
Approximate ESPs on Surfaces of Polytopes
Using a Rubberband Algorithm

Fajie Li1, Reinhard Klette2, and Xue Fu3,4

1 Institute for Mathematics and Computing Science, University of Groningen
P.O. Box 800, 9700 AV Groningen, The Netherlands

2 Computer Science Department, The University of Auckland
Private Bag 92019, Auckland 1142, New Zealand
3 Faculty of Economics, University of Groningen

P.O. Box 800, 9700 AV Groningen, The Netherlands
4 School of Public Finance, Jiangxi University of Finance and Economy

Nanchang, 330013, China

Abstract. Let p and q be two points on the surface of a polytope Π . This
paper provides a rubberband algorithm for computing a Euclidean short-
est path between p and q (a so-called surface ESP) that is contained on the
surface of Π . The algorithm has κ1(ε)·κ2(ε)·O(n2) time complexity, where
n is the number of vertices of Π , κi(ε) = (L0i−Li)/ε, for the true length Li

of some shortest path with initial (polygonal path) length L0i (used when
approximating this shortest path), for i = 1, 2. Rubberband algorithms
follow a straightforward design strategy, and the proposed algorithm is
easy to implement and thus of importance for applications, for example,
when analyzing 3D objects in 3D image analysis, such as in biomedical or
industrial image analysis, using 3D image scanners.

Keywords: Rubberband algorithm, Euclidean shortest path, surface
ESP.

1 Introduction

Let Π be a connected polyhedral domain such that its frontier is a union of
a finite number of triangles. An obstacle is a connected, bounded polyhedral
component in the complement R

3\Π of Π . Let p, q ∈ Π such that p �= q. The
general Euclidean shortest-path problem (ESP) asks to find a shortest polygonal
path ρ(p, q) which is either completely contained in Π , or just not intersecting
any (topologic) interior of a finite number of given obstacles.

This problem is actually a special case of the problem of planning optimal
collision-free paths for a robot system; for its specification and a first result, see
[1]. This paper presented in 1984 a doubly exponential time algorithm for solving
the general obstacle avoidance problem. [2] improved this by providing a singly
exponential time algorithm. The result was further improved by a PSPACE
algorithm in [3]. Since the general ESP problem is known to be NP-hard [4],
special cases of the problem have been studied afterwards. [5] gave a polynomial
time algorithm for ESP calculations for cases where all obstacles are convex and

D. Mery and L. Rueda (Eds.): PSIVT 2007, LNCS 4872, pp. 236–247, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Approximate ESPs on Surfaces of Polytopes Using a Rubberband Algorithm 237

the number of obstacles is small. [6] solved the ESP problem with an O(n6k−1)
algorithm assuming that all obstacles are vertical “buildings” with k different
values for height.

[1] is the first publication considering the special case that the shortest polyg-
onal path ρ(p, q) is constrained to stay on the surface of Π . [1] presented an
O(n3 log n) algorithm where Π was assumed to be convex. [7] improved this
result by providing an O(n2 log n) algorithm for the surface of any bounded
polyhedral Π . The time complexity was even reduced to O(n2) [8]. So far, the
best known result for the surface ESP problem is due to [9]; it improved in 1999
the time complexity to O(n log2 n), assuming that there are O(n) vertices and
edges on Π .

This paper provides a rubberband algorithm (RBA) for computing approxi-
mate surface ESP. The algorithm has

κ1(ε) · κ2(ε) · O(n2)

time complexity, where n is the number of vertices of Π , and

κi(ε) =
L0i − Li

ε

for the true length Li of some kind of shortest path with length L0i of the used
initial polygonal path, for i = 1, 2.

Although this rubberband algorithm is not the most efficient, it follows a
straightforward design strategy, and the proposed algorithm is easy to imple-
ment. (See [10] for results on implementing rubberband algorithms for various
shortest path problems.)

