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Abstract. An efficient algorithm for the accurate computation of Gauss—Legendre and Gauss—
Jacobi quadrature nodes and weights is presented. The algorithm is based on Newton’s root-finding
method with initial guesses and function evaluations computed via asymptotic formulae. The n-point
quadrature rule is computed in O(n) operations to an accuracy of essentially double precision for
any n > 100.
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1. Introduction. Quadrature, or numerical integration, is the process of ap-
proximating the definite integral of a given function. Typically this approximation
takes the form of a weighted sum of function evaluations, so that an n-point quadra-
ture rule is given by

b n
/ f@)dz ~ Y " wif (k) (1.1)
@ k=1

for some set of nodes {xy} and weights {wy}. There are many different choices for the
nodes and weights, and the Gauss—Legendre rule is defined by the unique choice such
that (1.1) is exact when f is any polynomial of degree 2n — 1 or less. More generally,
a quadrature rule is referred to as “Gaussian” if for some given positive, integrable
weight function w(x), the approximation

b n
[ wle)s@ids = 3 s, (1.2)
a k=1

is exact for all polynomials of degree 2n — 1 or less.

Gauss, in 1814, constructed the Gauss—Legendre quadrature rule using hyperge-
ometric functions and continued fractions [15], and Jacobi, twelve years later, noted
the quadrature nodes were precisely the roots of the Legendre polynomial of degree n
[29, 30]'. Almost all introductory numerical analysis texts now show that the Gauss
quadrature nodes are the simple roots of an associated orthogonal polynomial.

In this paper we are concerned with Gauss—Jacobi quadrature, associated with
the canonical interval [—1,1] and the Jacobi weight function

w(z)=1+2z)*1-2)"  of>-1 (1.3)
In this case, the nodes {x} are the roots of the Jacobi polynomial Pfﬁﬁ), and the
weights {wy} are given by [43, p. 352]
n+a+1)T(n+B+1) 20+A+1

wg = k=1,...,n. (1.4)
| , 29 9 9
F(n+a+B+1)n! (1—a2) [Péa,g) (mk)}
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LAn excellent account of the history of Gauss quadrature is given by Gautschi [17].
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Fic. 1.1. Algorithm for computing each Gauss—Legendre node and weight by a combination of
Newton’s method and asymptotic formulae. The formulae (3.12) & (3.16) refer to “interior” and
“boundary” formulae, where the “boundary region” is simply the ten nodes nearest to 1. An almost
identical technique for more general Gauss—Jacobi quadratures is discussed in section 3.3.

n €abs{re} | erm{wr} | emr{wi} | equaa{zr,wr} | time (secs)

100 1.18e-16 1.15e-16 | 1.25e-15 1.71e-16 0.0085

1,000 1.63e-16 8.27e-16 1.92e-15 1.11e-16 0.0105

10,000 1.78e-16 1.14e-15 | 1.69e-15 1.11e-16 0.0261

100,000 2.22e-16 1.09e-15 1.48e-15 4.44e-16 0.2600

1,000,000 | 3.33e-16 | 2.70e-15 | 3.02e-15 6.66e-16 2.3198

TABLE 1.1

Errors (absolute, relative mazimum, mazimum relative, and quadrature — see section 4 for
definitions) and computational time for computing n = 10%,...,10% Gauss-Legendre nodes and

weights using the algorithm described in this paper on a 2011 1.8GHz Intel Core i7 MacBook Air
with MATLAB 2012a.

Thus, computing Gauss—Jacobi nodes and weights reduces to finding the roots of a
Jacobi polynomial and evaluating its derivative.

Due to the fast convergence of Gauss quadrature rules, particularly when f is
C™ or analytic, most applications typically require only a relatively small number
nodes, say 5-200. Similarly, adaptive quadrature methods which perform recursive
subdivision also do so with only a small number of points. However, there is some
call for large global Legendre and Jacobi grids, for example in spectral methods and
high-degree polynomial integration [44, 50]. Furthermore, the relation between the
quadrature and barycentric weights, as pointed out by Wang and Xiang [48, Theorem
3.1], allows the stable evaluation of Legendre and Jacobi interpolants.

Existing approaches for computing the nodes and weights, some of which have
been widely used for many years, suffer from O(n?) complexity or error which grows
with n, which can be limiting when n is large. In this paper we develop a new
technique which utilises asymptotic formulae for accurate initial guesses of the roots
and efficient evaluations of the degree n Jacobi polynomial, P,(La’ﬁ), inside Newton’s
method. With this new algorithm it is possible to compute the nodes and weights of
Gauss—Jacobi quadrature rules in just O(n) operations to almost full double precision
for any n > 100. Furthermore, the algorithm can be easily parallelised or vectorised,
making it very efficient in a variety of architectures and languages. A simple flowchart
of the algorithm is shown in Figure 1.1, and a demonstration of the accuracy and
computational time is given in Table 1.1. This paper has the following structure: In
section 2 we briefly review some existing methods and implementations for computing
Gauss quadrature nodes and weights before introducing our new algorithm, first for
the special case of Gauss—Legendre quadrature, and then generalised to Gauss—Jacobi,
in section 3. Section 4 demonstrates the accuracy and efficiency of the computed
quadrature rule as compared with a selection of the existing methods from section
2 and some extended precision computations. In section 5 we discuss further issues
related to Gaussian quadrature and the new algorithm, such as extension to Radau,
Lobatto, Hermite and Laguerre quadratures, before concluding in section 6.
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2. Existing methods. The traditional, and by far most-widely used, method for
computing Gauss quadrature nodes and weights is the Golub—Welsch (GW) algorithm
[22], which exploits the three-term recurrence relations satisfied by all real orthogonal
polynomials. The relation gives rise to a symmetric tridiagonal matrix, the eigenvalues
of which are the nodes of the quadrature rule, and the weights are easily determined
from the corresponding eigenvectors. Solving this eigenvalue problem takes O(n?)
operations, although this can be reduced to O(nlogn) if only the nodes are required
[24]. However, MATLAB implementations of the GW algorithm using eig are unable
to take advantage of the special matrix structure, and the computational complexity
is in fact O(n3). Swarztrauber [42] has previously observed that the Golub—Welsch
method leads to an O(n) error in the Gauss—Legendre nodes and an O(n?) error in
the weights, but our numerical experiments in Figure 2.1 suggest these may in fact
be closer to O(y/n) for the nodes and O(n®/?) for the relative maximum error in
the weights. One can further reduce error in the weights by using the recurrence to
evaluate derivative values as a post-processing step [32], or by modifying the weight
formula [51]. Implementations can be found, for example, in [16, 23].

