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Abstract

In the case of real-valued inputs, averaging aggregation functions have been
studied extensively with results arising in fields including probability and
statistics, fuzzy decision-making, and various sciences. Although much of
the behavior of aggregation functions when combining standard fuzzy mem-
bership values is well established, extensions to interval-valued fuzzy sets,
hesitant fuzzy sets, and other new domains pose a number of di�culties. The
aggregation of non-convex or discontinuous intervals is usually approached
in line with the extension principle, i.e. by aggregating all real-valued input
vectors lying within the interval boundaries and taking the union as the final
output. Although this is consistent with the aggregation of convex interval
inputs, in the non-convex case such operators are not idempotent and may
result in outputs which do not faithfully summarize or represent the set of
inputs. After giving an overview of the treatment of non-convex intervals and
their associated interpretations, we propose a novel extension of the arith-
metic mean based on penalty functions that provides a representative output
and satisfies idempotency.
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1. Introduction

The arithmetic mean is the standard “go to” operator employed in vari-
ous sciences, statistics, economics and fuzzy decision making for aggregating
a set of inputs into a single representative value. For example, a number of
small errors may arise naturally when we conduct repeated experiments or
in our data collection, so we use the arithmetic mean to average the results,
providing a reasonable estimate of what might be the true value. In fuzzy de-
cision making, the arithmetic mean of the expert evaluations or membership
values can be used to compare potential alternatives, allowing us to choose
the best overall option. On the other hand, we may simply be interested in
a summary statistic that tells us in some way what is normal or expected
for a particular set of inputs, e.g. to describe a population in terms of the
average life expectancy.

More broadly, the arithmetic mean is one example of an averaging ag-
gregation function [5, 14, 23]. Aggregation functions have been studied for
various practical applications and a number of alternatives to the arithmetic
mean have been proposed that may perform more reliably for certain types
of data. In the face of uncertainty pertaining to the inputs, either arising
from linguistic descriptions or data collection methods, the need has also
been identified to extend aggregation functions to deal with inputs expressed
as intervals [11], pairs of positive and negative information such as Atanassov
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orthopairs [1] or other multiple-valued inputs [2, 3].
Although a number of results have been established for these data types

(especially in the field of fuzzy sets aggregation), more recently some re-
searchers have tackled the problem of aggregating inputs provided as non-
convex or discontinuous intervals, i.e. intervals that contain gaps or are
comprised of a sequence of disjoint intervals. In statistics research, such in-
puts can occur through censoring where the data cannot be observed over
particular intervals. In probability theory, the study of random sets also gives
rise to non-convex sets and the need to calculate their expecatation (see [20]
for a detailed overview). For examples in the fuzzy research community, we
can mention the hesitant fuzzy sets of Torra and Narukawa [22, 24] - where
the input usually denotes a discrete set of possible evaluations between 0
and 1, the generalized grey numbers of Yang and John [29, 30] - where an
input is known to lie within a potentially non-convex range of values, and
the discontinuous intervals of Wagner et al. [26].

These are inputs of the form

Ai =
mi[

j=1

[a�ij , a
+
ij
], (1)

where [a�ij , a
+
ij
] denotes the j-th interval with a+ij < a�ij+1

, j = 1, 2, . . . ,mi� 1.
It may also be convenient to represent such intervals as a sequence of intervals
(as in [16]), i.e. for Ai = [a�i1 , a

+
i1 ][, . . . ,[[a

�
imi

, a+imi
] we will simply write

Ai = h[a�i1 , a
+
i1 ], . . . , [a

�
imi

, a+imi
]i.

We can consider the following situations where it may be useful to work
with non-convex intervals.

Example 1 (Uncertainty with travel times [30]). Two trains are sched-
uled to depart 5 minutes apart however both could be up to 2 minutes late.
The earlier train is sometimes full and it takes 3 minutes to travel to the next
station. The time it will take a passenger (arriving in time for the first train)
to reach the next station can be represented with the input h[3, 5], [8, 10]i.

Example 2 (Species population recovery intervals [21]). An ecology ex-
pert is asked to provide her estimation of when a species will reach healthy
population levels following a forest fire. A species may increase in population
immediately following the fire, then decrease as other species start to recover,
before increasing again to its pre-disturbance levels. The expert can use the
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non-convex interval h[1, 2], [8, 20]i to indicate that the population is predicted
to be at healthy levels 1-2 years and 8-20 years after the fire, but below the
threshold at other times.

Example 3 (Analysis of recurring health problems [15]). After a pa-
tient is treated and released from hospital, they may make a full recovery or
sometimes their health will deteriorate and they will be readmitted. In some
cases, the patient may be readmitted a number of times. In order to inves-
tigate contributing factors, experts represent each patient’s time in hospital
with non-convex intervals, e.g. an input h[12, 13], [16, 18], [24, 27]i would in-
dicate a patient was readmitted for 3 periods after 12, 16 and 24 months, and
stayed in hospital for various lengths of time.

In each of the examples above, the inputs represent temporal data [16],
with an event (or the uncertainty pertaining to an event) taking duration over
discontinuous time periods. However there may also be cases where we need
to aggregate non-convex intervals that represent spatial data, e.g. in the fu-
sion of sensor readings observing a non-continuous space, measurements that
are uncertain because they lie outside an observable range (censored data), or
even evaluations in fuzzy decision making [24]. The authors in [26] also note
example applications in forensic science, hazard detection, agreement-based
modeling and computing with respect to linguistic descriptions.

In research areas such as statistics, a common approach for handling
either standard interval or non-convex interval inputs is to represent them
with single values, e.g. a mid-point or the most probable value. While this
may be e↵ective under certain conditions, working with the inputs in their
original form can allow for robust analyses and inferences which are free of
assumptions pertaining to the source of uncertainty [11].

The extension of averaging aggregation functions to non-convex inputs
in the fuzzy domain has thus far been approached in a manner consistent
with the extension principles applied for fuzzy operations (e.g. in [10] for
operations on fuzzy numbers) and interval arithmetic [11]. All possible real-
valued input vectors x with xi 2 Ai 8i are aggregated and the union of
these aggregated values is taken as the output. We contend that whilst this
approach is suitable for most situations when the intervals are convex, the
non-convex case presents two unique problems:

1. These resulting aggregation functions are not idempotent, i.e. it does
not necessarily hold that f(t, t, . . . , t) = t if t is a non-convex inter-
val. Idempotency is a key property for averaging functions when it is
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desired that the output gives a representative or typical value. If we
wanted to consider the “average” evaluation from 10 ecology experts in
Example 2 above and all 10 provided the same interval h[1, 2], [8, 20]i,
then we would expect the same non-convex interval to be returned as
the output.

