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Abstract

The fc-ary n-cube interconnection network Q*, for k > 3 and n > 2, 

is n-dimensional network with k processors in each dimension. A k- 

ary n-cube parallel computer consists of kn identical processors, each 

provided with its own sizable memory and interconnected with 2n other 

processors. The fc-ary n-cube has some attractive features like symmetry, 

high level of concurrency and efficiency, regularity and high potential for 

the parallel execution of various algorithms. It can efficiently simulate 

other network topologies. The fc-ary n-cube has a smaller degree than 

that of its equivalent hypercube (the one with at least as many nodes) 

and it has a smaller diameter than its equivalent mesh of processors.

In this thesis, we review some topological properties of the fc-ary n- 

cube Qn and show how a Hamiltonian cycle can be embedded in QJ using 

the Gray codes strategy. We also completely classify when a QJ contains 

a cycle of some given length.

The problem of embedding a large cycle in a Qj with both faulty 

nodes and faulty links is considered. We describe a technique for embed­

ding a large cycle in a k-ary n-cube Q j with at most n faults and show 

how this result can be extended to obtain embeddings of meshes and tori 

in such a faulty k-ary n-cube.

Embeddings of Hamiltonian cycles in faulty &-ary n-cubes is also stud­

ied. We develop a technique for embedding a Hamiltonian cycle in a fc-ary 

n-cube with at most 4n — 5 faulty links where every node is incident with 

at least two healthy links. Our result is optimal as there exist k-ary 

n-cubes with 4n — 4 faults (and where every node is incident with at 

least two healthy links) not containing a Hamiltonian cycle. We show 

that the same technique can be easily applied to the hypercube. We also



show that the general problem of deciding whether a faulty k-ary n-cube 

contains a Hamiltonian cycle is NP-complete, for all (fixed) k >  3.

Several communication algorithms for the k-ary n-cube network are 

considered; in particular, we develop and analyse routing, single-node 

broadcasting, multi-node broadcasting, single-node scattering, and total 

exchange algorithms, we also show how Hamiltonian cycles of the A:-ary 

n-cube can be exploited to develop fault-tolerant multi-node broadcast 

and single-node scatter algorithms for the one-port I/O  fc-ary n-cube 

model, and how link-disjoint Hamiltonian cycles of the &-ary n-cube can 

be used to develop multi-node broadcast and single-node scatter algo­

rithms for the multi-port I/O  k-ary n-cube model.
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C hapter 1

Introduction

The original need for fast computation was in a number of contexts in­

volving the solution of partial differential equations (PDEs), such as in 

computational fluid dynamics and weather forecasting, as well as in struc­

tural mechanics and image processing. In these applications, there is a 

large number of numerical computations to be performed. The desire 

to solve more and more complex problems has always ran ahead of the 

capabilities of computers of the time, and has provided a driving force 

for the development of faster computing machines.

Parallel processing with hundreds or thousands of microprocessors has 

become a viable alternative to conventional supercomputers and main­

frames employing a handful of expensive processors. Several commercial 

machines with hundreds or thousands of processors have reached the 

marketplace in the last few years. These systems have spurred research 

in a number of areas such e l s  the design of efficient network topologies, 

routing algorithms and protocols, communication interfaces, algorithms, 

and software tools.

Parallel computers in general can be roughly classified into two types:
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multiprocessors with shared memory and multicomputers with non-shared 

or distributed memory [11, 57, 80]. There are also a variety of hybrid 

designs lying in between. The first type has global shared memory that 

can be accessed by all processors (see Fig. 1.1). To allow efficient access 

of the memory by several processors, the memory is divided into several

SWITCHING

SYSTEM

Figure 1.1: The Shared Memory Model.

memory banks. A processor can communicate with another processor by 

writing into the global memory and having the second processor read the 

same location in the memory using switching systems. The advantage of 

this architecture is that algorithm design is simple. Moreover, it enables 

us to make data access transparent to the user who may regard data as 

being held in a large memory which is readily accessible to any proces­

sor. However, as the number of nodes increases, the switching network 

becomes complex to build. The GF-11 Supercomputer [9], the Butterfly
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multiprocessor [74], and the Ultracomputer [49] are some examples of 

multiprocessors with shared memory.

In multicomputers with distributed memory, there is no shared mem­

ory and no global synchronization, but rather each processor has its own 

local memory (see Fig. 1.2). Processors communicate through an in­

terconnection network (i.e., mesh, ring, torus, hypercube, etc.) consisting

INTERCONNECTION

NETWORK

Figure 1.2: The Distributed Memory Model.

of direct communication links joining certain pairs of processors. Which 

processors are connected together is an important design choice. It would 

be best if all processors were directly linked to each other, but this leads 

to technological difficulties, or if the processors communicate through 

a shared bus, but this leads to excessive delays when the number of 

processors is very large due to bus contention. In multicomputers with 

distributed memory, communication is achieved by message-passing di­

rectly or through some intermediate processors, and computation is data 

driven. The main advantage of such architectures is the simplicity of
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their design: the nodes are identical, or are of a few different kinds, and 

can therefore be fabricated at relatively low cost. Moreover, such ma­

chines can easily be made fault tolerant as, for example, healthy nodes 

can re-route messages so as to avoid failed nodes. Examples of multi­

computers with distributed memory include the Cosmic Cube [84], the 

Ametek S/14 [7], the Ncube [19, 39], the iPSC [38, 39], the CM-200 [21] 

and the J-machine [27].

Many topologies have been proposed for parallel machines. Among 

these are the ring, the mesh, the tree, the torus, and the hypercube.

The hypercube, or the binary n-cube, is a popular interconnection 

network for parallel processing as it possesses a number of topological 

properties which are highly desirable in the context of parallel processing. 

For example: it contains a Hamiltonian cycle; many other networks can 

be efficiently embedded into a hypercube; and its symmetry results in 

rich communication properties (see, for example, [11, 13, 61, 79] and the 

references therein). Consequently the hypercube has formed the base 

topology of a number of parallel machines including the Cosmic Cube 

[84], the Ametek S/14 [7], the Ncube [19, 39], and the iPSC [38, 39].

However, one drawback to the hypercube is that the number of links 

incident with each node is logarithmic in the size of the network. While 

this is not a problem for small hypercubes, it can present some difficul­

ties for very large machines, e.g., machines with tens of thousands of 

processors. VLSI systems are wire-limited [83] and although hypercubes 

provide relatively small diameter networks, the property of high degree 

is not consistent with the realities of VLSI technology. Networks with 

high degree require more and longer wires than do low degree networks. 

Thus high degree networks in general cost more and run more slowly
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than low degree networks. It has also been shown that low degree net­

works achieve lower latency and better hot-spot throughput than do high 

degree networks [28, 62].

One means proposed to alleviate this problem is to build parallel ma­

chines whose underlying topology is that of the k-ary n-cube Q£ (where 

k > 3 and n > 2). A k-axy n-cube QJ parallel machine consists of kn 

identical processors. Each processor has its own local memory and is 

connected to 2n other processors. In order to overcome the problem of 

the high degree of binary n-cubes, we can increase k and decrease n and 

so obtain lower degree A;-ary n-cubes with the same number of processors. 

For example, the 4096 nodes in a binary 12-cube with node degree 12 

and a total of 24576 links can be interconnected as a 16-ary 3-cube with 

node degree 6 and a total of only 12288 links.

The k-ary n-cube QJ has formed the underlying topology of the Mo­

saic [85], the Cray T3D [70], the iWARP [16] and the J-machine [27] 

parallel machines (see also [53]). It turns out that many computations 

in linear algebra and partial differential equations can be performed effi­

ciently on machines having a fc-ary n-cube as their underlying topology.

The A:-ary n-cube QJ is a network with n dimensions and k nodes 

in each dimension. The kn nodes of the fc-ary n-cube are indexed by 

{0,1 l}n, and there is a link ((aq, x 2, . . . ,  xn), (t/i, y?, . . . ,  yn)) iff

there exists j  £ { 1 ,2 ,.. . ,  n} such that Xj — yj = 1 (mod k ) and Xi = yi, 

for every i £ { 1 ,2 ,..., n} \  { j}  (for example, Q ^ ' i s & k x k  mesh with 

wrap-around, Q\  is a cycle of length k, and Q\  is a binary n-cube).

In this thesis, we consider various properties of the fc-ary n-cube 

interconnection network (where k > 3 and n > 2). For example, we 

consider the existence of cycles in both healthy and faulty A;-ary n-cubes.
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We derive results that are both of theoretical interest and applicable to 

communication algorithms. In more detail, this thesis is organized as 

follows.

• The remainder of this chapter presents some examples of common 

network topologies and reviews some aspects of communication 

strategies and fault tolerance. It also reviews some basic termi­

nology of network embedding.

• Chapter 2 includes some structural and topological properties of 

the k-ary n-cube network. It also reviews some basic results from 

the literature on embeddings of common network topologies such 

as a Hamiltonian cycle (using the Gray code strategy), a binary 

tree, a mesh, and a hypercube into the k-ary n-cube.

• Chapter 3 presents a recursive structure of k-ary Gray codes and 

completely classifies when a fc-ary n-cube Q* contains a cycle of 

some given length.

• Chapter 4 describes a technique for embedding a large cycle, a mesh 

and a torus in a QJ with at most n faulty nodes or links.

• Chapter 5 develops a technique for embedding a Hamiltonian cycle 

in a k-ary n-cube with at most 4n — 5 faulty links where every node 

is incident with at least two healthy links. We show in this chapter 

that the same technique can be easily applied to the hypercube. We 

also show that given a faulty QJ, the problem of deciding whether 

there exists a Hamiltonian cycle is NP-complete.

• Chapter 6 develops some efficient communication algorithms. In 

this chapter, we develop and analyse routing, single-node broad-



casting, multi-node broadcasting, single-node scattering, and total 

exchange. All our algorithms are deterministic and dimensional for 

one-port I/O  k-axy n-cube model.

• Chapter 7 shows how Hamiltonian cycles of the A;-ary n-cube net­

work can be exploited to develop fault-tolerant multi-node broad­

cast and single-node scatter communication algorithms for the one- 

port I/O  fc-ary n-cube model. We also show in this chapter how 

link-disjoint Hamiltonian cycles of the A;-ary n-cube can be used to 

develop multi-node broadcast and single-node scatter algorithms 

for machines that support multi-port I/O model.

• Chapter 8 concludes the thesis by giving a summary of the results 

and stating some open problems for future research.

1.1 Network Topologies

A network is usually modelled by an undirected graph, called the network 

topology, where the edges represent communication links and the nodes 

represent either processors or switches. A network is either static or 

dynamic [38, 95]. In a static (or fixed) network, the nodes represent 

processors. Examples of static networks include rings, trees, meshes, 

tori, and hypercubes (all to be defined later). These networks are also 

sometimes referred to as direct networks because the interconnecting links 

directly connect nodes as opposed to being switched dynamically. Static 

networks have been the preferred means of interconnection in distributed 

memory multicomputers, but have also been used in shared memory 

multiprocessor interconnection.

In a dynamic (or reconfigurable) network, some nodes represent switches.
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Multistage interconnection networks are prime examples of dynamic net­

works and include the omega, inverse omega, and baseline networks 

[74, 95],

The topology of an interconnection network determines many archi­

tectural features of that machine and affects several performance metrics. 

Although the actual performance of a network depends on many tech­

nological and implementation factors, several topological properties and 

metrics can be used to evaluate and compare different topologies in a 

technology-independent manner. Most of these properties are derived 

from the graph model of the network topology.

Topologies are usually evaluated in terms of their suitability for some 

standard communication tasks. The following are some typical factors 

to be considered in the design of interconnection networks [11, 81, 95].

• The node degree.

The node degree represents the number of I/O ports per processing 

node. It should be small to reduce the implementation cost.

• The diameter.

The diameter of a network is the maximum distance between any 

pair of nodes. Here the distance of a pair of nodes is the minimum 

number of links that have to be traversed to go from one node to 

the other.

• The symmetry and the regularity.

A regular network is defined as a network in which every node has 

the same degree. A symmetric (or homogeneous) network is one in 

which the topology looks identical when viewed from every node 

or every link. This definition gives rise to two types of symmetry:
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node symmetry and link symmetry. In graph-theoretic terms, a 

network is node-symmetric if, for every pair of nodes a and 6, an 

automorphism of the network can be found that maps a into b. The 

definition of link symmetry is identical.

The principal advantage of symmetry in a network lies in the ease 

of routing data in the network. This allows all nodes to use the 

same routing algorithm. The task of path-selection is also often 

simplified. In addition, common data-movement operations such as 

broadcasts and multicasts can be implemented easily and efficiently 

on symmetric topologies.

In a regular network, every node has the same degree. Often, net­

works can be parameterized by Ah, A^, and so on, so that the dif­

ferent networks are very closely related; for example, Ni is usually 

contained in N j ,  for j  > i. We often refer to this set of networks 

as a network (as we do with the hypercube). In such a case, we 

say that the network has a constant degree if every Ni is regular 

of the same degree (this is not the case with the hypercube). Con­

stant degree networks are easy to expand and are often suitable for 

VLSI implementation. Also, as we increase the size of the network, 

i.e., replace N{ with Nj, for j  > i, the network interface of a node 

remains unchanged.

• The connectivity.

The connectivity of a network provides a measure of the number 

of “independent” paths connecting a pair of nodes. The term node 

connectivity refers to the minimum number of nodes that need to be 

removed to disconnect the network, and link connectivity is the min­

imum number of links that need to be removed to achieve the same.
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The minimum of node- and link-connectivities is sometimes referred 

to as the connectivity of the network. According to Menger’s theo­

rem [90], the node connectivity is equal to the minimum among the 

maximum number of node-disjoint paths between pairs of nodes. 

These disjoint paths can be exploited to maintain communication 

in the face of several node failures. Another important point is 

that if the network has node connectivity k then communication 

between any two nodes can be parallelized by making use of at 

least k paths with no pair of these paths having a node in common. 

Thus, a long message can be sent from node a to node b by split­

ting it into several packets, and by sending these packets in parallel 

on the disjoint paths connecting a and b. This reduces the com­

munication time between any pair of nodes by a factor at least k. 

Moreover, disjoint paths can be exploited to improve performance 

during normal operation by avoiding congested network elements, 

and achieve fault-tolerance.

• The bisection width.

The bisection width of a network is the minimum number of links 

that must be removed to partition the original network of N  nodes 

into two subnetworks of N/2  nodes each (if N  is odd, the subnet­

works are of size (N  +  l)/2  and (N  — l)/2). The bisection width is 

useful in estimating the area required for a VLSI implementation 

of the network.

• The reliability.

The reliability of a network is the probability that all non-faulty 

nodes can communicate with one another through fault-free paths.
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• The scalability and the expandability.

Commercial multiprocessors and multicomputers must usually be 

designed to allow expandability over a certain range. A network 

is easy to expand when it requires no changes to any node when 

more nodes are added. A network is scalable if it continues to yield 

the same performance per processor as the number of processors 

increases.

• The flexibility.

The network topology should be rich enough to allow frequently 

used topologies to be embedded so that algorithms designed for 

other architectures can be simulated.

• The partitionability.

The partitionability of the network into subnetworks is important 

for the support of multiusers and multitasking.

We now consider some common network topologies.

C om plete Graph

An N  processor complete graph is a network where every processor is di­

rectly linked to every other processor (see Fig. 1.3). Such a network can 

be implemented by means of a bus which is shared by all processors, or 

by means of some type of crossbar switch. The diameter of this network 

is 1 and the connectivity is N  — 1. Clearly this is an ideal network in 

terms of flexibility and fault-tolerance. Unfortunately, when the num­

ber of processors is very large, a crossbar switch becomes very costly, 

and a bus involves large queueing delays. However, complete graphs are
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Figure 1.3: Complete Graph.

frequently used to connect small numbers of processors in clusters in a 

hierarchical network, where the clusters are themselves connected via 

some other type of communication network.

Linear Processor Array

A linear processor array architecture consists of N  processors, po?Pi, • • •, 

P n - i , and there is a link for every pair of successive processors (see 

Fig. 1.4). Processor arrays structured for numerical execution have

i •------•-------•------•------•

Figure 1.4: Linear Processor Array.

often been employed for large-scale scientific calculations, such as image 

processing and nuclear energy modelling. The diameter of this network 

is N  — 1 and the connectivity is 1. Although the total number of the 

communication links and the node degree are minimum compared to the 

other network topologies, the diameter and connectivity properties of

12



this network are the worst possible. When one processor or link becomes 

faulty, the network becomes disconnected.

Ring

A ring or a cycle processor architecture (see Fig. 1.5) consists of N  pro­

cessors, po,pi, . . .  , P t v - i ,  where p, is linked to pi+imodN• The diameter

Figure 1.5: Ring.

of this network is [N /2J and the connectivity is 2. The diameter of the 

ring topology architecture can be reduced by adding chordal connections. 

Using chordal connections can increase a ring-based architecture’s fault 

tolerance. Ring topologies are most appropriate for a small number of 

processors executing algorithms not dominated by data communication.

Tree

Tree topology architectures have been constructed to support divide- 

and-conquer algorithms for searching and sorting, image processing algo­

rithms, and dataflow and reduction programming paradigms. Although 

a variety of tree-structured topologies have been suggested, complete bi­

nary trees are the most analysed variant. A complete binary tree (see 

Fig. 1.6) with n levels and N  = 2n — 1 processors has diameter 2(n — 1)

13



and connectivity 1. The binary tree lends itself to area-efficient imple­

mentation in VLSI using the H-tree layout [52].

Figure 1.6: Complete Binary Tree.

Although the total number of communication links in a tree network 

is minimal (N  — 1), one disadvantage of a tree is its low connectivity; the 

failure of any one of its links creates two subsets of processors that cannot 

communicate with each other. Several strategies have been employed to 

reduce the communication diameter of tree topologies. Example solutions 

include adding additional links so that the nodes on the same tree level 

are connected in the form of a linear array.

M esh

Mesh-connected processor arrays (see Fig. 1.7) have found wide applica­

tion in both commercial and experimental machines. The nodes of a d- 

dimensional mesh with n* points along the ith dimension are the d-tuples 

(#1 , . . . ,  Xd) where each of the coordinates X{,i = 1, . . . ,  d, takes an integer 

value from 0 to nt- — 1. The links are the pairs ((#i , . . . ,  Xd), (# i , . . . ,  x'j)) 

for which there exists some i such that \xi — x'^ = 1 and Xj = x'- for all 

j  ^  i. The diameter of a d-dimensional mesh-connected network, with 

N  = n i l  ni processors, is J2i=i(ni ~  1) [95], which can be much smaller 

than the diameter of a ring and much larger than the diameter of a binary 

tree with the same number of processors.

14



Figure 1.7: 2-Dimensional Mesh.

A variation with smaller diameter is the torus (see Fig. 1.8) which is 

a mesh network with wraparound; that is, \x{ — a?J-| = 1 in the above defi­

nition is relaxed to |a:t — x'^ =  1 mod w,-. The diameter of a d-dimensional 

torus is Ef=i |n</2j [11, 95].

7u
Hh-71

-O----

r T 3
Figure 1.8: 2-Dimensional Torus.

Meshes and tori are quite popular networks and have been widely 

studied. Two-dimensional meshes are ideally suited for many applica­

tions such as signal/image processing, matrix computations, numerical 

solution of differential equations, aerodynamic structure analysis, and 

computer vision [11, 62].

15



H ypercube

The binary n-cube, commonly called the hypercube, is a popular inter­

connection network for commercial and experimental systems owing to 

its relative simplicity and rich interconnection structure (see Fig. 1.9).

Figure 1.9: 4-Dimensional Hypercube.

The first working hypercube system was built at Caltech in 1983 [84]. 

Since then, many commercial and experimental hypercube computers 

have been constructed. The hyper cube network on N  = 2n nodes is 

obtained by labelling each node by an n-bit binary number and con­

necting nodes whose addresses differ in one bit exactly. The distance 

between two nodes along a shortest path in the hypercube (often re­

ferred to as the Hamming distance) is the number of bits in which their 

binary addresses differ. The diameter of a hypercube is n = log2 N  and 

the connectivity is also n [78]. The interconnection structure of the hy­

percube allows the efficient implementation of a large number of parallel 

algorithms [11, 47, 61, 74]; and the hypercube can simulate a variety of

16



other common topologies such as rings, meshes [78], and trees [57, 99].

The reader should refer to [41, 47, 61, 74] for other network topologies 

like the butterfly, cube-connected-cycles, shuffle-exchange, and de Bruijn 

networks.

1.2 Com m unication A spects o f Parallel 

Com puters

In this section, we consider some basic communication aspects of mul­

ticomputers with distributed memory. In interprocessor communication 

where several links must be traversed, several issues involving data trans­

mission and routing mechanisms requirements must be addressed. In a 

network, when node a sends a message to node b, a path through the 

network along which the message will travel must be chosen. This process 

is called routing.

A message may be broken into one or more segments called packets 

for transmission. A packet is the smallest unit that contains routing and 

sequencing information. There are two advantages in dividing a message 

into packets. Assume that a message is to be transmitted over a path of 

k > 1 communication links and a processor must store the entire message 

before it can be processed and retransmitted. Also, each packet takes one 

unit of time to travel along a link. Dividing the message into m  packets, 

namely Pi,P2j • • • jjPmj and transmitting them sequentially in a pipeline 

fashion over the fc-link path will reduce the delay time from m k , if the 

message is transmitted as a whole packet, to m  + k — 1. This is because 

if the message is transmitted as a whole packet then it will take m  units 

of time to transmit the message over one link, and hence a total of mk

17



time units. Now assume that each packet is transmitted sequentially in a 

pipeline fashion over the fc-link path. Then pi will reach the destination 

in time k\ P2 will reach the destination in time k + 1; pz will reach the 

destination in time k-\- 2; and so on. Hence, pm will reach the destination 

in time k +  m  — 1.

The second advantage of dividing a message into packets is that if 

the network has connectivity k then communication between any two 

nodes can be parallelized by making use of at least k paths with no 

pair of these paths having a node in common. Thus, by splitting the 

message into several packets, and sending these packets in parallel along 

the disjoint paths connecting the source and the destination nodes, the 

communication time between any pair of nodes can be reduced by a factor 

at least equal to the connectivity of the network. This is useful for large 

messages (when the number of packets is greater than the accumulated 

length of the disjoint paths).

Com m unication Delays

One main problem in interconnection networks is to reduce as far as 

possible the time a message takes to travel from one node to another. 

Communication delays can be divided into four parts.

(a) Communication processing time, which is the time required to pre­

pare information for transmission (i.e., assembling information in 

packets, appending addressing and control information to the pack­

ets, selecting a link on which to transmit each packet, moving the 

packets to the appropriate buffers, etc.).

(b) Queueing time, which is the time the message waits in queue prior 

to the start of its transmission; for some reason such as waiting



for an unused communication link or ensuring the availability of 

needed resources (such as buffer space at its destination).

(c) Transmission time, which is the time required for transmission of 

all the bits of the packet.

(d) Propagation time, which is the time between the end of transmission 

of the last bit of the packet at the transmitting processor, and the 

reception of the last bit of the packet at the receiving processor.