An alternative approach is to simply use the same three-term recurrence to com-
pute Newton iterates which converge to the zeros of the orthogonal polynomial [37, 40].
Since the recurrence requires O(n) operations for each evaluation of the degree n poly-
nomial and its derivative, we again expect the total complexity for all the nodes and
weights to be O(n?). However, in practice we observe and O(n'"") complexity, which
we are unable to explain. Furthermore, we observe a relative maximum error in the
weights of O(n) and that the nodes can be computed to essentially machine precision
independently of n. Initial guesses for the Newton iterations are discussed in section
3.1. Implementations can be found in [3, 12], and a further variant has been proposed
[42]. For convenience, we refer to this as the REC algorithm.

The current state of the art is the Glasier-Liu-Rohklin (GLR) algorithm [21],
which computes all the nodes and weights of the n-point quadrature rule in a total
of O(n) operations. This also employs Newton’s method, but here the function and
derivative evaluations are computed with n-independent complexity by sequentially
hopping from one node to the next using a local 30-term Taylor series approximation
generated from the second-order differential equation satisfied by the orthogonal poly-
nomial. The GLR algorithm is very fast, but its sequential nature makes it difficult
to parallelise or to vectorise for array-based languages like MATLAB. Contrary to
[21], we observe that the absolute error in the nodes and relative maximum error in
the weights grow like O(y/n) and O(n) respectively. Implementations can be found
in [8, 44].

Figure 2.1 compares both the accuracy of each of these algorithms as n is in-
creased, and Table 2.1 summarises this data. Note that in Figure 2.1 we show the
maximum relative error, rather than the relative maximum. Full definitions of the
error measures and further discussion of these results can be found in section 4.
Whilst the three algorithms mentioned above can be used in a more general setting,
the algorithm presented in this paper requires O(n) operations to compute an n-point
Gauss—Jacobi quadrature rule with absolute and maximum relative errors in the nodes
and weights respectively that are essentially independent of n.

3. New method. Similarly to both the recurrence relation (REC) and GLR
approaches, our new method is based upon Newton’s method for finding roots of a
univariate function. However, the difference here is in how we evaluate the Jacobi
polynomial and its derivative, where we take the premise that n is large and consider
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Fic. 2.1. Observed error in computing Gauss—Legendre nodes and weights. GW uses the dgauss
routine from the ORTHPOL library [16], REC is glfixed from the GSL library [12], GLR is a
Fortran implementation supplied by the authors of [21], and NEW is a MATLAB implementation

of the algorithm presented in this paper.

via MEX files. See Figure 4.3 for analogous plots of quadrature error and computational time.

The C and Fortran codes are interfaced with MATLAB

algorithm €abs{ Tk } €rm{wgk } emr{wy } €quad {zg, w} time
GW O (V) 077 0(n?) O(n) 0(?)
REC o(1) O(n) o(n?) o(vn) | o)
GLR O(y/n) O(n) O(n?) O (n0-66) O(n)
NEW O(log(log(n))) | O(log(log(n))) o(1) o(1) O(n)
TABLE 2.1

Observed errors and computational complexity when computing Gauss—Legendre nodes and
weights (see Figures 2.1 and 4.8) using the four algorithms described in this paper. Here, and
throughout, O(1) denotes a number independent of n. See section 4 for definitions of the error
measures.

asymptotic expansions. We now briefly discuss some details of Newton’s method rele-
vant to this application before introducing the asymptotic expansions of the Legendre
and Jacobi polynomials of large degree.

3.1. Newton’s method. It is well-known that the Legendre and Jacobi nodes
cluster quadratically near 41, and that this can have adverse affects on their numerical
computation. For extremely large n the clustering eventually leads to coalescence on
the discrete floating point scale, so that if, for fun, the billionth Gauss—Legendre
quadrature rule is constructed, then many of the nodes near +1 are indistinguishable.
Similarly, cancellation in the (1 - xi) term in the denominator of (1.4) near £1 can
make accurate computation of the weights difficult.

Swarztrauber has advocated modifying the Golub—Welsch method to compute the
approximately equally-spaced points in the transplanted -space, 8, = cos™ !z, to
avoid this clustering [42]. For this reason, and also because the asymptotic expansions
we use to evaluate the polynomials are most naturally defined in terms of P, (cos®),
we also choose to work in #-space. We immediately note that a possible downside
of working in this #-space is that it is only possible to obtain an absolute accuracy
of machine epsilon near z = 0, where 6 ~ 7/2. In z-space one can obtain a better
relative accuracy near the origin, but this is rarely required, and often comes at the
expense of accuracy of the weights near +1.

e 0 . . .
Thus, an initial guess, 9,[61, to each root is chosen, and successive iterates are
4



constructed via,
, ) , ) SN —1
0,[3“] = 9,[51 — P,(cos 0,[5]) (— sin@,[j]Pfl(cos 0,[3])) , J=0,12,.... (3.1)

Once the iterates have converged, the nodes are given by xj; = cosfy and the weights
by

wy, = Cnas — Cmap (3.2)

(1 =) [Pyan)]” [ Py(cosby)]”

where

Cnayﬁ:2a+ﬁ+1f(n+a+1)F(n+ﬁ+l)

T(n+a+B+1)n! (3:3)

Note that the expression in f-space avoids the (1—z?) term in the denominator that is
susceptible to round-off error near £1. Whilst there are a number of mathematically
equivalent formulae for the weights [42], we find (3.2) advantageous both because the
required derivative must be computed to calculate a Newton update, and because it
is less susceptible to errors in the node locations [51].

