

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in :

Horizons in Computer Science Research

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa24739

Book chapter :

Peng, Z. & Laramee, B. (2013). Design and Implementation of a System for Interactive, High-Dimensional Vector

Field Visualization. Horizons in Computer Science Research,

This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the

terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions.

When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO

database to judge whether or not it is copyright safe to add this version of the paper to this repository.

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

http://cronfa.swan.ac.uk/Record/cronfa24739
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

Computer Modeling: New Research 2012
Guests
(Editors)

Volume 0 (2012), Number 0

Design and Implementation of a System for Interactive
High-Dimensional Vector Field Visualization

Zhenmin Peng, Zhao Geng, and Robert S. Laramee

The Department of Computer Science, Swansea University, United Kingdom.
Email:{cszp, cszg r.s.laramee}@swansea.ac.uk

Abstract
Although the challenge of 2D flow visualization is deemed virtually solved as a result of the tremendous amount
of effort invested into this problem, high-dimensional flow visualization, (e.g. the visualization of flow on surfaces
in 3D (2.5D), the volumetric flow (3D), and flow with several attributes (nD)), still poses many challenges and
unsolved problems. In this paper we describe the design and implementation of a generic framework incorporat-
ing a selection of related scientific and information visualization techniques which are designed and integrated to
provide the user solutions for effective visualization of the high-dimensional CFD flow simulation data. In con-
trast to most research prototypes, the system we present handles real-world, unstructured simulation data. Our
framework provides direct, feature-based and geometric flow visualization techniques and supports information
visualization approaches, such as a tabular histogram, velocity histogram, and parallel coordinate plot. In order
to enable a smooth and efficient user interaction, these visualization options are systematically combined on a
multi-threading platform which ensures responsiveness even when processing large high-dimensional data.

1. Introduction

Over the last three decades, computational fluid dynamics
(CFD) has developed very rapidly. Its applications range
widely from the automotive industry to medicine [LEG∗08].
This is because CFD modeling and simulation speed up the
manufacturing process. Constructing objects and simulating
experiments in a software environment is normally faster and
cheaper than building and testing physical hardware coun-
terparts in real world. As another important part of the CFD
pipeline, the visualization process not only provides the en-
gineer the visual result of the simulation, but also verifies
or conflicts with the results expected by the engineer so that
the original model design can be approved or improved. The
CFD process, illustrated in Figure 1, is composed of three
main stages:

1. Modeling: a 3D structured or unstructured, volumetric or
surface mesh is generated to model the physical object.
This procedure is based on computer aided design (CAD)
modeling.

2. Simulation: a computational simulation of a fluid through
the given model in the previous stage is computed in a 3D
simulation environment with a set of given initial condi-
tions.

3. Visualization: the simulation result is explored, analyzed,
and visualized in different ways according to different
needs.

Since the size, complexity and dimensionality of the CFD
simulation data have dramatically increased in recent years,
so has the need for visualization which provides quick and
effective insight into the data [PL09]. In order to present a
visualization toolkit which is capable of dealing with large,
complicated, and high-dimensional CFD simulation data,
a comprehensive and versatile visualization framework is
needed. In this paper we focus on the design and implemen-

Figure 1: The CFD process is composed of modeling, simu-
lation, and visualization stages.

submitted to Computer Modeling: New Research (2012)

2 Z. Peng & Zhao Geng & R. S. Laramee / Design and Implementation of an Interactive Flow Visualization System

Figure 2: An overview the application framework.

tation of a generic visualization framework which provides
the user solutions for effective visualization of the high-
dimensional CFD simulation data by combining several sci-
entific and information visualization techniques. This visu-
alization framework yields following benefits:

• The framework handles versatile real-world, unstructured
2.5D, 3D, and nD CFD simulation data.

• Direct, geometric, and feature-based flow visualization
techniques are integrated in order to support the CFD en-
gineer with intuitive and rich visualizations for effective
visual analysis.

• Information visualization approaches, such as tabular his-
togram, velocity histogram, and parallel coordinate plot
(PCP), are incorporated to enable engineers to gain an in-
depth analysis of the simulation data and thus focus on
parts they deem interesting.

• Smooth and efficient user interaction is ensured by our
multi-threading application, even when large data sets are
processed.

• Our flow visualization framework is platform independent
in terms of both hardware and software.

• The framework is a open source project with simple API
provided. The full system document generated by Doxy-
gen [vH] is available online (http://cs.swan.ac.
uk/~cszp/mt_docs/index.html). Bob’s coding
conventions [Lar10] are applied.

We discuss the details of several aspects related to the
design and implementation of our flow visualization frame-
work. The corresponding advantages and disadvantages are
also discussed. Our presentation here provides much more
detail about the design and implementation of our software
than a typical visualization research paper. Also, typical re-
search prototypes are unable to process real-world CFD data
(like that we present here).

The rest of the paper is organized as follows: Section 2
provides an overview of related research work. Section 3
discusses the overall design of the visualization framework

while details of implementation and design of our flow vi-
sualization framework are presented in Section 4. Section 5
evaluates the design and implementation and discusses some
advantages and disadvantages of the framework. Conclu-
sions and suggestions for future work are presented in Sec-
tion 6.

2. Related Work

In this section, we discuss some design and implementation
related work. Baldonado et al. [WBWK00] present a set of
guidelines for system designers to make the design of a sys-
tem with multiple views more systematic and efficient. The
first four guidelines (diversity, complementarity, parsimony,
and decomposition) provide the designers with suggestions
on selection of multiple views. The last four (space/time re-
source optimization, self-evidence, consistency, and atten-
tion management) help designers make decisions on view
presentation and interaction.