2. As the number of inputs grows large, aggregating non-convex inputs
in this fashion converges towards aggregating their convex hulls or en-
velopes (the intervals defined by the lower and upper bounds). This
raises the question of whether anything is gained by using non-convex
intervals to represent the uncertainty of the model in the first place.

In this article, we approach the problem of aggregating non-convex in-
tervals in the framework of penalty-based functions. We show that existing
methods can be recovered with the choice of various penalties and and then
propose a new penalty which results in an extension of the arithmetic mean
which is idempotent and can more faithfully represent a “typical input”.

The article will be structured as follows. In Section 2 we will give an
overview of the concepts that underlie the proposed operators. In particular,
we look at aggregation functions, penalty-based methods for constructing
them, and various types of inputs for which they have been defined. In
Section 3, we recall the definitions of functions which have been used in
various settings to aggregate non-convex interval valued inputs, noting their
relationship to penalty functions defined for intervals. We then consider
the problem of defining penalties between non-convex intervals in Section
4 and in Section 5, we propose a new penalty for non-convex inputs and
define our new operator. We present some numeric examples in Section 6 to
help illustrate di↵erences between the existing and proposed methods, before
discussing some other potential approaches in Section 7 and concluding in
Section 8.

2. Preliminaries

We will firstly provide the basic definitions relating to aggregation func-
tions and show how they can be defined with respect to penalty functions.
We then give an overview of various input types which have extended the use
of real inputs to incorporate uncertainty into decision processes and modeling
applications.

We will consider aggregation functions (see [5, 14, 23]) defined over the
unit interval.
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Definition 1 (Aggregation function). An aggregation function f : [0, 1]n !
[0, 1] is a function non-decreasing in each argument and satisfying f(0, . . . , 0) =
0 and f(1, . . . , 1) = 1.

The monotonicity of aggregation functions is important when used for
decision making to ensure that an increase to one of the criteria should
not result in a decrease in the overall evaluation. Here we are interested
particularly in averaging aggregation functions.

Definition 2 (Averagaing aggregation function). An aggregation func-
tion f is considered to be averaging where for x 2 [0, 1]n,

min(x)  f(x)  max(x) .

Due to the monotonicity of aggregation functions, averaging behavior is
equivalent to idempotency, i.e. f(t, t, ..., t) = t.

Typical examples include the arithmetic mean (sometimes referred to
simply as “the average”) and the median. For an input vector x consisting
of n values, the arithmetic mean AM : x 2 [0, 1]n ! [0, 1] is given by

AM(x) =
nX

i=1

1

n
xi . (2)

If it is desired that the contributions of some inputs a↵ect the overall
value more than others, the inputs can also be weighted by replacing the 1

n
by a weight wi,

Pn
i=1 wi = 1.

The medianMed(x), on the other hand is given by the middle value when
the inputs are arranged in descending or ascending order. If the number of
inputs is even, the median can be any point in the interval bounded by the
middle two values, however usually the arithmetic mean or midpoint of these
is used.

An aggregation function is said to be internal if its output always coin-
cides with one of its inputs. Internal functions will always be idempotent,
however, clearly the reverse is not true. Examples of internal functions in-
clude the minimum and maximum functions, and the median when n is odd.

Both the arithmetic mean and median can be expressed as the value
which minimizes the sum of di↵erences between the inputs and output, i.e.
we have,
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WAM(x) = argmin
y

nX

i=1

wi(xi � y)2,

and,

Medw(x) = argmin
y

nX

i=1

wi|xi � y|.

For wi =
1
n we recover the standard arithmetic mean AM(x) and median

Med(x).
Where functions can be defined in this fashion, we can refer to them

as penalty-based functions [28, 8, 7, 6]. For inputs xi 2 [0, 1] we have the
following definition.

Definition 3 (Penalty function). A penalty function P : [0, 1]n+1 ! [0,1]
satisfies:

i) P (x, y) = 0 if xi = y 8i ;

ii) P (x, y) > 0 if xi 6= y for some i;

iii) For every fixed x, the set of minimizers of P (x, y) is either a singleton
or an interval2.

The penalty-based function is then given by

f(x) = argmin
y

P (x, y),

if y is the unique minimizer, and y = a+b
2 if the set of minimizers is the

interval (a, b) (open or closed).

Remark 1. Conditions i) and ii) imply that P (x, y) = 0 if and only if all
xi = y, hence if all xi are the same then the only minimizer of P is y = xi

and the function will be idempotent. We can relax the second condition (as in
[7, 6]) and instead require ii0) P (x, y) � 0 if xi 6= y for some i, however this
has the potential to lead to operators which are not idempotent. Condition i)
can also be relaxed such that a unique minimum is reached (since adding a
constant will not change the minimizer).

2The third property, which ensures the function is well defined, has been alternatively
expressed as requiring quasi-convexity [6] or that P (x, y) � P (z, y) whenever xi � zi � y

or xi  zi  y 8i, i.e. a kind of monotonicity with respect to each argument [8].
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In particular we can focus on the class of penalty-based functions ex-
pressed as the sum of all individual penalties p(xi, y),

f(x) = argmin
y

nX

i=1

wip(xi, y). (3)

The weighted or unweighted arithmetic mean then corresponds with the
penalty p(xi, y) = (xi � y)2 while the median is related to the absolute
di↵erences p(xi, y) = |xi � y|.

To deal with various forms of uncertainty in decision making contexts,
some research has looked to extend the definitions of aggregation functions
to other types of inputs. In the theory of fuzzy sets, examples such as interval-
valued fuzzy membership, Atanassov orthopairs [1] (also referred to as intu-
itionistic fuzzy values) and hesitant fuzzy sets can all be considered as special
cases of fuzzy multisets studied by Yager and Miyamoto [18, 19, 27]. Where
we might usually assign a degree of membership to each element in a set,
fuzzy multisets allow multiple membership values to be assigned.

We recall the following definitions.

Definition 4 (Interval-valued input). An interval valued input āi ✓ [0, 1]
is given by āi = [a�i , a

+
i ] where a�i and a+i denote the lower and upper end-

points respectively with 0  a�i  a+i  1.