Since the zeros of the orthogonal Jacobi polynomial are simple, the Newton it-
erates converge quadratically when started at a sufficiently good initial guess. For
the Gauss—Legendre nodes, Petras [37] has shown that very simple initial guesses,
such as the Chebyshev nodes, are good enough for convergence. However, better
initial guesses will require fewer Newton iterations, and these can be obtained from
asymptotic approximations for the roots. In the next section we shall see that there
are two regimes for the asymptotic expansions; an interior expansion and a boundary
expansion (see Figure 3.2), and the same is true, and indeed strongly related [14], for
the initial guesses. Furthermore, since all Jacobi polynomials satisfy the reflection
relation

PP (—z) = (=1)" PP (),

we need only consider z € [0,1), i.e., & € (0,7/2]. To this end we introduce the
notation k =n — k + 1, so that xf is the kth closest node to z = 1. Then, away from
x =1, there are formulae for the Gauss—Legendre nodes given by Tricomi [47]

o B (n—1) _ 1 _ 28 _5
TR = {1 e 380 (39 - ¢k) } cos ¢ + O(n™?), (3.4)

where ¢ = (k — 1/4)w/(n+ 1/2), and by Gatteschi and Pittaluga [14],

1 1 10} 1 10) _
Ty = COS {¢k + m <4 cot Ek — Z tan ;)} + (’)(n 4). (35)

Although (3.4) is a higher order approximation, (3.5) generalises (with some restric-
tions on « and ) to the Gauss—Jacobi case (see (3.21)). For nodes near x = 1, there
are formulae given by Gatteschi [13],

If = COs {‘7: <1 - 723y4 (j2/2 - 1))} +j20(n7), (3.6)
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Fic. 3.1. Accuracy of asymptotic Legendre root approximations (8.4)—(8.7) for the 50 roots
nearest to x = 1 (left) and the interval [0, 1] (right), with n = 100, 250, 500, 1000, 2000 (descending).
An optimal choice would involve a selection of three of the formulae, but since an accuracy of below
the root of machine precision is sufficient for our purposes we simply choose (3.4) when x < 1/2
and (3.7) when z > 1/2.

where v = /(n + 1/2)2 + 1/12, and by (F. W. J.) Olver [36, Ex. 12.5]

Yy cot(y) — 1
8y (n +1/2)?

wwﬂm{w+ }+ﬁmwﬂ,wk Jt (3.7)

Con+1/2
where ji is the kth root of Jy(z), the Bessel function of the first kind. The roots
of Jo(z) are independent of n so they can be pre-computed and tabulated [20] or
computed on the fly [6]. Both (3.6) and (3.7) can be generalised to roots of more
general Jacobi polynomials. These results, and many others, can be found in a survey
of Gatteschi’s work [19].

Lether [31] investigates which of the above approximations to use for each k, and
an empirical rule suggested by Yakimiw [51] is to use (3.6) when k < [0.063(n +
33)(n — 1.5)/n] and (3.4) otherwise. However, Figure 3.1 (left) shows accuracy of
the 50 nodes nearest * = 1 for a range of n much larger than considered by Lether,
and suggests that, except for a very small number of the points at the boundary,
(3.7) gives better accuracy than (3.6). In particular, using the rule-of-thumb that
Jr ~ km, balancing the error terms in (3.6) and (3.7) confirms this crossover occurs
when k ~ n?/3/x.

Rather than concoct a complicated optimal choice for a given k£ and n, we simply
observe that Figure 3.1 (right) suggests that (3.4) and (3.7) cross when x ~ 1/2, and

choose 9,[6()] = arccos(asgco]) where

T T3 fore > 1/2 (e, 0 < 71/3). (3:8)

o {(3.4) forz <1/2 (ie., 0> /3),

3.2. Gauss—Legendre. Gauss—Legendre is the most commonly used of the Gaus-
sian quadrature rules. It corresponds to the constant weight function w(z) = 1, and
hence gives rise to the approximation (1.1). The nodes are the zeros of the Legendre
polynomial P, (z), and the formula (1.4) for the weights simplifies to

Y 2 _ 2 (3.9)
FT U BEE [ Palcost)]” |
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1 H . —Ii 1
/ Boundary Region: Bessel-like \*

Interior Region: Trig—like

F1a. 3.2. Comparing the degree 20 Legendre polynomial (upper) with the first term in the asymp-
totic formulae (3.12) and (3.16) (lower). In the interior of the domain, Legendre polynomials can be
well approzimated by trigonometric functions, whereas near the boundary region they more closely
resemble Bessel functions. Even for n = 20 the asymptotic expansions are good approximations.

By symmetry the nodes and weights are reflected about # = 0 and one needs only
compute those in [0,1), or equivalently, 8 € (0,7/2]. The derivative of the Legendre
polynomial, P/, satisfies the recurrence relation

(1—2*)P!(z) = —nazP,(x) + nP,_1(z), (3.10)

or equivalently in the #-variable
d
—sinf — 70 P, (cosf) = —ncosOP,(cosf) +nP,_1(cosb). (3.11)

To evaluate P, (and P,,_; for d%Pn), we use two different asymptotic formulae,
which we refer to as the interior and boundary expansions. The interior expansion
(3.12) involves only elementary functions and has readily computable coefficients, but
is not valid for « near +1. Conversely, the “boundary” expansion (3.16), which is in
fact valid for all 6 € [0, 7], involves Bessel functions and only the first few coefficients
are known in closed form Figure 3.2 shows the first term in each of these expansions.