M essage-R outing Schemes

A network topology must allow every node to send packets to every 

other node. When the topology is incomplete, routing determines the 

path selected by a packet to reach its destination. Efficient routing is 

critical to the performance of multicomputer networks [44, 68].

A routing algorithm is termed deterministic if the path selected does 

not depend on the current network conditions. In deterministic routing, 

the selected path is entirely determined by the source and destination 

addresses. That is, the mapping from pairs of source-destination ad­

dresses to the path to be followed is a single valued function. This has 

the advantage of simplicity, but is unable to adapt to network conditions 

such as congestion and failures.

A routing algorithm is dimensional if a path chosen takes the message 

through one dimension at a time. An example for deterministic dimen­

sional routing is the row-column routing (also called X -Y  routing) in a 

2-dimensional mesh which always routes a message along the row first 

and then along the column, thus using a deterministic path for a given 

source-destination pair. Another well-known dimensional routing algo-
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rithm is the e-cube routing algorithm for hypercubes [89]. This algorithm 

routes packets in a binary n-cube in a fixed order of dimensions (usually 

in increasing or decreasing order).

Alternatively, a routing technique is adaptive if, for a given source and 

destination, the path taken by a particular packet depends on dynamic 

network conditions, such as the presence of faulty or congested channels. 

With adaptive routing, the paths can be modified to avoid faulty network 

elements. Many recent researchers have proposed algorithms for adaptive 

routing in multicomputer networks [24, 26, 31, 35, 44, 62, 76, 87, 101].

A routing algorithm is said to be minimal if the path selected is one 

of the shortest paths between the source and destination pair. Using a 

minimal routing algorithm, every channel visited will bring the packet 

closer to the destination. A nonminimal routing algorithm allows packets 

to follow a longer path, usually in response to current network conditions. 

This behaviour can lead to a situation known as livelock. Livelock occurs 

when a message circulates endlessly in the network, never reaching its 

destination. Protocols that misroute in this fashion must have some 

methods of dealing with livelock [50, 95].

A network consists of many channels and buffers. Flow control deals 

with the allocation of channels and buffers to a packet as it travels along 

a path through the network. A resource collision occurs when a packet 

cannot proceed because some resource that it requires is held by another 

packet. Whether the packet is dropped, blocked in place, buffered, or 

re-routed through another channel depends on the flow control policy. 

Flow control techniques attempt to regulate the movement of packets 

from node to node so as to utilize the network resources as efficiently as 

possible.
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A simple approach to implement network flow control is store-and- 

forward. In this method, the entire packet is buffered at each interme­

diate node and forwarded to the next node in its path when the desired 

outgoing link becomes available. This is simple to implement, but the 

buffering at each intermediate node wastes memory and causes unneces­

sary delays. An improvement over the store-and-forward approach, called 

virtual cut-through, avoids this problem by buffering packets only when 

they encounter a busy link [55]. With virtual cut-through, the forwarding 

of a packet can commence as soon as the header bits are received if the 

outgoing link requested is free. The packet is buffered at the node only 

if the requested link is busy. This technique has been shown to result in 

improved performance over the store-and-forward approach, particularly 

under light traffic conditions [55]. Cut-through routing was used in the 

torus routing chip implemented at Caltech [32].

In both the store-and-forward and virtual cut-through approaches, a 

blocked packet stays in a buffer at an intermediate node, waiting for the 

outgoing link to be free. Alternatively, the buffering can be reduced to a 

minimum if the blocked packet is allowed to stay on the partial path it 

has already traversed. That is, parts of the packet can stay in multiple 

nodes along the path, holding the links between them. The wormhole 

approach, originally proposed by researchers at Caltech [33], is based on 

this idea.

In wormhole routing, a message is divided into small units called flits 

(flow control digits) which travel between nodes via routing chips. Each 

routing chip has a flit-sized buffer. If the channel to the next router 

is free, i.e., the buffer in the next router is unoccupied, the flit is sent 

through the communication channel. If the channel to the next router in
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the path is blocked, the flit is buffered at its current location.

When the header flit is sent along a communication channel, the 

remaining flits follow in a pipeline fashion. Should the leading flit be 

blocked because the communication channel ahead is occupied, the re­

maining flits in the message are also blocked. An advantage of wormhole 

routing is that message latency due to transit time (fly time) is less de­

pendent on path length [28] (see [40, 6 8 ] for more details about wormhole 

routing).

Both store-and-forward and wormhole routings are susceptible to 

deadlock. Deadlock in store-and-forward routing occurs when no mes­

sage can advance toward its destination because the queues of the mes­

sage system are full. Consider the example shown in Fig. 1.10. The 

queue of each node in the 4-cycle is filled with messages destined for the 

opposite node. No message can advance toward its destination; thus, the 

cycle is deadlocked. In this locked state, no communication can occur 

over the deadlocked channels until exceptional action is taken to break 

the deadlock.

Many deadlock-free routing algorithms have been developed for store- 

and-forward computer communication networks [46, 51, 65]. These algo­

rithms are based on the concept of a structured buffer pool. The message 

buffers in each node of the network are partitioned into disjoint classes, 

and allocating them to packets based on some buffer-allocation scheme. 

One approach is to allocate the buffers based on the number of hops a 

packet has travelled [51, 65]. That is, a packet arriving at a node after 

i hops is stored in a buffer belonging to class i. This requires at least 

h +  1 buffer classes in a node, where h is the maximum number of hops
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Figure 1.10: A deadlock in store-and-forward routing.

any packet will have to travel (this is the same as the diameter of the 

network if routing is always along a shortest path).

A disadvantage of wormhole routing is its use of a blocking buffering 

scheme. That is, as long as the header can advance, so too do the fol­

lowing flits. If the header cannot advance because, for example, another 

worm holds the path, all flits in the first message hold their position. This 

blocks another message from using the path. For this reason, wormhole 

routing is susceptible to deadlock, particularly in toroidal interconnection 

networks [18].

An example of deadlock can be seen in Fig. 1 .1 1 . This figure illus­

trates four simultaneous communication requests in a ring network with 4 

nodes, one proceeding from node A to node C through node B, the second 

proceeding from node B to node D through node C, the third proceeding
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Figure 1 .1 1 : A deadlock in wormhole routing.

from node C to node A through node D, and the fourth request pro­

ceeding from node D to node B through node A. If a “reserve-an d-hold” 

policy is used, allowing the partial path to be held while waiting for an 

outgoing channel, then we have the following situation: node A is hold­

ing channel C\ and waiting for channel C2 , node B is holding channel C2 

and waiting for channel C 3 ,  node C is holding channel C3 and waiting for 

channel C4 , and node D is holding channel C4 and waiting for channel 

C\. This circular wait causes deadlock.

There have been several solutions proposed to the problem of dead­

lock in wormhole routed networks. One proposal, the Turn Model [48], 

restricts the directions a worm can turn. This model has the advantage of 

not requiring extra hardware support, but it can only be used to address 

the problem of deadlock. A second, more popular, approach is the use
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of virtual channels [33]. In this approach, multiple virtual channels are 

time multiplexed over a physical channel (see Fig. 1.12). Each physical 

channel has the same number of virtual channels assigned to it, and each 

virtual channel has its own input and output flit buffer.

B A B
...... * ■ A

* ■
■

I
Block

(a)

A 1 B B
......... ►!

’ 1
-  ' — 4  “ ------ ►

Block
(b)

Figure 1.12: Virtual Channels: (a) Packet B is blocked behind 

packet A. (b) Virtual channels provide additional buffers allowing 

packet B to pass blocked packet A.

Virtual channels increase the hardware complexity of a router because 

of the need for extra buffers and multiplexor and demultiplexor hardware. 

However, in addition to preventing deadlock, virtual channels can be 

used to improve throughput of the network, decrease latency, or provide 

adaptivity in the routing algorithm [29, 30, 31, 62, 101]. The reader 

should refer to [47, 67, 94] for other message-routing schemes like the 

permutation, randomised and hot potato routing schemes.
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Com m on Com m unication Prim itives

Besides one-to-one routing, there are other communication primitives 

that are of importance in executing certain computational algorithms 

on a multicomputer network [11, 95]. These communication primitives 

involve

• one-to-all (or single-node broadcasting), where one processor wishes 

to send the same data item to every other processor,

• one-to-all personalized (or single-node scattering), where one pro­

cessor wishes to send a different data item to every other processor,

• all-to-all (or multi-node broadcasting), where every processor wishes 

to send the same data item to every other processor, and

• all-to-all personalized (or total exchange), where every processor 

wishes to send a different data item to every other processor.

Communication algorithms can be implemented in either d-port I/O 

or multi-port I/O  model. In a d-port I/O model, a processor can transmit 

a packet along at most d incident communication links and can simulta­

neously receive a packet along at most d incident communication links, 

whereas in a multi-port I/O  model all incident communication links of 

a processor can be used simultaneously for packet transmission and re­

ception. Broadcasting is a common operation in parallel algorithms. 

It is used in a variety of linear algebra algorithms such as matrix-vector 

computations, LU-factorization, transitive closure, and database queries. 

The reverse of broadcasting is the global combine operation, in which each 

processor has a value which needs to be sent to a specific processor; for 

example, for finding the maximum or minimum or global sum. In the
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case of personalized broadcasting, a single processor has a vector of N  

values and the zth value needs to be sent to the «th processor. Person­

alized broadcasting is used in matrix computations, where a column of 

data stored in one processor is to be distributed to N  other processors. 

Multi-node broadcasting and total exchange communication algorithms 

occur in matrix computations and in neural network simulations.

In the case of single-node broadcasting, Sullivan et al. [89] have given 

what is now the standard algorithm, called the e-cube algorithm, for 

broadcasting in hypercube multicomputers. The e-cube algorithm, where 

the source processor is po, consists of n steps and is as follows. In the 

first step, po sends the message it intends to broadcast to its adjacent 

processor in dimension 1. In step i, for i = 2,3 . . . ,n ,  each processor 

sends the broadcast message it has just received to its adjacent processor 

in dimension i as does the source. At the end of step n, all the proces­

sors of the hypercube will have the message. Since the diameter of the 

hypercube is n, the e-cube algorithm is optimal. Fig. 1.13 shows the 

broadcast tree resulting from the e-cube algorithm in the 3-dimensional 

hypercube where the source processor is 000.

Algorithms for the communication primitives in a binary n-cube were 

first considered in [79], where the effect of the packet overhead and the 

data rate on the transmission time is also discussed. In this work, the 

hypercube links are assumed to be unidirectional and the model is one- 

port I/O; this increases the algorithm execution times by a factor of 2n 

compared to a bidirectional multi-port I/O model.

The communication primitives for the hypercube have also been con­

sidered in [10] and [54] under the bidirectional multi-port I/O  model.
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Figure 1.13: A broadcast tree for the 3-dimensional hypercube.

In [54], optimal and nearly optimal algorithms are given on the basis of 

a different model of communication. This model differs from the model 

of [10] in that it quantifies the effects of setup time (or overhead) per 

packet, while it allows packets to have variable length and to be split 

and be recombined prior to transmission on any communication link. 

The model of [10] may be viewed as the special case of the model of 

[54] in which packets have a fixed length and splitting and combining of 

packets is not allowed. Under the assumptions of the model of [10], the 

algorithms given in [54] for single-node scatter, multi-node broadcast, and 

total exchange are not optimal although some of them are optimal up to a 

small additive term but are optimal when the dimension of the hypercube 

n is a prime number (they are also optimal if each node has a multiple of n 

packets to send to each destination node). In contrast, the corresponding 

algorithms in [10] are optimal for all n and are unimprovable as far as
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time and communication requirements are concerned. For recent research 

concerning these communication problems, the reader is referred to [8, 

15, 88, 91, 93, 97].

1.3 Fault Tolerance

In massively parallel computer systems, as the size of the system in­

creases, so does the probability of component failure especially in oper­

ating environments such as mission critical defence applications, space- 

borne systems, and environmental controls [37]. Fault-tolerant networks 

are essential to the reliability of parallel computer systems. A fault- 

tolerant network has the ability to route information even if certain 

network components (i.e., processors, switches, and/or communication 

links) fail.

The techniques often used for network fault tolerance are either: soft­

ware based, such as adaptive routing, which makes use of multiple source- 

destination paths to avoid faulty components and multiple passes through 

the network (often used in omega-like multistage network); or hardware 

based, such as enhancing the network with additional hardware (such as 

links and switches). These techniques provide enough redundancy in the 

original network design to tolerate a certain number of faults [66, 73].

Faults can be classified into three types in terms of their duration: 

transient, intermittent, and permanent [66]. Transient faults persist only 

for a finite length of time (usually short) and are non-recurring. Inter­

mittent faults also last for a finite period of time, but are recurring. A 

permanent fault is an irreversible condition. Different design techniques 

are sometimes used to tolerate these faults. Transient and intermittent 

faults, for example, may be tolerated by repeating the operation on the
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faulty device until the fault disappears (called redundancy in time). Tol­

erating permanent faults, on the other hand, requires some form of hard­

ware redundancy in the system.

A system is repaired either by replacing the failed component by a 

spare or by reconfiguring the system structure or work load distribution 

to circumvent the component. Component replacement restores the sys­

tem to full operation but requires redundant components not used for 

normal operations.

Many reconfiguration strategies use all system components to perform 

useful work. When a fault occurs, system performance is degraded by 

redistributing the work load among the remaining resources. Or system 

redundancy can be reduced, affecting subsequent fault tolerance.

A failed component may be physically or logically removed from a 

system. Logical removal is accomplished by switching off the compo­

nent’s output into an inactive state, or instructing all units to ignore or 

bypass it.

Two measures are commonly used to quantify the ability of a system 

to continue its function in the presence of faults: the reliability R(t) is 

the probability that the system does not fail in the interval (0, / ); and the 

availability A(t) is the average fraction of time the system was operational 

in the interval (0, t). Reliability is important for mission-critical systems, 

or systems where the result of a system-failure would be catastrophic. 

Availability is a useful measure for commercial data-processing systems 

where a repair is feasible in the event of failure.

The objective of fault-tolerant computing is to develop and certify 

computing systems which perform in a satisfactory fashion in the pres­

ence of faults. Also, it is desirable that the system remains available
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to execute parallel tasks during the repair and replacement of faulty 

components. However, there is no broadly accepted methodology for 

fault tolerant design or analysis [98]. Fault tolerant design requires an 

awareness of what can go wrong throughout the design process. Failure 

domains are bigger than design domains. An economic model is needed 

that recognizes not only the value and cost of functionality, but also the 

value and cost of dependability.

A large volume of literature exists on the subject of fault-tolerance in 

interconnection networks. Most of the research on the subject falls into 

two categories [95]: methods to introduce redundancy in a known topology, 

motivated by the low connectivity of certain network topologies such as 

the tree and ring; and exploiting the inherent redundancy of the topology, 

motivated by the high connectivity and, hence, the existence of multiple 

routing paths between pairs of nodes such as the hypercube and the 

torus. For details on this subject the reader is referred to [20, 25, 56, 58, 

60, 71, 75].

1.4 Embeddings

The problem of allocating processes to processors in a multicomputer 

system is known as the mapping problem. A parallel program could be 

represented as a guest network G , where nodes denote processes and links 

denote communication between processes. A multicomputer system is 

represented by a host network 77, where nodes denote processors and links 

denote communication links between processors. The mapping problem 

could be modelled as a network embedding problem, mapping statically 

known networks, or guest networks, onto a fixed-connection network. 

This section reviews some basic terminology of network embedding.
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Let G and H  be two network topologies where G is the guest network 

and H  is the host network. Let Vg, Eg ,Vh and Eh denote the node 

and link sets of G and P , respectively, and let Ph denote the set of all 

paths in H. That is, (a?i, x<i, . . . ,  xn) £ Ph if X{ £ Vh and (xt, xl+i) £ Eh 

for 1 < i < n. Then an embedding of G in H  is a pair ( /v , /e )  where 

f v  • Vg —► Vh and f E : Eg —► Ph- Also,

(a ,6) £ £g  }e {clM  = ( z i , . . . , z n)

such that

( s i , . . . ,  x n) £ P//, xi = fv(a), and x n = fv{b).

Given networks G and H  with an embedding ( / f , /h )  of G into P , 

the following terms are used to describe the embedding. For more infor­

mation, see [61].

• Dilation.

The dilation of an embedding is the length of the longest path in 

H  that is associated with a link in G by Je -

• Expansion.

The expansion of an embedding is the ratio j^ J  where | Vq | denotes 

the cardinality of Vq.

• Congestion.

The congestion of an embedding is the maximum number of times 

a single link of H  belongs to paths in H  associated with links in G 

by f E-

• Load.

The load of an embedding is the maximum number of nodes of G 

associated with a single node of H  by fv-
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Clearly, the best embeddings are those for which the dilation, ex­

pansion, congestion, and load are all small. This is because these four 

measures bound the speed and efficiency with which H  can simulate G. 

If all the four measures are constant, then H  will be able to simulate G 

with constant slowdown. Hence, by developing a good mapping function 

from one interconnection topology to another, one can simulate the algo­

rithms designed for the former topology on a parallel machine that uses 

the later topology without much loss of efficiency. If an embedding of 

a network G into a network H  can be found having dilation, congestion 

and load equal to one, then G is isomorphic to a subnetwork of H.
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Chapter 2 

The k-a.ry n-cube  

Interconnection Network

2.1 Introduction

In this chapter, we define the k-ary n-cube Q* network and detail its 

properties. The binary n-cube has been extensively studied (see [11, 13, 

61, 78]), so we restrict ourselves on the fc-ary n-cube where k > 2. We give 

some definitions and describe the recursive structure in Section 2.2. We 

discuss the topological properties and state the number of node-disjoint 

paths between any two nodes in a Q j in Section 2.3. In Section 2.4, 

we consider some embeddings of common network topologies such as a 

Hamiltonian cycle (using the Gray code strategy), a binary tree, a mesh, 

and a hypercube into a fc-ary n-cube.
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2.2 D efinitions and Structures

In order to be able to define the k-ary n-cube network, we begin this 

section by introducing some definitions from coding theory [72]. Then, we 

define the k-ary n-cube network and show that it can be built recursively 

from lower dimensional cubes.

Definition 2.1 Let A = (an, an_ i , . . . ,  a\) and B = (6n,6n_ i , . . . ,  &i) 

be two n-tuples where at, 6t £ { 0 ,1 ,.. . ,  k — 1}. The Hamming distance 

between A  and B, denoted Dh{A, B ), is the number of positions in which 

they differ. The Lee distance between A and B , denoted D l{A ,B ),  is 

defined as:
n

Dl (A ,B ) = ^2dis(ai,bi),
2 =  1

where

dis(a{, bi) = min(|at- — 6,-|, k — |at- — 6t |).

E xam ple 2.2 Let k = 5 and n =  6. Let A = (3,0,1,2,3,4) and B  = 

(3,0,4,0,0,0). Then,

Dfj{A,B)  =  4, and

Dl (A ,B ) = dis(4,0) +  dis(S, 0) + dis(2,0) + 

dis( 1,4) + dz\s(0,0) + dis( 3,3)

=  l +  2 + 2 + 2 +  0 +  0 = 7.

Clearly, Dl {A,B)  =  Dh {A,B)  when k = 2 or 3, and Dl {A,B) > 

Dh (A , B ) when k > 3.

Intuitively, the A:-ary n-cube QJ network model is an n-dimensional, 

k nodes in each dimension, mesh-connected network with wraparound 

connections. In more detail, a k-ary n-cube QJ network is a 2n-regular
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network containing kn nodes. Each node is labelled with a distinct 72- 

tuple (an, an_ i , . . . ,  «i) where a,- £ { 0 ,1 ,.. . ,  k — 1}. Node labels are 

usually written either as 72-tuples (un, a „_ i,. . . ,  a{) or as (anan - 1  . . .  a\). 

Two nodes U and V  in the k-ary 72-cube are adjacent if and only if 

Dl (U, V) = 1. Consequently, for k > 2, the k-ary 1-cube is a cycle of 

length k and the fc-ary 2-cube is a k x k  mesh with wraparound. The 2th 

digit of the label at- represents the node’s position in the 2th dimension. 

From the definition of Lee distance, it can be seen that every node in QJ 

shares a link with two nodes in every dimension, resulting in a network 

of degree 2n. In addition, the shortest path between any two nodes, U 

and V, has length Dl (U,V). The dimension, 72, the radix, k , and the 

number of nodes, N, have the following relations

N  = kn, k =  V N , n = log* N.

If the nodes of a particular fc-ary 72-cube are named with the ele­

ments of { 0 ,1 ,..., k — l}n (which we always assume they are) then we 

consider the links to be in one of n different dimensions according to 

in which component the names of the link’s two incident nodes differ 

(with the rightmost component corresponding to dimension 1). For each 

2 £ { 1 ,2 ,.. . ,  72}, we refer to all links whose incident nodes differ in the 

2th  component as lying in dimension i. Also, for any i £ { 1 ,2 ,.. . ,  72}, QJ 

consists of k disjoint copies of Q^-i where corresponding nodes are joined 

in cycles of length k using links in dimension i. When we consider Q j in 

this way, with the disjoint copies joined by links lying in dimension 2, we 

say that we have partitioned Qj over dimension i.

Intuitively, we can construct a k-ary 72-cube recursively as follows:

• make k copies of a A;-ary (72 — l)-cube
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• for each i = 0 ,1 , . . . ,  k — 1, rename every node in the zth copy by 

concatenating an i to the left of the node’s name in that copy

• for each j  = 1 ,2 , . . . ,  n, join the nodes whose components differ in 

only the j th component in a cycle of length k (as defined above).

Fig. 2.1 illustrates an example of constructing a 4-ary 3-cube Q\ re­

cursively starting from a 4-ary 1-cube.

2.3 Topological Properties

When designing a large multicomputer, one of the most important design 

decisions involves the topology of the communication structure among 

the processors. The degree (number of incident links) of each node, the 

total number of links, and the diameter of the network should be known 

before choosing the network. In order to hint at why the fc-ary n-cube is 

popular as an interconnection network for parallel processing, we present 

in this section some of its topological properties [4, 12, 17].

The degree of each node in the fc-ary n-cube is 2n; the total number 

of links is nkn; its diameter is [fc/2jn; and it contains kn~x node-disjoint 

cycles each of length k in each dimension. For example, the four node- 

disjoint cycles in each dimension for the Q\ are as follows:

Dim ension 1 Dimension 2

C, =  {(0,0), (0,1),(0,2),(0,3)} Cl =  {(0,0),(1,0),(2,0),(3,0)}

C2 =  {(1,0), (1,1), (1,2),(1,3)} C2 = {(0,1),(1,1),(2,1),(3,1)}

C3 =  {(2,0), (2,1), (2,2),(2,3)} C3 =  {(0,2),(1,2),(2,2),(3,2)}

C4 =  {(3,0), (3,1), (3,2), (3,3)} C4 =  {(0,3), (1,3), (2,3), (3,3)}

37



Figure 2.1: The recursive structure of Q*: (a) (Jf; (b) (c) Q\.
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Suppose that we are given a set of generators of a finite group T. If 

a network can be drawn such that the nodes correspond to the elements 

of the group T and there is a link from an element a to an element b 

if and only if there is a generator g such that ag =  b in the group T, 

then this network is called a Cayley graph. It is required that the set of 

generators be closed under inverses so that the resulting network can be 

viewed as being undirected graph. It is well-known, e.g. [1], that every 

Cayley graph is node-transitive (symmetric).

