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Abstract. We test in polynomial time whether a graph embeds in a distance-
preserving way into the hexagonal tiling, the three-dimensional diamond struc-
ture, or analogous higher-dimensional structures.

1 Introduction

Subgraphs of square or hexagonal tilings of the plane form nearly ideal graph draw-
ings: their angular resolution is bounded, vertices have uniform spacing, all edges have
unit length, and the area is at most quadratic in the number of vertices. For induced sub-
graphs of these tilings, one can additionally determine the graph from its vertex set: two
vertices are adjacent whenever they are mutual nearest neighbors. Unfortunately, these
drawings are hard to find: it is NP-complete to test whether a graph is a subgraph of a
square tiling [2], a planar nearest-neighbor graph, or a planar unit distance graph [5],
and Eades and Whitesides’ logic engine technique can also be used to show the NP-
completeness of determining whether a given graph is a subgraph of the hexagonal
tiling or an induced subgraph of the square or hexagonal tilings.

With stronger constraints on subgraphs of tilings, however, they are easier to con-
struct: one can test efficiently whether a graph embeds isometrically onto the square
tiling, or onto an integer grid of fixed or variable dimension [7]. In an isometric em-
bedding, the unweighted distance between any two vertices in the graph equals the L;
distance of their placements in the grid. An isometric embedding must be an induced
subgraph, but not all induced subgraphs are isometric. Isometric square grid embed-
dings may be directly used as graph drawings, while planar projections of higher di-
mensional embeddings can be used to draw any partial cube (6], a class of graphs with
many applications [[L1]].

Can we find similar embedding algorithms for other tilings or patterns of vertex
placements in the plane and space? In this paper, we describe a class of d-dimensional
patterns, the generalized diamond structures, which include the hexagonal tiling and the
three-dimensional molecular structure of the diamond crystal. As we show, we can rec-
ognize in polynomial time the graphs that have isometric embeddings onto generalized
diamonds of fixed or variable dimension.

2 Hexagons and Diamonds from Slices of Lattices

The three-dimensional points { (x,y,z) | x+y+z € {0, 1} }, with edges connecting points
at unit distance, form a 3-regular infinite graph (Fig.[I} left) in which every vertex has
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Fig. 1. Left: The unit distance graph formed by the integer points {(x,y,z) |x+y+z € {0,1}}.
Right: The same graph projected onto the plane x +y+z = 0 to form a hexagonal tiling.

three perpendicular edges [10]. Its projection onto the plane x +y+z = 0 is a hexag-
onal tiling (Fig. [} right). In one higher dimension, the points {(w,x,y,z) | w+x+y+
z € {0,1}}, with edges connecting points at unit distance, projected into the three-
dimensional subspace w 4+ x +y 4z = 0, form an infinite 4-regular graph embedded in
space with all edges equally long and forming equal angles at every vertex (Fig. 2.
This pattern of point placements and edges is realized physically by the crystal struc-
ture of diamonds, and is often called the diamond lattice, although it is not a lattice in
the mathematical definition of the word; we call it the diamond graph.

Analogously, define a k-dimensional generalized diamond graph as follows. Form
the set of (k + 1)-dimensional integer points such that the sum of coordinates is either
zero or one, connect pairs of points at unit distance, and project this graph onto the
hyperplane in which the coordinate sum of any point is zero. The result is a highly sym-
metric infinite (k+ 1)-regular graph embedded in k-dimensional space. The generalized
diamond graph is an isometric subset of the (k + 1)-dimensional integer lattice, so any
finite isometric subgraph of the generalized diamond graph is a partial cube. However,
not every partial cube is an isometric subgraph of a generalized diamond: for instance,
squares, cubes, or hypercubes are not, because these graphs contain four-cycles whereas
the generalized diamonds do not. Thus we are led to the questions of which graphs are
isometric diamond subgraphs, and how efficiently we may recognize them.

3 Coherent Cuts

A cut in a graph is a partition of the vertices into two subsets C and V \ C; an edge
spans the cut if it has one endpoint in C and one endpoint in V\ C. If G = (U,V,E) is
a bipartite graph, we say that a cut (C,(UUV)\C) is coherent if, for every edge (u,v)
that spans the cut (with u € U and v € V), u belongs to C and v belongs to (U UV)\ C.
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Fig. 2. The three-dimensional diamond graph

That is, if we color the vertices black and white, all black endpoints of edges spanning
the cut are on one side of the cut, and all white endpoints are on the other side.

The Djokovic—Winkler relation of a partial cube G determines an important family
of cuts. Define a relation ~ on edges of G by (p,q) ~ (r,s) if and only if d(p,r) +
d(p,s) =d(q,r)+d(q,s); then G is a partial cube if and only if it is bipartite and ~
is an equivalence relation [4][14]). Each equivalence class of G spans a cut (C,V \ C);
we call V and V \ C semicubes [T]. One may embed G into a hypercube by choosing
one coordinate per Djokovic—Winkler equivalence class, set to 0 within C and to 1
within V' \ C. Since this embedding is determined from the distances in G, the isometric
embedding of G into a hypercube is determined uniquely up to symmetries of the cube.

As an example, The Desargues graph (Fig.[3) is a symmetric graph on 20 vertices,
the only known nonplanar 3-regular cubic partial cube [8]; it is used by chemists to
model configuration spaces of molecules [[1L[13]. The left view is a more standard sym-
metrical view of the graph while the right view has been rearranged to show more
clearly the cut formed by one of the Djokovic—Winkler equivalence classes. As can be
seen in the figure, this cut is coherent: each edge spanning the cut has a blue endpoint
in the top semicube and a red endpoint in the bottom semicube. The Djokovic—Winkler
relation partitions the edges of the Desargues graph into five equivalence classes, each
forming a coherent cut.