Doleisch et al. [DGH03] [Dol07] describe the design and
implementation of the SimVis which enables interactive vi-
sual exploration and analysis of large, time-dependent, and
high-dimensional data sets resulting from CFD simulation.
Weaver [Wea04] discusses the design of a multiview visual-
ization system, Improvise, which utilizes a shared-object co-
ordination mechanism using visual abstraction language. He
also presents a cross-filtered views implementation [Wea09]
based on Improvise for multiple dimensional visual analysis.
Laramee et al. [LHH05] describe the design and implemen-
tation of a flow visualization subsystem which utilizes the
geometric and texture-based flow visualization techniques.
In order to guarantee the quick responsiveness for user in-
teraction even when dealing with large data, Piringer et
al. [PTMB09] present a generic multi-threading architec-
ture which allows early cancellation of the visualization
thread due to user interaction without common pitfalls of
multi-threading. They also present an interactive visualiza-
tion toolkit, HyperMoVal [PBK10], as an implementation of

submitted to Computer Modeling: New Research (2012)

Z. Peng & Zhao Geng & R. S. Laramee / Design and Implementation of an Interactive Flow Visualization System 3

Figure 3: A screen shot of our flow visualization framework applied to visualize the flow past marine turbines [PGSC11]. The
multi-linked application GUI consists of three distinct parts: (1) Information Visualization Windows (outlined in red) providing
various data drilling widgets such as histogram table, parallel coordinate plot, etc. (2) A Scientific Visualization Window
(outlined in green) rendering the final visual result in 3D based on the filtered data. (2) The tabbed Console Menu (outlined in
sky blue) enables the user to update the parameters intuitively and interactively.

this architecture in practice. Fisher et al. [FDFR10] present
a framework called WebCharts by which existing informa-
tion visualizations can be plugged into a variety of host ap-
plications. WebCharts is like a API of visualization library
which encourages greater reuse of existing visualization in
host applications, so that users can do visualization locally,
yet new visualizations can be updated and obtained via the
API from related websites. Peng et al. [PGSC11] present a
multi-linked framework which provides customized visual-
ization techniques for engineers to gain a fast overview and
intuitive insight into the flow past the marine turbine.

3. Overview of Visualization System Design

Figure 2 illustrates an overview of the framework. The in-
put is the CFD flow simulation and associated mesh. It is
characterized by the high-dimensional data which includes
position, velocity and various simulation attributes such as
pressure, viscosity, turbulent kinetic energy, etc. Since the
mesh is often unstructured and adaptive resolution, the mesh
manager is used to compute and store the mesh topology in-
formation as a preprocessing step. After the mesh adjacency
construction, various information visualization approaches
are employed to gain insight into the data. The histogram ta-
ble provides an intuitive overview of the multi-dimensional
attributes of the whole simulation. After gaining an overview
based on the histogram table, the user can focus on attributes
they deem interesting, while the polar histogram and PCP

simultaneously depict the details of the focus attributes. The
polar histogram presents an intuitive visual summary of the
flow velocity distribution. The PCP highlights the relation-
ship between CFD attributes to support exploration and anal-
ysis. Several flow visualization approaches are applied to
provide rich visual analysis. Interactive glyph visualization
provides a quick and direct hands-on exploration on the vec-
tor field, while a continuous representation can be obtained
by a geometric flow visualization such as streamlines. The
automatic vector field clustering produces intuitive and in-
sightful images of vector fields. The user can interact be-
tween different information visualization approaches to ob-
tain the final scientific visualization result. Figure 3 shows
our application based on this framework.

4. System Design and Implementation

In following subsections, we describe two main subsystems
in more detail about design and implementation: the In-
formation Visualization Subsystem and the Scientific Vi-
sualization Subsystem. This is where the majority of our
research work was done. These two subsystems involve a
fairly complex set of classes and associated responsibilities.
In order to elaborate these intuitively and show the frame-
work is really working, Standard UML diagrams [Fow03]
and Doxygen diagrams [vH] generated based on a project
named “Marine Turbine Visualization” [PGSC11] are pro-

submitted to Computer Modeling: New Research (2012)

4 Z. Peng & Zhao Geng & R. S. Laramee / Design and Implementation of an Interactive Flow Visualization System

Figure 4: The processing pipeline of the histogram table vi-
sualization design.

vided. User Interface Design is also presented with details
at the end of this section.

4.1. Information Visualization Subsystem

Here we detail how the information visualization subsystem
is designed and implemented. Each part of the subsystem is
examined with details such as the class relationship, the hi-
erarchy of class components, the collaboration between dif-
ferent classes.

4.1.1. Histogram Table Visualization

In order to quickly and efficiently present a large amount
of multidimensional data, it’s desirable to provide a quick
overview of the entire data set. For this, we incorporate a his-
togram table. See Figure 5. The histogram table represents
the distribution of multidimensional information across the
data set in an interactive visualization. Figure 4 illustrates the
main processing pipeline of the histogram table visualization
subsystem. The input and output data is shown in rectangles
with rounded corners and processes are shown in boxes.

The mesh manager preprocesses the input CFD flow sim-
ulation data and related mesh in order to obtain the mesh
topology information and the range of values for each sim-
ulation attribute. After the user specifies their input require-
ments for the histogram table, such as the bin number of each

Figure 5: A histogram table is used to provide an overview
of the multidimensional information from the turbines simu-
lation [PGSC11].

Figure 6: A screen shot of relationship among the major
components of histogram table visualization implementa-
tion. UML notation is used.

histogram, the histogram height, the order of attributes and
the color-mapping parameters, a table model is generated to
group the preprocessed values into clusters. Based on the ta-
ble model, the table view renders a histogram table which
enables the user interaction on the table model. The user is
able to select the items from the histogram table for further
exploration.

In order to illustrate the class relationship among the ma-
jor components of the histogram table implementation, a
UML class diagram [Fow03] is drawn in Figure 6. The black
diamond shape arrow indicates the composition which de-
fines a “owns a” relationship while the white shows a “has
a” aggregation relationship. A 1 or ∗ in the figure repre-
sents the multiplicity of the relationship. For example, the
TableItem Model object is owned by the Histogram Table
object and the relationship is one-to-one. Here we describe
the major components shown in Figure 6. The Histogram
Table is the class with the most responsibilities shown in
Figure 4. The Mesh Manager class is responsible for pro-
cessing and managing the raw CFD data from CFD flow
simulation. All the information used in this subsystem is fil-
tered and provided by the mesh manager. The TableItem

Figure 7: A polar histogram is used to illustrate the velocity
distribution of the tidal flow around the blade element.

submitted to Computer Modeling: New Research (2012)

Z. Peng & Zhao Geng & R. S. Laramee / Design and Implementation of an Interactive Flow Visualization System 5

Figure 8: The processing pipeline of the polar histogram
visualization design.