Bettayeb [12] showed that the A:-ary n-cube Q* network can be rep­

resented as a Cayley graph with the generating set consisting of all the 

elements (an, an_ i , . . . ,  ai) where aj £ {1 , k — 1 }, for some j ,  and = 0  

for all i 7  ̂ j, 1 < i, j  < n, and the operation is addition of components 

modulo k. Hence, a k-ary n-cube network is node-transitive.

The following lemma shows that the fc-ary n-cube network QJ is link- 

transitive [4]. In other words, we show that for every pair of links e\ and 

e2 , there is an automorphism of Q* mapping e\ to e2 -

L em m a 2.3 Let k > 3 and n > 1 . QJ is link-transitive.

P ro o f We proceed by induction on n. The base case, when n = 1, is 

trivial. Suppose that the result holds for Q where n > 1 . Let

d  =  ((zn+ i , . . . , : r t- ,. . . ,z i) ,( ;z n+i , . . . , £ ;  + l , . . . ,Z i ) )  and

^2 ((yn+i} • • • ■> • • • •> 2/1)5 (2/n+i? • • • 5 Uj t  1 ? • • • 12/1))

be two links of Q£+1, where 1 < i , i  < n +  1 and addition of components 

is modulo k (as it is throughout the proof). Without loss of generality, 

there are two cases to consider.

Case (?) i = j  = 1 . For each I = 1,2, . . . , n  +  1, let pi be the auto­

morphism of Q„+l defined via pi : (zn+1 , . . . ,  27, . . . ,  zi) i-> (zn+1 , . . . ,  z\ +
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and set Si = yi — x\ (mod k). Then the automorphism 

(pn+i)5n+1 • • • {p2)S2 {pi)Sl maps ei to e2.

Case (ti) i = 1 and j  = 2. Let pi)2 be the automorphism of Qn+i 

defined via ph 2  : (^n+i, • • •, z3, z2, zf) h-> (zn+1, . . . ,  z3, zu z2), and set 

^1,2 =  2/2 — (mod k) and S2<i = y\ — x 2 (mod k). Then the auto­

morphism (pn+i) Sn+1 . . .  {pz)h pi,2 {p2)S2A{p\ ) h '2 maps ex to e2. □

The transfer of a large amount of data between two nodes in a multi­

computer may be facilitated by dividing the data into small packets and 

sending the packets along different routes. In order to avoid contention, 

the packets should travel by routes having no common nodes except the 

sending and receiving nodes. Such paths between two nodes A and B, 

referred to as node-disjoint parallel paths, provide a means of selecting 

alternate routes between A and B  and increase fault-tolerance. The fol­

lowing theorem states the number and length of disjoint parallel paths 

between any two nodes belonging to [17].

Theorem  2.4 Given A =  (an, an_ i , . . . , ax) and B =  (6n, 6n_ i , . . . ,  &x). 

Let I =  D l(A , B ) ,h  = D h(A ,B ), and W{ =  dis(ai,b{) for 1 < i < n. 

Then, in a k-ary n-cube, k > 2, there are a total of 2n node-disjoint

parallel paths between A and B  of which

(i) h paths have length I,

(ii) 2(n — h) paths have length 1 + 2 , and

(Hi) for each i such that W{ > 0, there is a path of length I +  k — 2W{

(for a total of h paths).

Proof W.l.o.g., assume that the first h digits of the labels of A and B  

are different while the remaining n — h digits are the same. Then
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(i) For each z, 1 < i < /z, construct the zth path as follows. Starting 

with the label of A, correct digit z using the shortest path in the cy­

cle of dimension i between at and Repeat this procedure for the 

remaining digits of A , proceeding sequentially through dimensions 

i +  1, z +  2 , . . . ,  /z, 1 , . . . ,  i — 1. This produces h paths of length /.

(ii) Construct the next 2(n — h) paths of length I +  2 from A  to B  by 

the following. First, for each j ,h  < j  < n, add 1 to digit j .  Then 

follow the correction procedure of (i) for digits z, 1 < z < /z, and 

finish by subtracting 1 from digit j .  This results in n — h paths of 

length I +  2. For the remaining n — h paths, repeat this procedure 

but subtract 1 from digit j  first and finish by adding 1 to digit j .  

This step produces 2(n — h) paths of length I + 2.

(iii) Construct the remaining h paths as follows. For each z, 1 < z < h, 

add or subtract 1 to move along the longest path in the cycle of 

dimension z between at- and This correction of digit z is the 

opposite of the correction in step (i). Now, correct each of the re­

maining digits following the shortest path in the cycles of dimension 

z +  1, z +  2 , . . . ,  /z, 1 , . . . ,  z — 1. Finally complete the path to B  by 

continuing to correct digit z following the longest path in dimension 

z. The length of each path may be calculated as follows. Correct­

ing digit z using the longest path in the cycle in dimension z uses 

(k — Wi) steps. Correcting the remaining digits using the shortest 

path in each cycle requires (/ — W{) steps. Altogether, the length of 

each path is / +  k — 2W{.

It can be seen that none of these paths share any nodes except A  and B.
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Note the theorem above is not valid when k =  2. This is because 

adding one to a bit is the same as subtracting one from a bit in the 

binary case. Example 2.5 shows the six disjoint parallel paths between 

two nodes labelled (0,1,3) and (0,3,4) in a <J|.

Exam ple 2.5 The six disjoint parallel paths between (0,1,3) and (0 ,3 ,4) 

in a are:

Path 1: (0,1,3) (0,1,4) (0,2,4) -> (0,3,4)

Path 2: (0,1,3) -»■ (0,2,3) (0,3,3) ->■ (0,3,4)

Path 3: (0,1,3) -> (1,1,3) -*• (1,1,4) -> (1,2,4) -> (1,3,4) -> (0,3,4)

Path 4: (0,1,3) -> (4,1,3) -> (4,1,4) -> (4,2,4) -> (4,3,4) -+ (0,3,4)

Path 5: (0,1,3) -»■ (0,1,2) ->■ (0,2,2) -)• (0,3,2) -+ (0,3,1) ->

(0,3,0) -¥ (0,3,4)

Path 6: (0,1,3) -> (0,0,3) (0,0,4) -» (0,4,4) -> (0,3,4)

2.4 Em beddings in k-ary n-cubes

This section considers some examples from the literature [17] on embed­

dings of common network topologies into a k-ary n-cube. The topologies 

considered are a Hamiltonian cycle, a mesh, a binary tree, and a binary 

hypercube (Bn). All our embedding problems considered throughout this 

thesis have dilation, congestion and load equal to one.

Em bedding a H am iltonian Cycle

Let A = (Ai, A 2, . . . ,  A n ) be a sequence of distinct node labels in a QJ. 

If A  forms a cycle (or a ring) of length N  = kn, then is Hamiltonian. 

Since the Lee distance between any two successive labels and the Lee
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distance between A n  and A\ must be 1, the sequence of node labels, A, 

forms a Gray code.

The preceding information suggests that one means of generating a 

Hamiltonian cycle is to generate a Gray code. A Gray code for a Q* 

can be generated using the k-ary Gray code presented in [17] which is as 

follows.

Theorem 2.6 Let S =  (0,1, . . . ,  kn — 1) be a sequence of n digit, radix 

k numbers. Let f  : {0 , 1 , . . . ,  k — l}n —»• {0,1, . . . ,  k — l}n be such that

f (a n, an_ i , . . . ,  ai) = an, an_i -  an(modfc),. . . ,  ax -  a2(modA:).

Then the sequence

S* = (/(0), / ( l ) , .. • , f { k n — 1))

forms a k-ary Gray code for a Q □

Below is an example of a Gray code in a Q\ obtained by the above 

theorem. See [17] for more Gray code strategies.

5 s* s S* S 5* S S*

00 00 10 13 20 22 30 31

01 01 11 10 21 23 31 32

02 02 12 11 22 20 32 33

03 03 13 12 23 21 33 30

Em bedding a M esh

The Gray code presented in Theorem 2.6 can be used to embed meshes 

or tori of certain dimensions into [17]. Let M  be a K ni x K U2 x 

. . .  x K Um-dimensional mesh or torus, where n = Ya=\ ni• The following 

construction shows how to embed M into Q
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Assume that each dimension i of M is labelled with a radix k , n* digit 

number 0 ,1 , , . . . ,  kni — 1. Using Theorem 2.6, relabel each dimension 

with the corresponding Gray code sequence. Now each node of M can 

be identified with an m-tuple whose zth component is the node’s location 

in the ?th dimension, 1 < i < m. If x is a node of M with label 

(aq, a?2 , . . . ,  £m), then define /v(x) = xi,X 2 ,*.. , x m, the concatenation 

of ajj, a?2 ? • • • > x m.

It should be clear that if x and y are any two adjacent nodes in M, 

then /v(x) and fv (y )  are adjacent in Qj. For if x and y are adjacent in 

M, their labels differ only in some dimension i. Since each dimension is 

labelled with a Gray code, the Lee distance between x and y in dimension 

i is one. Therefore, Z)l(/v(x), fv(y))  =  1, and x and y are adjacent in 

Q As an example, Fig. 2.2 shows a 32 x 3 mesh embedded into a Q%. 

In the mesh, x (1,2,1) is adjacent to four other nodes: A (1,2,0), B 

(0,2,1), C (1,2,2), and D (1,0,1). It is easily verified that the Lee 

distance between x  and A, B, C, or D is 1. Therefore, x is adjacent to 

the other four nodes in the Q\.

00 01 02 12 10 11 21 22 20

0

1

2

Figure 2.2: Embedding a 32 x 3 mesh into a Q\.
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Em bedding a Binary Tree

The following lemma shows how a complete binary tree, denoted X ,̂ of 

height h (where the root is at height 0) and N  = 2 h+1 — 1 nodes can be 

easily embedded into a Q*.

Lemma 2.7 A k-ary n-cube Q* network, for k > 3 and n > 2, contains 

a complete binary tree Tn of height n as a subnetwork.

Proof We proceed by induction on n. When n = 2, then Fig. 2.3(a) 

shows a complete binary tree T2 of height 2 embedded into a Q%. Assume 

that a (J*, for k > 3 and for some n > 2, contains a Tn as a subnetwork. 

Now consider Q*+1 partitioned over dimension n + 1 into k disjoint iso­

morphic copies of fc-ary n-cubes <3j(0), (J j(l), • • •, Q^(k — 1) (where the 

isomorphism is the natural one) with corresponding nodes linked in a 

cycle of length k.

By induction hypothesis, Q^(0) and Qj(2) contain isomorphic copies 

of Tn. By connecting the root of Tn in Qj(0) and the root of Tn in Q j(2) 

to their corresponding node R  in Q*( 1), the resulting construction is a 

Tn+1 rooted at R  (i.e., see Fig. 2.3(b)). □

Em bedding a H ypercube

It is easy to show by induction on n that a binary n-cube Bn network 

is a subnetwork of a fc-ary n-cube QJ. As an induction base case, note 

that any link in a Q\ is a B\. Suppose that the result holds for some 

n > 1. Partitioning Q^+i over dimension 1 yields k copies of QJ, namely 

OS(0), <3n(l), • • •, Qn(k ~  !)• By the induction hypothesis, Qj(0) and 

Q*(l) contain isomorphic copies of Bn. The binary (n +  l)-cube Bn+1 of
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22 00 0220

e> e>
(b)

Figure 2.3: Embedding a complete binary tree Tn into a Qj:

(a) a T2 embedded into a (b) a Tn + 1 embedded into a Q£+1.

Q*+1 can be obtained by taking the disjoint union of the copies of Bn in 

Q£(0) and Q£(l) and joining corresponding nodes.

The following lemma shows that a binary 2d-cube f?2d is isomorphic 

to a 4-ary d-cube Q  ̂ [17].

L em m a 2.8 Let k = 4 and d > 1. Then a binary 2d-cube B 2d is iso­

morphic to a 4-ary d-cube Q\.

P ro o f  We proceed by induction on d. Let /  : {0, l}2 —> {0,1,2,3} 

where /(0 ,0) =  0 , / ( 0 ,1) =  1 ,/(1 ,1) =  2, and /(1 ,0) =  3. Then 

clearly /  maps £?2 to Q\. Suppose that the result holds for some d > 

1. Partitioning Q^+i over dimension 1 yields 4 copies of Qj, namely 

Q^(0), (3^(1), (5d(2), and Q\{3), with corresponding nodes linked in a cy­

cle of length k.
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By the induction hypothesis, each of (JJS(O), <3^(1), <2J(2), and Q<S(3) 

is isomorphic to a copy of B<id* By taking the disjoint union of the copies 

of # 2d in Q*(0) and Qd(l) and j°ining corresponding nodes, we obtain 

a binary (2d +  l)-cube £?2d+i- Denote this hypercube by B r. Similarly, 

by taking the disjoint union of the copies of B 2d in Q|S(2) and Q\($) 

and joining corresponding nodes, we obtain another binary (2d-\- l)-cube 

B 2d+i- Denote this hypercube by B". Now, by taking the disjoint union 

of the copies of B ' and B" and joining corresponding nodes, we obtain a 

binary (2d +  2)-cube B 2(d+1)* n

A straightforward result from the above lemma is that a binary 72- 

cube Bn network is a subnetwork of a 4-ary [72/ 2 ]-cube Q*n/2y  As an 

example, Fig. 2.4 shows a binary 4-cube B4 embedded into a 4-ary 2-cube

Q l

1000 1001 1011 1010

1100 1101 n i l 1110

0100 0101 0111 0110

0000 0001 0011 0010

t t t
Figure 2.4: A binary 4-cube B4 embedded into a Q\.
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C hapter 3

E m beddings o f Cycles in 

k-ary n-cubes

3.1 Introduction

We have shown in Chapter 2 that the A;-ary n-cube can simulate a cycle 

of length kn. In this chapter, we completely classify when a k-ary n-cube 

Qkn, for fc > 3 and n > 2, contains a cycle of some given length. We 

start this chapter by giving in Section 3.2 a generation of fc-ary Gray 

codes of dimension n. The k-ary Gray codes have been used to obtain 

Hamiltonian cycles in fc-ary n-cubes (see, e.g., [17]). To a certain extent, 

we are repeating what was done in [17] where two methods of generating 

k-ary Gray codes of dimension n were given, one of which is recursive as 

is ours. However, the recursive method in [17] yields a Hamiltonian cycle 

in a fc-ary n-cube only when k is even: our recursive method yields a 

Hamiltonian cycle for every k > 2. Recursive generating methods might 

prove useful when it comes to implementation.

In Section 3.3, we ascertain exactly when a cycle of length m, where
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3 < m < kn, can be embedded in Qj. Our analysis yields an algorithm 

for generating a cycle of length m  in Q when one exists, thus answering 

a question posed in [17]. Broeg [18] had previously shown how to embed 

an even length cycle in a general toroidal network using Gray codes, a 

totally different approach to ours; and even then only when at least one 

of the generating cycles in the direct product has even length. He did 

not attempt to classify when cycles exist in toroidal networks (or even in 

fc-ary 72-cubes) and a general classification has yet to be obtained. As can 

be seen from our proofs, the embedding of even length cycles in k-ary 72-  

cubes is straightforward when compared with the much more interesting 

case of embedding odd length cycles.

3.2 Recursive Structure of Gray Codes

As defined in Chapter 2, a k-ary Gray code of dimension n is an ordering 

of the elements of { 0 ,1 ,.. . ,  k — l}n such that the Lee distance between 

consecutive elements in the list is 1, as is the Lee distance between the 

first and last elements. It is not immediately apparent that such Gray 

codes exist (but they do, as we shall see).

Suppose that Gk(i) is a fc-ary Gray code of dimension i. Then Qk(i) 

is defined to be the list obtained from Gk{i) by only including those 

elements of Gk(i) whose rightmost digit is 0, and £*(*) is defined to be 

the list obtained from Gk(i) by only including those elements of Gk(i) 

whose rightmost digit is different from 0. Ql(i) (resp. 5X(*)) is the hst 

obtained from Qk{i) (resp. Sk(i)) by reversing the order of the elements 

in the list. For any j  € { 0 ,1 , . . . ,A; — 1}, jQk(i) is the list obtained 

by prefixing every element of Qk(i) with the digit j ,  and the same goes 

for jSk(i), jQk(i) and i'SfcW- Note that the elements of jQ k(i), jSk(i),
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jQ k(i) and j^ lH )  are (* + l)-tuples.

Define the k-ary Gray code of dimension 1 Gk(l) as (0 ,1 , . . . ,  k — 1);

so,

Qk( 1) =  (0) and Sk{ 1) =  (1 ,2 ,. . . ,  k -  1).

Suppose that Gk(i) is a k-ary Gray code of dimension i such that Gk(i) is 

the concatenation, Qk(i)', Sk(i), of Qk(i) and Sk(i) (this is true for 6^(1)). 

Define Gk(i +  1) as

oQk(i); 1 Ql(i); 2Qk(i) ; . . . ;  (k -  1 )Qrk(i)- (k -  1 (k -  2)$*(<);...

if is even, and

0Q*(*); lQJM ; 2Q*(i);. . . ;  (k -  1 )Qk(i); (k -  l)5*(t); (k -  2)Srk{i) ; . . .

if A; is odd. Then + 1) is a fc-ary Gray code of dimension i +  1 

such that -f 1) is the concatenation of Qk(i +  1) and Sk(i + 1). 

Clearly, |Gfc(n)| =  kn. Two examples are given below. In Example 3.1, a 

Hamiltonian cycle for a Q\ is given, and in Example 3.2, a Hamiltonian 

cycle for a is given.

E xam ple 3.1 A recursive structure of Gray codes in a Q\.

(?4 (1 ) (0,1,2,3)

04(1) (0)

54(1) (1,2,3)

Gt( 2) (00,10,20,30,33,32,31,21, 

22,23,13,12,11,01,02,03)
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Example 3.2 A recursive structure of Gray codes in a Q^.

G3( 1) (0,1,2)

(33(1) (0)

S3( 1) (1,2)

(?3(2) (00,10,20,21,22,12,11,01,02)

Q3( 2) (00,10,20)

S3( 2) (21,22,12,11,01,02)

Gs(3) (000,010,020,120,110,100,200,210,220, 
221,222,212,211,201,202,102,101,111, 

112,122,121,021,022,012,011,001,002)

3.3 Em bedding a Cycle o f any Length

In this section, we ascertain exactly when a cycle of length m, where 

3 < m < kn, can be embedded in Q£. Our analysis yields an algorithm 

for generating a cycle of length m  in Q*, when one exists, thus answering 

a question posed in [17]. We first consider the fc-ary n-cube Q£ when 

k > 3 is odd.

L em m a 3.3 Let k > 3 be odd. contains a cycle of length m, for each

m such that k < m < k2.

P ro o f Suppose that m  is odd. Then m — k +  2a(k — 1) +  2/?, where 

0 < 2a < k — 1 and 0 < (3 < k — 2. There are two cases to consider.

Case (i) 0 < 2a < k — 3. The cycle of length m is as in Fig. 3.1 (where 

not all the links of Q\  are shown: the nodes of each row and each column 

should be joined in a cycle of length k ).
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, 2a columns kxk grid

2p links

u
Figure 3.1: The cycle in Case (j) of Lemma 3.3.

Case (n) 2a = k — 1 and 0 < 2/3 < k — 1. The cycle of length m  is as in 

Fig. 3.2.

kxk gridn n n r s 2p links

•  •  •
•  •  •

M U
Figure 3.2: The cycle in Case (n) of Lemma 3.3.

Suppose that m  is even. Consider the tiled grid in Fig. 3.3. By taking 

the appropriate number of tiles and regarding the perimeter of these tiles 

as a cycle in Q we can easily find a cycle of even length m, for every 

even m  such that 4 < m  < k2. □
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2k-\

2k-2

k-2 k+2

k- 1 k k+1

,k(k-l)/2

k{k- l)/2+l

i k 2-3)/2

Figure 3.3: The tiled grid of Lemma 3.3.

T heorem  3.4 Let k > 3 be odd and let n > 2. QJ contains a cycle of

length m, for each m such that k < m  < kn.

P ro o f We proceed by induction on n. When n =  2 the result follows by 

Lemma 3.3. Suppose that the result holds for Qj, where n > 2. Consider 

Q*+1 and let m  be such that k < m < kn+1. Then m  can be written as

m  =  a \kn + a 2 , where 0 < a\ < k and 0 < 0.2 < kn — 1.

Case (i) 0 2  > k or a<i =  0. Q^+i is built from k copies of QJ with 

corresponding nodes joined in cycles of length k. We can build a cycle C 

of length aikn in the first cti copies of as follows. By the induction 

hypothesis, QJj is Hamiltonian. Take a Hamiltonian cycle H\ in the first 

copy of Qj, and let Hi be the isomorphic copy of Hi in the ith copy of 

Q*, for i = 2 ,3 , . . . ,  a i (we refer here to the natural isomorphism). Let 

w>i, Xi, 2/1 and z\ be distinct nodes in H\ such that {wi,Xi) and (yi,zi) 

are links of H\, and let a;,-, yi and Z{ be their isomorphic copies in 

Hi, for i = 2 ,3 ,.. .  ,a i  (note that has at least 9 nodes). If ai = 1 

then C is Hi. If cti > 1 is odd then C is built from Hi, H2, . . . ,  Hai
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by removing the links of {(u;,-, x0  : i = 1 ,2 , . . . ,  a i — 1} U {(y;,Zi) : 

i = 2,3, and including the links of {(wt-, Wi+i), (#;, £z+i) : i =

1 .3 . . . . ,  ai -  2} U {(yt-, j/i+i), (2,-, Zi+i) : 2 =  2 ,4 , . . . ,  a i -  1}. If is even 

then C is built from H i ,H 2, • • •, Hai by removing the links of {(u;*, £;) : 

i — 1 ,2 , . . . ,  a i}  U {(y;, Zi) : i = 2 ,3 , . . . ,  c*i — 1}, and including the links 

of {(w?*, (s?j, . i 1 ,3 , . . . ,  OL\ 1} U "{(yi, y,-+l), (^i, -̂ z'+l) • 2 —

2 .4 .. . .  ,« i  -  2}.

If a 2 =  0 then we are done; so we may assume that a 2 > k. By the 

induction hypothesis, there is a cycle D of length a 2 in the (ai +  l)th  

copy of Q As Q* is link-transitive, by Lemma 2.3, we may assume that 

the link (u>ai+i, ;cai+i) is a link of D , if a.\ is odd, and (yai+i , zai+i) is 

a link of D , if cti is even (where ttfai+i, £<*!+1 , y<*i+i and zai+i are the 

isomorphic copies of wi, a?i, yi and £1 in the (cti + l)th  copy of Q*). The 

cycle of Q* +1 obtained from C and D by removing the links (wai,£ai) 

and (u;ai+i, xai+i), and including the links (wai, u v + i)  and (xa i, z ai+i), 

if a i is odd, and by removing the links (yai,2aJ  and (yai+i, zai+i), and 

including the links (yai,yai +1) and (zai, zai+1 ), if Qi is even, has length 

m.