We generalize a rubberband algorithm from solving the 2D ESP of a simple
polygon (see [11] for this 2D algorithm) to a solution for the surface ESP of
polytopes. Considering the difficulty of the general ESP problem, our approach
is very important for applications, e.g. when analyzing 3D objects in 3D image
analysis (such as in biomedical or industrial image analysis, using 3D image
scanners). For shortest paths on digital surfaces (in the context of 3D picture
analysis), also known as geodesics, see the monograph [12]. One of the earlier
publications, related to the calculation of surface geodesics, is [13].

The rest of this paper is organized as follows: Section 2 provides the defi-
nitions of some useful notions. Section 3 presents four procedures being sub-
routines of the Main Algorithm. Section 4 proves the correctness of the Main
Algorithm. Section 5 analyses the time complexities for involved procedures and
Main Algorithm. Section 6 illustrates the main ideas behind the steps of the
Main Algorithm by a simple example. Section 7 summarizes the paper.

2 Definitions

Let Π be a polytope (see Figure 1 for an example). Let T = {�1, �2, . . . , �m}
be a set of triangles such that ∂Π = ∪m

i=1�i and �i ∩ �j = ∅ or = eij or = vij ,

238 F. Li, R. Klette, and X. Fu

Fig. 1. An unit cube within the xyz-coordinate system, where p = (0.76, 0.12, 1),
q = (0.9, 0.24, 0)

where eij (vij) is an edge (vertex) of both �i and �j , i �= j, respectively, with
i, j = 1, 2, . . . , m.

We construct a corresponding simple graph GΠ = [VΠ , EΠ] where VΠ =
{v1, v2, . . . , vm}. Each vi is a triangle. Edges e ∈ EΠ are defined as follows: If
�i ∩ �j = eij �= ∅, then we have an edge e = vivj (where eij is an edge of both
triangles �i and �j); and if �i ∩ �j = ∅ or a vertex, then there is not an edge
between vi and vj , i < j and i, j = 1, 2, . . . , m.

In such a case we say that GΠ is a corresponding graph with respect to the
triangulated polytope Π . See Figure 2 for an example. Analogously, we can
define a corresponding graph for a connected surface segment (a subsurface) of
a polytope. Abbreviated, we may also speak about “the graph for a polytope”
or “the graph for a subsegment of a surface”.

Fig. 2. A (3-regular) corresponding graph of the polytope in Figure 1

Approximate ESPs on Surfaces of Polytopes Using a Rubberband Algorithm 239

A triangulated polytope Π can also be thought as being a graph such that
each vertex of Π is a vertex of this graph, and each edge of a triangle is an edge
of this graph. We denote this graph by G′

Π .
Let p �= q, p, q ∈ V (G′

Π); if ρ is a cycle of G′
Π such that G′

Π\ρ has two
components, denoted by G1 and G2 with p ∈ V (G1) and q ∈ V (G2), then ρ is
called a cut cycle of G′

Π or Π . For example, in Figure 1, ABCDA or AFGDA
are cut cycles of Π .

An approximate cycle is a graph such that it consists of a cycle plus a few
more vertices, each of which is of degree one only, and (thus) adjacent to a vertex
on the cycle. (The graph later shown in Figure 4 is an approximate cycle.)

A band is a subsurface of a polytope Π such that the corresponding graph of
it is a cycle or an approximate cycle.

A band can also be thought as being a subgraph of G′
Π . Let E′ be the subset

of all the edges of a triangulated band such that each edge belongs to a unique
triangle. Then E′ consists of two cycles. Each of them is called a frontier of the
band. For example, in Figure 1, ABCDA and EFGHE are two frontiers of a
band whose triangles are perpendicular to the xoy-plane.

If two triangulated bands share a common frontier, then they are called con-
tinuous (in the sense of “continuation”).

3 Algorithms

Without loss of generality, we can assume that p �= q, p and q ∈ V (Π).

3.1 Separation

The following procedure finds a cut cycle to separate p and q such that either p
or q is not a vertex of the cut cycle. (This procedure will be used in Step 1 of
the Main Algorithm below.)

Procedure 1

Input: G′
Π = [V (Π), E(Π)], and two vertices p �= q ∈ V (Π).