Model object is responsible for defining a table model which
contains all the grouped information and delegates access to
data. The Model index is the index object for locating data in
the table model. The TableItem View object is used to dis-
play data from the TableItem Model. The TableItem Model
and the TableItem View are constructed based on the mod-
el/view architecture. The Selection Handler class is respon-
sible for tracking and managing the user selection from the
table view. The Widget Painter class provides the general
2D rendering mechanism for the histogram table.

4.1.2. Polar Histogram Visualization

In order to visualize the direction in which the majority or
minority of velocity of the whole domain or the user se-
lected region points, we have a view called the polar his-
togram which is originally inspired from the global animal
tracking visualization by Grundy et al. [GJL∗09] for an in-
tegrated view of velocity distribution in a 3D spherical co-
ordinate system. See Figure 7. This visualization delivers an
intuitive and direction-oriented visual result of the velocity
distribution. Figure 8 demonstrates the main design pipeline
of this visualization subsystem. Similar to the first step of the
histogram table, the preprocessed mesh and simulation data
are obtained as the input by the mesh manager. The polar
histogram is initialized as a sphere wireframe whose bin res-
olution is specified by the user. Each cell of the sphere wire-
frame depicts a range and frequency of velocity direction.

Figure 9: A screen shot of relationship among the major
components of polar histogram visualization implementa-
tion. UML notation is used.

Figure 10: A class hierarchy of object Renderer options.
UML notation is used.

Based on the user selection of the data, sphere stacks are gen-
erated on top of the corresponding sphere wireframe cells
with height associated to the frequency of vectors pointing
in the direction. Finally stacks are rendered with arrow tips
to represent the direction.

4.1.3. Parallel Coordinate Plot

Figure 9 shows the class relationship between the major
components of the polar histogram subsystem implemen-
tation, again using UML notation. As the core class Po-
lar Histogram coordinates other classes to fulfill all design
steps in Figure 8. A sphere wireframe with user specified
bin resolution is defined to represent different ranges of ve-
locity direction in 3D space by the Sphere Framer class.
Based on the velocity information provided from the raw
CFD data by the Mesh Manager class, the Stack Accu-
mulator Thread class calculates the frequency of vectors
pointing to each velocity direction range (cell) on the sphere
wireframe. The multi-threading is applied to make this com-
putation independent from the main working thread in or-
der to prevent the interface from locking up. After the fre-
quency of each cell is obtained, a stack with height associ-
ated to the frequency is defined as a cuboid with a pyramid-
shaped top by the class Stack Packer. The OpenGL Ren-
derer is responsible for general rendering of primitives such
as points, lines, and polygons. Figure 10 shows our Ren-
derer options displayed in the class hierarchy in which they

Figure 11: A screen shot of the parallel coordinate plot vi-
sualization. The user selection is highlighted in magenta.

submitted to Computer Modeling: New Research (2012)

6 Z. Peng & Zhao Geng & R. S. Laramee / Design and Implementation of an Interactive Flow Visualization System

Figure 13: A collaboration diagram generated by Doxygen for the class GL_ParallelCoordinates as the core class in PCP
visualization.

were designed and implemented. The hierarchy, following
UML notation [Fow03], illustrates the is-kind-of relation-
ship between rendering classes. At the top of the hierar-
chy the abstract base class, Renderer, describes attributes
and behaviors that all rendering objects have, such as color,
lighting, anti-aliasing etc. So there is no need to rewrite code
for these in other rendering objects but simply inherit these
features from this parent class. This type of design makes
the project implementation more efficient and controllable.
In this case, the sphere wireframe is rendered by the Line
Renderer class and the pyramid-shaped stack is rendered
by join of the Triangle Renderer class and the Quad Ren-
derer class. In order to make the final rendering result more

Figure 12: The processing pipeline of the parallel coordi-
nate plot visualization design.

aesthetically pleasing, a GLSL Shader class is used to pro-
vide direct control of rendering effects on graphics hardware
with a high degree of flexibility.

The correlation of simulation attributes of the CFD simu-
lation dataset is deemed interesting and important by CFD
engineers. Identification of these correlations and clusters
from the multivariate data is the strength of Parallel Coor-
dinate Plot (PCP) introduced by Al Inselberg [ID87]. A PCP
subsystem is integrated to help the user further analyze and
explore the multivariate CFD data. (Figure 11) By interact-
ing with the PCP an intuitive pattern of attribute relationship
of user selection is highlighted. Figure 12 illustrates the de-
sign pipeline of PCP subsystem. After the user brushes a
portion of the data and specifies which attributes to be inves-
tigated for the initialization of PCP, polylines which reflect
the correlation between each attribute are generated. Each
axis represents the distribution of a specific attribute. The
name of the attribute is labeled with minimum and maxi-
mum values.

In stead of using UML structure diagrams such as class
diagrams in Figure 6 and 9, the implementation of PCP is
illustrated using the UML behavior diagram - a collabora-
tion diagram produced from our marine turbine project by
Doxygen [vH] in Figure 13. Doxygen is a widely used docu-
mentation system for various programming languages. It can

submitted to Computer Modeling: New Research (2012)

Z. Peng & Zhao Geng & R. S. Laramee / Design and Implementation of an Interactive Flow Visualization System 7

Figure 14: Examples show direct visualization results from some our projects. (left) The glyph placement is directed by the
user controlled resampling Cartesian grid on the geometry surface [PL08]. Each glyph is placed at the center of each cell to
directly reveal the direction and magnitude information of the vector at that position. (middle, right) Some range glyphs are
also applied along with arrow glyphs to provide statistical information of the vector field variance [PGL∗11]. (middle) The
ring-shaped magnitude-range glyph is used to visualize the variation in vector field magnitude within each cluster while (right)
the cone-like direction-range glyph depicts the range of direction.

produce a collaboration diagram to visualize the interactions
between classes. In Figure 13 the PCP main class is pre-
sented as a filled gray box named GL_ParallelCoordinates.
It directly employs four elements: Coord3D, DataProces-
sor, PolylineGenThread, and PolylineRender. The inter-
active collaboration between each component is detailed in
following:

• Coord3D is a 3D coordinate class which provides
methods accessing x, y, and z coordinates. Two mem-
ber objects of this class, m_Canvas_BottomLeft and
m_Canvas_TopRight, are used as two bounding points,
bottom left and top right, to initialize the canvas region for
drawing polylines by GL_ParallelCoordinates.