Theorem 1. A partial cube is an isometric subgraph of a generalized diamond graph
if and only if all cuts formed by Djokovic—Winkler equivalence classes are coherent.

Proof. In the generalized diamond graph itself, each semicube consists of the set of
points in which some coordinate value is above or below some threshold, and each edge
spanning a Djokovic—Winkler cut connects a vertex below the threshold to one above
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Fig. 3. Two views of the Desargues graph and of a coherent cut formed by a Djokovic—Winkler
equivalence class

it. The bipartition of the generalized diamond graph consists of one subset of vertices
for which the coordinate sum is zero and another for which the coordinate sum is one.
In an edge spanning the cut, the endpoint on the semicube below the threshhold must
have coordinate sum zero and the other endpoint must have coordinate sum one, so the
cut is coherent. The Djokovic—Winkler relation in any isometric subset of a generalized
diamond graph is the restriction of the same relation in the generalized diamond itself,
and so any isometric diamond subgraph inherits the same coherence property.
Conversely let G be a partial cube in which all Djokovic—Winkler cuts are coherent;
color G black and white. Choose arbitrarily some white base vertex v of G to place at
the origin of a d-dimensional grid, where d is the number of Djokovic—Winkler equiva-
lence classes, and assign a different coordinate to each equivalence class, where the ith
coordinate value for a vertex w is zero if v and w belong to the same semicube of the
ith equivalence class, 41 if v belongs to the white side and w belongs to the black side
of the ith cut, and —1 if v belongs to the black side and w belongs to the white side of
the cut. This is an instance of the standard embedding of a partial cube into a hypercube
by its Djokovic—Winkler relationship, and (by induction on the distance from v) every
vertex has coordinate sum either zero or one. Thus, we have embedded G isometrically
into a d-dimensional generalized diamond graph. O

For example, the Desargues graph is an isometric subgraph of a five-dimensional gen-
eralized diamond.

4 The Diamond Dimension

Theorem [l leads to an algorithm for embedding any isometric diamond subgraph into
a generalized diamond graph, but possibly of unnecessarily high dimension. Following
our previous work on lattice dimension, the minimum dimension of an integer lattice
into which a partial cube may be isometrically embedded [7], we define the diamond
dimension of a graph G to be the minimum dimension of a generalized diamond graph
into which G may be isometrically embedded. The diamond dimension may be as low
as the lattice dimension, or (e.g., in the case of a path) as large as twice the lattice
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dimension. We now show how to compute the diamond dimension in polynomial time.
The technique is similar to that for lattice dimension, but is somewhat simpler for the
diamond dimension.

Color the graph black and white, and let (C,V \ C) and (C’',V \ C’) be two cuts deter-
mined by equivalence classes of the Djokovic—Winkler relation, where C and C’ contain
the white endpoints of the edges spanning the cut and the complementary sets contain
the black endpoints. Partially order these cuts by the set inclusion relationship on the
sets Cand C': (C,V\C) < (C',V\ (') if and only if C C C'. The choice of which color-
ing of the graph to use affects this partial order only by reversing it. A chain in a partial
order is a set of mutually related elements, an antichain is a set of mutually unrelated
elements, and the width of the partial order is the maximum size of an antichain. By
Dilworth’s theorem [3] the width is also the minimum number of chains into which
the elements may be partitioned. Computing the width of a given partial order may be
performed by transforming the problem into graph matching, but even more efficient
algorithms are possible, taking time quadratic in the number of ordered elements and
linear in the width [12]].

Theorem 2. The diamond dimension of any isometric diamond subgraph G, plus one,
equals the width of the partial order on Djokovic—Winkler cuts.

Proof. First, the diamond dimension plus one is greater than or equal to the width of
the partial order. For, suppose that G is embedded as an isometric subgraph of a d-
dimensional generalized diamond graph; recall that this graph may itself be embedded
isometrically into a (d 4 1)-dimensional grid. We may partition the partial order on cuts
into d + 1 chains, by forming one chain for the cuts corresponding to sets of edges
parallel to each of the d 4+ 1 coordinate axes. The optimal chain decomposition of the
partial order can only use at most as many chains.

In the other direction, suppose that we have partitioned the partial order on cuts
into a family of d + 1 chains. To use this partition to embed G isometrically into a d-
dimensional generalized diamond graph, let each chain correspond to one dimension
of a (d 4 1)-dimensional integer lattice, place an arbitrarily-chosen white vertex at the
origin, and determine the coordinates of each vertex by letting traversal of an edge in the
direction from white to black increase the corresponding lattice coordinate by one unit.
Each other vertex is connected to the origin by a path that either has equal numbers of
white-to-black and black-to-white edges (hence a coordinate sum of zero) or one more
white-to-black than black-to-white edge (hence a coordinate sum of one). Thus, the
diamond dimension of G is at most d. As we have upper bounded and lower bounded
the diamond dimension plus one by the width, it must equal the width. a

Thus, we may test whether a graph may be embedded into a generalized diamond graph
of a given dimension, find the minimum dimension into which it may be embedded,
and construct a minimum dimension embedding, all in polynomial time. To do so, find
a partial cube representation of the graph, giving the set of Djokovic—Winkler cuts [9]],
form the partial order on the cuts, compute an optimal chain decomposition of this
partial order [12]], and use the chain decomposition to form an embedding as described
in the proof.
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It would be of interest to find more general algorithms for testing whether a graph

may be isometrically embedded into any periodic tiling of the plane, or at least any
periodic tiling that forms an infinite partial cube. Currently, the only such tilings for
which we have such a result are the square tiling [7] and (by the dimension two case of
Theorem2)) the hexagonal tiling.
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