Output: The set of all vertices of a cycle ρ in G such that, if we cut the
surface of Π along ρ into two separated parts, then p and q are on different
parts respectively.

1. Let Np = {v : vp ∈ E(Π)} (i.e., the set of all neighbors of p).
2. Select u, v ∈ Np such that ∠upv �= 180◦. In other words, uv ∈ E(Π).
3. Let V = {p, v}.
4. Let Nv = {w′ : w′v ∈ E(Π)} (i.e., the set of all neighbors of v).
5. Take a vertex w ∈ Nv\V .
6. If w = u, then stop. Otherwise, let V = V ∪ {w}, v = w and go to Step 4.
7. If q /∈ V , then output V . Otherwise, output V \{q}.

240 F. Li, R. Klette, and X. Fu

For example, in Figure 1, ρ can be either ABCDA or AFGDA, but it can
not be AEHDA.

3.2 Step Set Calculation

The following procedure computes step bands (i.e., the step set for the second
level RBA). It will be used in Step 2 of the Main Algorithm below.

Procedure 2

Input: G′
Π = [V (Π), E(Π)], and ρ: the cut cycle obtained with Procedure 1.

Without loss of generality, we can assume that p ∈ V (ρ) and q /∈ V (ρ).
Output: The set of the step bands S = {B1, B2, . . . , Bm} such that p ∈ V (B1)

and q ∈ V (Bm).

1. Let S = ∅, Π1 = Π and ρ1 = ρ.
2. While q /∈ V (ρ1), do the following:
2.1. Let Π2 = Π1 −ρ1 such that q ∈ V (Π2). (Note: the used “minus” in graph

theory can also be written as Π1\ρ1; in other words, we delete each vertex in ρ1
and each edge of Π1 which is incident with a vertex of ρ1.)

2.2. Let ρ2 be the frontier of Π2.
2.3. Let Π1, ρ1 and ρ2 as the input, compute a band B = GΠ1(V (ρ1)∪V (ρ2))

(the induced subgraph of GΠ1).
2.4. Update ρ1 and Π1 by letting ρ1 = ρ2 and Π1 = Π2.
2.5. Let S = S ∪ {B}.
3. Output S.

For example, in Figure 1, if a single vertex can be thought of as being a band,
then we can have S = {B1, B2, B3}, where B1 = p, B2 is the band such that
V (B2) = {A, B, C, D, E, F, G, H}, and B3 = q.

3.3 Step Segments in a Single Band

The following procedure computes step segments in a single band (i.e., a subset
of the step set for the initialization of the RBA). (It will be used in Step 1.1 of
Procedure 4 below.)

Procedure 3

Input: The triangulated band B and two vertices u, v ∈ V (B) such that u
and v are on two different frontiers of B, denoted by ρ1 and ρ2 (i.e., u ∈ V (ρ1)
and v ∈ V (ρ2).

Output: Two step sets of segments (edges) S1 and S2 such that either S1 or
S2 contains the vertices of a surface ESP of B from u to v.

Let �u, �v be the triangles such that u ∈ ∂�u and v ∈ ∂�v, respectively. Let
wu and wv ∈ V (GB) such that wu and wv correspond to �u and �v, respectively.

Approximate ESPs on Surfaces of Polytopes Using a Rubberband Algorithm 241

Fig. 3. A unit cube such that u = p, and v is the center of EF

By the definition of a band (see Section 2), there is a cycle, denoted by ρB,
such that either wu (respectively, wv) ∈ V (ρB) or the unique neighbor of wu

(respectively, wv) is in V (ρB).
For example, in Figure 3, the frontier of B consists of two cycles uABCDu

and EFGHE. We have that �u = �pDA, �v = �AEF . S1 = {AD, AE} and
S2 = {DA, DE, DH, DG, CG, CF, BF, AF}.

Case 1 : Both wu and wv are in V (ρB). In this case, ρB can be decomposed
into two paths from wu and wv, denoted by P1 and P2. Let {�1, �2, . . . , �m1}
be the sequence of triangles corresponding to the sequence of the vertices of P1.