Uncertainty resulting in interval-valued data can arise in a number of
ways, from precision of measurement, rounding and missing data, to what is
referred to in statistics as censoring, i.e. when measurements lie outside a
window of observation or detectability (See [11] for an overview of interval-
valued data and methods for analysis).

Although arising independently and studied in di↵erent contexts, there
exist many similarities between the so-called grey numbers and interval-
valued fuzzy sets. Grey numbers are used in the theory of grey sets [9] and
essentially denote an uncertain value by the subset of potential candidates,
over which the probabilistic likelihood is considered to be equal. Although
typically grey numbers have been denoted by intervals, the concept of gen-
eralized grey numbers has been considered in [29, 30].

Definition 5 (Generalized grey number). Let g±i 2 < be an unknown
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real number within a union set of mi intervals3,

g±i 2
mi[

j=1

[a�ij , a
+
ij
], (4)

where sup[a�ij , a
+
ij
] < inf[a�ij+1

, a+ij+1
] for j = 1, 2, . . . ,m � 1. We denote the

probability that g±i 2 [a�ij , a
+
ij
] by pj and if it holds that pj > 0 and

miP
i=1

pj = 1,

then we call g±i a generalized grey number.

Remark 2. The variable g±i itself is not considered to be an interval or
collection of intervals, but rather a definite value that lies within the (possi-
bly non-convex) range of values (see [30] for a discussion of key di↵erences
in interpretation). Grey numbers none-the-less have a representation with
equivalent notation to a non-convex interval. For example, a grey number
g±i = h[0.2, 0.3], [0.45, 0.8]i is some real value that lies either between 0.2 and
0.3 or between 0.45 and 0.8, however it is equally likely that it could be any
of these.

Research into the operations for grey numbers denoted by convex intervals
has been conducted in [29] and some applications to decision making have
been studied (e.g. [17]). The theory of more generalized grey numbers,
in particular the extension of aggregation operators to non-convex interval-
valued grey numbers, was considered in [30].

Another extension of fuzzy sets with the possibility of multiple mem-
bership values are the hesitant fuzzy sets of Torra and Narukawa [22, 24].
Hesitant fuzzy sets are essentially fuzzy multisets with a di↵erent underlying
interpretation. We present the definition as relating to fuzzy membership.

Definition 6 (Hesitant fuzzy membership). For a given element of a
reference set, the set of hesitant membership degrees will be denoted Hi and
can be any convex or non-convex subset of the unit interval, i.e. Hi ✓ [0, 1].

Torra notes that while interval values and Atanassov orthopairs can be
considered as special cases, the typical case of a hesitant fuzzy set is one
where the possible membership values are expressed as a finite subset of

3The intervals can be open or closed.
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the unit interval. For example Hi = h{0.4}, {0.5}, {0.6}i indicates that the
membership value of the i-th input could be 0.4, 0.5 or 0.6. This would be
the case in any setting where only a finite set of evaluations is permitted, i.e.
the decision maker here believes that any score from 0.4 to 0.6 is possible,
however values such as 0.45 or 0.423 are not permissible evaluations.

Remark 3. Although the notation of hesitant fuzzy values may give the im-
pression of them representing sets of sets (intervals and or single values),
they are more precisely the union of multiple membership functions. This
means the intervals or singletons should be non-overlapping as is the case
with Eqs. (1) and (4).

3. Existing averaging functions defined for convex and non-convex
interval inputs

As we have discussed, functions such as the arithmetic mean can be con-
ceived from di↵erent perspectives: as an overall evaluation, as a representa-
tive value or summary statistic and as the minimizer of squared di↵erences
between the output and inputs. In some research areas, a common approach
for handling interval or subset-valued inputs is to represent them with sin-
gle values, e.g. a mid-point or centroid. While this may be e↵ective under
certain conditions, working with the inputs in their original form can allow
for robust analyses and inferences which acknowledge the uncertainty inher-
ent to the context [11]. In this section we will look at existing extensions
of averaging aggregation functions, taking note of how their properties and
behavior transfer to other types of inputs.

The straightforward approach for extending existing functions and arith-
metic operations to interval-valued inputs has been to take the set of all
possible outputs that result when real values are supplied for each interval
[11], i.e. for a multivariate function f defined on the reals and intervals
ā1, ā2, . . . , ān we have,

f I(ā1, ā2, . . . , ān) = {f(x1, x2, . . . , xn)|x1 2 ā1, x2 2 ā2, . . . , xn 2 ān}. (5)

For three or more inputs, and for non-monotone functions, this will lead to
a set of (potentially) overlapping intervals. If the output is to be used as
the basis for decision-making or is intended to give a representative sum-
mary of the inputs, it is preferable that it be defined over the same space as
the inputs. From Eq. (5) it is then common to take the union (or convex
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hull obtained from the minimum and maximum results). This leads to the
following expression for the arithmetic mean.

AM I(ā1, ā2, . . . , ān) = [AM(a�1 , a
�
2 , . . . , a

�
n ), AM(a+1 , a

+
2 , . . . , a

+
n )]. (6)

Where the output can be determined from separate functions acting on
the lower and upper bounds respectively, we say the extended function is
representable. The penalty-based expression of such functions is straightfor-
ward, since we can simply add the penalties associated with each input in the
framework of Eq. (3). In other words, we consider the penalty or distance
between intervals to be given by p(āi, ȳ) = (a�i � y�)2 + (a+i � y+)2, which
leads to the following penalty-based expression for AM I .

AM I(ā1, ā2, . . . , ān) = argmin
ȳ

nX

i=1

(a�i � y�)2 + (a+i � y+)2. (7)

Remark 4. Alternative penalties or measures of distance between intervals
could also be used. If we use the squared di↵erences between the mid-points
for p(x̄i, ȳ), then the resulting function will reduce to the standard arithmetic
mean of these values. Other options include the Wasserstein distance, which
weights the squared di↵erence of the mid-points with the half-length of the
radius of the intervals [25].

As an extension of the arithmetic mean, AM I exhibits a number of desirable
properties. Whether it is expressed in terms of Eq. (5), (6) or (7), it will
coincide with the arithmetic mean if each of the interval inputs are equivalent
to singletons (i.e. a�i = a+i , 8 i), is monotone, idempotent and “averaging”
in the sense of being bounded by the infimum and supremum of the inputs4,
and minimizes a penalty based on squared di↵erences. Furthermore, we note
that the output, which will be a convex interval in general, serves well to
summarize the inputs with a representative value.