• DataProcessor is a data handler class that processes the
raw CFD data from data files and provides all the infor-
mation required by each computation and visualization
component in the system. This class is the implementa-
tion of the mesh manager in Figure 12. During the data
processing the multidimensional information associated
with each vertex can be obtained and stored using the ver-
tex class Vertex_MD. Vertex_MD is inherited from its
parent class Vertex which has ability to accessing posi-
tion and vector information. Vertex_MD also maintains
other simulation attributes such as pressure, mesh resolu-
tion, etc. Color is used to present the color attribute of
the vertex according to a given color mapping during the
visualization.

• PolylineGenThread is mainly responsible for gener-
ating the polylines for PCP visualization. The multi-
threading technique is applied to accelerate the com-
putation and make sure the polyline generation process
does not freeze the main thread. In the implementation
of GL_ParallelCoordinates two independent objects of
PolylineGenThread are created to handle different com-

putation requests. m_PLGenThread is the default work-
ing thread to generate the polylines based on the input
data. m_UserSelectionGenThread is more specific. It fo-
cuses on the polylines selected by the user from those
previously generated by m_PLGenThread. This imple-
mentation enables the user interactively select polylines
deemed interesting for further exploration even the gen-
eral polyline generation by m_PLGenThread is still pro-
cessing.

• PolyLineRender is a renderer class which is inher-
ited from Render. See Figure 10. This component
is associated with PolylineGenThread. After poly-
lines are generated and grouped by PolylineGen-
Thread, PolyLineRender stores them into display lists
for the final OpenGL rendering. m_PLRenderer and
m_UserSelectionRenderer are generated for rendering
different groups of polylines.

4.2. Scientific Visualization Subsystem

The scientific visualization subsystem is designed and im-
plemented to provide the 3D spatial result of the filtered flow
data from information-assisted views. Scientific techniques
for flow visualization can be categorized into four groups: di-
rect, geometric, texture-based and feature-based [PVH∗03].
In our framework the direct, geometric and feature-based vi-
sualization techniques are utilized for the user to investigate
the flow at different levels of abstraction. The design and im-
plementation detail of each of these techniques is provided
in following subsections.

4.2.1. Direct Flow Visualization

Direct flow visualization is the most basic and intuitive visu-
alization category. It directly maps the visual representation

submitted to Computer Modeling: New Research (2012)

8 Z. Peng & Zhao Geng & R. S. Laramee / Design and Implementation of an Interactive Flow Visualization System

Figure 16: (left) A collaboration diagram for the glyph VBO class. (right, top) The triangle fan VBO class is used to generate
the cone-like head of the arrow glyph by tiling triangle in the fan fashion. (right, middle) The tube-like tail of the glyph is
accomplished by rolling the quad strip using the quad strip VBO class. (right, bottom) by combining the previous two VBOs the
final arrow glyph VBO is obtained.

to the data samples without complex transformations or in-
termediate computation. Color mapping and arrow glyphs
are the most representative examples of this category. Note
that our design and implementation of direct flow visual-
ization subsystem focuses on glyph-based flow visualization
such as arrow glyphs rather than the color coding.

The pipeline of our direct flow visualization subsystem is
shown in Figure 15. Based on the data sample the user spec-
ifies for visualization, arrow glyphs with corresponding ori-
entation and color are generated to depict the vector field at
the seeding point. Glyphs are rendered along with the origi-
nal geometry to form the final result.

Direct flow visualization is fully implemented in our
projects and some example results are shown in Figure 14.
It has been used for 2.5D (surface-based) flow visualiza-
tion [PL08] [PGL∗11] and 3D flow visualization [PGSC11].

Figure 15: The processing pipeline for the direct flow visu-
alization subsystem.

It is worth pointing out that although glyph flow visualiza-
tion attempts to present intuitive visualization of the vector
field of the sample data quickly, the visualization can still
suffer from performance issues if glyphs are naively imple-
mented for the large dataset visualization. In order to main-
tain the high performance of the glyph implementation, the
new OpenGL extension - Vertex Buffer Object (VBO) [Ope]
is used. VBO allows vertex array data to be stored in high-
performance graphics memory rather than the system mem-
ory and promotes efficient data transfer, which enables sub-
stantial performance gains and more flexibility for the dy-
namic glyph object implementation. We don’t go through the
detail of VBO here. For more information the official white
paper [Ope] is recommended.

In Figure 16 the collaboration diagram shows how each
component VBO class is used to form the arrow glyph
VBO. GlyphVBOs, TriangleFanVBOs, and QuadStripV-
BOs are classes inherited from ObjectVBOs class which
provides the basic VBO operations such as providing at-
tribute arrays for creating VBOs, resetting attribute arrays,
etc. Based on the parent class ObjectVBOs the Triangle-
FanVBOs class creates VBOs in the fashion of the triangle
fan while the QuadStripVBOs class uses quad strips. The
arrow head of GlyphVBOs is described by the Triangle-
FanVBOs class with a cone tiled by a triangle fan which
consists of 10 vertices and 16 triangles by default. See Fig-
ure 16. And the tube shaped tail is represented by the Quad-
StripVBOs with a default 8 adjacent quads, shown in Fig-
ure 16. Note that the resolution of TriangleFanVBOs and
QuadStripVBOs can be customized by the user even the de-
fault values are provided. VBOs are also used with other vi-
sualization subsystems such as the following geometric flow
visualization.

submitted to Computer Modeling: New Research (2012)

Z. Peng & Zhao Geng & R. S. Laramee / Design and Implementation of an Interactive Flow Visualization System 9

Figure 17: Results of Geometric flow visualization implementation in our projects. (left and middle) Color coded streamlines are
used to depict the underlying boundary flow characteristics. (middle) The evenly-spaced streamline technique [SLCZ09] [JL97]
can be applied regardless of the associated mesh resolution. (right) Shaded streamlines deliver more depth percept for visual-
ization.