Case («) 0 < oli < k. Again, note that Q„+1 is built from k copies of 

with corresponding nodes joined in cycles of length k. We must have 

that a\  > 0, and so rewrite m  as m  =  0\kn +  02 +  0 3 , where 0\ = c*i — 1, 

=  kn — k and 03 =  k -f 0 :2 - As n > 2 and & > 3, we have that 

0 < 0i < k — 2, k < 02 < kn and k < 03 < kn. If /9i > 0 then build a 

cycle C of length /?i&n in the first 0\ copies of Qj; a cycle D of length 02 

in the (0\ +  l)th  copy of Qj; and a cycle E  of length 03 in the (0\ +  2)th 

copy of Q*, as in Case (i). We can now join C , D and E  as in Case (z) 

(using Lemma 2.3) to obtain a cycle of length m  in Q j+1. □
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Proposition 3.5 Let k >  3 be odd and let n > 2. There are no cycles

of odd length less than k in QJ.

P ro o f  Suppose that C is a cycle in Qk of odd length less than k.

By [12], Qk is node-transitive, and so we may assume that the node

( 0 ,0 , . . . ,  0) is in C. Consider starting at (0 ,0 ,. . . ,  0) and moving along 

C . Suppose we traverse a link of C taking us from a node of the form 

(x i , . . . ,  Z i-i, 0, £*+1 , • • •, x n) to the node (x i,. . . ,  xt-_i, k — 1, x,-+i,. . . ,  xn): 

then we say that this link is a flip of dimension i. In the reverse situ­

ation, we say that the link is an inverse flip of dimension i. Note that 

as C has length less than k , for every flip (resp. inverse flip) of dimen­

sion i, there must correspond an inverse flip (resp. flip) of dimension i. 

That is, flips and inverse flips come in pairs. Define the parity of a node 

(xi, X2 , . . . ,  x n) to be 0 (resp. 1) if the sum X\ +  x 2 + . . .  +  x n is even 

(resp. odd). Note that the only links of C the traversal of which preserve 

the parity of nodes are flips and inverse flips. Hence, as flips and inverse 

flips come in pairs, we obtain a contradiction. □

Corollary 3.6 Let k > 3 be odd and l e t n > 2 .  There is a cycle of length 

m in Qkn, for all even m such that 4 < m  < k — 1.

P roof Qk contains Qk as a subnetwork, and so proceed as in the proof 

of Lemma 3.3. □

Now we consider the existence of cycles in the k-ary n-cube Qk when 

k >  4 is even. In such networks, every link of Qk joins a node of even 

parity with a node of odd parity, and so Qk is bipartite and can not have 

odd length cycles.

Lem ma 3.7 Let k > 4 be even. Qk contains a cycle of length m, for 

every even m such that 4 <  m  < k2.
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P ro o f  Consider the tiled grid in Fig. 3.4. By taking the appropriate 

number of tiles and regarding the perimeter of these tiles as a cycle in 

Q21 we can find a cycle of even length m, for every even m  such that 

4 < m < k2. □

4  <
k-  2

► 4>— i
2

» 41---- 4 \

k- 1 £ ^+1

Figure 3.4: The tiled grid of Lemma 3.7.

Theorem  3.8 Let k > 4 be even and let n > 2. Q* contains a cycle of 

length m, for every even m such that 4 < m  < kn.

P roof We proceed by induction on n. The base case of the induction, 

when n =  2, follows by Lemma 3.7. Suppose that the result holds for 

Qn, where n > 2. Consider Qn+i- We can write m as m  =  a ik n + 0 2 , 

where 0 < a i < k and either a 2 = 0 or 4 < a 2 < kn — 1, or as 

m = ctikn + (kn — 2) +  4, where 0 < a\ < k — 2. Either way, by 

proceeding as in the proof of Theorem 3.4, the result follows. □

Drawing together the above results yields the following.

Corollary 3.9 Consider the k-ary n-cube Q w h e r e  k > 3 and n > 2. 

When k is odd:



• Q* contains no cycles of odd length less than k but contains a cycle 

of length m, for every even m such that 4 < m < k

• Qn contains a cycle of length m, for every m such that k < m < k n. 

When k is even:

• Q* contains no odd length cycles but contains a cycle of length m, 

for every even m such that 4 < m < kn. □

Theorem 3.4 yields an alternative proof of the result established in 

Section 3.2 that QJ is Hamiltonian, for k > 3 and n > 2. Also, the proof 

of Theorem 3.4 yields an algorithm for generating a cycle of length m  in 

if one exists, thus answering a question posed in [17].

57



C hapter 4

Fault-Tolerant Em beddings o f  

C ycles, M eshes and Tori in  

&-ary n-cubes

4.1 Introduction

In massively parallel systems, as the size of the system increases, so does 

the probability of component failure. Fault-tolerant networks are essen­

tial to the reliability of parallel computer systems. A fault-tolerant net­

work has the ability to simulate other network topologies even if certain 

network components (i.e., nodes and/or communication links) fail.

We have examined in Chapter 3 the capability of the non-faulty fc-ary 

n-cube network of simulating cycle-structured networks. In this chapter, 

we investigate the existence of cycles, meshes and tori in a k-ary 72-cube 

Q* with a limited number of node and link faults. The existence of cycles, 

meshes and tori in faulty hypercubes has been reasonably well studied 

(see, e.g., [22, 23, 59, 92, 96]) whereas for fc-ary 72-cubes the situation is
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nowhere near as clear with most research on faulty k-ary n-cubes having 

focussed on routing and broadcasting (e.g., [14, 18, 62, 76]). As regards 

the existence of cycles, meshes and tori in faulty hypercubes, all of the 

literature mentioned above except [92] considers the presence of either 

only faulty links or only faulty nodes but not both. However, Tseng [92] 

showed that there exists a cycle of length at least 2n — 2 is in a hypercube 

(of dimension n) with v  < n — 1 faulty nodes and A < n — 4 faulty links 

where the total number of faulty nodes and faulty links, v +  A, does not 

exceed n — 1. We take a similar stance to Tseng and show that in a k-ary 

n-cube QJ, where k > 3 and n > 2, with v faulty nodes and A faulty 

links where v  +  A < n, there exists a cycle of length at least kn — i/ld, 

where cj = 1 if k is odd and u> = 2 if k is even (in fact, we also show that 

in some circumstances when k is even, there is still a cycle containing all 

the healthy nodes in such a faulty k-ary n-cube). We extend our main 

result to obtain embeddings of meshes and tori in such a faulty fc-ary 

n-cube.

4.2 Fault-Tolerant Em beddings of Cycles

This section examines the existence of a cycle of length at least kn — isu in 

a fc-ary n-cube Q J with A faulty links and v  faulty nodes where A +  v < n 

(throughout this chapter, cj =  1 if k is odd and uj = 2 if k is even). Note 

that if a node in QJ is faulty then we regard all of its 2n incident links 

as faulty: the A faulty links alluded to above are faulty links between 

healthy nodes.

We begin by proving a basic result, which we shall use later, and by 

proving some results involving faulty &-ary 2-cubes. We then develop 

a partitioning scheme to decompose a fc-ary n-cube into a collection of
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k-ary 2-cubes so that these fc-ary 2-cubes can be linked together to form 

our large cycle.

4.2.1 B asic R esults

The following result involves the &-ary n-cube Q* with only faulty links.

L em m a 4.1 Let k > 3 and n > 2. /f  Qn contains at most n faulty links 

then Q n  is Hamiltonian.

P ro o f  We proceed by induction on n. The induction scheme used to 

prove this lemma uses the following technique. Partition the over 

some dimension and consider the k disjoint copies of Q ^ - i  with corre­

sponding nodes joined in cycles of length k. These disjoint copies are 

denoted by Q£_i(0), Q n - 1 (1)5 • •  • 7 Q n - 1(& — !)• Throughout this proof, if 

u is a node of Q*_1(*)» say> then we often denote it by and we refer to 

its corresponding node in Qn-i(j) as uj • Assume that Qn-ii}) contains 

a Hamiltonian cycle C{ for all 0 < i < k — 1. If there exists a link (zo, Vo) 

in Co such that (£o,£i) and (yo,Vi) are both healthy and £ Ci,

then Co can be joined to C\ by removing the links (xo,yo) and (a?i,yi), 

and including the links (a;0,^ i) and (yo,Vi) to form a cycle D2 of length 

2fcn_1. If there exists a link (iti,i>i) in D2 \  {(^0 , ^ 1)7 (yo> 2/1)} such that 

(^ 1 , 1*2 ) and {v\,v2) are both healthy and {u2 ,v2) £ C2l then D2 can be 

joined to C2 by removing the links (ui, iq) and (u2, v2), and including the 

links (ifi, t/2 ) and (ui,u2) to form a cycle D3 of length 3kn~l . Continuing 

in this way eventually yields a cycle Dk of length kkn~l =  kn which is a 

Hamiltonian cycle of Q*.

Returning to our induction scheme. If n = 2 then contains at 

most 2 faulty links. There exists some dimension, say dimension 1, that
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contains at least 1 faulty link. Partitioning Q% over dimension 1 yields 

k disjoint copies Q{(0), Q{(1),.. •, Q\(k — 1) of Q\  with corresponding 

nodes joined in cycles of length k , where the faulty links contained in 

Qi(0), Q{(1), • • •, Qi(k — 1) total at most 1. We have the following cases.

Case (i) All faulty links are in dimension 1.

Note that in this case every cube, a cycle of length k. Consider a

faulty link f e falling between Q\(i) and (3{(« +  l). W.l.o.g. we can assume 

that i =  0. If the second faulty link falls between Qf(0) and Q{(1) then 

join Q{(0) to Q i ( k -  1) by removing (#0,2/o) f1:0131 Qi(°) and (x k-i,Vk-i)  

from Qi(k — 1), and including the links (#o, %k-i) and (yo, yk-i)- Denote 

this cycle by D2. Then D2 is of length 2k and contains every node of 

Qi(0) and Q\(k — 1) exactly once, and no other nodes. As there are at 

least 2 links of Q\{k — 1) in D2 , by a similar fashion, D2 can be joined to 

Qi(k — 2) to form a cycle D$ of length 3k and so on. continuing in this 

way eventually yields a Hamiltonian cycle in

If / e is the only faulty link falling between Qf(0) and Q f(l) then as 

k > 2 there exists a link (#0 , 2/0 ) in Qi(0) snch that the links (#0,^ i) 

and (yo, yi) are both healthy: join Qf(0) and Q f(l) by removing (x0 ,y0) 

from Qf(0) and (#1 , 2/1) from Qi(l)? and including the links (#0 ,^ 1) and 

(yo, 2/1) to form a cycle D2 of length 2k. As 2[A:/2J > 1, the second faulty 

link in dimension 1, there exists (ui,i;i) in <2{(1) such that the links 

(u i ,u2) and (v\,v2) are both healthy, or (u0,no) in Qf(0) such that the 

links (uo,Uk~i) and (uo,^A;-i) are both healthy. Then D2 can be joined 

to either Q \ ( 2 ) or Q\(k  — 1) to form a cycle of length 3k. By proceeding 

in this way, we eventually obtain a Hamiltonian cycle of Q\.

Case (n) Dimension 1 contains exactly one faulty link.
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W.l.o.g. we may assume that the only faulty link not falling in dimension 

1 is (x0 ,y0) in Qf(0). Either the links (a;0,a:i) and (r/0,3/i) are both 

healthy or the links (:ro,£fc-i) and (y0,yfc_i) are both healthy. We can 

join Q{(0) to Q{(1) or to Q\{k — 1), respectively, as in Case(i), and 

extend this cycle to a Hamiltonian cycle of Q\.

As our induction hypothesis, assume that the lemma holds for Q£, 

for some n > 2 and for all k > 3, and consider with at most n +  1 

faulty links. There is a dimension, say dimension 1, that contains at least 

1 faulty link. Partition Qn+i over dimension 1 and consider the k copies 

of Q* having faulty links total at most n.

Let a new QJ contain all the n faulty links of the k copies. Then by the 

induction hypothesis, the new Q£ is Hamiltonian. Copy the Hamiltonian 

cycle of the new QJ to all the k copies. This yields k isomorphic cycles 

Co, C i,. . . ,  Cfc_i each of length kn (where the isomorphism is the natural 

one). As [kn/2J > n+1, the total number of faulty links, for all k > 3 and 

n > 2, there exists some link (z0, yo) in Co such that the links (rc0, £i) and 

(yo? 2/i) are both healthy. Denote by D2 the cycle obtained by removing 

(z0, yo) from Co and (xi, yi) from Ci, and including the links (zo, £1) and 

(y0,yi). Then D2 contains every node of Co and Ci exactly once, and no 

other nodes.

All links of D2 except for (£o,£i) and (yo, yi) are links in Co or Ci. 

Hence, there is potential to join D2 , as above, to C2. Again, as the 

maximum number of faulty links in dimension 1 is strictly less than 

\kn/ 2J, there exists some link (ui,vi) in D2 \  {(z0, zi), (y0,yi)} such 

that (^1 , 1/2 ) and (v\ ,v2) are both healthy. By proceeding as above, we 

can obtain a cycle D3 containing every node of Co, C\ and C2 exactly 

once and no other nodes. Continuing in this way eventually yields a
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Hamiltonian cycle of Qn+i-

The following results involve the fc-ary 2-cube Q%.

□

Lem m a 4.2 Let k > 3. I f  Q£ has v < 2 faulty nodes then Q\ contains 

a cycle of length at least k2 — islo.

P roof Suppose that Q% has 2 faulty nodes. Partition Q% over some 

dimension in which the labels of the 2 faulty nodes differ. This results 

in k copies, Co, C i,. . . , C k - 1 , of cycles of length k where the nodes of C; 

are {(?, j)  ' j  =  0 ,1 , . . . ,  k — 1} and where corresponding nodes in these 

cycles are joined in cycles of length k. W.l.o.g. we may assume that node 

(0,0) € Co is faulty and that the other faulty node v  is not in Co or C k - i  .

Case (?) k is odd.

The 2 different possibilities for k =  3 (up to isomorphism) and the cycles 

of length 7 are as shown in Fig. 4.1 (the nodes of the cycle C j  are in the 

j th column with (j, 0) at the bottom and (j, 2) at the top).

Faulty nodes
Figure 4.1: The cycles when k = 3.

Suppose that k > 5 (and that k is odd). Let D®, Dj, D2 and 

be the cycles of Q\  depicted in Fig. 4.2, for some j  £ { 0 ,1 ,.. . ,  k — 1},
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involving all the nodes of C j  and C j+ 1 except for the nodes shown (here, 

addition is modulo k). Note that no matter which “row” a faulty node 

lies in, the cycles can be shifted vertically so as to avoid the faulty node.

C/+1

* ♦

y
o o

D 0
j DJ DJ DJ

Figure 4.2: The cycles D i^j, D? and Dj.

Let the fault v  be in C a. As k > 5, we may assume that a ^  k — 2. 

Form the cycles:

• D U

• D\, if a is odd

• 02-1, if a is even
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• D2, for all odd j  such that 0 < j  < k — 2  and j  ^  a

•  C k - 2 -

By “joining” these cycles using links joining consecutive C f  s (e.g., by 

replacing the links ((k — 1 ,0), (k — 1 , 1 )) and ((k — 2,0), (k — 2 ,1 )) with 

the links ((k — 2 ,0 ), (k — 1,0 )) and ((k — 2,1), (k — 1,1))), we can form 

a cycle of length k2 — 2 .

Case (it) k is even.

Let P(i , j ,m)  denote the path

(*,j), ( i , j  +  1), (* +  1,7 + 1), (i +  1,7 +  2), ( i , j  +  2), ( i j  -f 3),

(i +  1, j  + 3), (i +  1, j  + 4), (i, j  +  4 ) , . . . ,  (i + 1, m -  1), (i +  1, m)

(if j  = m  then P ( t ,7 ,m ) is the empty path) and let Q(i, j)  denote the 

path

(*J)> (*,7 +  1), (*,7 + 2 ) , . . . ,  ( i ,j  ~  2), (i, j  -  1), (i +  1,7 -  1),

(* + 1,7* — 2), ... ,(*  + 1,7 + 2), (« +  1 , 7  +  1), (« +  1 ,7 )

(addition is modulo k). Let P(«, j, m) denote the reversal of P ( i ,j ,  m).

Suppose that the fault u =  (a, 6 ).

Case (it)(a) Either a is odd and b is even, or a is even and b is odd. 

W.l.o.g., we may assume that a is odd and b is even (as the second case 

is isomorphic). If b ^  0 then the concatenation of the following paths 

forms a fault-avoiding cycle of length k2 — 2  in Q2 '.

P{k -  1,0, k -  2), (k -  1, k -  2), (k -  1, k -  1), (0, k -  1),

<2(1, k -  l),<2(3,fc -  1 ) , . . .  ,Q(a - 2 ,k  -  1 ), (a,k -  1 ),

P(a, 6 +  1, k — 1), (a +  1 ,6+  1), (a +  1,6), P(a, 0,6), (a +  1,0), 

Q(a +  2,0), Q(a +  4 ,0 ) , . . . ,  Q(k -  3,0), (k -  1,0)
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and if b =  0 then the concatenation of the following paths forms a fault- 

avoiding cycle of length k2 — 2 in Q*-

P(k  - 1 , 0 ,1b -  2), (k - l , k  -  2), (lb -  1,1b -  1), (0,1b -  1),

<2(1, k — 1), Q(3, k — 1 ) , . . . ,  Q(a — 2, k — 1), (a, k — 1),

P(a ,6 +  1,A: — l),(n  -T 1,6 + l)?(a 1, &), <2(fl T 2,0),

<2(a +  4 ,0 ) , . . . ,  Q(k — 3,0), (k — 1,0)

(remember, v is not in Ck- 1  or Co).

Case («)(b) Either a is odd and b is odd, a is even and b is even.

W.l.o.g., we may assume that a is odd and b is odd (as the second case 

is isomorphic). Consider the following cycles in <2

• D U

• Dl

• D2, for all odd j  such that 1 < j  < k -  3, j  ±  a.

By “joining” them as we did in Case (*), we obtain a fault-avoiding cycle 

of length k 2 — 4 in <2̂ -

The cases when Q% has 1 fault are similar. □

Note that for any even k , it may be the case (but not necessarily 

always is) that <2* has 2 faulty nodes and the longest fault-avoiding cycle 

has length k 2 — 4. This is because when k is even, Q* is bipartite and if 

the two faulty nodes happen to lie on the same side of the partition then 

any cycle must necessarily omit at least 2 nodes from the other side of 

the partition.

L em m a 4.3 Let k > 3. I f  Q2 has exactly 1 faulty node and exactly 1 

faulty link then there exists a cycle of length at least k 2 — oj.
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P roof Adopting the notation of Lemma 4.2, we may assume that the 

faulty node is (0,0). Partition Q* over the dimension in which the faulty 

link, (x,y),  say, lies. W.l.o.g. we may assume that x £ Ci and y £ C,+i, 

where i ^  0.

If k is odd then we can take the cycles D\ , . . . ,  Dk _ 3 and Ck- 1 ,

ensuring that the faulty link (x,y)  is not used in any D2, and join them 

as in Lemma 4.2 (again ensuring that we do not use (x,y)  as a joining 

link) to obtain a cycle of length k2 — 1.

If k is even then we can take the cycles Dq, D2, D2, . . . ,  Dk _ 4 and 

Dk_2, ensuring that the faulty link (x, y) is not used in any D2, and join 

them as in Lemma 4.2 (again ensuring that we do not use (x, y) as a 

joining link) to obtain a cycle of length k2 — 2. □

L em m a 4.4 Let k > 3. v  os  has exactly 1 faulty node, no faulty links 

and (x,y) is a (healthy) link of Q2 then there exists a cycle of length at 

least k 2 — uj which includes the link (x,y).

P roof W.l .o.g. we may assume that the faulty node is (0,0) and that 

(x, y) lies in dimension 1. There are 4 cases to consider: when (a?, y) joins 

Co and C\, and when k is odd and even; and when (x,y)  joins Ci and 

Ci+i, where i £ { 1 ,2 ,. . . ,  k — 2}, and when k is odd and even.

Suppose that (x , y) joins Cq and C\ and that k is even. Then form a 

cycle of length k 2 -  2 by “joining” Dl_u Dl, Z>|, — , D2k _ 5 , D2k_3, in the 

sense of Lemma 4.2, ensuring that the link (x,y) is used in the joining 

process.

Suppose that (x,y)  joins Co and C\ and that k is odd. Then form a 

cycle of length k 2 - 1 by “joining” D°k_x, D\, . . . ,  D2k_4, Ck- 2, ensuring

that the link (x , y) is used in the joining process.

The remaining cases proceed similarly. □
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4.2 .2  Partitioning the Faulty fc-ary n-cube

Having established some preliminary lemmas in the previous section, we 

now use these lemmas to construct a long cycle in a faulty k-ary n-cube 

in which the total number of (node and link) faults is at most n.

Let d1 G { 1 ,2 ,. . . ,  n} be some dimension of (the healthy) Qk. Parti­

tioning Qk over dimension d\ yields k Q j ^ ’s, namely Q j.^O ),

. . . ,  Qn-\{k  — 1), where the nodes of Qn-i(i) are named:

{u G { 0 ,1 ,. . . ,  k — l}n : the dith component of u is i}.

Partitioning each Q£_i(«) over some dimension d2 G {1 ,2 ,... ,n} \  {d\ } 

yields k Q j_2’s, namely Qj_2(*, 0), Qkn_2 (i, 1 ) , . . . ,  Qkn- 2(h k -  1), where 

the nodes of Q£_2(*, j )  are named:

{u G { 0 ,1 ,. . . ,  k — l}n : the dith component of u is i and

the d2th component of u is j} \

and so on. Proceeding in this fashion for n — 2 phases yields kn~2 copies 

of Q§.

A simple induction, allied with this proposed decomposition of 

yields the following structural result.

L em m a 4.5 Let QJ be healthy, where k > 3 and n > 2, and let m be 

such that 1 < m  < n .  Then QJ can be constructed from Q^  as follows.

(*) Replace every node of Qkm by a copy of Qk_m (all copies are dis­

joint).

(ii) I f ( x ,y )  is a link of Q!^ then include a link from every node of the 

copy of Qn-m corresponding to x to its corresponding node in the 

copy of Qn_m corresponding to y . □
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Now, suppose that our initial Q j is faulty where the number of faulty 

links A and the number of faulty nodes v are such that A-fz/ < n. Suppose 

further that we apply the partitioning algorithm above so that at every 

stage m , 0 < m < n  — 3, the dimension over which we partition is chosen 

according to the following rules:

i f  th e re  i s  a f a u l ty  l in k  in  some Qn-m ly ia g  i*1 some as 

yet unused dimension d then 

p a r t i t io n  every Q*-m over dimension d

e lse

i f  th e re  axe 2 f a u l ty  nodes in  some Q^-m whose

names d i f f e r  in  th e  as yet unused dimension d then 

p a r t i t io n  every Qn~m over dimension d 

e lse

p a r t i t io n  every Q^-m over any as yet unused 

dimension d.