The problem of aggregating non-convex inputs has been considered in
various contexts. For hesitant fuzzy sets, generalized grey sets and the non-
convex intervals in [26], averaging operators have been defined in a way con-
sistent with Eq. (5), taking the union of all outputs that could be obtained

4It was shown in [4] that for lattices, idempotency and averaging behavior are equivalent
for monotone functions (analogously to real inputs).
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from the possible combinations of real-valued inputs. The extension of the
arithmetic mean can again be simplified by considering the union of all in-
tervals

�
AM I(ā1, ā2, . . . , ān) | ā1 2 A1, ā2 2 A2, . . . , ān 2 An

 
where āi 2 Ai

indicates that āi is one of the distinct convex intervals comprising Ai. We
hence obtain the following definition.

Definition 7 (Arithmetic mean AMU for non-convex intervals). We
consider a set of (potentially) non-convex interval inputs Ai = h[a�i1 , a

+
i1 ], . . . ,

[a�imi
, a+imi

]i. The arithmetic mean AMU is given by

AMU(A1, A2, . . . , An) =

m1[

j1=1

. . .
mn[

jn=1

AM I([a�1j1 , a
+
1j1

], [a�2j2 , a
+
2j2

], . . . , [a�njn
, a+njn

]), (8)

where AM I is defined as it is in Eq. (6).

The following example helps illustrate the practical calculation of AMU .

Example 4. Let A1 = h[0.6, 0.8], [0.9, 1]i and A2 = h[0, 0.3], [0.7, 1]i be two
non-convex interval-valued inputs. Their arithmetic mean is calculated:

AMU(A1, A2) =
2[

j1=1

2[

j2=1

AM I([a�1j1 , a
+
1j1

], [a�2j2 , a
+
2j2

])

= {AM I([0.6, 0.8], [0, 0.3])} [ {AM I([0.6, 0.8], [0.7, 1])} [
{AM I([0.9, 1], [0, 0.3])} [ {AM I([0.9, 1], [0.7, 1])}

= [0.3, 0.55] [ [0.65, 0.9] [ [0.45, 0.65] [ [0.8, 1]

= h[0.3, 1]i.

When the aggregation of non-convex intervals is intended to model the
range of possible values that the output could take with respect to the un-
certainty pertaining to the inputs, e.g we want to know the possible av-
erage travel times for multiple passengers in Example 1, then this method
of aggregation seems appropriate. However we see that although each of
the m1 ⇥m2 sub-aggregations (before taking the union) could be expressed
in terms of an associated penalty function as in Eq. (7), there is no real
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sense of some underlying penalty p(Ai, Y ) between each of the non-convex
inputs and the output Y = AMU . In this case, the output is equal to
what would be obtained if the convex hulls [0.6, 1] and [0, 1] were aggre-
gated, while in other cases, a non-convex interval could be obtained, e.g.
AMU(h[0.3, 0.5], [0.9, 1]i, h[0.9, 1]i) = h[0.6, 0.75], [0.9, 1]i.

Furthermore, we note that such aggregation is not idempotent, e.g. for
A = h[0, 0.2], [0.8, 1]i, AMU(A,A) = AMU(h[0, 0.2], [0.8, 1]i, h[0, 0.2], [0.8, 1]i)
= h[0, 0.2], [0.4, 0.6], [0.8, 0.1]i 6= A. We have the following proposition.

Proposition 1. For an averaging function f defined on the reals and a set
of (potentially) non-convex inputs Ai, we denote by fU the operator defined
according to the extension principle , i.e.

fU(A1, A2, . . . , An) =
[

a12A1

. . .
[

an2An

f(a1, a2, . . . , an).

Then, fU will be idempotent if and only if f is internal.

Proof. For su�ciency, we note for all a 2 A the value f(a, a, . . . , a) = a
will be present in the output. Furthermore, internality means that no value
a0 /2 A can be obtained from f(a1, a2, . . . , an) when a1, a2, . . . , an 2 A. On the
other hand to show necessity, we consider functions of two variables and note
that without internality there exists a triplet a1 < a0 < a2, a1, a2 2 A, a0 /2 A
such that f(a1, a2) = a0 and hence if there is a non-convex interval Ai with
a gap ]a1, a2[, the aggregate will have a0 included in the output of fU and
hence fU(A,A) 6= A.

The framework of penalty functions provides us with an intuitive way of
ensuring that operators produce outputs which are faithfully representative
of or as “close” as possible to the set of inputs. Penalty functions can often
be interpreted in terms of consensus amongst the inputs, i.e. if all the inputs
are the same value A, then the output should be A and the penalty is zero. If
one of the inputs deviates however, we impose some penalty for this and the
output will be the value which minimizes the total disagreement between the
inputs and the final result. The property of idempotency is hence usually a
natural by-product5. The question that arises then is how to appropriately

5This is provided that the penalty between any input and the output is strictly greater
than zero if they are note the same.
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define a penalty between two non-convex intervals.

4. Defining penalties over non-convex intervals

In [13], the authors consider the weighted Frechet mean Fd [12], which
can be expressed similarly to Eq. (3) with a distance d replacing p. For their
paper, the distance between a subset Ai and an element y is given by

d(Ai, y) = inf{(ai � y)2|ai 2 Ai}.

A key thing to note here is that y is an element in the metric space (rather
than a set or interval). If there are multiple y which minimize the total dis-
tance, then the set of all such minimizers can be referred to as the Frechet
mean set. For sets of non-convex or convex intervals which overlap, all val-
ues y in the intersection will result in d(ai, y) = 0 and hence this intersection
would be the output Fd. On the other hand, for non-overlapping intervals, the
Frechet mean will either be a single value, e.g. Fd(h[0, 0.3]i, h[0.7, 1]i) = 0.5,
or set of points, e.g. where one of the inputs is non-convex we could have
Fd(h[0, 0.2], [0.7, 1]i, h[0.4, 0.5]i) = h{0.3}, {0.6}i. Whilst the behavior over
intersections ensures that Fd will be idempotent6, the behavior for non-
intersecting inputs means that the output will not always reflect the un-
certainty associated with the inputs.