Let {e1, e2, . . . , em1−1} be a sequence of edges such that ei = �i∩�i+1, where
i = 1, 2, . . . , m1 − 1.

Let {e′1, e
′
2, . . . , e

′
m1−1} be a sequence of edges such that e′i is obtained by

removing a sufficiently small segment (Assume that the length of the removed
segment equals δ′.) from both endpoints of ei, where i = 1, 2, . . . , m1 − 1.

The set {e′1, e′2, . . . , e′m1−1} is the approximate step set we are looking for.
Case 2 : Both wu and wv are not in V (ρB). Again, by the definition of a band

(see Section 2), let w′
u (w′

v) be the unique neighbor of wu (wv) such that w′
u and

w′
v /∈ V (ρB).
In this case, ρB can be decomposed into two paths from w′

u and w′
v, denoted

by P ′
1 and P ′

2. Appending wu and wv to both ends of P ′
1 and P ′

2, we obtain

Fig. 4. The corresponding graph with respect to B; the two frontiers of B are pABCDp
and EFGHE in Figure 3. v9 corresponds to �pDA, and v2 corresponds to �AEF .

242 F. Li, R. Klette, and X. Fu

two paths, denoted by P1 and P2. Analogous to Case 1, we can compute the
approximate step set.

Case 3 : Only one of either wu or wv is not in V (ρB). We can compute the
approximate step set, analogously to Cases 1 and 2.

3.4 Initializations

The following procedure is the initialization procedure of the RBA. It will be
used in Steps 7.2 and 8.2 of the Main Algorithm below.

Procedure 4

Input: Two continuous triangulated bands B1 and B2, and three vertices u1,
u2 and u3, all three in V (B1 ∪ B2), such that u1 and u2 are on two different
frontiers of B1, denoted by ρ1 and ρ2; u3 is on the frontier denoted by ρ3 (�= ρ2),
of B2.

Output: The set of vertices of an approximate ESP on the surface of B1 ∪B2,
from u1 to u3.

Let eu2 ∈ E(ρ2) such that u2 ∈ eu2 ; l a sufficiently large integer; and E =
E(ρ2).

1. While E �= ∅, do the following:
1.1. Let GBi and ui, ui+1 be the input; apply Procedure 3 to compute step

segments in band Bi, denoted by SBi , where i = 1, 2.
1.2. Let S12 = SB1 ∪ SB2 be the input. Apply Algorithm 1 of [11] to compute

an approximate ESP on the surface of B1 ∪ B2. This is denoted by ρeu2
, and it

connects u1 with u3.1

1.3. Let the length of ρeu2
be equals l(ρeu2

).
1.4.1. If l(ρeu2

) < l then let V = V (ρeu2
).

1.4.2. If l(ρeu2
) = l then let V = minlexi{V, V (ρeu2

)} (minimum with respect
to lexicographic order).

1.5. Let E = E\{eu2}.
1.6. Take an edge e ∈ E and let u2 be one endpoint of e; let eu2 = e; go to

Step 1.1.
2. Output V .

3.5 The Main Algorithm

The main algorithm defines now the iteration steps of the RBA.

Input: G′
Π = [V (Π), E(Π)], and two vertices p �= q, p, q ∈ V (Π); accuracy

constant ε.
1 Note that Algorithm 1 of [11] still works when the line segments in the step set are

in 3D space.

Approximate ESPs on Surfaces of Polytopes Using a Rubberband Algorithm 243

Output: The set of vertices of an approximate ESP on the surface of Π .

1. Let G′
Π , p and q be the input; apply Procedure 1 to compute a cut cycle

which separates p and q, denoted ρpq.
2. Let G′

Π and ρpq be the input; apply Procedure 2 to compute step bands S
= {B1, B2, . . . , Bm} such that p ∈ V (B1) and q ∈ V (Bm).