3.2.1. Interior asymptotic formula. The interior asymptotic formula we use
was derived by Steiltjes in 1890 from a contour integral representation for the Legendre
polynomial [41]. Tt is given by

P,(cosh) = C, hn,mM +Rum(0), (3.12)
P (2sinf)™*z
where Onom = (n+m+ %) 0 — (m+ %) g,
445 \/Z T(n+1)
Co=—117 =\ o 3.13
7rj1;[1j+1/2 7 '(n+3/2) (3.13)
and
ToG-12)”
.14
U mijirip ™70 (3.14)

with hy 0 = 1. Szegd [43] bounds the error term in (3.12) by

max{| cosf|~!,2sin 6}
(2sin 0)M+z '

|Rn,1W (9)| < CVnhn,M (315)



Another asymptotic formula? was derived by Darboux in 1878 [9], but Olver [35] shows
that although this expansion approximates P, (cosf) well for M < n, it actually
converges to 2P, (cosf) as M — co.

Steiltjes’ expansion (3.12) converges to P, (cosf) in 6 € [7/6,57/6] and diverges
otherwise [41]. In practice, a finite number of terms are taken and Szegd [43] argues
that the interior expansion can be used for almost the whole interval [0, 7]. We discuss
this issue further in section 3.2.4.

The error bound (3.15) is so similar to the terms in the expansion that in loop-
based languages it can be checked for each # at minimal cost. In array-based languages
we use a fixed M for all 6, even though the error bound reveals that fewer terms can
be taken when 6 =~ 7/2. Since the terms are computationally cheap, we suggest
computing the first 20 and then truncating using (3.15) evaluated at the smallest 6
in the interior region.

3.2.2. Boundary asymptotic formula. Unfortunately, there is no asymptotic
expansion of the Legendre polynomials involving only elementary functions that is
valid near = +1 [33]. The boundary asymptotic formula we use was obtained by
Baratella and Gatteschi [4], based on the method described by Olver [34], and is an
expansion in Bessel functions of the first kind. It is derived by considering the second
order differential equation that are satisfied by Legendre polynomials, and is given by

M M-—1
Pufeost) =/ < (Jow) > 2 om0 Y. i’:ﬁ’f) T Sua(6), (3.16)

m=0 m=0

where p =n + % and

P 020 (n2M)  0<f<
() =19 90 <n_2M_%) c<p< I
Only the first few terms are known explicitly:
1 1 1g() 1
Ag=1, By=- A =—g0) - -2 - —4° 1
o=1, Bo 49(9) and, A;(0) g7 (9) 3 0 329 (0), (3.17)

where ¢g(6) = (6cotd — 1) /20, but extra terms can be calculated numerically from
the relations given in [4]. In practice we use Chebyshev interpolants to compute the
indefinite integrals required for terms up to M = 3. This is enough to evaluate (3.16)
to around machine precision near the boundaries for n > 100 and is far from the
divergent regime of the asymptotic formula (see Figure 3.3). In fact, for n 2 250,
only the first three terms are required (M = 2), and for n 2 4000 only the first two
(i.e., those which are known explicitly).

3.2.3. Computational issues.
Computing derivatives
To compute the Newton updates and quadrature weights we must evaluate %Pn(cos 0),
which, by (3.11), can be computed from P,, and P,_;. In the interior asymptotic for-
mula (3.12) one finds the constants are conveniently related by

n+1/2 n+m—1/2

hnmv
Y12 ™

Cnfl = Cna and hnfl,m =

2Both Darboux’s and Steiltjes’ formulae can be more readily located in Theorems 8.21.4 and
8.21.5 of [43], respectively.



so that the derivative can be cheaply evaluated at the same time as P, (cosf) using

4 (cost) ~ C J\lz—:l b (m — 1/2) cot 0 cos am.m +(n j— m — 1/2) sin .
= (2sin9)m*3
(3.18)

Whilst Newton’s method will not suffer from small inaccuracies in evaluating
derivatives [45], it is clear from (3.9) that the relative error in evaluating the quadra-
ture weights is proportional to the relative error in evaluating - P, (cos 6). Thus to
obtain an O(1) relative error in the weights, we require an O(1) relative error in the
derivative evaluations. Since hy, ,, = O(n~™) will hide the errors in further terms, we
need only look at the m = 0 term, where we observe sin o, o = sin((n+ 3)0; +7/4) =
sin(km + O(n~1)), which can easily be evaluated with O(1) accuracy. Furthermore,
when £k is large one can use Taylor series expansion about k7 to avoid evaluating sines
and cosines of large arguments.

The derivative of the boundary formula can also be computed using (3.11), re-
quiring the additional evaluation of the Bessel functions Jy and J; at (n — 3)6. The
first term when evaluating the derivative at the nodes is then given by

| 0z [cosOzJo(pbs) — Jo((p— 1)03)
a ) — k kY0 k E
70 P, (cosbr) n Sin 0y { sin 0, +..., (3.19)

and by the same argument as above for the interior formula, we require an O(1) the
term contained in the square parentheses to obtain an O(1) relative error in weights.
Since, for a fixed k, 07 and sinfy are O(n~!), we must then demand an O(n~!)
error in the numerator of this term. Standard methods of evaluating Jy(pfz) and
Jo((p — 1)03) in double precision typically give only an absolute accuracy of 14-15
digits, and so are not sufficient.

Instead we observe that if Jo((p — 1)63) is computed by evaluating the Taylor
series around pfz, (3.19) becomes

0 |cosbr —1 0% J(l)(pﬂf)
d N .| % k k Z 0 B pyie1
2 Fn(cos 0r) "\ sin 0% [ sin 6, Tolpbi) + sin 0z, — I (=9) tee

where the derivatives are given in closed form by the relation [33, (18.6.7)]

l
JP(z) =271 (-1) (j) Jy—142j(2).

Jj=0

Now, since, (cos6;, — 1)/sin b, ~ —0;/2, and, by (3.7), 0z ~ ji/p, the O(1) errors in
computing Jo(pfy) in P, and P,,_; cancel (to O(n~1)), and one obtains a relative error
of O(1) for the derivative evaluation. This cancellation highlights the importance of
choosing the right form of the weight formula (3.2).