If it is desired that the output take the same form as the inputs, i.e. the
aggregation of intervals results in an interval, the aggregation of non-convex
intervals generally leads to a non-convex interval and so on, then we require
a penalty that models each aspect of the input space. The problem is that
the number of distinct sub-intervals may vary from input to input. If the
the value of mi = m is fixed for all Ai, then penalties can be considered
separately for each j = 1, 2, . . . ,m i.e. the penalty associated with two non-
convex intervals is given by

pL(Ai, Y ) =
mX

j=1

(a�ij � y�j )
2 + (a+ij � y+j )

2,

6We note that with this choice of d, we can have d(A, y) = 0 even though technically
A 6= y, however the union of all such values will result in a Frechet mean set Y = A.
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and we have a special case of the aggregation functions defined over a Carte-
sian product of lattices in [6]. We will denote the extension of the arithmetic
mean obtained in this way by AML,

Definition 8 (Arithmetic mean AML for non-convex intervals). We
consider a set of (potentially) non-convex interval inputs Ai = h[a�i1 , a

+
i1 ], . . . ,

[a�im , a
+
im ]i where m is fixed for all i. The arithmetic mean AML is given by

AML(A1, A2, . . . , An) =
m[

j=1

AM I([a�1j , a
+
1j ], . . . , [a

�
nj
, a+nj

]). (9)

where AM I is defined as it is in Eq. (6).

The monotonicity of AM I ensures that the output will be a non-convex
interval with m distinct sub-intervals, and this combined with the idempo-
tency of AM I means that AML can also be considered idempotent, mono-
tone with respect to each j and averaging. The composition of AML and
the penalty by which it can be defined, however imply that there is some
relationship between each of the j-th sub-intervals. For example, for the two
non-convex intervals A1 = h[0.3, 0.5], [0.7, 0.8]i and A2 = h[0, 0.1], [0.3, 0.5]i,
it could be possible that the sub-interval [0.3, 0.5] of both inputs relates to
the same information or uncertain aspect in the data while the additional
sub-intervals are related to aspects which are not common to both intervals.

If indeed we have a set of inputs corresponding to each j (which might
happen if we want to fuse a number of observations that are both left- and
right-censored7), then it may not be a reasonable restriction that the in-
tervals be non-overlapping. Furthermore, such data may be better handled
separately with no need to represent inputs as they are in Eq. (1) or for
operators to be defined on the extended space.

In the following section we propose a novel penalty between non-convex
inputs which leads to a penalty-based aggregation function with the aim of
providing a faithful summary of the inputs, taking the same form of the in-
puts but also with the ability to handle di↵ering values for mi and satisfying
idempotency.

7That is, an observation lies either below or above a given observable interval range,
usually due to the limits of the way in which it is measured.
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5. A new operator for non-convex sets based on the closest penalty

For the operator AMU , we note that idempotency is lost because for
a non-convex input, e.g. A = h[0, 0.2], [0.8, 1]i, the operator includes the
average of the distinct sub-intervals AM I([0, 0.2], [0.8, 1]) as well as the iden-
tical sub-intervals AM I([0, 0.2], [0, 0.2]) and AM I([0.8, 1], [0.8, 1]). In order
to avoid this, we need to define a penalty that in this case would only in-
corporate the penalties between the identical sub-intervals. The operator
AML exhibits this behavior, however it can not handle inputs with a vary-
ing number of sub-intervals, so AML(h[0, 0.2], [0.8, 1]i, h[0, 0.2]i) is undefined.
Furthermore, it will always assume that sub-intervals across inputs are re-
lated based on the value of j, however this may not necessarily be the case.

Here we consider a penalty function which for each convex sub-interval
[a�ij , a

+
ij
], only counts the penalty to the closest sub-interval in Y and vice

versa. The essential idea is that we wish to minimize the extent to which
two inputs disagree, accounting for the possibility that separate intervals may
refer to di↵erent aspects of the evaluations.

We let the penalty between any two non-convex intervals Ai and Y be
defined as,

pNC(Ai, Y ) =
miX

ji=1

min
j=1,...,m

⇣
(a�iji � y�j )

2 + (a+iji � y+j )
2
⌘

+
mX

j=1

min
ji=1,...,mi

⇣
(a�iji � y�j )

2 + (a+iji � y+j )
2
⌘
. (10)

The following proposition allows us to use pNC in order to define idem-
potent operators for non-convex inputs.

Proposition 2. The penalty pNC defined between non-convex intervals sat-
isfies the following properties:

i) pNC(A, Y ) = 0 if A = Y ;

ii) pNC(A, Y ) > 0 if A 6= Y .

Proof. For each sub-interval in A, a partial penalty is included for
the closest sub-interval in Y while for each sub-interval in Y , a penalty
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is calculated to the closest sub-interval of A. If A = Y , then only the
penalties between pairs of identical sub-intervals will be included and the
overall penalty will be zero. On the other hand, if A 6= Y then there will
either be a sub interval [a�iji , a

+
iji
] or a sub-interval [y�j , y

+
j ] for which the

minimum penalty is not zero.

We therefore have the first two corresponding properties from Defini-
tion 3. In the case of non-convex intervals, we can relax the third require-
ment, since it is not necessary for the minimizer to be a convex interval or
single value.

Remark 5. Although in this case we have used squared di↵erences so that
the resulting penalty-based operator will exhibit behavior consistent with the
arithmetic mean, clearly other choices are possible if we wish to extend func-
tions such as the median.

From this penalty, we can instantiate the following extension of the arith-
metic mean, which will be idempotent for non-convex intervals and coincides
with the arithmetic means defined for intervals or real-valued inputs if the
inputs are all convex intervals or real values respectively.

Definition 9 (Arithmetic mean AMNC for non-convex intervals). For
a set of (potentially) non-convex inputs Ai = h[a�i1 , a

+
i1 ], . . . , [a

�
imi

, a+imi
]i, the

arithmetic mean AMNC is given by,

AMNC(A1, A2, . . . , An) = argmin
Y

nX

i=1

pNC(Ai, Y ). (11)

Remark 6. Since small changes in the input may mean the penalty pNC can
incorporate di↵ering compositions of sub-intervals (see Example 5 and some
of the figures below), and in particular since the value of m can vary, there
will be some sets of inputs for which Y may not be unique. In such cases, a
selection criterion can be adopted in order to make the function well defined,
such as one which minimizes the number of sub-intervals or which favors
outputs closer to the lower sub-intervals than the higher ones.