Apply the above partitioning algorithm n — 2 times. Let the (possibly) 

faulty Qn-2 1  denoted 7r(Qj), be obtained from as follows. Using 

Lemma 4.5, replace every Q\  in our faulty Q£ by a node and include a 

link (x,y)  iff every link joining the copy of corresponding to x and 

the copy of Q\ corresponding to y is healthy.

Now for our main result.

T heo rem  4.6 Let k > 3 and n > 2, and let contain A faulty links 

and v faulty nodes where A +  v < n. Then there exists a cycle of length 

at least kn — voj.
P ro o f  If k > 3 and n =  2 then the result follows by Lemmas 4.1, 4.2 

and 4.3. Moreover, if A = n then the result follows by Lemma 4.1. Hence, 

we may assume that A < n  — l ,f c > 3  and n > 3.
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Case (t) A < n — 2.

Apply the partitioning algorithm above to yield kn~2 (possibly) faulty 

an(l the (possibly) faulty fc-ary (n — 2)-cube 7r(Qj). There are 

essentially two cases: (a) one Q% has two faulty nodes, v  — 2 have 

one faulty node and no Q\  has a faulty link; and (b) v Qfts have one 

faulty node and no Q\  has a faulty link.

By Lemma 4.1, as A < n — 2, 7r(Qj) has a Hamiltonian cycle H. 

Also, by Lemma 4.2, any Q\ with 1 faulty node has a cycle of length 

k2 — lj and any with 2 faulty nodes has a cycle of length k2 — 2 u>; and, 

by Theorem 2.6, every healthy Q\ has a Hamiltonian cycle. Using the 

Hamiltonian cycle in 7r(Q^), we can “join” the cycles in each QJ together, 

in the sense of the proof of Lemma 4.2, as follows.

In case (a), by Lemma 4.2, the copy of Q% containing 2 faulty nodes 

has a cycle C of length k2 — 2 lj. Consider the node x of 7r(Qj) corre­

sponding to this copy of Q\  and let y be the next node in the Hamiltonian 

cycle H  of 7r(Q j). Choose a link (u,v) in the cycle C, in the copy of Q* 

corresponding to x , such that the nodes corresponding to u and v in the 

copy of Q* corresponding to y are both healthy; call these nodes u and v 

also. By Lemma 4.4, the copy of Q% corresponding to y has a cycle D of 

length k 2 — uj which includes the link (tt, v), and we can “join” C and D 

over the links (u,u). We can proceed in this way, continually using The­

orem 2.6, Lemma 4.4 and the fact that any healthy (Jj is link-transitive, 

so as to obtain a cycle of length kn — vuj. In case (b), similar reasoning 

yields the result.

Case (m) A =  n — 1.

Apply the partitioning algorithm above to yield kn ~ 2 (possibly) faulty 

copies of Q2 and the (possibly) faulty &-ary (n — 2)-cube 7r(Q{j). There

70



are essentially two cases: (a) one Qk has one faulty node, one Qk has one 

faulty link and all other Qk’s are healthy; and (b) one Qk has one faulty 

node and one faulty link, and all other Qk,s are healthy. By proceeding 

as we did in case (i), using the above lemmas and results as appropriate, 

the result follows. □

Of course, there are some circumstances when there is in fact a longer 

cycle in the faulty Qk than is given by Theorem 4.6.

4.3 Em beddings o f M eshes and Tori

In this section, we extend the main theorem of the previous section to 

embed a mesh or a torus in a faulty A:-ary n-cube Qk.

Proposition 4.7 Let k > 3 and n > 2, and suppose that the k-ary n- 

cube Qk contains X faulty links and v faulty nodes where 1 < /  = A + 1/ < 

n — 1.

(0  I f  f  > 2 then there exists a mesh and a torus of size (k* — i/lj) x

(n) I f  f  =  1 and this fault is a faulty node then there exists a mesh and 

a torus of size (k% — lj) x  k^n~*\ for each i = 2 , 3 , . . . , n  — 1.

(in) I f  f  = 1 and this fault is a faulty link then there exists a mesh and 

a torus of size k% x  k^n~%\  for each i = 2 , 3 , . . . ,  n  — 1.

Proof Suppose that /  > 2. Partition QJ over a set D of n — f  different 

dimensions so that each dimension of D does not contain a faulty link. 

This results in k^n~^  disjoint copies of Qj such that the total number of 

faults in all copies is / .  Build a new copy, P, of Qkj  by superimposing all



faults in the copies of Qk in P. Consequently, P is a fc-ary /-cube with 

v faulty nodes and A faulty links where v -f A =  / .  By Theorem 4.6, P 

contains a cycle C of length at least k* — i/lj. Also, every disjoint copy 

of Qk, as above, contains the cycle C (that is, all nodes and links in the 

isomorphic copy of C in each copy of Qk are healthy).

The process of obtaining the k^n~^  disjoint copies of Qk, above, re­

sults in a copy n(Qk) of Qkn_jy  as in Lemma 4.5 (with the notation as in 

the paragraph preceding Theorem 4.6), that has no faulty nodes or links. 

By Theorem 2.6, n(Qk) has a Hamiltonian cycle. The links of Qk corre­

sponding to the links of this Hamiltonian cycle in 7r((j£), together with 

the cycles C in each of the Qk̂ s, result in a torus of size (A/ — vu)  x k n̂~ ^ .

If Qk has exactly 1 faulty node then by proceeding as above (using 

Theorem 4.6), Qk contains a torus of size (kl — i/co) x for each

i = 2 ,3 , . . . ,  n — 1. If Qk has exactly 1 faulty link then by proceeding as 

above (using Lemma 4.1), Qk contains a torus of size k% x k^n~l\  for each 

i = 2 ,3 , . . . ,  n — 1. □

Bose et ai [17] and Bettayeb [12] have shown the existence of a mesh 

of size:

kni x kn2 x . . .  x kn%

where n = J2i=i nii in a healthy fc-ary n-cube Qk. By proceeding as in 

the proof of Proposition 4.7, we can extend this result as follows.

Proposition 4.8 Let k > 3 and n > 2, and suppose that the k-ary n- 

cube Qk contains A faulty links and v faulty nodes where 1 < /  =  A +  ̂ <  

n — 1.

(i) I f  f  > 2 then there exists a mesh and a torus of size (kf  — i/lo) x 

kUl x . . .  x kns, where n — f  = J2 i=i ni ’
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(ii) I f  f  =  1 and this fault is a faulty node then there exists a mesh and 

a torus of size (kUl — lj) x  kn2 x . . .  x kns, where n =  J2t=i ni and 

n i ^ l .

(in) I f  f  = 1 and this fault is a faulty link then there exists a mesh and 

a torus of size knx x k712 x . . .  x kUs, where n = ni and n\ ^  1.

□
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Chapter 5 

Em beddings of H am iltonian  

Cycles in Faulty A>ary n-cubes

5.1 Introduction

We have developed in Chapter 4 a technique for embedding a cycle, a 

mesh and a torus in a fc-ary n-cube with both faulty nodes and faulty 

links. The main objective of this chapter is to examine the number of 

link faults that a fc-ary n-cube QJ can tolerate so that there is still a 

Hamiltonian cycle (of course, we assume that every node is incident with 

at least 2 healthy links). In particular, we show that a A;-ary n-cube QJ 

where at most 4n — 5 links are faulty and where every node is incident 

with at least two healthy links has a Hamiltonian cycle, but that there 

exist k-ary n-cubes with 4n — 4 faults (and where every node is incident 

with at least two healthy links) not containing a Hamiltonian cycle. We 

also show that the general problem of deciding whether a faulty A;-ary 

n-cube contains a Hamiltonian cycle is NP-complete, for all (fixed) k > 3. 

Our results can be regarded as direct analogies of those in [22] for k-
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ary n-cubes as opposed to binary n-cubes, although the proofs are more 

complicated, given the two parameters k and n as opposed to just the 

one, n. However, it should be pointed out that our approach is more 

general (with slight modifications, our arguments work for the binary 

n-cube also as we will show in Section 5.3) and simpler in that the base 

cases in Chan and Lee’s paper involve binary n-cubes, where n =  3,4,5, 

yet our base cases involve k-ary n-cubes only where n =  2 and k > 4, 

and n =  3 and k = 3. When our approach is applied to binary n-cubes, 

the base case is only where n =  3.

5.2 Tolerating Faults in k-ary n-cubes

This section shows the existence of a Hamiltonian cycle in a k-ary n-cube 

Qk, where k > 3 and n > 2, with at most An — 5 faulty links where each 

node is incident with at least 2 healthy links. The proof of our main 

theorem of this section is by induction and is structured as follows. We 

begin by proving the inductive step and then we return to the base cases 

of the induction. In order to avoid repetition, we refer to reasoning used 

in the proof of the inductive step whilst proving our base cases (note that 

this introduces no circularity to our arguments).

T h eo rem  5.1 Let k > 4 and n > 2, or let k = 3 and n > 3. I }Q kn has 

at most An — 5 faulty links and is such that every node is incident with 

at least 2 healthy links then Qk has a Hamiltonian cycle.

P ro o f  The proof proceeds by induction on n. We handle the base cases, 

when n = 2 and k > 4, and when n = 3 and k = 3 later. As our induction 

hypothesis, assume that the result holds for Qk, for some n > 2 and for 

all k > 4, or for some n > 3 and k = 3. Let Q j+1 have An — 1 faults and be
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such that every node is incident with at least 2 healthy links. Then there 

exists some dimension, say dimension 1, which contains at least 3 faults. 

We can partition over dimension 1 and consider Q„ +1 to consist of 

k disjoint copies Q i,Q 2 , • • • , Qfc of Qn with corresponding nodes joined 

in cycles of length fc,  where the faults contained in Q i ,  Q i , . . .  ,Qk total 

at most An — 4 (see Fig. 5.1). Throughout this proof, if u is a node of 

Q,-, say, then we often denote it by u;, and we refer to its corresponding 

node in Qj as Uj.

Q 1 0,2 Qk

S i

Figure 5.1: The k copies of Q*.

Case (t) Each Qi is such that every node is incident with at least 2 

healthy links and no Qi contains An — 4 faults.

W.l.o.g. we may assume that Q\  has most faults from amongst Q i,Q 2 , 

. . . ,  Qk• Hence, each of Q 2 , Q3, . .  •, Qk has at most 2n — 2 faults. By the 

induction hypothesis, Q\ has a Hamiltonian cycle C\. As the maximum 

number of faults in dimension 1 (that is, 4n — 1) is strictly less than 

2[fcn/3 j, w.l.o.g. we may assume that there exist links (x\,yi) and (t/1 , 2 1 ) 

of C\ such that the links (a?i, ar2)» (2/1 , 2/2), (^1 ,^ 2 ), (^2 , 2/2) and (y2, ^2 ) are 

all healthy. If y 2 is incident with 2 or 3 healthy links in Q 2 then leave Q2
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unchanged. Otherwise, by making previously healthy links in Q2 that are 

incident with y2 faulty, ensure that y2 is incident with exactly 3 healthy 

links in this amended Q2, 2 of which are (#2 , 3/2) and (y2, z2): denote this 

amended Q2 by Q2. As Q2 has at most 2n — 2 faults, Q2 has at most 

4n — 5 faults. Suppose that some node w2 is incident with exactly 1 

healthy link in Q2. This must have been because (y2 ,w2) was a healthy 

link in Q 2 and it was removed to form Q2. Alter the construction of Q2 

so that (y2 ,w 2 ) is the third healthy link incident with y2. As Q2 has at 

most 1 node which is incident with only 2 healthy links, the resulting Q2 

is such that every node is incident with at least 2 healthy links. By the 

induction hypothesis applied to Q2, if y2 is incident with 2 or 3 healthy 

links, or to Q2 otherwise, Q2 has a Hamiltonian cycle C2 containing at 

least 1 of the links (x2 ,y2) and (y2 , z2). W.l.o.g. we may assume that 

(^2 , 2/2 ) € C2. Denote by D2 the cycle obtained by removing (x i , y i ) 

from Ci and (x 2 , y2) from C2 , and including the links (a;i, x2) and (yi, y2) 

(this method of “joining” two cycles will be used extensively throughout). 

Then D2 contains every node of Q\ and Q2 exactly once, and no other 

nodes.

All links of D2 except for (x i ,x2) and (yi,y2) are links in Q\ or Q2. 

Hence, there is potential to join D2, as above, to a Hamiltonian cy­

cle in Q3 or Qk- Again, as the maximum number of faults in dimen­

sion 1 is strictly less than 2[&n/3 j, there exist links (u ,v ) and (v,w) in 

D2 \  {{xu x 2) ,{yi ,y2)} such that (u2 ,u3), (v2 ,v3), (w2 ,w3), (u3 ,v3) and 

(^3 , ^ 3 ) are all healthy, if (u, v) and (v , w) are in Q2, and (iti, Uk), (ui, u*), 

(wi,Wk), (Uk-,Vk) and (vk,Wk) are all healthy, if (u, u) and (u,u;) are in 

Q 1 . By proceeding as above, we can obtain a cycle D3 containing either 

every node of Q 1 , Q2 and Q3 or every node of Q 1 , Q2 and Qk exactly
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once and no other nodes. Continuing in this way eventually yields a 

Hamiltonian cycle of Q*+1.

Case (it) Each Qi is such that every node is incident with at least 2 

healthy links and some Qj has exactly 4n — 4 faults.

W.l.o.g. we may assume that j  =  1. Suppose that there is some fault 

(xu yi) of Qi such that ( x i ,x2) and (yi,y2) are healthy. Amend Q\ 

so that (xi,y\) is healthy and denote this amended Q\ by Q\. By the 

induction hypothesis applied to Q i, Q\ has a Hamiltonian cycle C\ (which 

may or may not contain (xi,yi)). The cycle C\ has an isomorphic copy 

Ci in each Qi, for i =  2,3, . . . , k .  If (x \ ,y \ ) is in C\, the cycle C\ can 

be joined to C2 using the healthy links (x \ ,x2) and (yi ,y2). Otherwise, 

because there are exactly 3 faults in dimension 1 and [kn/ 2J > 3, there 

is a link («i,ui) of C\ such that (u\ ,u2) and {v\,v2) are healthy, and C\ 

can be joined to C2 using these links. If we denote the new cycle by D2 

then D2 can be joined to C3 in the same manner, and so on until we 

obtain a Hamiltonian cycle of Q^+i-

On the other hand, suppose that for every fault (zi, y\) of Q\,  at least 

one of (x \ , x 2) and { y \ , y 2) ,  and at least one of (xi,Xk) and ( y i , y k )  are 

faulty. Let (x\,y\) be some fault of Qim As there are exactly 3 faults 

in dimension 1, every fault in Q\ must be incident with either X\ or y\. 

But as the nodes x\ and y\ are incident with at most 4n — 5 faults in Q\ 

between them, this yields a contradiction.

Case (iti) There exists some Qi in which there is a node incident with 

exactly 1 healthy link in Qi.

W.l.o.g. we may assume that the node x\ in Q 1 is incident with exactly 1 

healthy link, (x\, y\), in Q\.  As x\ is incident with 2 n — 1 faults: each Qi, 

for i = 2,3 , . . .  ,k,  contains at most 2n — 3 faults; there is no other node
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in any Qi, for t =  2 ,3 , . . . ,  fc, which is incident with less than 3 healthy 

links in that Qt; and apart from aq, there is no other node in Q i which is 

incident with less than 2 healthy links in Q\. Also, as x\ is incident with 

at least 2 healthy links in Q*+1, we may suppose that {x i ,x2) is healthy. 

Consider ifq, one of the 2ra — 1 potential neighbours of x\ in Q\ for which 

the link (xi ,w\)  is faulty. There are two scenarios.

Case (m )(a) ( ^ 1 , 1 2̂ ) is a healthy link.

Make the previously faulty link (#1, u;i) healthy, and denote the amended 

Q 1 by Q\. By the induction hypothesis applied to Q1,  Q1 has a Hamil­

tonian path Pi from X\ to W\. By making previously healthy links in Q2 

that are incident with x2 faulty, and by making the link (x 2, w2) healthy 

(if necessary), ensure that x 2 is incident with exactly 2 healthy links in 

this amended Q2, one of which is (x2 ,w2); and denote this amended Q2 

by <52- Q2 has at most 4n — 5 faults and every node in Q2 is incident 

with at least 2 healthy links in Q2. Hence, by the induction hypothesis 

applied to Q2 , there exists a Hamiltonian path P2 in Q2 from x 2 to w2. 

Join Pi and P2 using the healthy links (a q ,^ )  and (wi,w2) to form a 

cycle D2. By proceeding as we did earlier, D2 can eventually be extended 

to a Hamiltonian cycle of Q*+1.

Case (tii)(b) All links from every such w\ to its corresponding node w2 

in Q2 are faulty.

This accounts for another 2n —1 faults in Qn+i- Also, if (#i, Xk) is healthy 

then by symmetry we are in Case (m)(a) (as all but at most 1 link of the 

form (wi,Wk) is healthy). Hence, we may assume that (xi,Xk) is faulty 

and this accounts for all the faults in Q^+i- Consequently, (r/i, y2) and 

(7 /1 ,  y k )  are both healthy links (recall that ( a q ,  y \ )  is the only healthy link 

of Q\ incident with X\). Let W\ be some potential neighbour of X\ in Q\
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for which the link (rci, W\) is faulty. Amend Qi by making the faulty link 

(#1 , tui) healthy, and by the induction hypothesis applied to this amended 

Qi, there is a Hamiltonian path Pi in Qi from X\ to w\. Rename the 

nodes of Pi as x i?i =  = yi, ^ 1,3 , • • •, %i,kn =  and note that

in each Qi, i > 2 , there is a corresponding Hamiltonian path P* which 

can be extended to a Hamiltonian cycle Ct of Qi (as (xi, Wi) is healthy 

in Qi). Rename the nodes of Ci as Xit 1 = Xi, = yi, 3 , . . . ,  = Wi,

for each i > 2 .

For ease of notation, denote kn by m. Suppose k is even. Then the 

following is a Hamiltonian cycle in Q„+1:

(a ? l,l?  2,1? • • • ? % k , l ,  3'k,2,  3'k,3,  ^ 1 ,3 ,  % \ ,4 ,  • • • ? a?l,m ? • • • ? *^2, m,

*^3,m — 1 5  • • • 5 ' ^k,m—l ,  %k , m —2 , 3'k—l , m —2,  • • • ? 2? ^ 2 , m —3,

X 3 , m —3 ,  • • • 7 m —35 4? • • • ? 3?k ,4 , ^ k —1,4,  • • • 5 ^2 ,4 ?  *^2,3? %3,3,  • • • 5

1,3? ^A:—1,2? 2,2? • • • ? *^2,2? *^1,2? * ^ l , l)

(see Fig. 5.2 where some of the healthy links between the Qi’s are shown 

and bold links denote the links of the Hamiltonian cycle). If k is odd 

then the following is a Hamiltonian cycle in Qn+i:

(*^ 1 ,1?  *^2,1? • • • ? *^fc, 1? ^ k , 2 ,  ^ k —1 ,2? • * • ? *^2,2? *^2,3? *^3,3? • • • ? ^ k , 3 ,  ^ k , 4 ,  ^ k —1,4,  • • • ?

*£2,4? *^2,5? • • • ? *^2,m ? *^3,m ? • • • ? ^ 2  ,771? ^A: ,771? • • * ? Z l  ,771 ? Z l  ,777 — 1? • • • ? Z l , 2 ? Z l , l )

(see Fig. 5.3).

Case (iv) There exists some Qi in which there is a node incident with no 

healthy links in Qi.

W.l.o.g. we may assume that X\ is incident with no healthy links in Qi.As 

x\ is incident with at least 2  healthy links in Q j+1, the links (x\,X 2) 

and (xi,Xk) must be healthy. There are at least 2n faults in Q i, and so
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Ck p 1 c 2

Figure 5.2: The Hamiltonian cycle when k is even.

there must be at most 2n — 4 faults distributed amongst Q2 , Q3 , . . . ,  Qk. 

Hence, apart from xi there are no nodes which are incident with less 

than 3 healthy links in their respective copy of Qjj. The node x\ has 2n 

potential neighbours in Q\. A simple counting argument yields that there 

exist distinct potential neighbours y\ and Z\ of x\ in Q\ such that (yi, y2) 

and (zi,Zk) are healthy. Amend Q\ so that the previously faulty links 

(x\,y i)  and (x\,Z\) are now healthy. Applying the induction hypothesis 

to this amended Q\ yields a path Pi in Q\ from y\ to z\ upon which every 

node of Q\ appears exactly once, except for x\ which does not appear at 

all.

81



Figure 5.3: The Hamiltonian cycle when k is odd.

By making previously healthy links in Q2 that are incident with x 2 

faulty, and by making the link (#2 , 2/2) healthy (if necessary), ensure that 

# 2  is incident with exactly 2 healthy links in this amended Q2, one of 

which is (#2 , 2/2 ); and denote this amended Q2 by Q2. As Q2 has at most 

2rc —4 faults, Q2 has at most 4n —6 faults and every node in Q2 is incident 

with at least 2 healthy links in Q2. Hence, by the induction hypothesis 

applied to Q2, there exists a Hamiltonian path P2 in Q2 from x 2 to y2. 

Similarly, there is a Hamiltonian path P*. in Qk from Xk to Zk• Let D 

be the cycle obtained by joining Pi, P2 and Pk using the healthy links 

(# i,# 2), (2/1?2/2 ), (xi,Xk) and (z^Zk). By proceeding as above, using the



fact that the maximum number of faults in dimension 1 (that is, 2n — 1) is 

strictly less than [kn/ 2J, D can eventually be extended to a Hamiltonian 

cycle of Qn+1.

It remains to show that the result holds for the base cases of the 

induction; namely, when n =  2 and k > 4, and when n = 3 and k — 3.

Lemma 5.2 I f  Q\, where k > 4, has 3 faulty links and is such that every 

node is incident with at least 2 healthy links then Q% has a Hamiltonian 

cycle.

P ro o f There exists some dimension, say dimension 1, that contains at 

least 2 faults. Partition Q\ over dimension 1 to obtain k copies of (Jf, 

namely Qu Q 2, . . . ,  Qk-

Case (i) All faults are in dimension 1.

Consider the cycle Qi of length k. As there are 3 faults in dimension 1, 

w.l.o.g. there exists a link (a ji,y i) of Q i such that the links (x i ,x 2) and 

(yi, 7/2 ) are both healthy: join Q\ and Q2 using these links. By proceeding 

in this way with Q3 , . . . ,  Qk, we obtain a Hamiltonian cycle of Q

Case (ii) Dimension 1 has exactly two faults.

W.l.o.g. the only fault not in dimension 1 may be assumed to be (2:1 , yi) 

in Q\. If the links (^1 , 0:2 ) and (^1 ,^ 2 ) are both healthy or the links 

(x i, a;*) and (yi, yk) are both healthy then we can join Qi with Q2 or Qk, 

respectively, as in Case(i), and extend this cycle to a Hamiltonian cycle 

of Q\.

