v. 11, n. 9, Oct 1999.
13. Liang, S., Bracha, G. (1998), Dynamic Class Loading in the Java VirtualMachine. Proceedings

OOPSLA '98, Vancouver, Canada, October, 1998.
14. Milojicic, D., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B., Rollins, S., Xu, Z.,

Peer-to-Peer Computing, Technical Report HPL-2002-57, HP Labs. 2002
15. Object Management Group, CORBA Componentes - forma1102-06-65.2002.
16. Parameswaran, M., Susarla, A., Whinston, A. B. (2001), P2P Networking: An Information-Sharing

Alternative - IEEE Computer Society's -Computing Practices, pag. 31, July 2001.
17. Rabelo, R. J.; Klen, A. P.; Klen, E. R., A Multi-agent System for Smart Coordination of Dynamic

Supply Chains, Proceedings PRO-VE'2002, pp. xx-yy, 2002.

230 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS

18. Seiter, L., Mezini, M., Lieberherr, K., Dynamic component gluing. In Ulrich Eisenegger, editor, First
International Symposium on Generative and ComponentBased Software Engineering, Springer,
1999.

19. Stardock Corporation (2000), ASPS - A Primer - Apri1/2000 -
htto://www.stardock.net~media/asv vrimer.htm1- in February 2004.

20. Sun Microsystems, Enterprise JavaBeans Spec. version 2. I , 2002.
21. Szyperski, C., Component Sofware: Beyond Object-oriented Programming, Addison-Wesley, 1997.