To simplify our notation, from here on we will denote the j-th sub-interval
of a non-convex input Ai by [āiji ] while for the output Y we will use [ȳj].
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We will denote the partial penalty between the sub-intervals calculated from
squared di↵erences by pI([āij ], [ȳj]) and so we have

pNC(Ai, Y ) =
miX

ji=1

min
j=1,...,m

pI([āij ], [ȳj]) +
mX

j=1

min
ji=1,...,mi

pI([āij ], [ȳj]).

Figure 1 helps illustrate how AMNC is calculated and the associated
penalties that are incorporated.

(a) (b)

Figure 1: Shows the output AMNC for two non-convex inputs. The penalties used
denoting the closest input sub-intervals to the sub-intervals of Y are indicated by
the black dotted lines, while the closest [ȳj ] to each of the sub-intervals in A1 and
A2 are indicated by the dotted grey lines.

In Figure 1(a), the inputs are seen to each comprise two separate evalua-
tions and so the output Y = ([ȳ1], [ȳ2]) uses the penalties in both directions
(grey and black lines) between the first intervals [ā11 ], [ā21 ] and second inter-
vals [ā12 ], [ā22 ] respectively. So for [ȳ1] we will have,
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[ȳ1] = argmin
[ȳ]

2X

i=1

�
pI([āi1 ], [ȳ]) + pI([ȳ], [āi1 ])

�
,

= argmin
[ȳ]

2X

i=1

2 · pI([āi1 ], [ȳ]),

= argmin
[ȳ]

2X

i=1

pI([āi1 ], [ȳ]),

and similarly for [ȳ2]. The sub-intervals of Y will hence be minimized re-
spectively by the arithmetic means AM I([ā11 ], [ā21 ]) and AM I([ā12 ], [ā22 ]),
so AMNC coincides with AML for these inputs.

On the other hand, in Figure 1(b), we see that both sub-intervals of A2

could be seen to form a group with the first sub-interval of A1. The penalties
included between A1 and Y are the same as they are for Figure 1(a), however
for the penalties used between A2 and Y , we see that [ȳ1] is the closest sub-
interval in Y for both sub-intervals in A2 (represented by dotted grey lines),
while the closest sub-interval of A2 to [ȳ1] is [ā21 ] and the closest to [ȳ2] is
[ā22 ] (dotted black lines). So in this case, for [ȳ1] we have

[ȳ1] = argmin
[ȳ]

2X

i=1

0

B@

0

B@
X

j1 = 1
j2 = 1, 2

pI([āiji ], [ȳ])

1

CA+ pI([ȳ], [āi1 ])

1

CA

= 2 · pI([ā11 ], [ȳ]) + 2 · pI([ā21 ], [ȳ]) + pI([ā22 ], [ȳ]).

The sub-interval [ȳ1] incorporates 5 partial penalties in total - in both
directions from [ā11 ] and [ā21 ] and from just one direction from [ā22 ] It will
hence be minimized by a weighted arithmetic mean of these sub-intervals,
with [ā11 ], [ā21 ] having twice the weight of [ā22 ], i.e.

[ȳ1] =
2

5
[ā11 ] +

2

5
[ā21 ] +

1

5
[ā22 ].

Rather than solving the penalty expression in Eq. (11) using optimiza-
tion, we therefore note that once the set of closest inputs to each [ȳj] is
given, the analytic solution will be a weighted mean of these inputs. Calcu-
lation hence requires taking all possible subset combinations and determining
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which of these minimizes the penalty8. For each [ȳj], we require the closest
sub-interval from each of the inputs (corresponding with the black dotted
penalties indicated in Figure 1), and then all input sub-intervals are parti-
tioned between the [ȳj]. For example, in Figure 1 (a) the partition is

{[ā11 ], [ā21 ]} / {[ā12 ], [ā22 ]},

while in Figure 1 (b) the partition is

{[ā11 ], [ā21 ], [ā22 ]} / {[ā12 ]}.

The computational cost of finding all of these partitions can be reduced by
limiting ourselves to feasible options, i.e. if an evaluation included 3 sub-
intervals, we couldn’t partition the first and third sub-intervals to [ȳ1] and
the second sub-interval to [ȳ2].

We note that in some cases, the number of distinct sub-intervals in
Y could di↵er to that of the inputs, even where mi is the same for all
Ai. For example, consider the inputs A1 = h[0.4, 0.6], [0.8, 0.9]i and A2 =
h[0.1, 0.2], [0.3, 0.4]i. In this case, the total penalty using pNC if Y is a single
interval is 0.5567, with the resulting output Y = h[0.3833, 0.5167]i, while the
penalty when Y is comprised of two intervals is 1.0175 and the output is
Y = h[0.275, 0.4], [0.475, 0.625]i (Visual representations of these inputs and
the penalties used are shown in Figure 2). Even if we account for the higher
number of penalties considered, a single interval is still better at minimizing
the given penalty. On the other hand, in cases such as that shown previ-
ously in Figure 1 (b), use of a single interval results in a larger penalty (even
though only 6 penalties are used rather than 8).

Another example is shown in Figure 3. Here, A1 = h[0.2, 0.3], [0.8, 0.9]i is
comprised of 2 sub-intervals while A2 = h[0.1, 0.25]i is a single interval. When
m = 1 for the output Y , we have a minimizer Y = h[0.28, 0.4]i and a total
penalty of 0.663. Form = 2, the output is Y = h[0.15, 0.275], [0.5667, 0.6833]i
and the total penalty is 0.6208. Again, even though more penalties are taken
into account for m = 2, the overall penalty is lower.

Since the calculation of each of the [ȳj] depends on the closest inputs,
AMNC will not be monotone in general. Consider the following example.

8An implementation of the function in Eq. (11), as well as the other functions consid-
ered here can be found at http://aggregationfunctions.wordpress.com .
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(a) (b)

Figure 2: Shows an example of the di↵erence between the penalties used for a
single interval as opposed to 2 distinct intervals. In this case, the overall penalty
is minimized by using a single interval.

Example 5. Suppose we have the inputs A1 = h[0.1, 0.3], [0.4, 0.5]i and A2 =
h[0.2, 0.4], [0.7, 0.9]i. This gives an output

Y = AMNC(A1, A2) = h[0.2, 0.38], [0.6, 0.7667]i

with [ȳ1] taking the average 2
5 [ā11 ] +

2
5 [ā21 ] +

1
5 [ā12 ]. If [ā12 ] is increased from

[0.4, 0.5] to [0.5, 0.6], the penalty is no longer minimized with the current
partition, and [ȳ1] will now only take the average of [ā11 ] and [ā21 ] (in both
directions). As a result, the interval [ȳ1] will decrease. Furthermore, [ȳ2] will
also decrease since it now considers the penalty pI([ȳ2], [ā12 ]) in both direc-
tions. The resulting output is Y 0 = h[0.15, 0.35], [0.6, 0.75]i which intuitively
should be ordered less than Y .