Hence, w.l.o.g. we may assume that the links (#1 , 2:2 ) and (y i,y*) 

are both faulty. If k is even then there exists a Hamiltonian cycle in Q\ 

as pictured in Fig. 5.2 (in that picture, 2:^3 , 2:1,2 , 2:2,3 and 2:^,2 play the 

roles of xi, yi, X2 and yjt, respectively). If k is odd then there exists a
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Hamiltonian cycle in Q* 35 pictured in Fig. 5.3 (in that picture, £i,m, 

x i,i, x 2,m and Xk,i play the roles of £i, 2/1 , 0:2 and 2/fc, respectively). □

Lem m a 5.3 I f  Q\ has 3 faulty links and is such that every node is inci­

dent with at least 2 healthy links then has a Hamiltonian cycle unless 

these 3 faulty links form a cycle of length 3.

P roof There exists some dimension, say dimension 1, that contains at 

least 2 faults. Partition Q\ over dimension 1 to obtain 3 copies of Q\, 

namely Q 1 , Q2 and Q3 . We may assume that either Q\ contains 1 fault 

or all faults are in dimension 1. Denote the nodes of Qi by £*, and Z{, 

for i =  1,2,3.

Case (i) Q\ contains 1 fault.

W.l.o.g. we may assume that the fault in Qi is (£1 , 2/1).

Case («)(a) The links (£1 , 0:2 ) and (271, 2/2) are healthy.

Form the cycle C =  (a?i, z\, 2/1 , 2/2 , z2, £2 , ^ 1) in Q2. There are 2 possibili­

ties: either one of the sets of pairs

{(*i, *3), (*i, *3 )}, {(l/i, 2/3 ), (*1 , 2 3 )}, {(s2, s 3), (z2, z3)}, {(2/2 , 2/3 ), (*2, z3)}

consists of 2 healthy links or the faulty links in dimension 1 are (z i ,z3) 

and {z2 , z 3). In the former case, the cycle C can be joined to the cy­

cle (£3 , 2/3 , z3, £3 ) using the pair of healthy links to obtain a Hamilto­

nian cycle in in the latter case, we can define the cycle C' to be 

(£1 , zi, yi, 2/3 , 2 3 , £3 , £ 1) and, by symmetry, the former case applies.

Case («)(b) At least one of the links (£ i,£ 2) and (271, 2/2) is faulty.

By symmetry, we may also assume that at least one of (x\, £3 ) and (2/1 , 2/3 ) 

is faulty (as otherwise we are in Case (z)(a)); so this accounts for all 

faults in Q%- The only configuration possible, up to isomorphism, is that
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in Fig. 5.4(a), and so there is a Hamiltonian cycle as depicted in that 

figure. (In Fig. 5.4(a), the nodes xi, y\ and z\ of Qi form the central 

column, with the other 2 columns similarly depicting the nodes of Q2 

and Q3 . Faults are denoted by missing links and links of the Hamiltonian 

cycle are drawn in bold.)

Case (it) All faults are in dimension 1.

Up to isomorphism, there are 6 different configurations possible, as de­

picted in Fig. 5.4(b-g), with Hamiltonian cycles as shown except for 

Fig. 5.4(g) where no such Hamiltonian cycle exists. □
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Figure 5.4: The different configurations for Qi
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Lem m a 5.4 I f  Q% has 7 faulty links and is such that every node is inci­

dent with at least 2 healthy links then has a Hamiltonian cycle.

P ro o f Case (t) Q\ contains faults forming a cycle C of length 3.

All of the faults in C must appear in the same dimension, dimension 1 

say. Partition across dimension 1 to obtain 3 copies of Q2 , namely Q1 , 

Q2 and Q3 , and let the faulty links in C be ( x i ,x 2), (x 2, x3) and (#3 , zi). 

We may assume that Q\ contains the most faults amongst these copies, 

then Q2 and then Q3.

Case (i)(a) Q\ contains faults forming a cycle D of length 3.

If Q1 has a node 3/1 incident with less than 2 healthy links in Qi then 

yi must appear on the cycle D and y\ ^  x\ (as otherwise X\ would 

be incident with less than 2 healthy links in Q3 ). In this case, make a 

previously faulty link (yi,zi) of the cycle D healthy, where Z\ ^  xi, and 

denote this amended Q\ by Q1 (note that all nodes in Q\ are incident 

with at least 2  healthy links in Qi).

If every node of Qi is incident with at least 2 healthy links in Q\ then 

make a link (yi,^i) of the cycle D that is not incident with x\ healthy, 

and denote this amended Q\ by Q\.

By Lemma 5.3, Q1 has a Hamiltonian cycle E\. Moreover, as Q1 

contains at least 3 faulty links, either (?/i, y2) and (2 1 , z2) are both healthy 

or (yi, y3) and (2 1 , z3) are both healthy: w.l.o.g. we may assume that it is 

(3/1 , 2/2 ) and (2 1 , z2). By making previously healthy links in Q2 faulty and 

possibly by making the faulty link (y2 , z2) healthy (if it is indeed faulty), 

ensure that y2 is incident with exactly 2  healthy links in this amended 

Q2 , one of which is (y2 , z 2), so that this amended Q2 does not contain 

faults forming a cycle of length 3: we denote this amended Q2 by Q2. By 

Lemma 5.3, Q2 has a Hamiltonian cycle E2. Join E\ and E2 using the
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links (yi, y2) and (z i,2 2) to obtain a cycle F  of Q\ consisting entirely of 

healthy links.

Let E 3 be the isomorphic copy of E2 in Q3 (note that Q3 has no 

faults). As E3 has length 9 and dimension 1 contains at most 4 faults, 

w.l.o.g. we may assume that there are links (u2, v2) and (u3, u3) in F  and 

E3 \  {(yz,z3)}, respectively, such that (if2 ,u 3) and (v2 ,v3) are healthy. 

Join F  and E3 using the links (u2, u3) and (u2, u3) to obtain a Hamiltonian 

cycle of Q3 .

Case (*)(b) Qi does not contain faults forming a cycle D of length 3.

Note that the proofs of Cases (t), (t't), (in) and (it?) of the main theorem 

hold for Q3 except that: throughout, instead of appealing to an inductive 

hypothesis, we use Lemma 5.3; in Case (i), we assume that dimension 1 

contains at most 5 faults; and in Case (m(a)), when building Q2 we must 

ensure that we do not introduce a cycle of faults of length 3 (this can 

be done as Q2 has at most 1 fault). Consequently, we are left with one 

scenario to consider: when each Qi is such that every node is incident 

with at least 2 healthy links and when dimension 1 contains 6  or 7 faults.

Let (a new) 3-ary 2-cube Q\ be such that there is a fault (x,y) in 

Q2 if and only if there is a fault (a?.-, y*) in Qi, for some i E {1,2,3}. 

Then Q\ has at most 2 faults and by Lemma 5.3, there is a Hamiltonian 

cycle C. For each i E {1,2,3}, let Ci be the isomorphic copy of C in Qi 

(note that each Ci consists entirely of healthy links). Even if dimension 

1 (of our original Q%) contains 7 faults, there exists a pair of healthy 

links {(u ! ,u2), (v!,v2)j  or {(«i, u3), (ux, u3)}, where (ui,Vi) is a link of 

C im. w.l.o.g. we may assume that these healthy links are (u i,u2) and 

(^i» ^2 )- We can join C\ and C2 using these healthy links and then proceed 

similarly to join the resulting cycle to C3 and obtain a Hamiltonian cycle
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of Q I

Case («) does not contain faults forming a cycle of length 3.

There exists a dimension, dimension 1 say, containing at least 3 faults. 

Partition Q\ across dimension 1 to obtain 3 copies of Q%, namely Q i, Q2 

and Qz- Let Q\ contain the most faults amongst these copies, then Q2 

and then Q3 . Proceeding as in Case (0(b) yields the result. □

The main theorem now follows by induction. □

The result in Theorem 5.1 is optimal in the following sense. Let a, 6, 

c and d be 4 nodes in Q*, where k > 4 and n > 2, or k = 3 and n > 3, 

such that there are links (u,5), (6, c), (c, d) and (d,a). Let the faults of 

Q* consist of those links incident with a that are different from (a, b) and 

(u,d), and those links incident with c that are different from (6, c) and 

(c, d). In particular, Q* has 4n — 4 faults and every node is incident with 

at least 2 healthy links, but the four links (a, 6), (a, d), (c, 6), and (c, d) 

form a cycle by themselves, making a Hamiltonian cycle impossible in 

this Thus, making our result optimal.

5.3 Tolerating Faults in H ypercubes

As regards hypercubes, it was shown in [22] that there exists a Hamilto­

nian cycle in a binary n-cube Bn with at most 2n — 5 faulty links where 

every node is incident with at least 2 healthy links. The base cases of

the induction in Chan and Lee’s paper are where n = 3,4, and 5. In this

section, we will prove the same result using the approach of the previous 

section. However, our approach is simpler and reduces the induction base 

to only one, where n — 3.
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T h e o r e m  5 .5  Let n > 3. I f  Bn has at most 2n — 5 faulty links and is 

such that every node is incident with at least 2 healthy links then Bn has 

a Hamiltonian cycle.

P r o o f  The proof is by induction on the dimension n. Note that given 

any binary n-cube Bn, we can partition Bn over some dimension i <E 

{ 1 ,2 ,. . . ,  n} and consider Bn to consist of two isomorphic disjoint copies 

B' and B"  of J9n_ i (where the isomorphism is the natural one) with cor­

responding nodes joined by 2n ~ 1 links lying in dimension i. Throughout 

the proof of the theorem, if £ is a node in B 'y say, then we often denote 

it by x \  and we refer to its corresponding node in B ” as x".

We begin the proof of the theorem with a lemma.

L e m m a  5 .6  Let n > 3. I f  Bn has at most n — 2 faulty links then Bn has 

a Hamiltonian cycle.

P r o o f  We proceed by induction on the dimension n. When n = 3 and 

B n contains 1 faulty link, partition B3 over the dimension that contains 

this faulty link. This results in two healthy disjoint copies B ' and B " of 

£?2 . As each copy is a cycle of length 4 and 4/2 > 1, there exists some 

link (xf, y') in B' with the property that (xf, x") and (y',y") are both 

healthy. The Hamiltonian cycle of B3 consists of the Hamiltonian path 

from x' to y' in B ', the Hamiltonian path from x" to yn in B ", and the 

two links (x',x") and (y;, y").

Assume that the lemma holds for Bn for some n > 3. Let Bn+i have 

(n +  1) — 2 — n — 1 faulty links. Then there exists some dimension, say 

dimension 1, which contains at least 1 fault. Partition B n + 1 over this 

dimension and consider the two disjoint copies B' and B" of Bn with 

faults total at most n — 2. Let a new Bn contain all the n — 2 faulty
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links of the B ' and the B ". Then by the induction hypothesis, the new 

Bn is Hamiltonian. Copy the Hamiltonian cycle of the new Bn to B ' and 

B". This yields 2 isomorphic cycles C' in B' and C” in B " each of length 

2n. As [2n/2j > n — 1, the total number of faulty links, for all n > 3, 

there exists some link (x', y') in C’ with the property that (x ', x") and 

(y'i y") are both healthy. The Hamiltonian cycle of Bn+i consists of the 

Hamiltonian path from x' to y' in C", the Hamiltonian path from x" to 

yn in C"', and the two links (x', x") and (y',y“). □

Next, consider a binary hypercube Bn with at most 2n — 5 faulty 

links and is such that every node is incident with at least 2 healthy 

links. To show that this binary hypercube is Hamiltonian, we proceed 

by induction on n. When n = 3 and Bn has 1 faulty link, we can proceed 

as the induction base of Lemma 5.6.

Assume that the result holds for Hn, for some n > 3. Let Bn+1 have 

at most 2(n +  1) — 5 =  2n — 3 faulty links and be such that every node 

is incident with at least 2 healthy links. Assume w.l.o.g. that dimension 

1 contains the most faults from amongst the n + 1 dimensions. Partition 

B n+1 over dimension 1 and consider the two disjoint copies B' and B ” of

B n-

Case («) Dimension 1 contains at least n — 1 faults.

In this case, B' and B"  will have faults total at most n — 2. By proceeding 

as in Lemma 5.6, we can construct two isomorphic disjoint Hamiltonian 

cycles C' in B' and C" in B ”. As [2n/2j > 2 n — 3 for all n > 3, 

there exists some link (xf, y') in C' with the property that (x',x") and 

(y'i y”) are both healthy. The Hamiltonian cycle of Hn+i consists of the 

Hamiltonian path from x' to y' in C', the Hamiltonian path from x" to 

y" in C", and the two links (x7, x”) and (y', y”).
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Case (g») Dimension 1 contains at least 1 fault and at most n — 2 faults. 

In this case, B ' and B" will have faults total at most 2n — 4. W.l.o.g. we 

may assume that B ’ has more faults than B".

Case (n)(a) Each of the B ' and B ” is such that every node is incident 

with at least 2 healthy links and no of the two cubes contains 2n — 4 

faults.

In this case, as B r has more faults than B ", B n has at most n —2 faults. By 

the induction hypothesis, B' has a Hamiltonian cycle C'. As [2n/3j > 

n — 2 for all n > 3, there exists links (x', y') and (t/, z') of C' with 

the property that {x\  x"), (y\ y”) and (z', z") are all healthy. If at least 

one of the links (x",y") and (y", z") is faulty (we may assume w.l.o.g. 

that (x", y") is the faulty one), then by making the link (x", y") healthy 

the amended B ” will have at most n — 3 faulty links and each node of 

the amended B"  is incident with at least 3 healthy links. By making 

previously healthy links in the amended B" that are incident with x" 

faulty, ensure that x" is incident with exactly two healthy links in this 

amended B "’, one of which is (x",y"); and denote this amended B" by 

B". As B"  has at most n — 2 faults, B " has at most 2n — 5 faults and 

every node in B " is incident with at least 2 healthy links in B ". Hence, 

by the induction hypothesis applied to B ", there exists a Hamiltonian 

path in B"  from x" to y". The Hamiltonian cycle of Bn + 1 consists of the 

Hamiltonian path from x ' to y' in B ', the Hamiltonian path from x” to 

y" in B ", and the two links (x;, x”) and (yr, y").

Otherwise (both (x”, y") and (y",z,f) are healthy), if y” is incident 

with 2 or 3 healthy links in B"  then leave B" unchanged. Otherwise, by 

making previously healthy links in B" that are incident with y” faulty, 

ensure that y” is incident with exactly 3 healthy links in this amended
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B ", 2 of which are (aj", y") and (y", z"\. denote this amended B n by B ”. 

As B " has at most n — 2 faults, B " has at most 2n—5 faults. Suppose that 

some node w" is incident with exactly 1 healthy link in B ”. This must 

have been because (y" , w") was a healthy link in B"  and it was removed to 

form B ”. Alter the construction of B ” so that (y", w”) is the third healthy 

link incident with y". As B " has at most 1 node which is incident with 

only two healthy links, the resulting B " is such that every node is incident 

with at least two healthy links. By the induction hypothesis applied to 

£?", if y" is incident with 2 or 3 healthy links, or to B" otherwise, B" has 

a Hamiltonian cycle C" containing at least one of the links (xf\  y”) and 

(y", z"). W.l.o.g. we may assume that (x",y") £ C". The Hamiltonian 

cycle of Bn+i consists of the Hamiltonian path from x' to y' in B ' , the 

Hamiltonian path from xn to y" in B n, and the two links (x \ x ") and

(y',y")-

Case (««)(b) Each of B f and B" is such that every node is incident with 

at least 2 healthy links and B ' has exactly 2n — 4 faults.

W.l.o.g. we may assume that for every fault (xr, y') of B \  at least one of 

(x', x") and (yr, y") is faulty. Let (x‘, y') be some fault of B'. As there is 

exactly 1 fault in dimension 1, we may assume that this fault is (x',x") 

and every fault in B 1 is incident with x'. As the node x ' is incident with 

at most n — 2  faults in B 7, this yields a contradiction. Hence, there exists 

a fault (u ', v') of B' such that (u u ”) and (v v ”) are healthy. Make the 

previously faulty link (u', v ') of B ' healthy, and denote this amended B' 

by B '. By the induction hypothesis applied to B ', there is a Hamiltonian 

cycle C' in B '. Since B"  is healthy, there is an isomorphic copy of C' in 

B n. Denote this cycle by Cn If (u7, v') £ C' then there is a Hamiltonian 

path in B' from v! to v'. The Hamiltonian cycle of Bn + 1 consists of the
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Hamiltonian path from u ' to v ' in C', the Hamiltonian path from if" to v" 

in C", and the two links (if', if") and (i/, i;"). Otherwise (If (if', i/) £  C'), 

as [2n/2 j > 1, there exists some link ( s \ f )  in C ' such that (s',,s") and 

(£', t") are both healthy. The Hamiltonian cycle of Bn+i consists of the 

Hamiltonian path from s' to tf in C", the Hamiltonian path from s" to t" 

in C7", and the two links (s', s") and

Case (n)(c) There is a node if' in B ’ such that if' is incident with exactly

1 healthy link.

As u' is incident with n — 1 faults in B ',  B "  contains at most 72 — 3 

faults; there is no other node in B " which is incident with less than 3 

healthy links in B n \ and apart from if', there is no other node in B '  that 

is incident with less than 2 healthy links in B '.  Also, as if' is incident 

with at least 2 healthy links in B n+1, (if', if") has to be healthy. Since if' 

is incident with exactly n — 1 faulty links in B '  and n — 1 > 72 — 2, there 

exists some faulty link (u;, v ')  in B '  such that both (if', if") and (i/, v")  

are healthy. Make the previously faulty link (if', v ')  of B ' healthy, and 

denote this amended B '  by B '.  By the induction hypothesis applied to 

2T, there is a Hamiltonian path from if' to v ' in B '.  By making previously 

healthy links in B "  that are incident with if" faulty and by making the 

link (if", v " )  healthy (if necessary), ensure that if" is incident with exactly

2 healthy links in this amended Z?", one of which is (if", u"); and denote 

this amended B"  by B". As B ” has at most 72 — 3 faults, B " has at most 

2n — 5 faults and every node in B" is incident with at least 2 healthy links 

in B". Hence, by the induction hypothesis applied to B ", there exists a 

Hamiltonian path in B " from if" to u". The Hamiltonian cycle of B n + 1 

consists of the Hamiltonian path from if' to v’ in B ', the Hamiltonian 

path from if" to v" in £?", and the two links (if', if") and (t/, v"). □
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Now consider a B n with node a is incident with only 2 healthy links, 

(a, 6) and (a,d), and node c is incident with only 2 healthy links, (c, b) 

and (c, d). Then Bn contains 2n — 4 faulty links and every node in 

Bn is incident with at least 2 healthy links. However, the four links 

(a, 6), (a, d), (c, 6), and (c, d) form a cycle by themselves, making a Hamil­

tonian cycle impossible for n > 3. Thus, making the above result optimal.

5.4 C om plexity  Issues

As regards complexity, it was shown in [22] that the problem of deciding 

whether a faulty binary n-cube has a Hamiltonian cycle is NP-complete. 

In more detail, let HCFH denote the problem whose instances of size 

N  are faulty hypercubes on N  nodes and whose yes-instances are faulty 

hypercubes which have a Hamiltonian cycle (note that HCFH has no 

instances of size N  when N  is not a power of 2). It was shown in [22] that 

there is a polynomial-time reduction from the well-known NP-complete 

problem 3-Satisfiability (see [43]) to HCFH.

Let HCFH (A;) denote the problem whose instances of size N  are faulty 

k-ary 72-cubes on N  nodes (and so A" = kn) and whose yes-instances 

are faulty fc-ary n-cubes which have a Hamiltonian cycle. Note that 

there is one problem HCFH(fc) for each k > 3 (with HCFH(2) being a 

reformulation of HCFH).

T h eo re m  5.7 The problem HCFH(k) is NP-complete, for each k > 2. 

P ro o f  We begin with a lemma.

L em m a 5.8 When k > 3 and n > 2, the nodes of can be partitioned 

as the disjoint union U* U V* such that:
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• \U%\ =  2n and |Vn*| = k n - 2 n

• the subgraph of Q* induced by contains Bn as a subgraph

• the subgraph of Q£ induced by V* contains a path P* of length 

kn — 2n — 1 as a subgraph, with terminal nodes x' and y' (where no 

node appears more than once on P*)

• there exists a link (x,y) of Bn such that (x,x') and {y,y') are links

ofQl

P ro o f  We proceed by induction on n: the base case when n = 2 is 

straightforward (no m atter whether k is odd or even). Suppose that 

the result holds for some n > 2. Partitioning Q*+i over dimension 1 

yields k copies of namely Qlt Q2, . . . ,  Qk• By the induction hypoth­

esis, Q i contains a copy of Bn and a path P*, as in the statement of 

the lemma, with 02? Q31 • • • ? Qk containing isomorphic copies (where the 

isomorphism is the natural one).

Consider the binary (n-|-l)-cube Bn+1 of Q„+l obtained by taking the 

disjoint union of the copies of Bn in Q\ and Q2 and joining corresponding 

nodes. Consider the path P^+1 built as follows.

• Join the paths P* in 0 i ,  0 2? • • • ? Qk by starting from x' of the path 

P* in Q1 and including the appropriate links from y' of one path 

to y' of the next, or x' of one path to x’ of the next.

• Augment this path with the link (x ' ,x ) or (y',y), depending on 

whether k is even or odd, respectively, where x' and y' are the 

terminal nodes of the path P^ in Qk and (x ,y ) is the link in the 

copy of Bn in Qk-
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• Augment this path with Hamiltonian paths in the copies of Bn in 

Qk, Qk-i, • • •, Qs from x to y, or vice versa, as appropriate, with 

these paths joined using the appropriate links from y of one path 

to y of the next, or x of one path to x of the next.

Whether k is even or odd, P*+1 is a path of length kn+1 — 2 n+1 — 1 from 

the node x ' of the path P* in Q\ to the node x of the binary n-cube Bn 

in Q3 (the construction can be visualised in Fig. 5.5). If we choose our 

link in B n + 1 to be that joining the node x in the copy of Bn in Q\ with 

the node x  in the copy of Bn in Q2 then the lemma follows by induction.

□

x '  y ' x '  y 'x '  y '

Figure 5.5: The construction in the proof of Lemma 5.8.

Next, fix k > 3. In the reduction from 3-Satisfiability to HCFH 

in [22], note that the faulty hypercube constructed from an instance of 

3-Satisfiability always has healthy links joining nodes of degree 2. Con­

sequently, there is a polynomial-time algorithm which takes as input an 

instance of 3-Satisfiability and produces as output a faulty binary n-cube, 

for some n, and a healthy link (#, y) with the property that the instance 

of 3-Satisfiability is a yes-instance if and only if

• the faulty binary n-cube has a Hamiltonian cycle
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• a Hamiltonian cycle exists in the faulty binary n-cube if and only 

if there is a Hamiltonian cycle containing the link (x,y).