The ratio of gamma functions

The constant C,, in (3.13) for the interior asymptotic formula requires some care-
ful computation. The first expression in (3.13) is a product of n numbers which
evaluates to O(y/n), and an error that grows like O(y/n) might be expected if this
is computed directly. The second expression is the ratio of two gamma functions,
I'(n+1)/T (n+ 3/2), which can easily overflow if n is large.
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To compute this constant accurately, and in particular with an error independent
of n, we again take advantage of the fact that n is large and use Stirling’s series [10]
for the approximation of gamma functions:

T(z+1) ~ T2y 27S(2), larg(z)| < ,
where the first four terms of S(z) are

1 1 139 571
S(2) =14 — - - 0(z79).
(2) =1+ 15-+ 5582 ~ 513103 2dss3o0s2 T O )

In slightly more generality, we substitute Stirling’s series in the ratio of I'(n 4+ 1) and
I'(n+ 1+ «) and simplify to obtain

I'(n+1) n n \"" rene  S(n)
F(n—&—i—li_j—a)w n—l—a<n+a> (ﬁ) Sn+a)

The term with the exponent n + a can then evaluated using the series expansion

(n+ oz)m'a =n"T%exp | (n+ oz)ji1 (jl)j (%)j ,

which can be derived by considering the standard expansion of log(1 + «/n). This
approach turns out to alleviate overflow concerns and be very accurate. Olver sug-
gests a similar approach in[36, p188]. We note that although Stirling’s series is not
convergent, 10 terms in the function S(z) are more than enough to achieve double
precision in the evaluation of (3.13) for all n > 200.

3.2.4. Preliminary results. Since the interior formula only contains elemen-
tary functions and has readily computable coefficients, we find it much easier to work
with than the boundary formula, and aim to use it for as many of the nodes as possi-
ble. In particular, we find the computation cost per node in the boundary formula to
be approximately 1000 times that of the interior formula. Unfortunately, the interior
formula (3.12) diverges as M — oo for & > cos(w/6) [41], and so formally this should
define the interior region. However, in practice, and in agreement with Szegd [43], we
find that for the finite number of terms required to achieve an accuracy of machine
precision, (3.12) can be used to evaluate much more closely to the boundary than this
suggests (see Figure 3.3). Therefore, based upon heuristic observations such as those
in Figures 3.3-3.5, we define the regions as

interior region: T11y- -5 Tn_10, (3.20)

boundary region: x1,...,210 & Tp_g,...,Ty.

That is, the boundary region consists of the ten nodes nearest the boundary.

Figure 3.4 shows the error in computing the Gauss—Legendre nodes and weights
for n = 200 using both in the interior and boundary formulae on the interval z € [0, 1],
with the GLR method is also included for reference. As expected, the interior formula
diverges near the boundary, but importantly to the right of the vertical dashed line
depicting the proposed border between the interior and boundary regions. Although
GLR achieves better relative accuracy in the nodes near z = 0, the asymptotic for-
mulae are within a factor of two or three of machine precision and give more accurate

10
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Fic. 3.3. Error in evaluation of Pigo(cosOy) (solid) and d%Ploo(cos 0k) (dashed — relative) us-
ing in the interior asymptotic formula (3.12) with M = 1,3,5,7,15 (left & centre) and the boundary
asymptotic formula (3.16) with M = 0,1,2,3 (right). Here the 0}, are the approximations to the Leg-
endre roots from (8.7), and the reported error is as compared to an extended precision computation.
The vertical solid and dashed lines are at x = cos (7/6) and (x17 + z15)/2 respectively.

weights near the boundary. Figure 3.5 shows a close-up of the nodes near x = 1
for larger values of n and demonstrates both that (3.20) is a reasonable choice for
defining the boundary region, and that the relative error in the weights computed by
the boundary formula does not increase with n. More detailed results can be found
in section 4.

3.3. Gauss—Jacobi. The asymptotic expansions in the previous section extend
readily to more general Jacobi polynomials. For o = 8 # 0 the polynomials are known
as ultraspherical or Gegenbauer, and simplifications similar to the Legendre case, such
as symmetry of the nodes, can be used for improved efficiency. For o # 3 we exploit
the reflection formulae

PR (=) = (“1)"PP @), AP (—a) = (-1 PP @)

dr—n

so that we need only evaluate Jacobi polynomials on the right half the interval, i.e.
z €[0,1), 0 € (0,7/2].

Most of the approximations for the roots of the Legendre polynomial can be
generalised to the Jacobi case for use as initial guesses in Newton’s method. Gatteschi
and Pittaluga’s approximation for the roots of Prga’ﬁ) away from +1 is given by

X = cos {(bk + 4—;2 <<111 - a2> cot % - (i - ﬁ2> tan ?)} +0(n™), (3.21)

for o, B € [—1, 1], where p=n+ (a+B+1)/2 and ¢, = (k+ /2 — 1/4) 7/p. Simi-
larly, with j, 5 denoting the kth root of J,(z), the approximation given by Gatteschi
for the nodes near x = 1 becomes

ja,k 4 - a2 - 1562 . . _
Ty = COS{ L <1 — W (ng,k/2 + Oé2 — 1) +]Z’k0(n 7), (322)

for a,8 € [~3, 3], where v = \/p? + (1 — a2 — 33?)/12, and Olver’s approximation
becomes

ax = cos o+ PR — (o - R 4 007
(3.23)

11
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Fic. 3.4. Error in Gauss—Legendre nodes (top) and weights (bottom) for n = 100 using interior
and boundary asymptotic formulae. The GLR results are included for reference. As expected, the
interior formula diverges near the boundary, but only in the boundary region (dashed vertical line).
Although GLR achieves better relative accuracy in the nodes near x = 0, the asymptotic formulae
give more accurate weights, particularly near © =1 (see Figure 3.5).
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Fic. 3.5. Error in the 13 rightmost Gauss—Legendre weights for n = 100, 500, 1000, 5000, 10000.
We see that even as n is increased, the interior formula gives good results for all but the final five
or six nodes. In practice, we define the “boundary region” as the 10 nodes nearest the boundary.

for a > f%,ﬂ > —1 — o, where ¥y, = jo1/p [33, (18.16.8)]. The Bessel roots, ju i,
are not required to a high degree of accuracy and can be computed using, for exam-
ple, McMahon’s expansion [36, p.247] or Chebyshev approximations [39]. Figure 3.6
(left) shows the accuracy of each of these approximations for the roots of P{0-1=0-3),
Although the error terms in (3.21)—(3.23) are only valid for limited ranges of a and
B, Figure 3.6 (right) demonstrates that reasonable approximations are obtained more
generally.