4.2.2. Geometric Flow Visualization

Visualization of this type generates continuous geometric
objects which reflects the underlying vector field. During
the computation the missing velocity field between original
sparse samples can be reconstructed and applied to the ge-
ometric objects by using interpolation and integration. This
visualization can provide a coherent visual result of underly-
ing vector field. Some implementation results are shown in
Figure 17. In what follows, we discuss the design and im-
plementation of our geometric flow visualization subsystem.
Note that it focuses on the geometric objects using integra-
tion such as streamlines and tubes rather than other geomet-
ric objects such as isosurfaces, since the complete coverage
of the geometric techniques is beyond this work. See the
survey by McLoughlin et al. [MLP∗10] for more research
results in this area.

Figure 18 illustrates the main processing pipeline for the
geometric flow visualization subsystem. The simulation data
is the input for the process. After the user specifies the

Figure 18: The processing pipeline for the geometric flow
visualization subsystem.

data sample and the configuration attributes such as seed-
ing requirements, the initial seeding positions are generated.
Based on these seeds, the streamline is traced by the numer-
ical integration and interpolation. The construction of the
streamline is iterative and interactive: an interactive stream-
line adjustment step is involved at each iteration of the con-
struction to make sure the updated user requirements can
be met as soon as possible such as changing the distance
between each streamline in evenly spaced streamline visu-
alization [JL97] [SLCZ09]. After the object geometries are
ready, the last step is rendering. Feedback from the rendering
result helps the user to refine the configurations. The main
process of the implementation step is demonstrated by the
collaboration diagrams of class StreamGenerator and class
StreamTubeRenderThread in Figure 19.

The StreamGenerator class is designed to trace and val-
idate all the stream seeding points and then output each
streamline as an array of points. This class provides meth-
ods needed by the streamline integration and streamline ad-
justment stages in the design process. In Figure 19 (left)
as the component classes DataProcessor and Vertex_MD
have been explained in the PCP section, the functions pro-
vided here are very similar, so we focus on the other two
classes which are the core components - Integrator and In-
terpolator.

• Integrator: This class is designed to provide static meth-
ods for various numerical integrations such as the first-
order Euler integration and the second-order Runge-Kutta
integration [PTVF07]. In the subsystem the streamlines
are traced using the Euler integration by default with
the user specified step sizes. After each streamline is
generated by integration, a validation method is provide
by StreamGenerator to check if the generated point is
within the bounding box or not. If it is in the bounding
box the iterative streamline tracing proceeds otherwise the
integration is ended and the resulting integral paths are

submitted to Computer Modeling: New Research (2012)

10 Z. Peng & Zhao Geng & R. S. Laramee / Design and Implementation of an Interactive Flow Visualization System

Figure 19: Collaboration diagrams for the class StreamGenerator and class StreamTubeRenderThread in geometric flow
visualization subsystem. Diagrams are generated by Doxygen.

stored as arrays and handed over to the streamline ren-
derer.

• Interpolator: This class provides various interpolation
schemes in a quad or cube grid cell such as the velocity in-
terpolation, color interpolation, mesh resolution interpola-
tion of a point(1D), a line(2D), or a plane(3D). After each
valid streamline point is obtained from the integration, the
Interpolator class is used to interpolate its attribute val-
ues like velocity, pressure, etc. based on vertices of the
cell which contains this point. By using the interpolation,
vector field information needed for streamline integration
can be reconstructed from the original discrete data sam-
ples.

Once streamlines are generated they are ready for ren-
dering. In our subsystem we have two streamline rendering
mechanisms: the color mapped 2D and 3D streamline ren-
dering and the shaded 3D rendering. The former is simpler
and faster but tends to suffer from visual clutter while the
later is a bit more complex and slower but delivers the better
depth perception of streamlines. Here we look at the shaded
streamline rendering class StreamTubeRenderThread.

The StreamTubeRenderThread class is mainly respon-
sible for extending the streamlines generated from Stream-
Generator to shaded 3D tube-shaped streamlines for render-
ing. This class employs a multi-threading technique since the
tube construction and rendering can be expensive enough to
block the main thread. The collaboration diagram is shown
in Figure 19 (right). To construct the shaded streamlines,

QuadStripVBOs is used to generate a tube segment with
default 8 adjacent quads, like the arrow tail VBO in Fig-
ure 16 (right, middle), around each streamline segment. See
Figure 20. The resolution of the quads can be updated by
the user. This affects the smoothness of the streamline and
the tube construction performance as well. The more quads

Figure 20: This figure demonstrates how the shaded stream-
line is generated by a collection of quad strips.

submitted to Computer Modeling: New Research (2012)

Z. Peng & Zhao Geng & R. S. Laramee / Design and Implementation of an Interactive Flow Visualization System 11

Figure 21: A screen shot of the visual result comparison between the direct flow visualization (left) and the feature-based
visualization (right). (left) The cluttered direct flow visualization can’t do a good job of extracting important flow features.
(middle) Vector field clusters are generated and colored in different colors. (right) Based on the generated clusters, shaded
streamlets with arrow head are applied to reveal some flow features such as vortices and saddle points which are highlighted
by red circles.

used the smoother the tube geometry but the slower the tube
construction. The Distortor class is used to transfer the po-
sition of seeding points according to the mesh resolution so
that more visual detail in regions of interest can be provided
by the distorted streamlines without losing visualization co-
herency [PGSC11].

Note that the streamline generation step and the stream-
line rendering step are separate. The advantage to this type
of design and implementation is once streamlines are gener-
ated they can be reused again and again for different render-
ing options if there is no new seeding requirement from the
user.

4.2.3. Feature-based Flow Visualization

Rather than directly showing the underlying vector field,
feature-based flow visualization is employed to provide
a ’filtered’ visual result by extracting or highlighting the
meaningful patterns such as vortices and saddles from the
simulation data sets. Those extracted parts deemed inter-
esting by users are defined as the feature. For more liter-
ature we refer the interested reader to in-depth surveys of
feature-based flow visualization by Post et al. [PVH∗02] and
Laramee et al. [LHZP07]. In our framework we applied an
image-based vector field clustering approach (IBVFC) pre-
sented by Peng et al. [PGL∗11] as a feature extractor and
highlighter for the flow visualization. By doing a quick and
automatic hierarchical clustering of the vector field accord-
ing to the user specified errors, this feature-based visualiza-
tion approach is able to simplify the result with dense visu-
alization on regions with the most suggestive and important
information and remain sparse on the less important ones.
An example result is shown in Figure 21. Note that in this
section we only focus on this approach closely rather than
other feature-based visualization techniques.