3. Let pi be a point on the frontier of Bi, where i = 1, 2, . . ., m, p = p1 and
q = pm. We obtain an initial path ρ =< p1, . . . , p2, . . . , pm > [note: it is very
likely that there exist further points between pi and pi+1!].

The following steps are modified from Algorithm 1 of [11] (note: only Steps
7.2 and 8.2 are modified!).

4. Let ε = 1010 (the chosen accuracy).
5. Compute the length L1 of the initial path ρ.
6. Let q1 = p and i = 1.
7. While i < k - 1 do:
7.1. Let q3 = pi + 1.
7.2. Apply Procedure 4 to compute a point q2 on the frontier of Bi such that

q2 is a vertex of an approximate ESP on the Surface of Bi−1 ∪ Bi from qi−1 to
qi+1.

7.3. Update ρ by replacing pi by q2 [possibly also by some additional points
between pi−1 and pi, and between pi and pi+1!].

7.4. Let q1 = pi and i = i + 1.
8.1. Let q3 = q.
8.2. Apply Procedure 4 to compute a point q2 on the frontier of Bm such that

q2 is a vertex of an approximate ESP on the surface of Bm−1 ∪ Bm, from qm−1
to qm+1.

8.3. Update ρ by replacing pk by q−2 [note: possibly also by additional points
between pm−1 and pm, and between pm and pm+1!].

9. Compute the length L2 of the updated path ρ.
10. Let δ = L1 - L2.
11. If δ > ε , then let L1 = L2 and go to Step 7. Otherwise, stop.

We provide a proof of correctness, an analysis of run-time complexity, and
an example for this algorithm. It is basically another illustration for the general
comments (e.g., in [14,10]) that the basic idea of rubberband algorithms my be
applied efficiently for a diversity of shortest path problems.

4 Proof of Correctness

Theorem 1. The approximate path computed by the Main Algorithm is an ap-
proximate ESP on the surface of Π.

244 F. Li, R. Klette, and X. Fu

Proof. Let {B1, B2, . . . , Bm} be the step bands computed by Step 2 of the Main
Algorithm. Let ρi = Bi ∩Bi+1, where i = 1, 2, . . . , m− 1. For each point pi ∈ ρi,
where i = 1, 2, . . . , m − 1, the length of the surface path

ρ =< p1, . . . , p2, . . . , pm >

is a continuous function defined on ρ1 · ρ2 · . . . · ρm−1, denoted by Πm−1
i=1 ρi.

Since each ρi is a closed set, where i = 1, 2, . . . , m − 1, Πm−1
i=1 ρi is a closed set

as well.
Since ρ is continuous, for each ε > 0 and for each P = (p1, p2, . . . , pm−1) ∈

Πm−1
i=1 ρi, there exists a δε > 0, such that for each P ′ ∈ U(P, δε), the difference

between the lengths (i.e., of the outputs) of the Main Algorithm by using either
P or P ′ as an initial path, is not more than ε.

We can now construct an open cover for Πm−1
i=1 ρi as follows:

Oε = {U(P, δε) : P ∈ Πm−1
i=1 ρi}

By the finite cover principle of mathematical analysis, there exists a finite sub-
cover of Oε which can cover Πm−1

i=1 ρi. This implies that the number of approx-
imate ESPs obtained by the Main Algorithm is finite. In analogy to the proof
of Lemma 24 of [14], the number of approximate ESPs obtained by the Main
Algorithm is only one. This proves the theorem.

5 Time Complexity

This section analyses, step by step, the time complexity for each of the proce-
dures and the Main Algorithm as presented in the previous section.

Lemma 1. Procedure 1 can be computed in time O(|V (Π)|2).

Proof. In our data structure we identify adjacent vertices for each vertex; so
Steps 1 and 4 can be computed in time O(|V (Π)|). Step 2 can be computed in
time O(|Np|). Step 3 can be computed in time O(1). Step 5 can be computed
in time O(|Nv|). Step 6 can be computed in time O(1). The loop, from Step
4 to Step 6, is computed in time O(|V (Π)|2). Step 7 can be computed in time
O(|V |). Therefore, Procedure 1 can be computed in time O(|V (Π)|2).