As before, we use an interior asymptotic expansion which involves only elementary
functions, but is not valid near the endpoints, and a boundary asymptotic expansion
involving Bessel functions. The interior asymptotic formula for the Jacobi polynomial
is given by Hahn [25], and takes the form

sin®t= (30) cosPt3 (30) PP (cosh) = ... (3.24)

2 Sl s

m=0
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FiGc. 3.6. Left: Error in approzimations (8.21)-(8.28) for the roots of P,So'l’io'g)(x), with
n = 100, 250, 500, 1000, 2000 (descending). Here the crossover between the interior approzimation
(3.21) and Olver’s “boundary” approzimation (3.23) doesn’t occur until x = 0.1. Right: Error in ap-
prozimation (3.23) for the roots of Pl(gdﬁ)(ac) for a, B € [—.9999, 2]. Although the accuracy degrades
outside of the interval [—1/2,1/2], it is still sufficient for convergence of the Newton iteration.

10

a

where p=n+ (a+ 8+ 1)/2, B(a, 8) is the beta function,

m a,3

o m,l Ccos (gn,m,l)
fm(e) - ; l!(m—l)!sinl (%9) COSmfl (%9)’ (325)

on,m,l:%(2p+m)9—%(a+l+%)ﬂ-,

and
g’z[lg = (% +0‘>z (% - O‘)l (% +B)m71 (% - B)mfl’

where (z); is Pochhammer’s notation for the rising factorial. For o, 8 € (—3, 1) the
error term Uyy ,, is less than twice the magnitude of the first neglected term, and for
alln > 2, o, B € (—1,3), 0 € [7/3,27/3] the formula (3.24) converges as M — oo
[25]. Although [7/3,27/3] is significantly smaller than the corresponding interval for
the Legendre polynomial, numerical experiments suggest that in practice (3.24) gives
good approximations in a much larger interval. We note also that the summation
in (3.25), which is not present in the Legendre case, means that (3.24) will have a
complexity of (’)(MTzn) compared to the O(Mn) of (3.12). Since m =~ 10-20, and
because we no longer have symmetry in the nodes, we should therefore expect the
computation time of the Gauss—Jacobi points to be around a factor of 10-20 longer
than the Gauss—Legendre.

Again, all known asymptotic formulae for Jacobi polynomials valid near the
boundaries involve special functions, and we use the boundary asymptotic expansion
involving Bessel functions given by Baratella and Gatteschi [4]:

1 1
sin®*2 (10) cos®t2 (30) PP (cosh) = ... (3.26)
P(nta+1) [6 L An(6 &= B (0 _
Ht e 2D 2 (aton Y 25 0o Y- 220 ) 40 (072,
’ m=0 m=0
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for a, § > —1, where p=n+ (a+ 5+ 1)/2, J, and J,y; are Bessel functions of the
first kind,

9(0) = (3 — ) (cot (30) —2/9) = (5 — 5°) tan (30) .
Ag(0) and By(0) are as in (3.17), and

Similarly to the Legendre case, only these first three terms are known explicitly, but
more can be computed numerically using the relations given in [4]. We note that
there are other asymptotic formulae involving Bessel functions [2, 11, 49], but these
typically require roughly twice as many terms as (3.26) to obtain a similar asymptotic
error reduction.

The relation for the derivative of the Jacobi polynomials is a little more compli-
cated than for the Legendre polynomials:

(2n+a+B)(1 - xQ)%P,ga@ (z)=...
n(a—B— ©2n+a+ B)z)P) (z) +2(n+ a)(n+ B)P™D (2),

but the ideas discussed in section 3.2.3 still apply.

3.3.1. Computational issues.
The ratio of gamma functions
This time it is the constant in front of the boundary asymptotic formula which contains
the ratio of gamma functions I'(n 4+ e+ 1)/n!, but this can be dealt with in the same
way as discussed in section 3.2.3. Similar ideas can also be used to compute the beta
function in (3.24), as

22T (n+a+1)T(n+B+1)

22"B(n+a+1,n+pB+1)= .
( A+1) Fr2n+a+B+1)2n+a+B+1)

One final constant requiring careful computation in the Jacobi case is that appearing
in equation (3.3) for the quadrature weights,

'n+a+1)I'(n+0+1)
I'(n+a+ 6+ 1)n!

Here we note that this ratio is precisely of the form given by Biihring [7, Equation
(3)], with ¢ = 0 and n — n + 1, and again asymptotic approximations can be used.

3.3.2. Preliminary results. In the Jacobi case the use of the interior formula
is now seemingly hindered by the two constraints that convergence as M — oo re-
quires both o, 8 € (—1/2,1/2), and 6 € [7/3,27/3]. However, similarly to the interior
asymptotic formula for the Legendre polynomial, we find that in practice this sec-
ond constraint can be ignored for the finite M needed for machine precision, and
that the boundary formula is only required for the ten nodes nearest the boundary.
Figure 3.7 shows the accuracy of the interior and boundary asymptotic formulae for
Pl(g(')l’_o'3) (cos 9,[3]) and %Pl(gbl’_o'?’) (9,[:)]), and justifies this choice of boundary region.
In section 4 we provide evidence that the restriction «, 8 € (—%, %) can also be largely
ignored.