Figure 22 demonstrates the design pipeline of our feature-
based flow visualization subsystem. In brief, our feature-
based flow visualization subsystem simplifies the problem
of clustering vector fields on surfaces by confining the clus-
tering process to image space. After the projection to im-
age space, clusters are only generated for visible regions
of vector fields on the surfaces. Then various visualization
approaches are applied to reflect the vector fields based on
those clusters. The main procedures of our IBVFC visual-
ization subsystem are shown on the right part of Figure 22:
(1) project the vector field to the image plane so that at-
tribute images are obtained, (2) detect geometric edge dis-
continuities based on the depth image, (3) process a bottom-
up hierarchical clustering based on attribute images using a
distance-metric, (4) overlay specified visual representations
of the original surface geometry such as a semi-transparent
representation of the surface with shading, along with (5) the
image overlay glyph or/and streamline visualization which

Figure 22: The processing pipeline for the feature-based
flow visualization subsystem.

submitted to Computer Modeling: New Research (2012)

12 Z. Peng & Zhao Geng & R. S. Laramee / Design and Implementation of an Interactive Flow Visualization System

Figure 23: The relationship among the major components
of the feature based visualization implementation. UML no-
tation is used.

are applied automatically based on the user-defined error
metric and rendering specifications. Additionally, various
enhancements and user options, like distance-metric weight-
ing coefficients, can be used to customize the clustering pro-
cess and thus the final visualization result. It’s also worth
mentioning that if the viewpoint is changed, such as cases of
geometry rotation, translation, and scaling, steps 1-5 of the
pipeline are necessary for the next pass, and only a subset
(steps 4-7) of the algorithm is required for the static cases if
the clustering distance-metric parameters are changed with-
out changing the view-point. Each stage is described in more
detail in previous research [PGL∗11].

Figure 23 outlines the class relationship between the ma-
jor components of the IBVFC visualization subsystem im-
plementation using UML composition notation. The IBVFC
Visualizer class is the core class which coordinates each
component in Figure 22. The Mesh Manager class is re-
sponsible for handling CFD data sets and providing access
to the data information. The Attribute Image Array class
is used to store and manage the projected attribute images
which simplifies the computation from 3D to 2D. This array
is the data source for the IBVFC. A Velocity Image holds all
the projected vector field information which is used to pro-
duce the clusters. The Depth Image stores the depth map of
the projected visible portion. It is used for edge detection.
Other image classes such as the Mesh Resolution Image
in [PGL∗11] can be used to add extra parameters associated
with the error metric which drives the clustering process.
The Binary Tree class is a storage class which is used to
implement the hierarchal cluster structure. Each node of the
binary tree represents a cluster whose error metric reflects its
vector field characteristics. The storage classes, the Lookup
Table and the Neighbor List, are used to accelerate the
cluster searching and merging process. The Image Overlay
class stores perceptual information such as the shading and
the depth map for the final rendering. It is worthy of note that
the IBVFC Visualizer has a “is-part-of” relationship with
the Direct Flow Visualizer and theGeometric Flow Visu-
alizer in Figure 23. This means various visualizations are

Figure 24: A Doxygen inheritance diagram for the console
menu tab window.

plug-ins for IBVFC to reveal vector field clusters with dif-
ferent presentations. This design and implementation makes
the system easier to extend and maintain. If there are new
visualization approaches available for IBVFC we can sim-
ply plug them in. At last OpenGl Renderer wraps up all the
rendering processes.

4.3. User Interface Design and Implementation

Design and implementation of a friendly and effective user
interface (UI) is an essential part of our flow visualization
framework. How to design a good UI is a classic topic in the
field of human-computer interaction (HCI) community. A
literature survey dedicated to the subject is beyond the scope
of this work and we refer the interested readers to some in-
fluential work by Shneiderman [Shn92], Torres [Tor02], and
Cooper and Reimann [CR03]. In the following content we
discuss the design and implementation of important com-
ponents of our framework UI: the graphical user interface
(GUI), the event handler, and the multi-threading platform.
Note that we use QT library [Nok] to implement each above
UI component since the use of QT ensures the platform in-
dependence of the user interface. So related QT classes are
also mentioned in the following subsections.

The Outer Body - Graphical User Interface (GUI) The
GUI serves at the frontline of the user interaction. In our
multi-linked flow visualization framework shown in Fig-
ure 3, each subwindow works as a GUI. Firstly, the tabbed
console menu window (boxed in sky blue in Figure 3) is
used. The tab widget not only groups the interactions for the
same or similar task but also saves screen space by com-
pacting tabs in the same window. Each tab widget of the
console menu is inherited from the class Win_TabWidget
which provides basic QT graphical control elements includ-
ing check-boxes, sliders, drop-down lists, spinners and but-
tons. See Figure 24. The user can specify parameters to se-
lect or update analysis or visualization options by interacting

submitted to Computer Modeling: New Research (2012)

Z. Peng & Zhao Geng & R. S. Laramee / Design and Implementation of an Interactive Flow Visualization System 13

with control elements in the corresponding tab widget. For
example if we want to turn on the slice function along x axis
and specify the slicing position, we go to the ‘Motion Op-
tions’ tab then tick the check-box ‘X-Slice’ and update the
position value by scrolling the spinner next to the check-box.
Additionally, each visualization window is a GUI which sup-
ports mouse-event driven user interactions. Information vi-
sualizations such as histogram table and PCP allow the user
to mouse brush or select the data deemed interesting while
the scientific visualization window provides the hands-on in-
teraction for the rendering result such as translation, rotation,
and zooming.

The Brain - Event Handler After the user input obtained
from GUI, the class ControlPanel is applied as an asyn-
chronous callback center which handles all the correspond-
ing events from GUI such as key presses, mouse movement,
action selections, and timers and then triggers the related
functions or computations. In order to implement this func-
tionality to the ControlPanel class, the Signal-Slot callback
mechanism from QT is used. The concept of Signal-Slot is
that objects can send particular signals containing event in-
formation which can be received by other objects using spe-
cial functions known as slots. The Signal-Slot mechanism is
contained in all classes which are inherited from the class
QObject. This means the mechanism can be easily accessed
and used in almost every class. One more advantage about
the Signal-Slot mechanism is that we can connect as many
signals as we want to a single slot, and a signal can be con-
nected to as many slots as we need. See Figure 25. This flex-
ibility enables the ControlPanel coordinating the communi-
cation between multi-linked views more straightforward and
efficient.