Lemma 2. Procedure 2 can be computed in time O(|Π1|2).

Proof. Step 1 can be computed in time O(1). The test in Step 2 can be computed
in time O(|V (ρ1)|). Step 2.1 can be computed in time O(|V (Π1)|). Step 2.2 can
be computed in time O(|V (Π2)|). Step 2.3 can be computed in time O(|V (Π1)|).
Steps 2.4 and 2.5 can be computed in time O(1). The loop, from Step 2 to Step
2.5, is computed in time O(|Π1| · |V (ρ1)|) ≤ O(|Π1|2). Step 3 can be computed
in time O(|S|). Therefore, Procedure 2 can be computed in time O(|Π1|2).

Approximate ESPs on Surfaces of Polytopes Using a Rubberband Algorithm 245

The following Lemma is obvious. Step 1.4.1 can be computed in time O(1).

Lemma 3. Procedure 3 can be computed in time O(|V (GB)|).

Lemma 4. Procedure 4 has time complexity κ1 · O(|V (ρ2)| · |V (B1 ∪ B2)|).

Proof. By Lemma 3, Step 1.1 can be computed in time O(|V (Bi)|), where i =
1, 2. By Theorem 1.4 of [11], Step 1.2 has time complexity

κ1 · O(|V (ρ2)| · |V (B1 ∪ B2)|)

where κ1 = (L0 − L)/ε, ε is the accuracy, and L0 and L are the lengths of the
initial and true path, respectively.

Step 1.3 can be computed in time O(|V (ρeu2
)|). Step 1.4.1 can be computed

in time O(1). Step 1.4.2 can be computed in time O(|V (B1 ∪B2)|). Step 1.5 can
be computed in time O(|V (ρ2)|). Step 1.6 can be computed in time O(1). The
loop, from Step 1.1 to 1.6, can be computed in time

κ1 · O(|V (ρ2)| · |V (B1 ∪ B2)|)

Step 2 can be computed in time O(|V |). Therefore, Procedure 2 can be computed
in time κ1 · O(|V (ρ2)| · |V (B1 ∪ B2)|).

Theorem 2. The Main Algorithm has time complexity κ1 · κ2 · O(|V (GΠ)|2).

Proof. By Lemma 1, Step 1 can be computed in time O(|V (GΠ)|2). According
to Lemma 2, Step 2 can be computed in time O(|V (GΠ)|2). Step 3 can be
computed in time O(|V (ρ)|). Steps 4, 6, 10 and 11 can be computed in time
O(1). Steps 5 and 9 can be computed in time O(|V (ρ)|). Steps 7.1, 7.4 , 8.1 can
be computed in time O(1). By Lemma 4, Steps 7.2 and 8.2 can be computed in
time κ1 · O(|V (ρj2)| · |V (Bi−1 ∪ Bi)|), where j = i, m. Steps 7.3 and 8.3 can be
computed in time O(|V (ρ)|). The loop, from Step 7 to 11, can be computed in
time κ1 · κ2 · O(|V (GΠ)|2).

Therefore, the Main Algorithm can be computed in time κ1 ·κ2 ·O(|V (GΠ)|2).

6 An Example

The following example illustrates the steps of the Main Algorithm. Let Π be the
unit cube in Figure 5.

Step 1 computes a cut cycle (which may be not uniquely defined) ρpq =
ABCDA.

Step 2 computes step bands S = {B1, B2, B3}, where B1 = p, B2’s frontiers
are two cycles ABCDA and EFGHE, and B3 = q.

Step 3 decides that we use pIJq as an initial surface path from p to q (see
Figure 5).

246 F. Li, R. Klette, and X. Fu

Fig. 5. A unit cube within an xyz-coordinate system, where p = (0.76, 0.001, 1),
q = (0.999, 0.001, 0). pIJq is an initial surface path from p to q while pMLKq is
an approximate surface ESP from p to q, where I ∈ AB, J, K ∈ EF , L ∈ AE and
M ∈ AD.