14
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Fic. 3.7. Error in evaluating the Jacobi polynomial P1<8(')1’70'3) and its derivative using the

asymptotic formulae (3.24) and (3.27). Clearly the interior formula (8.24) can in practice be used
much closer to the boundary than the convergence region of cos(5m7/6) < = < cos(m/6) suggests
(vertical solid line). The first and third panels show that, as with the Legendre polynomial, the
boundary formula is only needed for the ten nodes nearest the boundary (vertical dashed lines).

4. Results. We consider a number of different measurements of the error:

absolute error :  e,ps{r} = | max |zg — zirie|,
=1,..

maxy, |wg — wi™e|

relative maximum error : e {wg} =

maxy, [wite|

: . wy, — wi™*

maximum relative error : ey {wr} = max | ——F—
k=1,...,n Wy,

For comparative purposes we also include a measure, similar to that in [21], which
measures the accuracy of the quadratures rather than the nodes and weights directly.
Recall that an n-point Gauss rule is exact for polynomials of degree up to 2n — 1 and
hence, for 0 < i,j <mn,

1 n
[ a2t PO @ PP @)de = 3 P ) PO (1)

-1 k=1
Cn,a,B 3 —
_ ) mnrayset if s=t,
0 otherwise,

where C), o 5 is the constant in (3.3). This identity can then be used to measure the
accuracy of the quadrature rule by selecting arbitrary indices I = {iy,4s,...} and
defining

5stCn,oz,B

€quad {Th> Wi } A et AT

= PP ) PO )
k=1

where Jg; is the Kronecker delta function. For convenience and reproducibility we
choose the set I to be the first 11 Fibonacci numbers (or fewer, if they are greater
than n in magnitude), and to avoid introducing additional error we evaluate the
polynomials in extended precision. Recall that for « = 8 =0, C), 0.5 = 2.

We now compare our method against the other algorithms described in section
2, using the ORTHPOL [16] implementation of the GW algorithm, the GSL imple-
mentation of the recurrence relation [12], and a Fortran implementation of the GLR
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Fic. 4.1. Error in the computed Gauss—Legendre nodes (left - absolute) and weights (centre &
right - relative mazimum) for n = 100. The rightmost panel shows the error in the last ten weights.
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Fic. 4.2. Error in the computed Gauss—Legendre nodes (left - absolute) and weights (centre &
right - relative mazimum) for n = 1000.
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Fic. 4.3. Mazimum quadrature error (left) and computational time (right) in computing Gauss-
Legendre nodes and weights. See Figure 2.1 for node and weight errors.

algorithm supplied by the authors of [21]. Figure 4.1 shows the absolute error in the
nodes and maximum relative error in the weights for n = 100, and Figure 4.2 shows
the same for n = 1000. Whereas GLR and REC obtain good relative precision in
the nodes near x = 0, our Newton iteration operates in f-space and we only obtain
good absolute accuracy. However, the error is below machine precision, and uniform
throughout the interval [—1,1]. The error in the weights is also uniform throughout
the interval and, particularly near the boundaries, significantly lower than that of
the other methods. Figure 2.1 and Figure 4.3 investigates the performance of each
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n €abs{®r} | erm{wk} | emr{wi} | €quaa{zr, wi} | time (secs)

100 1.42e-16 3.64e-15 4.52e-14 9.30e-16 0.0418

1,000 2.06e-16 | 8.83e-15 | 6.66e-14 7.32e-16 0.0532

10,000 1.11e-16 3.91e-15 6.38e-14 7.46e-16 0.2503

100,000 4.44e-16 | 3.40e-16 | 1.16e-14 7.42e-16 1.5685

1,000,000 | 4.44e-16 | 6.53e-16 | 3.50e-14 1.11e-15 15.256

TABLE 4.1

Accuracy and computation time for Gauss—Jacobi nodes and weights computed by the algorithm
in this paper for n = 102,...,10%, and a = 0.1, 8 = —0.3. As expected, the computational times are

approximately ten times greater than those in Table 1.1.

n €abs{®k} | erm{wr} | emr{wg} ﬁquad{xk: wy} | time (secs)

100 2.11e-16 6.77e-15 4.13e-14 4.45e-15 0.0412

1,000 1.46e-16 1.02e-14 4.42e-14 4.49e-15 0.0515

10,000 1.11e-16 | 8.28e-15 | 3.53e-14 4.56e-15 0.1858

100,000 1.11e-16 1.23e-15 5.46e-14 4.37e-15 2.0865

1,000,000 | 1.11e-16 | 7.0le-15 | 7.31le-14 4.49e-15 15.713

TABLE 4.2

Accuracy and computation time for Gauss—Jacobi nodes and weights computed by the algorithm
in this paper for n = 102,...,10%, and o = 2,8 = —.75. FEven for a and 8 outside [f%, %}, good

accuracy is achieved.

of the methods as n is increased, and Table 1.1 summarises the results of our new
method. An almost identical table for the GLR method can be found in [21, Table 3].
In particular, we note the method described in this paper has a complexity of only
O(n) and that the errors in the nodes and weights are essentially® n-independent.

Figure 4.4 repeats Figure 4.1 for Gauss—Jacobi quadrature with n = 1000, « = 0.1,
and 8 = —0.3, where here we compare against Chebfun implementations of GW, REC,
and GLR. Again we see that the new method produces a good absolute accuracy of
around machine precision for each of the nodes, and an error in the weights lower
than that of the existing methods. Unfortunately, here we find an error of around
1013 in the weights near the boundary, which appears directly related to the error in
evaluating the Bessel functions J, and Jg with MATLAB’s besselj at these points.
However, we find that this error is fixed independently of n (see Figure 4.5). Tables
4.1 and 4.2 repeat Table 1.1 for Gauss—Jacobi with « = 0.1, = —-0.3 and a = 2,5 =
—0.75 respectively, and show that high and essentially n-independent precision is
maintained in both the nodes and the weights for the Gauss—Jacobi quadrature rules.
As expected, the Gauss—Jacobi rules take around a factor of 10 longer to compute
than the Gauss—Legendre, due to the extra summation in (3.25).