Let Bn be a faulty binary n-cube that has a Hamiltonian cycle if 

and only if the healthy link (x,y)  appears in a Hamiltonian cycle. Let 

the faulty k-axy n-cube be defined as follows. The nodes of Q* are 

partitioned as U Vj such that:

• the subgraph of induced by the nodes of U’* is the faulty binary 

n-cube Bn

• the subgraph of QJ induced by the nodes of V* is a path of length 

kn — 2n — 1 from node x' to node y' (upon which no node appears 

more than once)

• the only other links are (x,x') and (y,y') (where (x,y)  is the spec­

ified link in Bn).

Such a partition exists by Lemma 5.8 and can clearly be constructed 

from Bn in polynomial-time (that is, time polynomial in N  =  2n). Con­

sequently, the faulty Bn has a Hamiltonian cycle if and only if the faulty 

Q* has a Hamiltonian cycle, and the result follows from the facts that 

3-Satisfiability is NP-complete and HCFH(fc) is in NP. □
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C hapter 6 

C om m unication A lgorithm s

6.1 Introduction

One of the most important aspects of any large-scale general-purpose 

parallel computer is the speed and efficiency of its communication algo­

rithms. This is because most large-scale general-purpose machines spend 

a large portion of their resources making sure that the right data gets 

to the right place within a reasonable amount of time. In this chapter, 

we consider the problems of: moving a data item from one processor to 

another processor; a single processor broadcasting the same data item 

to every other processor; a single processor sending different data items 

to every other processor; the simultaneous broadcast of the same data 

item from every processor to every other processor; and the simultane­

ous exchange of different data items between every pair of processors. 

Most of the (varied) algorithms for such problems in the literature, e.g., 

[10, 13, 54, 79], relate to hypercubes. Consequently, we restrict ourselves 

to the k-aiy n-cube where k > 2. All the algorithms presented in this 

chapter are dimensional. We mean by dimensional that at any one unit
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of time, data items are transmitted along links of only one dimension of 

the fc-ary n-cube Q*.

We work under the following assumptions. Each processor has a copy 

of the same program and computation is synchronous. The size of each 

message to be transmitted is one packet and all packets have roughly 

equal size. The time taken to cross any link is the same for all packets 

and we take it to be one unit of time. All local computation can be 

done in negligible time and each processor has unlimited storage space. 

Packets can be transmitted along a link in one direction at any one time 

and their transmission is error free.

All of our algorithms are developed under the assumption of one- 

port I/O communication and store-and-forward routing. Whilst other 

models of parallel processing assume multi-port I/O communication (in­

deed, many modern routing algorithms have been proposed for a variety 

of machines under this assumption), most existing machines only sup­

port one-port I/O communication in hardware and modern routing algo­

rithms, designed for multi-port systems, have not yet been implemented 

in commercial systems [64]. One-port machines require less storage ca­

pacity and the design of their processors is not as complicated as in the 

multi-port case. Moreover, the start-up time to initiate multiple links 

may be longer than the time to initiate only one link. It was also shown 

in [42] that for short messages multi-port communication algorithms can 

be slower than one-port communication algorithms.

6.2 D im ensional Routing

Consider the problem of a source processor s =  (sn, sn_ i , . . . , Si) wishing 

to send a data item to a destination processor d =  (dn, dn_ i , . . . ,  d\).
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The routing algorithm presented in [33] is optimal for unidirectional k- 

ary n-cubes. With a simple modification, it can be improved to make it 

optimal for the fc-ary n-cube model considered in this chapter as follows. 

The algorithm below sends a packet from processor s to processor d in 

time equal to the Lee distance, Dl (s,d), between s and d by modifying 

the digits of s one by one in order to transform the label s into the label 

d. The algorithm is as follows:

l e t  th e  dimensions in  which s and d d i f f e r  be 

fo r  every i £ {*1, . . . ,  zm} do 

fo r  j  := 1 to  Di,(si,di) do

i f  di — Si — DL,(si,di) or s,- — d{ = k — Dl (s{, d<) then

send th e  packet from i t s  cu rren t p rocessor (an,a n_i,

. . . ,  at, . . . ,  ai) to  processor 

(a„,an_ i , . . . , a t- +  l mod fc ,...,a i) ; 

e lse

send th e  packet from i t s  cu rren t p rocessor (an,a n_i,

. . . ,  a*,. . . ,  ai) to  p rocessor 

(an, an_ i , . . . ,  a,- -  1 mod k , . . . ,  ax) ; 

endfor 

endfor

Clearly this algorithm is optimal.

For example, in a 6-ary 3-cube, if a data item needs to be moved from 

the source processor s =  (0,3,5) to the destination processor d = (4,5,1) 

then according to the above algorithm the progression will be:

(0,3,5) -> (0,3,0) ->■ (0,3,1) -> (0,4,1) -j- (0,5,1) -► (5,5,1) -9 (4,5,1).
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6.3 D im ensional Single-node Broadcasting

Consider the problem of a source processor wishes to send its own data 

item to every other processor. Our single-node broadcast algorithm con­

sists of n stages. In stage 1, the algorithm partitions the k-ary n-cube 

Q* over dimension 1 into k isomorphic disjoint copies of Qn~\-> where 

the corresponding nodes are joined in a cycle of length k. Let the sub­

cube that contains the source processor be named the source cube and 

denoted Q(0). Let the subcube of distance i from the left of <3(0) be 

denoted <3/(0? an(  ̂ the subcube of distance i from the right of <3(0) be 

denoted <3r (0-

Let f t  =  [A;n/2J, and let f t  = [kn/ 2J if k is odd and f t  = [kn/ 2J — 1 

if k is even. The most remote subcubes from <3(0) are <3/(ft) and <2r (ft) 

and they are adjacent. Note that if k is even then there is only one sub­

cube of distance |ft/2j from <3(0). Therefore, we consider it on the left 

of Q(0). Let the source processor be denoted s(0), and its corresponding 

processor in <3/(«)(resP- Qr{i)) be denoted s/(z)(resp. sr (z)). After parti­

tioning the <2*, stage 1 of our single-node broadcast algorithm proceeds 

as follows:

l e t  the packet processor s(0) intends to broadcast 

be denoted p;

processor s(0) sends packet p to  processor s/(l); 

do in  p a r a l le l :

• fo r  i :s 1 to  ft -  1 do

processor s/(*) sends packet p 

to  processor s/(z +  l);

• fo r  j  := 0 to  ft. — 1 do

processor sr(j) sends packet p

101



to  p ro cesso r  sr(j +  l) ;

enddo

At the end of stage 1, processor S / ( z ) ,  for i = 1 ,2 ,...,/? /, and processor 

sr(j), for j  =  1 , 2 , . . . ,  /?r, contain the broadcast packet p. The problem is 

now reduced to subcubes of dimension n — 1 (£2(0) with source processor 

s(0), Qi(i) with source processor si(i) and Qr(j) with source processor

Sr( j ) ) -

In stage z, for i = 2 , 3 , . . . ,  n, each resulting subcube from the previous 

stage performs in parallel the above algorithm. The algorithm clearly 

achieves its objective.

To analyse the time complexity for each stage of this algorithm, there 

are two cases to consider.

Case(z) k is even. The time taken by each stage is

max(l +  (fit -  1), 1 +  pr) = [k/2 \.

Case(zz) k is odd. The time taken by each stage is

max(l +  (Pi — 1), 1 +  pr) = 1 + [k/2 \.

Therefore, the total time taken by this algorithm is [k/2\n  if k is even, 

and n+  [k /2 \n  if k is odd. Since the diameter of a QJ is also [k/2 \ n, the 

above single-node broadcast algorithm is optimal when k is even. While 

this can be shown to be non-optimal when k is odd, it is within n units 

of time of the optimal and has the virtue of being implemented simply.

However, if we assume that the system supports 2-port I/O  commu­

nication, where a processor can transmit and receive data items along 

at most two incident links at any one unit of time, then with a simple
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modification to stage 1, and hence the following stages, of the above al­

gorithm, the resulting single-node broadcast algorithm becomes optimal 

for any k > 2. The modified stage 1 of the above algorithm is as follows:

l e t  the packet processor s(0) intends to broadcast 

be denoted p ; 

do in p a r a lle l:

• for  i 0 to  (3i — 1 do

processor sj(i) sends packet p 

to  processor S/(« -+-1);

• for  j  := 0 to  /3r — 1 do

processor sr(j) sends packet p 

to  processor sr(j + 1);

enddo

Since in the following stages, each resulting subcube from the previous 

stage performs in parallel the above modified algorithm, the time taken 

by each stage is max(/?/,/?r) = [k/2\. Therefore, the total time taken by 

this modified single-node broadcast algorithm is [k/2 \n  which is optimal 

for any k > 2. Fig. 6.1 illustrates the steps taken by the single-node 

broadcast algorithm for the two models in a 5-ary 2-cube Q\ where the 

source processor s(0) = 00. Fig. 6.1(a) illustrates the steps taken by the 

algorithm using one-port I/O  and Fig. 6.1(b) illustrates the steps taken 

by the algorithm using 2-port I/O. Note that in this figure, by using the 

2-port I/O  the algorithm reduces the steps from 6, which are taken by 

the algorithm using one-port I/O, to 4.
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Figure 6.1: The time steps (t) taken by the single-node broadcasting in 

Q\ using: (a) one-port I/O  (b) 2-port I/O.
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6.4 D im ensional M ulti-node Broadcasting

Consider the problem of each processor wishes to send its own data item 

to every other processor (essentially, every processor wishes to do a single­

node broadcast simultaneously). Our multi-node broadcast algorithm 

consists of n stages. In stage 1, each cycle in dimension 1 performs the 

following “daisy-chain” algorithm of [79]:

each processor s e ts  i t s  own lo ca l packet named 'current’ 

to  be the data item i t  intends to broadcast; 

for  z := 1 to  k — 1 do

processor (an,an_ i , . . . , ai) sends the packet 'current’ 

to  processor (an, an_ i , . . . ,  a\ 1 mod Jc); 

the packet 'cu rren t’ of processor (an, an- i, • • •, «i) i s  

r ese t to  be the packet ju st received by processor 

(an,an_ i , . . . ,  ai) and th is  packet i s  also retained lo ca lly ;  

endfor

In stage z, for z =  2,3, ...,zz, each cycle in dimension z performs 

the above algorithm amongst its own processors except that as well as 

sending on its own data item, it sends on all the packets retained from 

the previous stage. The algorithm clearly achieves its objective.

Stage 1 is completed in time k — 1; stage 2 is completed in time 

k(k  — 1); stage 3 is completed in time k2(k — 1); and so on. In general, 

the time taken by stage z, 1 < i < n, is (k — 1 )kl~l . Therefore, the total 

time taken by this algorithm is

f^(Ar -  l ) ^ " 1 = kn -  1.
i = i

This algorithm is optimal as each processor can only receive at most one 

packet per unit of time and there are kn processors in total.
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6.5 D im ensional Single-node Scattering

Consider the problem of a source processor wishes to send a different 

data item to every other processor. Our single-node scatter algorithm 

consists of n stages. In stage 1, the algorithm partitions the fc-ary n- 

cube Q* over dimension 1 into k isomorphic copies of namely

Q n - i ( ! ) >  Q n - i ( 2 )> • • • > Q n - i i k )•  Let the processor, 1 <  j  <  kn~l , in 

Qn~ 1 (2)5 1  — 2 — k -> be denoted ; and its corresponding processor in 

Qn-i(d) be denoted s^,j)- After partitioning the QJ, stage 1 of our single­

node scatter algorithm, where the source processor is S(1)1), proceeds as 

follows:

l e t  the packet intended for  processor S(jj) 

be denoted P(ij) I 

for  j  := 1 to  kn~l do 

for  i := k downto 2 do

processor sends packet P(i,j) to processor S(2)i)

and fo r  every processor s^i), 2 < d < k — 1, having 

reta ined  a copy of any packet, P{r,j)> ju st received , 

sends th is  packet on to  processor i f  r > d;

endfor 

endfor

At the end of stage 1, each processor S(t)i), for i =  1 ,2 , . . . ,  A:, contains 

the packets intended for every processor in The problem is now

reduced to Q*_1(i) where the source processor is

In stage *, for i = 2 ,3 , . . . ,  n, each resulting subcube from the previous 

stage performs the above algorithm. Again the algorithm clearly achieves 

its objective.
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The time taken by stage 1 is (k — l)fcn-1. In general, the time taken 

by stage *, 1 < i < n, is (k — 1 )kn~l. Therefore, the total time taken by 

this algorithm is

£ (fc - l) j fc n-*' = fcn - l .
t=i

This algorithm is optimal since the source processor must send out the 

kn — 1 different packets over one communication link at a time.

6.6 D im ensional Total Exchange

Consider the problem of every processor wishes to send a different data 

item to every other processor (in contrast to the multi-node broadcast 

where every processor wishes to send the same data item to every other 

processor). Let d(a, b) be the data item to be sent from processor a 

to processor b. We assume that the resulting packet contains the data 

item d(a, b) and also details of the destination processor b. Our total 

exchange algorithm consists of n stages and is as follows:

for  i := 1 to  n do

for  every packet [d(a, b),b] retained so far by 

processor c or orig inating  at processor c do 

i f  the zth d ig it  of b i s  6t then

route the packet [d(a, b),b] from processor c to  

processor (cn, cn_ i , . . . ,  6,-,..., c\) so that no interim  

processor, including processor c, 

reta in s a copy of [d(a, b), b];

endfor

We have been intentionally vague as to how the routing, above, is 

achieved and we shall address this in more detail presently. Suffice to
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say, however we choose to route the packets, by following the progress of 

one particular packet in an execution of the above algorithm, it is clear 

that the packet eventually ends up at its intended destination (note that 

no copies of packets are ever made).

Returning to how we route the packets, let us first note that after 

completion of stage i , exactly the packets going from the source processor 

(cn, . . . ,  Cj+i, a:,-,. . . ,  £ 1), for some a?*, - - -, a?i, to the destination processor 

(yn, . . . ,  yt+i, ct, . . . ,  ci), for some yn, . . . ,  t/i+i, are located at processor 

(cn, . . . ,  Ci+i, . . . ,  Ci). Consequently, after every stage there are kn — 1 

packets located at each processor. In order to accomplish the routing 

in stage i +  1, we use the routing algorithm in Section 6.2. In stage 

2 +  1, each processor routes packets around a cycle in dimension 2 +  1, 

where the direction is dictated by whichever is the shortest path to the 

intended destination. If we were to perform routings simultaneously in an 

ad hoc fashion then we might find that processors had incoming packets 

on two different incident links at the same time. So as to avoid such a 

circumstance, we proceed as follows.

For any processor, every packet located at this processor has a unique 

associated label (x,y),  where x denotes the direction, +1, 0 or —1, around 

the cycle it is to be routed in stage 2 + 1 (0 denotes “no move”) and y 

denotes the length of the path up to its destination (if a packet can be 

labelled (+l,fc/2) or (—l,fc/2), where k is even, then we always choose 

the label (+l,fc/2) so as to make any label unique). By symmetry, there 

are exactly the same number of packets with identical labels located at 

every processor. Hence, the routing in stage 2 +  1 proceeds as follows:

for  each label (x,y)  do

for  each packet p at processor c with label (x , y ) do
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ro u te  p (according  to  th e  la b e l (#,?/)); 

endfor 

endfor

Note that routing packets simultaneously in this way ensures that 

there are no “input collisions” as described above.

Prior to stage * +1, the total number of packets labelled (a:, y) located 

at some processor c is kn~l , if y ^  0, and kn_1 — 1 otherwise. Hence, the 

time taken to complete stage i -j- 1 is

j —0 j= 0

kn~1(k2 — l)/4  if k is odd 

kn+1/4  if k is even

and so the time taken by the above algorithm to complete a total ex­

change is nkn~1 (k2 — l)/4 , if k is odd, and nkn+1/ 4, if k is even.

In order to obtain a lower bound for the time taken to complete 

a total exchange, consider the processor s. It must necessarily send 

kn — 1 packets, one to every other processor. Hence, the total number of 

packets sent, over all processors, in order to get the data items initially 

at processor s to their destinations is

Y j Dl { s ,d ),
d

where d ranges over all processors. This holds for every processor s, and 

so the total number of packets sent in order that a total exchange is 

completed is at least

*” £ D L(s,d).
d

At any one time, any processor sends at most one packet, and so the
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time taken to complete a total exchange is at least 

*“ 2 > t (s,d)/*" =  £ D L(s,d).
d d

By symmetry, it suffices to compute the above summation when s = 

(0 ,0 ,.. .  ,0). Arrange the names of the processors in an kn x n matrix. 

Also by symmetry, every i G { 0 ,1 ,.. . ,  k — 1} appears an identical number 

of times in the matrix and so

£ > z , ( s , d )  =  ( n k ' / k ) 5 2 D L(0,j),
d j=0

which yields that our total exchange algorithm is optimal.
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C hapter 7

H am ilton ian  Cycles 

and A p p lications to  

C om m unication

7.1 In troduction

We show in this chapter how the Hamiltonian cycle of the k-ary n-cube 

network can be exploited to develop multi-node broadcast and single­

node scatter communication algorithms for one-port I/O fc-ary n-cube 

model. Although the algorithms presented in Section 7.2 and 7.3 are 

not dimensional, they complete the process in time equal to the time of 

those algorithms presented in Chapter 6. The dimensional multi-node 

broadcast algorithm of Section 6.4 requires all the nkn communication 

links of the QJ to complete the process while the multi-node broadcast 

algorithm of this chapter requires only kn communication links to com­

plete the process. Moreover, the two algorithms are fault-tolerant as we 

will show later in this chapter.
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All the communication problems are studied under the store-and for­

ward communication model, i.e., a processor must store the entire mes­

sage before it can be processed and retransmitted. We consider a model 

where splitting and recombining of messages is allowed. We assume that 

each processor has a copy of the same program and computation is syn­

chronous. The time taken to cross any link is the same for all packets 

and we take it to be one unit of time. All local computation can be done 

in negligible time and each processor has unlimited storage space. All 

packets have roughly equal size. Packets can be transmitted along a link 

in one direction at any one time and their transmission is error free.

It was shown in [42] that for short messages multi-port communica­

tion algorithms can be slower than one-port communication algorithms. 

Therefore, we assume that messages of one-port I/O model are short and 

they are of size one packet, and messages of multi-port I/O  model are 

long and they are of size M  packets where M  > n.

Some parallel machines, e.g., the J-machine [27], support multi-port 

I/O  model. We show in this chapter that the fc-ary n-cube network 

can be decomposed into n link-disjoint Hamiltonian cycles and then we 

show how these cycles can be used to develop multi-node broadcast and 

single-node scatter algorithms for machines that support multi-port I/O 

model.

7.2 M ulti-nod e Broadcasting for one-port 

I /O  M odel

The following multi-node broadcast algorithm exploits the Hamiltonian 

cycle of the k-ary n-cube to perform the “daisy-chain” algorithm as fol­
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lows:

each processor generates the k - ary Gray codes of

dimension n as d e ta iled  in Section 3 .2;

le t  the r e su lt in g  Hamiltonian cycle  be so,Si,. . .  ,Sfcr»_i

where node st- i s  linked to  node st+1 mod kn;

each processor s e ts  i t s  own lo ca l packet named

* current * to  be the data item i t  intends to broadcast;

for  j  := 1 to  kn — 1 do

processor st sends the packet fcurrent} 

to  processor s-+1 mod kn;

the packet 'cu rren t* of processor s, i s  reset to  

be the packet ju s t  received by processor st- and 

th is  packet i s  a lso  retained  lo ca lly ;  

endfor

The algorithm clearly achieves its objective. The total time taken to 

complete the multi-node broadcast is kn — 1 which is optimal. Note that 

this algorithm requires only kn links for data transmission whereas the 

dimensional multi-node broadcasting of Section 6.4 requires the whole 

nkn links of the A;-ary 72-cube to complete the process.

7.3 S ingle-node Scattering for one-port I /O

M odel

Let the source processor be So- Our single-node scatter algorithm utilizes 

the Hamiltonian cycle of the fc-ary 72-cube for data transmission and is 

as follows:
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each p ro ce sso r g en era te s  th e  fc-ary Gray codes of

dim ension n as d e ta i le d  in  Section  3 .2 ;

l e t  th e  r e s u l t in g  Ham iltonian cycle  be So, S i,. . . ,  Sfcn_x

and l e t  th e  packet in tended fo r  p rocesso r s; be denoted p i;

f o r  i := k n — 1 downto 1 do

p ro ce sso r So sends packet pt to  p rocessor Si and 

p ro c e sso r S j , f o r  j  ^  0, having re ta in e d  a copy of 

any packet j u s t  re c e iv e d , sends th i s  packet on to  

p ro ce sso r Sj+i; 

endfor

Clearly, the time taken by this algorithm is kn — 1 which is optimal.

7.4 A pplications to  Fault Tolerance

The multi-node broadcast and the single-node scatter algorithms for one- 

port I/O  model of the previous sections can be implemented on a k-ary 

n-cube QJ with faulty links. For example, to implement the multi-node 

broadcast algorithm for one-port I/O  model on a with at most A faulty 

links, it is enough to construct a Hamiltonian cycle in this faulty QJ and 

perform the multi-node broadcast algorithm presented in Section 7.2 (i.e., 

Theorem 5.1 shows the existence of a Hamiltonian cycle in a QJ with 

A =  4n — 5 faulty links).

As any single-node scatter algorithm for one-port I/O  A;-ary n-cube 

model requires every processor, except the source, receive one packet on 

at most one incident link at any one time, it is necessary for the degree 

of each node in the QJ to be at least 1. Assume that a Hamiltonian 

cycle can be constructed in a QJ with at most A faulty links. Then the
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single-node scatter algorithm of Section 7.3 can be implemented in a 

with at most A +  1 faulty links as follows.

C o r o l l a r y  7 .1  I f  a Hamiltonian cycle can be constructed in a QJ, where 

k >  3 and n >  2, with at most A faulty links, then a Hamiltonian path 

can be constructed in a Q* with at most A +  1 faulty links.

P r o o f  Let where k > 3 and n > 2, contain at most A +  1 faulty 

links and let f e be any faulty link in this Then by making f e healthy, 

the resulting Q* will contain at most A faulty links and a Hamiltonian 

cycle H C  can be constructed in this Q*.

If f e ^ H C  then keep HC  unchanged. Otherwise, remove f e from 

HC. In both cases the resulting HC  contains a Hamiltonian path HP  

where every link in H P  is healthy. □

Let the nodes of H P  of the above result be denoted si(L),si(L  — 1), 

. . . ,  s /(l), <s(0), 3r (l), sr (2), • • •, s r (R)  where s(0) is the source processor 

and s/(z)(resp. <sr (i)) is a node of distance i on the left(resp. right) of 

s(0). The single-node scatter algorithm is as follows:

l e t  the packet intended for  processor s/(«)(resp. 6r(*)) be 

denoted p/(«)(resp. pr{i))l 

for  i := L downto 1 do

processor s(0) sends packet pi(i) to  processor -s/(l) 

and processor s i( j ) , for  j  ^  0, having retained  

a copy of any packet ju st received , sends th is  packet 

on to  processor s /( j - |- l) ;  

endfor

fo r  i R  downto 1 do

processor s(0) sends packet pr(i) to processor sr(l)
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and processor sr( j ) , for  j  ^  0, having retained  

a copy of any packet ju st received , sends th is  packet 

on to  processor sr(j -1-1); 

endfor

The algorithm clearly achieves its objective. The time taken by this 

algorithm is L  +  R  = kn — 1 which is optimal.