Ensuring monotonicity in this example would require us to fix the in-
tervals used in the calculation of each [ȳj] as is the case for AML. If the
number of sub-intervals of the inputs di↵ers, then there is no consistent way
of achieving this. Fixing each [ȳj] to be obtained with respect to correspond-
ing intervals of the inputs also infers a priori knowledge on relationships that
exist between each of the inputs and their sub-intervals. In some of these
cases, it may make more sense to treat each of these aspects separately and
aggregate accordingly, or alternatively apply pre-processing to the data in
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(a) (b)

Figure 3: Shows an example of the di↵erence between the penalties used for a
single interval as opposed to 2 distinct intervals. In this case, the overall penalty
is minimized by using a single interval.

order to ensure the number of sub-intervals are fixed and relate to the same
aspect of the evaluations.

6. Numeric examples

The use of each of the operators for non-convex interval inputsAMNC , AML

and AMU all make assumptions on the type of data with properties that
should be taken into account depending on the application. For example,
AMU may not be useful for providing a representative value from expert
opinions because it is not idempotent. On the other hand, whilst AML is
idempotent, it is only defined where the number of distinct subsets is fixed
for all of the inputs. Finally, while AMNC is idempotent and makes no as-
sumptions about the relationship between each of the sub-intervals, it is not
monotone and is not appropriate if we are interested in the expectation or
range of possible values from uncertain inputs in a probabilistic sense.

A number of illustrative input sets, each with 4 inputs comprised of 2
distinct sub-intervals are shown in Figure 4 with their values given in Tables
1-2.

The set depicted in Figure 4(a) helps illustrate the idempotency of AMNC

and AML. We note that for AMU here, the output is 5 sub-intervals spread
between the two sub-intervals common to all inputs.
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(a) (b)

(c) (d)

Figure 4: Outputs for AMNC
, AM

L
, AM

U for example input sets of 4 non-convex
subsets of [0, 1]. Example (a) illustrates the idempotency of AMNC and AM

L. In
examples (b)-(d), the output of AMU is an interval coinciding with the upper and
lower bounds of AML.
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Table 1: Aggregation of subsets with two sub-intervals

Example Figure 4 (a) Figure 4 (b)

A1 h[0.2, 0.3], [0.7, 0.8]i h[0.2, 0.3], [0.5, 0.8]i

A2 h[0.2, 0.3], [0.7, 0.8]i h[0.2, 0.3], [0.7, 0.9]i

A3 h[0.2, 0.3], [0.7, 0.8]i h[0.2, 0.3], [0.7, 0.8]i

A4 h[0.2, 0.3], [0.7, 0.8]i h[0.2, 0.3], [0.5, 0.7]i

AMNC h[0.2, 0.3], [0.7, 0.8]i h[0.2, 0.3], [0.6, 0.8]i

AML h[0.2, 0.3], [0.7, 0.8]i h[0.2, 0.3], [0.6, 0.8]i

AMU h[0.2, 0.3], [0.325, 0.425], h[0.2, 0.8]i
[0.45, 0.55], [0.575, 0.675],

[0.7, 0.8]i

For the set in Figure 4(b), AMNC and AML coincide once again as the
inputs form two distinct groups, which are hence aggregated separately by
these operators. AMU in this case is a single convex interval which encom-
passes these evaluations.

The sets in Figures 4(c) and 4(d), also show inputs that could be par-
titioned into two distinct groups, however in the case of some inputs, both
sub-intervals are aligned with a single group. In these cases, the upper inter-
val of AML is brought down by these evaluations to a greater degree than
the upper interval of AMNC .

For these particular examples, there are only slight di↵erences between
the aggregated results for AML and AMNC . It should be noted that while
the calculation of AMU or AMNC are both suitable for inputs with a di↵erent
number of distinct sub-intervals, they require much more computation time.

Remark 7. We can also mention the outputs that would result if using the
Frechet mean and the distance d defined between non-convex intervals and
real values. For all input sets, there is at least one point of intersection,
so we obtain the outputs: (a) h[0.2, 0.3], [0.7, 0.8]i; (b) h[0.2, 0.3], {0.7}i; (c)
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Table 2: Aggregation of subsets with two sub-intervals

Example Figure 4 (c) Figure 4 (d)

A1 h[0.2, 0.3], [0.7, 0.8]i h[0.1, 0.5], [0.7, 0.8]i

A2 h[0.2, 0.3], [0.7, 0.8]i h[0.2, 0.3], [0.75, 0.85]i

A3 h[0.1, 0.2], [0.3, 0.4]i h[0.1, 0.2], [0.3, 0.4]i

A4 h[0.1, 0.2], [0.3, 0.4]i h[0.3, 0.5], [0.8, 0.9]i

AMNC h[0.18, 0.28], [0.5667, 0.6667]i h[0.2111, 0.4], [0.6857, 0.7857]i

AML h[0.15, 0.25], [0.5, 0.6]i h[0.175, 0.375], [0.6375, 0.7375]i

AMU h[0.15, 0.6]i h[0.175, 0.7375]i

h{0.2}, {0.3}i; and (d) 0.3.

We will now briefly mention some other potential approaches for address-
ing this issue before concluding the paper.

7. Alternative aggregations and future research

The extensions of the arithmetic mean AMNC , AML and AMU all coin-
cide with the arithmetic mean AM I for interval valued inputs (and in turn,
real valued inputs). The following approaches could also be developed.