5. Future extensions. We have concentrated on computing Gauss—Legendre
and Gauss—Jacobi quadrature rules in double precision, but the methodology we have
described can be extended in a number of directions. Here we discuss these briefly:
Higher Precision
Throughout this paper we have focused on double precision accuracy, but quadratic
(or even variable) precision could also be achieved using the same techniques. How-
ever, additional terms in the boundary asymptotic formulae are required as well as
a better understanding of when/if the expansions diverge. Furthermore, since only
the first few terms in the boundary expansions are readily available, the minimum

3We observe in Figure 2.1 an O(log(log(n))) growth in the error of the nodes. The error ap-
pears to arise in nodes near z = 0, and we are as yet unable to account for it. However, since
log(log(realmax)) < 7 in MATLAB, it is unlikely that this will present any practical limitations.
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Fic. 4.4. Error in the computed Gauss—Jacobi nodes (left) and weights (centre € right) for
n = 1000, = 0.1, 8 = —0.3. The rightmost panel shows the errors for the weights closest to t = —1
(dashed) and © =1 (solid). The rise in error of the few weights near the boundary nodes is due to
error in MATLAB’s evaluation of the Bessel function.
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Fic. 4.5. Observed mazimum relative errors in the weights in Gauss—Jacobi for a« = 0.1,8 =
—0.3 (left) and a = 2,8 = —0.75 (right). As with the analogous plot for the Gauss-Legendre weights,
we see the error in the new algorithm is independent of n.

value of n for which full quadratic precision could be reached would be larger than
the n = 200 for double precision.

Gauss—Radau and —Lobatto quadrature

Gauss—Radau and Gauss—Lobatto are variations on the Gauss—Legendre quadrature
rule where one or more of the endpoints are preassigned, and the approach discussed
in this paper is equally applicable here. For example, the Gauss—Radau nodes and
weights satisfy [1, (25.4.31)]

1 — —
.Pnfl(xk)'i‘F)n(fl.C):07 k:]-’.”n7 wi = m k—].,...,TL 1
L+ ap % k=mn

while for the Gauss—Lobatto rule [1, (25.4.32)]

k=2,....,n—1
k=1n.

’l}kpn—l(l'k) - Pn(fllk) =0, k= 1...n, w;= n(n—l)[lgn_l(xk)P

2 2
1- T n(n—1)

Initial guesses can be obtained by noting that the interior Radau nodes are also the
zeros of PSE), and the interior Lobatto nodes are the zeros of Pr(i;) 1, (18.9.3)], for
which the approximations in section 3.3 can be used. One could also consider the
more general case of Gauss—Jacobi-Radau [18].
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Hermite and Laguerre Quadrature

The Hermite and Laguerre polynomials also have well-known asymptotic expansions
[38, 43] that could be used within Newton iterations to compute Gauss—Hermite and
Gauss—Laguerre quadrature nodes and weights. In particular, the nodes are roots of
Hermite and Laguerre polynomials, H,(z) and L, (z), and the weights are given by

Vm2ntinl 1
Wk = ———F— 75> and wy = —————5
" H ()] " L ()]

respectively [1, (25.4.45) & (25.4.46)]. In practice, one usually works with normalised
Hermite and Laguerre polynomials and scaled quadrature weights to avoid problems
of overflow and underflow [21].

Polynomial evaluation

The asymptotic formulae we use for evaluations within the Newton iterations could
also be used to evaluate the P{*#)(z},) at any point within [~1, 1]. However, a number
of the techniques described in this paper rely on the fact that we are evaluating near a
root of the Jacobi polynomial, and would not apply in general. A few brief experiments
suggest that an accuracy of 14 — 15 digits can be achieved, again in O(n) operations,
but we have not investigated this further.

Barycentric weights

Given n function values fi,..., f, at a distinct set of points zi,...,x,, and the
barycentric weights {vy }

v =C H(xk—x‘j) ,

Jj#k
where the constant C' is arbitrary, the barycentric interpolation formula [5]
n n

ey =Y I [y
k

k=1 =1

gives the unique polynomial interpolant throughout the data {z, fr}7_;. An equiv-
alent formulation of the barycentric weights is [46, Chap. 5]

v =C [l (zy) where  [(z) = H(x — ).
k=1

Thus if the zj, are the roots of the Jacobi polynomial P,(Lo‘”ﬁ )(ac), the derivative values
Prga’ﬁ)(a:k) needed to determine the corresponding barycentric weights can be com-
puted in exactly the same way as for the quadrature weights [27, 48].As such, we now
have a fast, accurate, and stable [28] method of evaluating Jacobi interpolants, even
at millions of points.

Software

MATLAB code for the Gauss—Legendre and Gauss—Jacobi algorithms described in
this paper can be found in Chebfun’s legpts and jacpts functions respectively [44].
We hope to soon have a software library [26] which contains both MATLAB and C
implementations, a Python interface, and ultimately the other extensions described
above.
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6. Conclusion. We have presented an algorithm which, for any n > 100, com-
putes the n-point Gauss—Legendre or Gauss—Jacobi nodes and weights in a total of
O(n) operations. The algorithm is easily vectorised, making it efficient in array-based
languages like MATLAB, and can be easily parallelised if required. Furthermore,
we have demonstrated that the algorithm is extremely accurate, so that nodes and
weights computed to absolute and relative accuracies of almost machine precision
respectively. MATLAB code is available as a standalone package [26], and is also
available through Chebfun’s legpts and jacpts commands [44].

We hope this new approach will remove the artificial limit on how researchers feel
they can use Gauss quadratures, and open up a fascinating window into numerical
algorithms built on asymptotic formulae.
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