The Nervous System - Multi-threading Platform Since
the size of the simulation datasets tends to be non-trivial,
maintaining the smooth user interaction among the GUI and
rendering a large number of selected objects simultaneously
in visualization views is a challenge. In order to address this
and deliver a smooth and efficient user interaction, a multi-
threading platform inspired by Piringer et al. [PTMB09] is
used. QThread class provided by QT is inherited by each vi-
sualization class so that each visualization view has its own
working thread which is independent from the main work-
ing thread. Based on this, users can interact with the visual-
ization result even as it is still being generated in the back-
ground.

Figure 25: A diagram shows how the QT signal-slot call-
back mechanism works.

5. Discussion and Evaluation

After presenting the design and implementation of our flow
visualization framework, we now discuss the advantages
and disadvantages of implementing each subsystem into the
framework and evaluate the framework against the benefits
specified in Section 1.

Support for Versatile, Real-world, High-dimensional
CFD Data sets Our framework implements a mesh man-
ager which handles a large, varied collection of real-world
CFD data sets: from small geometries to large geometries,
from surface-based flow to volume-based flow, from vector
field information to multidimensional data, from the auto-
motive simulation to the marine turbine simulation data. The
mesh manager is able to convert the data from an ASCII file
to a binary file to accelerate the loading process of a large
data set. However, the mesh manager has its disadvantages:
it has not been separated from the main working thread. So
when a large data set is being loaded the user interaction is
interrupted until the data loading is finished.

Support for a Wide Range of Visualization Techniques
A big advantage of implementing different visualization sub-
systems into the framework is the ability to provide various
visualization options. For information visualization we im-
plement the histogram table, the polar histogram and the par-
allel coordinate plot while the direct, geometric, and feature-
based flow visualization techniques are employed for scien-
tific visualization use. It is helpful to provide CFD engineers
with a wide range of options since each visualization tech-
nique has its own advantages and disadvantages. The usabil-
ity of this framework is approved by CFD engineers based
on their domain expert reviews [PGL∗11] [PGSC11]. It’s
also worthy of note that it is unusual to have this many vi-
sualization options integrated to a research prototype. Natu-
rally there are also disadvantages to integrating various vi-
sualization subsystem into a framework. Firstly, our all-in-
one framework involves a lot of classes, although an object-
oriented design pattern is adopted to reduce the complexity
and the time spent on learning and understanding the process
pipeline. Secondly, large numbers of data transfered simul-
taneously between subsystems may freeze the user interac-
tion. So the way to combine various visualizations needs to
be more efficient, stable and robust.

Interactivity Based on our multi-threading platform, each
visualization subsystem is able to deliver smooth and ef-
ficient user interactions even as the visualization result is
still being generated in the background. However, multi-
threading adds more complexity to the coding and debug-
ging stages.

Platform Independence Platform independence is
achieved through the use of the platform independent li-
braries - QT and OpenGL. QT is an open source cross-
platform application framework which not only provides the
platform independent GUI library but also supports OpenGL
which a widely supported, platform independent graphics

submitted to Computer Modeling: New Research (2012)

14 Z. Peng & Zhao Geng & R. S. Laramee / Design and Implementation of an Interactive Flow Visualization System

library. The downside of QT in this implementation is all
OpenGL related. Firstly, the QT OpenGL API is a bit differ-
ent from the original OpenGL API, which may involve some
learning curve. Secondly, the QT OpenGL library could con-
flict with other OpenGL libraries.

6. Conclusion

We describe the design and implementation of a generic
framework which incorporates information and scientific vi-
sualization approaches to provide effective visual analysis
of CFD flow simulation data. In contrast to most research
prototypes, the system we present handles large, real-world,
high-dimensional data. We discuss the design and imple-
mentation of visualization subsystems of the frame work and
the user interface. We also evaluate the implementation of
this framework by discussing the advantages and disadvan-
tages against the goal of our framework. At last, we believe
the principles outlines in this work can be applied to a more
general way to other similar projects.

7. Acknowledgments

The authors wish to thank A, B, C. This work was supported
in part by a grant from EPSRC.

References
[CR03] COOPER A., REIMANN R. M.: About Face 2.0: The Es-

sentials of User Interface Design. John Wiley & Sons, 2003. 12

[DGH03] DOLEISCH H., GASSER M., HAUSER H.: Interactive
Feature Specification for Focus+Context Visualization of Com-
plex Simulation Data. In Data Visualization, Proceedings of the
5th Joint IEEE TCVG–EUROGRAPHICS Symposium on Visual-
ization (VisSym 2003) (May 2003), pp. 239–248. 2

[Dol07] DOLEISCH H.: Simvis: Interactive Visual Analysis of
Large and Time-Dependent 3D Simulation Data. In WSC ’07:
Proceedings of the 39th Conference on Winter Simulation (Pis-
cataway, NJ, USA, 2007), IEEE Press, pp. 712–720. 2

[FDFR10] FISHER D., DRUCKER S., FERNANDEZ R., RUBLE
S.: Visualizations Everywhere: A Multiplatform Infrastructure
for Linked Visualizations. IEEE Transactions on Visualization
and Computer Graphics 16, 6 (2010), 1157 –1163. 3

[Fow03] FOWLER M.: UML Distilled: A Brief Guide to the Stan-
dard Object Modeling Language, third ed. Object Technology
Series. Addison-Wesley, Sept. 2003. 3, 4, 6

[GJL∗09] GRUNDY E., JONES M. W., LARAMEE R. S., WIL-
SON R. P., SHEPARD E. F.: Visualization of sensor data from
animal movement. Eurographics/ IEEE-VGTC Symposium on
Visualization (Eurovis) 2009, Computer Graphics Forum 28, 2
(June 2009), 815–822. 5

[ID87] INSELBERG A., DIMSDALE B.: Parallel Coordinates for
Visualizing Multi-Dimensional Geometry. In Proceedings of
Computer Graphics International (CGI ’87)) (1987), pp. 25–44.
6