In Step 7.2, the algorithm applies Procedure 4 (the initialization procedure
of the RBA) and searches each edge of the polygon ABCDA; it finds a point
M ∈ AD to update the initial point I, and it also inserts a new point L′ ∈ AE
into the segment between M and J .

Analogously, in Step 8.2, the algorithm searches each edge of the polygon
EFGHE and finds a point K ∈ EF for updating the initial point J ; it also
updates point L′ ∈ AE by point L ∈ AE which is between M and K.

The algorithm iterates (note: the iteration steps are defined in the Main Al-
gorithm) until the required accuracy is reached.

7 Conclusions

The paper presented a rubberband algorithm for computing an approximate
surface ESP of a polytope. Although it is not the most efficient, it follows a
straightforward design strategy, and is thus easy to implement.

This algorithm generalized an rubberband algorithm designed for solving a
2D ESP of a simple polygon (see [11]) to one which solves the surface ESP
of polytopes. This approach is a contribution towards the exploration of effi-
cient approximate algorithms for solving the general ESP problem. This will
allow more detailed studies of computer-represented surfaces as typical (e.g.) in
biomedical or industrial 3D image analysis.

Acknowledgement. The authors thank the PSIVT reviewers whose comments
have been very helpful for revising an earlier version of this paper.

Approximate ESPs on Surfaces of Polytopes Using a Rubberband Algorithm 247

References

1. Sharir, M., Schorr, A.: On shortest paths in polyhedral spaces. SIAM J. Compu-
tation 15, 193–215 (1986)

2. Reif, J.H., Storer, J.A.: A single-exponential upper bound for shortest paths in
three dimensions. J. ACM 41, 1013–1019 (1994)

3. Canny, J., Reif, J.H.: Some algebraic and geometric configurations in pspace, 460–
467 (1988)

4. Canny, J., Reif, J.: New lower bound techniques for robot motion planning prob-
lems, 49–60 (1987)

5. Sharir, M.: On shortest paths amidst convex polyhedra. SIAM J. Computation 16,
561–572 (1987)

6. Gewali, L.P., Ntafos, S., Tollis, I.G.: Path planning in the presence of vertical
obstacles. Technical report, Computer Science, University of Texas at Dallas (1989)

7. Mitchell, J.S.B., Mount, D.M., Papadimitriou, C.H.: The discrete geodesic problem.
SIAM J. Computation 16, 647–668 (1987)

8. Chen, J., Han, Y.: Shortest paths on a polyhedron, 360–369 (1990)
9. Kapoor, S.: Efficient computation of geodesic shortest paths. In: Proc. ACM Symp.

Theory Computation, vol. 1, pp. 770–779 (1999)
10. Li, F., Klette, R.: Rubberband algorithms for solving various 2d or 3d shortest

path problems. In: Proc. Computing: Theory and Applications, Platinum Jubilee
Conference of The Indian Statistical Institute, pp. 9–18. IEEE, Los Alamitos (2007)

11. Li, F., Klette, R.: Euclidean shortest paths in simple polygons. Technical report
CITR-202, Computer Science Department, The University of Auckland, Auckland
(2007), http://www.citr.auckland.ac.nz/techreports/2007/CITR-TR-202.pdf

12. Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann, San Francisco
(2004)

13. Kiryati, N., Szekely, G.: Estimating shortest paths and minimal distances on digi-
tized three dimensional surfaces. Pattern Recognition 26, 1623–1637 (1993)

14. Li, F., Klette, R.: Exact and approximate algorithms for the calculation of shortest
paths. Report 2141, ima, The University of Minnesota, Minneapolis (2006)

http://www.citr.auckland.ac.nz/techreports/2007/CITR-TR-202.pdf

	Approximate ESPs on Surfaces of Polytopes Using a Rubberband Algorithm
	Introduction
	Definitions
	Algorithms
	Separation
	Step Set Calculation
	Step Segments in a Single Band
	Initializations
	The Main Algorithm

	Proof of Correctness
	Time Complexity
	An Example
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