7.1. Clustering

It is important to note that for each of the given arithmetic mean ex-
tensions, separate intervals of the same input are treated as related to one
another in the aggregation process. However, the problem can also be ap-
proached by treating these sub-intervals as independent evaluations. For
example, we can take the average of all inputs,

Y =
1

nP
i=1

mi

nX

i=1

miX

ji=1

[āiji ] .
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Further, we can partition the sub-intervals as we do for AMNC and de-
fine Y such that it is composed of m sub-intervals, each calculated as the
arithmetic mean of one of the partitions. This can be framed as an m-means
clustering problem. We start with a randomly assigned non-convex subset Y
with m distinct intervals and then calculate the closest intervals to each of
the j sub-intervals. We then update Y such that each of the [ȳj] are calcu-
lated from these intervals (leaving [ȳj] unchanged if there are no intervals in
its cluster. For the input sets from Figure 4(a) and (b), the partition of the
two clusters will be as it is for AMNC and AML and the outputs will be the
same. For the sets in Figure 4(c) and (d), the two clusters will again match
the partitioning used by AMNC , however now we calculate the [ȳ1] and [ȳ2]
solely from the separated clusters. So in (c), [ȳ2] is calculated as the mean of
[ā12 ] and [ā22 ] and in (d), [ȳ2] is the average of [ā12 ], [ā22 ] and [ā42 ]. In general,
this clustering approach has the potential to get caught in a local optimum,
however with 10 random initializations and 10 iterations, the outputs for the
input sets from Figure 4(c) and (d) are determined to be h[0.2, 0.3], [0.7, 0.8]i
and h[0.2, 0.38], [0.75, 0.85]i respectively (which di↵ers to AMNC and AML).
However, this approach is not a true generalization of the arithmetic mean
since for standard real-values, the output will not coincide with the standard
arithmetic mean. For example, providing two real inputs a1 and a2 could
result in the output comprised of the non-convex set h[ā1], [ā2]i.

7.2. Internal functions

To restore idempotency but also ensure that the output is as close as
possible to all sub-intervals of the inputs, we could also define Y to be the
Ai (taken from the set of inputs) that minimizes the overall penalty, i.e.

f INT (A1, A2, . . . , An) = arg min
Y=A1,A2,...,An

nX

i=1

miX

ji=1

mX

j=1

p([āiji ], [ȳj]). (12)

We hence choose the input which disagrees least with the remaining inputs
as our representative. If we use the squared di↵erences for our penalty, this
method could still be seen as an extension of the arithmetic mean, however
we note once again that it will not be a true generalization since the standard
arithmetic mean is not internal for real inputs.
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8. Conclusion

Here we have considered existing extensions of averaging aggregation
functions to inputs expressed as non-convex intervals and proposed an al-
ternative aggregation operator by using a novel penalty function. We com-
pared this operator to existing approaches with some numerical examples.
The operators coincide if the inputs are standard intervals or real-valued in-
puts, however the new operator AMNC is idempotent for non-convex interval
valued inputs and is able to handle a di↵ering number of sub-intervals. It
provides a useful way to aggregate such inputs into an output defined over the
same space that is representative, giving some indication of what is “typical”.

We noted that whereas for interval inputs and real inputs the proper-
ties of averaging behavior and idempotency are equivalent, the di�culty in
defining monotonicity for inputs composed of di↵erent numbers of distinct
intervals has implications on the relationship between these properties and
their usefulness for practical contexts would need to be considered separately.

Key to the selection of which operator is most suitable for a given context
is an understanding of the purpose served by the aggregation operator -
whether it is providing a score for comparison, giving an idea of possible
outputs relative to uncertainty around the inputs, or summarizing the data
with a representative value.
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[13] C. E. Ginestet, A. Simmons, and E. D. Kolaczyk. Weighted Frechet
means as convex combinations in metric spaces: Properties and gener-
alized median inequalities. Statistics and Probability Letters, 82:1859–
1863, 2012.

[14] M. Grabisch, J.-L. Marichal, R. Mesiar, and E. Pap. Aggregation Func-
tions. Cambridge University press, Cambridge, 2009.

28



[15] Z. Guo, T. M. Gill, and H. G. Allore. Modeling repeated time-to-event
health conditions with discontinuous risk intervals. an example of a lon-
gitudinal study of functional disability among older persons. Methods
of Information in Medicine, 47(2):107–116, 2008.

[16] G. Ligozat. Qualitative Spatial and Temporal Reasoning. John Wiley &
Sons, Hoboken, NJ, USA, 2013.

[17] Y.-H. Lin, P.-C. Lee, and H.-I. Ting. Dynamic multi-attribute deci-
sion making model with grey number evaluations. Expert Systems with
Applications, 35:1638–1644, 2008.

[18] S. Miyamoto. Multisets and fuzzy multisets. In Liu Z.-Q. and
S Miyamoto, editors, Soft computing and human-centered machines,
pages 9 – 33. Springer, 2000.

[19] S. Miyamoto. Remarks on basics of fuzzy sets and fuzzy multisets. Fuzzy
Sets and Systems, 156:427 – 431, 2005.

[20] I. Molchanov. Theory of random sets. Springer, 2005.

[21] D. G. Nimmo, L. T. Kelly, L. M. Spence-Bailey, S. J. Watson, A. Haslem,
J. G. White, M. F. Clarke, and A. F. Bennett. Predicting the centure-
long post-fire responses of reptiles. Global Ecology and Biogeography,
21:1062 – 1073, 2012.

[22] V. Torra. Hesitant fuzzy sets. International Journal of Intelligent Sys-
tems, 25:529 – 539, 2010.

[23] V. Torra and Y. Narukawa. Modeling Decisions. Information Fusion
and Aggregation Operators. Springer, Berlin, Heidelberg, 2007.

[24] V. Torra and Y. Narukawa. On hesitant fuzzy sets and decision. In
The 18th IEEE International Conference on Fuzzy Systems, pages 1378
– 1382, Jeju Island, Korea, 2009.

[25] R. Verde and A. Irpino. A new interval data distance based on the
wasserstein metric. In Data Analysis, Machine Learning and Applica-
tions, pages 705 – 712. Springer Berlin Heidelberg, 2008.

29

Simon James




[26] C. Wagner, D. T. Anderson, and T. C. Havens. Generalization of the
fuzzy integral for discontinuous interval- and non-convex interval fuzzy
set-valued inputs. In IEEE International Conference on Fuzzy Systems,
pages 1–8, 2013.

[27] R. R. Yager. On the theory of bags. International Journal of General
Systems, 13:23 – 37, 1986.

[28] R. R. Yager and A. Rybalov. Understanding the median as a fusion op-
erator. International Journal of General Systems, 26(3):239–263, 1997.

[29] Y. Yang and R. John. Grey sets and greyness. Information Sciences,
185:249 – 264, 2012.

[30] Y. Yang, S.-F. Liu, and R. John. Uncertainty representation of grey
numbers and grey sets. IEEE Transactions on Cybernetics, under re-
view, 2013.

30