[JL97] JOBARD B., LEFER W.: Creating Evenly–Spaced Stream-
lines of Arbitrary Density. In Proceedings of the Eurographics
Workshop on Visualization in Scientific Computing ’97 (1997),
vol. 7, pp. 45–55. 9

[Lar10] LARAMEE R. S.: Bob’s Concise Coding Conventions
(C3). In Advances in Computer Science and Engineering (ACSE)
(February 2010), vol. 4, pp. 23–26. 2

[LEG∗08] LARAMEE R. S., ERLEBACHER G., GARTH C.,
THEISEL H., TRICOCHE X., WEINKAUF T., WEISKOPF D.:
Applications of Texture-Based Flow Visualization. Engineering
Applications of Computational Fluid Mechanics (EACFM) 2, 3
(Sept. 2008), 264–274. 1

[LHH05] LARAMEE R. S., HADWIGER M., HAUSER H.: De-
sign and Implementation of Geometric and Texture-Based Flow
Visualization Techniques. In Proceedings of the 21st Spring Con-
ference on Computer Graphics (May 2005), pp. 67–74. 2

[LHZP07] LARAMEE R., HAUSER H., ZHAO L., POST F. H.:
Topology-Based Flow Visualization: The State of the Art. In
Topology-Based Methods in Visualization (Proceedings of Topo-
in-Vis 2005) (2007), Mathematics and Visualization, Springer,
pp. 1–19. 11

[MLP∗10] MCLOUGLIN T., LARAMEE R. S., PEIKERT R.,
POST F. H., CHEN M.: Over Two Decades of Geometric Flow
Visualization. Computer Graphics Forum 29, 6 (2010), 1807–
1829. 9

[Nok] NOKIA: QT. http://qt.nokia.com/products/library (last ac-
cessed 25/05/2011). 12

[Ope] OPEGNGL.ORG: Vertex Buffer Object Whitepaper.
http://www.opengl.org/registry/specs/ARB/vertex_buffer_object.txt
(last accessed 02/06/2011). 8

[PBK10] PIRINGER H., BERGER W., KRASSER J.: Hyper-
MoVal: Interactive Visual Validation of Regression Models for
Real-Time Simulation. Computer Graphics Forum 29, 3 (2010),
983–992. 2

[PGL∗11] PENG Z., GRUNDY E., LARAMEE R. S., CHEN G.,
CROFT N.: Mesh-Driven Vector Field Clustering and Visualiza-
tion: An Image-Based Approach. IEEE Transactions on Visual-
ization and Computer Graphics (IEEE TVCG) (2011), forthcom-
ing. 7, 8, 11, 12, 13

[PGSC11] PENG Z., GENG Z., S.LARAMEE R., CROFT N.: Vi-
sualization of Flow Past a Marine Turbine: The Search for Sus-
tainable Energy. Tech. rep., Department of Computer Science,
Swansea University, UK, Dec 2011. 3, 4, 8, 11, 13

[PL08] PENG Z., LARAMEE R.: Vector Glyphs for Surfaces: A
Fast and Simple Glyph Placement Algorithm for Adaptive Reso-
lution Meshes. In Proceedings of Vision, Modeling, and Visual-
ization (VMV) 2008 (Constance, Germany, 8-10 October 2008),
pp. 61–70. 7, 8

[PL09] PENG Z., LARAMEE R.: Higher Dimensional Vector
Field Visualization: A Survey. In Proceedings of Theory and
Practice of Computer Graphics (TPCG ’09) (Cardiff, UK, 17-19
June 2009), pp. 61–70. 1

[PTMB09] PIRINGER H., TOMINSKI C., MUIGG P., BERGER
W.: A Multi-Threading Architecture to Support Interactive Vi-
sual Exploration. IEEE Transactions on Visualization and Com-
puter Graphics 15, 6 (2009), 1113–1120. 2, 13

[PTVF07] PRESS W. H., TEUKOLSKY S. A., VETTERLING
W. T., FLANNERY B. P.: Numerical Recipes 3rd Edition: The
Art of Scientific Computing, 3 ed. Cambridge University Press,
New York, NY, USA, 2007. 9

[PVH∗02] POST F. H., VROLIJK B., HAUSER H., LARAMEE
R. S., DOLEISCH H.: Feature Extraction and Visualization of
Flow Fields. In Eurographics 2002 State-of-the-Art Reports (2–6
September 2002), pp. 69–100. 11

[PVH∗03] POST F. H., VROLIJK B., HAUSER H., LARAMEE
R. S., DOLEISCH H.: The State of the Art in Flow Visualization:

submitted to Computer Modeling: New Research (2012)

Z. Peng & Zhao Geng & R. S. Laramee / Design and Implementation of an Interactive Flow Visualization System 15

Feature Extraction and Tracking. Computer Graphics Forum 22,
4 (Dec. 2003), 775–792. 7

[Shn92] SHNEIDERMAN B.: Designing the User Interface:
Strategies for Effective Computer Interaction, 2nd ed. Addison-
Wesley, 1992. 12

[SLCZ09] SPENCER B., LARAMEE R., CHEN G., ZHANG E.:
Evenly-Spaced Streamlines for Surfaces. Computer Graphics
Forum (2009). forthcoming. 9

[Tor02] TORRES R. J.: Practitioners Handbook for User Inter-
face Design and Development. Prentice Hall, 2002. 12

[vH] VAN HEESCH D.: Doxygen. http://www.stack.nl/ dimitri/-
doxygen/index.html (last accessed 25/05/2011). 2, 3, 6

[WBWK00] WANG BALDONADO M. Q., WOODRUFF A.,
KUCHINSKY A.: Guidelines for Using Multiple Views in In-
formation Visualization. In AVI ’00: Proceedings of the working
conference on Advanced visual interfaces (New York, NY, USA,
2000), ACM, pp. 110–119. 2

[Wea04] WEAVER C.: Building Highly-Coordinated Visualiza-
tions in Improvise. In Proceedings of the IEEE Symposium on
Information Visualization (Washington, DC, USA, 2004), IEEE
Computer Society, pp. 159–166. 2

[Wea09] WEAVER C.: Cross-Filtered Views for Multidimen-
sional Visual Analysis. IEEE Transactions on Visualization and
Computer Graphics 16, 2 (2009), 192–204. 2

submitted to Computer Modeling: New Research (2012)