As a result, it should be clear that the multi-node broadcast algorithm 

can be implemented in a k-ary n-cube with faulty nodes whenever a 

cycle containing all the healthy nodes can be constructed. Also, the 

single-node scatter algorithm can be implemented in such a faulty k-ary 

n-cube whenever a linear array containing all the healthy nodes can be 

constructed.

7.5 A pplications to  m ulti-port I /O  M odel

In this section, we develop multi-node broadcast and single-node scat­

ter communication algorithms for multi-port k-ary n-cube model. Our 

algorithms utilize the incident links of each source processor by decom­

posing the k-ary n-cube QJ into n link-disjoint Hamiltonian cycles and 

performing the algorithms of Section 7.2 and 7.3 on each Hamiltonian 

cycle.

Let Gi = (Vu Ei) and G2 = (V2, E2) be two network topologies, where 

V\ and VI are the sets of nodes and E\ and E2 are the sets of links.

D efin ition  7.2 Given two network topologies G\ = (Vi,iiq) and G2 = 

(V2 , E 2 ), define the cross product of G\ and G2 denoted by G\ <g> G2 , as 

the network topology G = (V ,E), where

V = {(x ,y )\x  e  V i,y  G V2}
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E  =  {((zi,yi),0z2,y2))|((zi,£2) € E x and yx =  i/2), 

or (xi =  x 2 and (yi, y2) £ E2)}.

See [34] for properties of cross product of interconnection networks.

Alspach et al. [2, Corollary 3] showed that C%x <8)C{2® .. . ®Cin, where 

Cit is a cycle of length */, has a Hamiltonian decomposition. Using this 

result, the following theorem follows.

T h eo rem  7.3 QJ can be decomposed into n Hamiltonian cycles.

P ro o f  Let Ck be a cycle of length k , and each node in Ck is labelled 

with a radix k number 0 ,1 , . . . ,  k — 1. There is a link between nodes u 

and v iff Dl (u, v) = 1. Thus, a k-ary n-cube QJ can be defined as a 

cross product of cycles as follows.

n  times
Q t =  Ck ® C k ® .. .®  Ck =  ®?=1C*.

The result follows from [2, Corollary 3]. □

Given the node labels of the A;-ary n-cube QJ, the problem of develop­

ing an efficient algorithm to find n link-disjoint Hamiltonian cycles (Gray 

codes) is open [18]. The following algorithm constructs 2 link-disjoint 

Hamiltonian cycles (Gray codes), HC\ and HC2 , in a k-ary 2-cube Q% 

for any k > 3 given the node labels of the k-ary 2-cube (note that the 

addition is modulo k ):

H C x := <t>;

H C 2 := </>;

f o r  i := 0 to  k — 1 do 

f o r  j  := 0 to  k — 1 do
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H C, := HC 1 U { ( ( i , j ) ,( i , j  + 1))}

H C 2 := ffC a U {((j,* ),0 ‘ +  1.0)}
endfor 

endfor

fo r  z := 0 to  k — 2 do

H C X := U {((*,*),(*+  1,*))>((m + !)>(* + M  + 1 ))} \

{((z, z), (z, z +  1)), ((* +  1, z), (z +  1, z +  1))}

HC 2 := H C 2 U {((z,z),(z,z +  1)),((z + l , i ) ,( i  +  l,z + 1))}\

{((0 *)> (z +  ®))j ((*? * +  1)? (® + lj * +  1))}
endfor

L em m a 7.4 The resulting HC\ and HC2 from the above algorithm are 

link-disjoint Hamiltonian cycles in Q^-

P ro o f  HC\ first contains the k disjoint cycles of dimension 1 each of 

length k , namely Co, C i , . . . ,  Ck-1 , and HC2 contains the k disjoint cycles 

of dimension 2 each of length k , namely Cq, C J,. . . ,  The algorithm

then ‘joins’ Co to Ci, then C\ to C2 , and so on to form HC\, and ‘joins’ 

Cq to C[ and C[ to C '2 , and so on to form HC2. The algorithm ‘joins’ Ci 

to Ct+i and C[ to C,-+1 by performing the following steps:

• it selects 2 links from HC\ and 2 links from HC2 as follows: e\ — 

((z,z), (z, z +  1)) of Ci; e2 =  ((z +  l,z), (z +  l,z +  1)) of Ci+1 ; e[ =

((z,z),(z +  1 ,0 ) of C'; and e'2 = ((i,i +  l),(z -f l,z + 1)) of C'+1,

• it removes links e\ and e2 from HCi and adds them to HC2, and

• it removes links e\ and e2 from HC2 and adds them to HC\.

In each ‘joining’ process, the algorithm ensures that the two links re­

moved from HCi are added to HC2, and the two links removed from HC2

118



are added to HC\. Thus making HC\ and HC2 link-disjoint Hamiltonian 

cycles. □

Fig. 7.1 illustrates the resulting 2 link-disjoint Hamiltonian cycles (Gray 

codes) when the above algorithm is applied to a Q\.

32 03
33

HC, h c2
00 33 00 33
10 23 01 32
13 20 31 02
12 21 21 12
22 11 22 11
32 01 23 10
31 02 13 20
30 03 03 30

Figure 7.1: The 2 link-disjoint Hamiltonian cycles in a Q\.

Having constructed the n link-disjoint Hamiltonian cycles in the fc-ary 

n-cube we show in the following how we can exploit these Hamil­

tonian cycles to develop efficient multi-node broadcast and single-node 

scatter communication algorithms for the multi-port I/O  model.
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7.5.1 M ulti-node B roadcasting for m ulti-port I /O  

M odel

Let the size of the message each processor intends to broadcast be M  

packets where M  > n. Each processor can send n packets over n incident 

links and can simultaneously receive n packets over the other n incident 

links. Therefore, the lower bound for any multi-node broadcast algorithm 

for the multi-port I/O  model is

T m n b  = n
M.

Our multi-node broadcast algorithm for multi-port I/O  model divides 

each message into n parts and distributes these parts over the n link- 

disjoint Hamiltonian cycles. The algorithm then performs in parallel the 

multi-node broadcast for one-port I/O  of Section 7.2 on each Hamiltonian 

cycle. The algorithm achieves 100% utilization of the network links and 

is as follows:

each p ro ce sso r d iv id e s  i t s  b roadcast message in to  n

p a r t s ,  namely Pu P2 , . . . , P n each of s iz e  a t most \M /n]

p a ck e ts , and l e t  th e  j th  packet of Pi be denoted

each p ro ce sso r g e n e ra te s  th e  n l in k -d is jo in t  Hamiltonian

cy c les  of th e  Q j,  namely HC\, HC2, . . . ,  HCn as

d e ta i le d  above;

f o r  j  := 1 to  \M /n \  do

each p ro ce sso r b ro ad cas ts  packet p^j) along HCi, 

f o r  i =  1,2, . . . , n ,  u sing  th e  m ulti-node broadcast 

a lgo rithm  of S ec tio n  7 .2 ; 

endfor
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The total time taken to complete the multi-node broadcast algorithm 

of Section 7.2 is k n — 1. Therefore, the total time taken to complete our 

algorithm is

( k n — 1) |"—j ~ T m n b -

7.5.2 S ingle-node Scattering for m ulti-port I /O  M odel

Let the size of each message the source processor s(0) intends to send 

be M  packets where M  > n. The source processor s(0) can send dif­

ferent packets simultaneously over the 2n incident links in each unit of 

time. Therefore, the lower bound for any single-node scatter algorithm 

for multi-port I/O  model is

( k n -  1)
T s n s M.

2 n

We first develop single-node scatter algorithm for 2-port I/O  k - ary 

n-cube model where the size of each message the source processor s(0) 

wishes to send is one packet. Let /3\ =  [ k n / 2J, and let (3r = [ k n / 2J if k  

is odd and f$r = [ k n / 2 J — 1 if k  is even. Then our single-node scatter 

algorithm for the 2-port I/O  model is as follows:

each p ro ce sso r g e n era te s  th e  fc-ary Gray codes of

dim ension n as d e ta i le d  in  Section  3 .2 ;

l e t  th e  r e s u l t in g  Ham iltonian cycle  be s/(/?/— 1),

— , s/(l), s(0), sr (l), — , sr (/?r ) and l e t

th e  packet in tended  fo r  p rocessor s/(?)(resp. sr (z))

be denoted p/(*)(resp. p r {i))'>

do in  p a r a l l e l :

• f o r  i  (3i downto 1 do

p ro cesso r s(0) sends packet p i ( i )  to  p rocesso r s/(l)
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and p ro cesso r si ( j ) , fo r  j  ^  0, having re ta in e d  a 

copy of any packet ju s t  rece iv ed , sends t h i s  packet 

on to  p ro cesso r si(j +  1);

• f o r  i '  := /3r downto 1 do

p ro c e sso r s(0) sends packet p r ( i f) to  p rocesso r sr(l) 

and p ro ce sso r sr ( j ') ,  fo r  j ' 0, having re ta in e d  a 

copy of any packet ju s t  rece iv ed , sends t h i s  packet 

on to  p ro ce sso r s ^ ' T l ) ;

enddo

To show that this algorithm is optimal, note that s/(/?/) and sr(/?r) 

are adjacent. There are two cases to consider.

Case (i) At is odd. The time taken by the algorithm is

0 i = 0 r = [kn/ 2 \ = (kn -  l)/2  = \{kn -  1)/21.

Case (it) k is even. The time taken by the algorithm is

m ax(ft, 0 r) = 0 i = [kn/ 2 \ =  kn/ 2 = \(kn -  l ) /2 l .

The time taken by this algorithm is \(kn — l)/2] which is optimal 

since the source processor must send out the kn — 1 different packets over 

two incident links in each unit of time.

Consider now the single-node scatter algorithm for multi-port I/O 

A-ary n-cube model, where the size of each message the source processor 

s(0) wishes to send is M  packets where M  > n. The algorithm divides 

each message into n parts and distributes these parts over the n link- 

disjoint Hamiltonian cycles. The algorithm then performs in parallel the 

single-node scatter for the 2-port I/O  on each Hamiltonian cycle. The 

algorithm is as follows:
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processor s(0) d iv id es each message i t  intends to  send 

in to  n p a rts , namely Pi, P2, . . . ,  Pn each of s iz e  at 

most \M/n ] packets;

l e t  the *th part of the j th message be denoted p^j ) ,

1 < * <  n, 1 <  j  < kn -  1;

l e t  Si =  » f  or * =  1,2, . . . ,  n ;

l e t  P(t,d) be the se t containing the dth packet of each 

element in Si;

each processor generates the n l in k -d is jo in t Hamiltonian 

cy c les  of the Q j, namely i/C i, HC2 , ••. ,  HCn as 

d eta iled  above; 

for  d := 1 to  \M/n ] do

processor s(0) sends every packet in P(i,d) 

along HCi,  fo r  * =  1,2, using the single-node

sc a tte r  algorithm fo r  the 2-port I/O model 

as described above; 

endfor

The algorithm clearly achieves its objectives. The total time taken to 

complete the single-node scatter algorithm for the 2-port I/O  model is 

[(kn — l ) /2 ] . Therefore, the total time taken to complete our single-node 

scatter algorithm for the multi-port I/O  model is

kn — I M_
n — T s n s -
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C hapter 8

C onclusions

8.1 Sum m ary

The major objective of this thesis is to examine the capability of the fc-ary 

n-cube interconnection network Q j, for k > 3 and n > 2, of simulating 

other popular networks and to develop schemes for some common com­

munication algorithms for this network. We have shown in Chapter 2 that 

the k-ary n-cube network captures the advantages of the mesh network 

and those of the binary hypercube: the k-ary n-cube is Hamiltonian; it 

can be constructed recursively from low dimensional cubes; the degree of 

each node is 2n; the total number of links is nkn; its diameter is [A;/2jn; 

and it is both node- and link-symmetric. We have also shown that the 

A:-ary n-cube Q* contains kn_1 node-disjoint cycles each of length k in 

each dimension and we have stated the 2n node-disjoint parallel paths 

between any two nodes. The k-aiy n-cube QJ has a smaller degree than 

that of its equivalent hypercube (the one with at least as many nodes) 

and it has a smaller diameter than its equivalent mesh of processors. It 

can efficiently simulate other network topologies such as cycles, meshes,
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tori, trees, and hypercubes.

In Chapter 3, we have given a recursive structure of A;-ary Gray codes 

and have exactly classified when a cycle of length m, where 3 < m < fcn, 

can be embedded in Q*. Our analysis yields an algorithm for generating 

a cycle of length m  in when one exists, thus answering a question 

posed in [17].

In Chapter 4, we have described a technique for embedding a large 

cycle in a faulty fc-ary n-cube Q„. In particular, we have shown that in 

a A;-ary n-cube Q„, where k > 3 and n > 2, with v faulty nodes and 

A faulty links where v  +  A < n, there exists a cycle of length at least 

kn — vlj, where u  =  1 if k is odd and u> =  2 if k is even. Also, we have 

extended our main result to obtain embeddings of meshes and tori in 

such a faulty k-ary n-cube.

In Chapter 5, we have developed a technique for embedding a Hamil­

tonian cycle in a k~ary n-cube with at most 4n — 5 faulty links where 

every node is incident with at least two healthy links. Our result is op­

timal as there exist k-ary n-cubes with 4n — 4 faults (and where every 

node is incident with at least two healthy links) not containing a Hamil­

tonian cycle. We have shown in this chapter that the same technique 

can be easily applied to the hypercube. We have also shown that the 

general problem of deciding whether a faulty k-ary n-cube contains a 

Hamiltonian cycle is NP-complete, for all (fixed) k > 3.

In Chapter 6, we have developed some efficient communication algo­

rithms for the k-ary n-cube network. In particular, we have developed 

and analysed routing, single-node broadcasting, multi-node broadcast­

ing, single-node scattering, and total exchange. All our algorithms, ex­

cept single-node broadcasting when k is odd, are optimal for the one-port
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1/O fc-ary n-cube model. When k is odd, the single-node broadcasting is 

optimal for the 2-port I/O  model.

In Chapter 7, we have shown how Hamiltonian cycles of the k-ary 

n-cube network can be exploited to develop fault-tolerant multi-node 

broadcast and single-node scatter communication algorithms for the one- 

port I/O  k-ary n-cube model. We have also shown in this chapter how 

the link-disjoint Hamiltonian cycles of the k-ary n-cube can be used to 

develop multi-node broadcast and single-node scatter algorithms for ma­

chines that support multi-port I/O  model.

8.2 Future R esearch

There has been much less work done in embeddings of popular intercon­

nection networks into k-ary n-cubes. Our principal open problem is to 

describe embedding of meshes and hypercubes of arbitrary dimensions 

into their optimum k-ary n-cubes.

We have shown in Section 2.4 that a binary tree of height h (where 

the root is at height 0) can be embedded into a Q*, for k > 3 and h > 2. 

However, the number of nodes in a tree of height h is 0(2h) and the 

number of nodes in a Q£ is 0 (k h). We plan to explore ways for a more 

efficient embedding of a tree into a QJ.

Whilst we have established in Chapter 4 and 5 the existence of a 

long cycle in a faulty fc-ary n-cube Qj, we have as yet to develop efficient 

algorithms for generating these long cycles. In fact, some work has been 

done on algorithms to find long cycles in a fc-ary n-cube with faulty links

[86] and in a hypercube with faulty nodes [23] and faulty links [59] but 

even this scenario has not been as thoroughly researched as it might have 

been.
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In Chapter 6, We have exhibited efficient algorithms for the problems 

of routing, single-node broadcasting, multi-node broadcasting, single­

node scattering and total exchanging when we assume that there is one- 

port I/O  communication using store-and-forward routing. We would 

like to consider these problems for multi-port I/O communication using 

wormhole routing. Also, we would like to know how we can cope with 

these problems in faulty A;-ary n-cubes.

We have developed in Chapter 7 an efficient algorithm for generating 

two link-disjoint Hamiltonian cycles in the two dimensional k-ary n-cube 

and have shown how these cycles can be used to develop efficient 

algorithms for multi-node broadcast and single-node scatter when multi- 

port I/O  communication is allowed. However, the problem of developing 

an efficient algorithm to generate n link-disjoint Hamiltonian cycles in 

the n dimensional k-ary n-cube QJ is yet to be considered.

127



B ibliography

[1] S.B. Akers and B. Krishnamurthy, A Group Theoretic Model for 
Symmetric Interconnection Networks, IEEE Trans. Comput. 38 
(1989) 555-566.

[2] B. Alspach, J.-C. Bermond, and D. Sotteau, Decomposition into 
cycles I: Hamilton Decompositions, in Cycles and Rays (Gena Hahn 
et a/., eds.), pp. 9-18, Kluwer Academic Publishers, (1990).

[3] Y. Ashir and I.A. Stewart, Fault tolerant embeddings of Hamilto­
nian circuits in k-ary n-cubes, Leicester Univ. Tech. Rep. 1996/30
(1996), submitted to SIAM  J. Disc. Maths.

[4] Y.A. Ashir and I.A. Stewart, On embedding cycles in k-ary n- 
cubes, Parallel Processing Letters 7 (1997) 49-55.

[5] Y.A. Ashir and I.A. Stewart, Embedding of cycles, meshes, and tori 
in faulty fc-ary n-cubes, Proceedings of the 1997 International Con­
ference on Parallel and Distributed Systems (ICPADS’97), IEEE 
Computer Society Press (1997) 429-435.

[6] Y. Ashir, I.A. Stewart and A. Ahmed, Communication algorithms 
in fc-ary n-cube interconnection networks, Information Processing 
Letters 61 (1997) 43-48.

[7] W.C. Athas and C.L. Seitz, Multicomputers: message-passing con­
current computers, Computer 21 (1988) 9-24.

[8] M. Barnett, D.G. Payne, R.A. Van De Geijn, and G. Wattsq, 
Broadcasting on meshes with wormhole routing, J. Parallel and 
Distrib. Comput. 35 (1996) 111-122.

[9] J. Beetem, M. Denneau, and D. Weingarten, The GF 11 Sup- 
percomputer, Proceedings of the Symp. on Computer Architecture, 
IEEE Press (1985) 108-115.

128



[10] D. Bertsekas, C. Ozveren, G. Stamoulis, P. Tseng and J. Tsitsiklis, 
Optimal communication algorithms for hypercubes, J. Parallel and 
Dist. Comput. 11 (1991) 263-275.

[11] D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computa­
tion: Numerical Methods, Prentice-Hall (1989).

[12] S. Bettayeb, On the k-ary hypercube, Theoret. Comput. Sci. 140 
(1995) 333-339.

[13] L. Bhuyan and D. Agrawal, Generalized hypercube and hyperbus 
structures for a computer network, IEEE Trans. Comput. C-33
(1984) 323-333.

[14] D. Blough and S. Najand, Fault-tolerant multiprocessor system 
routing using incomplete diagnostic information, 6 th Intl. Parallel 
Processing Symp. (1992) 398-402.

[15] S.H. Bokhari, Multiphase Complete Exchange: A Theoretical
Analysis, IEEE Trans. Comput. 45 (1996) 220-229.

[16] S. Borkar, R. Cohen, G. Cox, S. Gleason, T. Gross, H.T. Kung, M. 
Lam, B. Moore, C. Peterson, J. Pieper, L. Rankin, P.S. Tseng, J. 
Sutton, J. Urbanski and J. Webb, iWarp: An integrated solution 
to high-speed parallel computing, Proc. Supercomputing ?88, IEEE 
Computer Soc. Press (1988) 330-339.

[17] B. Bose, B. Broeg, Y. Kwon and Y. Ashir, Lee distance and topo­
logical properties of k-ary n-cubes, IEEE Trans. Computers 44
(1995) 1021-1030.

[18] R.R. Broeg, Topics in Toroidal Inetrconnection Networks, Ph.D. 
Thesis, Oregon State Univ. (1995).

[19] Y. Bruck, R. Cypher and C.-T. Ho, Efficient fault-tolerant mesh 
and hypercube architectures, Proc. 22nd Int. Symp. on Fault- 
Tolerant Computing, IEEE Press (1992) 162-169.

[20] J. Bruck, R. Cypher, and D. Soroker, Tolerating Faults in Hy­
percubes Using Subcube Partitioning, IEEE Trans. Comput. 41 
(1992) 599-604.

[21] J.-P. Brunet and S.L. Johnsson, All-to-all broadcast and applica­
tions on the connection machine, Int. J. Supercomput. Applications 
6 (1992) 241-256.

129



[22] M.Y. Chan and S.-J. Lee, On the existence of Hamiltonian circuits 
in faulty hypercubes, SIAM  J. Disc. Maths. 4 (1991) 511-527.

[23] M.Y. Chan and S.-J. Lee, Distributed fault-tolerant embeddings of 
rings in hypercubes, J. Parallel Distr. Comput. 11 (1991) 63-71.

[24] M.-S. Chen and K.G. Shin, Adaptive Fault-Tolerant Routing in Hy­
percube Multicomputers, IEEE Trans. Comput. 39 (1990) 1406- 
1416.

[25] G.-M. Chiu and S.-P. Wu, A Fault-Tolerant Routing Strategy in 
Hypercube Multicomputers, IEEE Trans. Comput. 45 (1996) 143- 
155.

[26] R. Cypher and L. Gravano, Storage-Efficient, Deadlock-Free Packet 
Routing Algorithms for Torus Networks, IEEE Trans. Comput. 43 
(1994) 1376-1385.

[27] W. Dally, A. Chien, S. Fiske, W. Horwat, J. Keen, M. Larivee, R. 
Lethin, P. Nuth, S. Wills, P. Carrick, and G. Fyler, The J-machine: 
A fine-grain concurrent computer, Information Processing ’89, El­
sevier Science Publishers (189) 1147-1153.

[28] W. Dally, Performance analysis of k-ary n-cube interconnection 
networks, IEEE Trans. Comput. 39 (1990) 775-785.

[29] W.J. Dally, Express Cubes: Improving the Performance of fc-ary 
n-cube Interconnection Networks, IEEE Trans. Comput. 40(1991) 
1016-1023.

[30] W.J. Dally, Virtual-Channel Flow Control, IEEE Trans. Parallel 
Distrib. Systems 3 (1992) 194-205.

[31] W.J. Dally and H. Aoki, Deadlock-free adaptive routing in mul­
ticomputer networks using virtual channels, IEEE Trans. Parallel 
and Distrib. Systems 4 (1993) 466-475.

[32] W.J. Dally and C.L. Seitz, The torus routing chip, Distrib. comput. 
1 (1986) 187-196.

[33] W. Dally and C.L. Seitz, Deadlock-free message routing in mul­
tiprocessor interconnection networks, IEEE Trans. Comput. C-36 
(1987) 547-553.

130



[34] K. Day and A. Al-Ayyoub, The cross product of interconnection 
networks, IEEE Trans. Parallel and Distrib. Systems 8 (1997) 109- 
118.

[35] J. Duato, A new theory of deadlock-free adaptive routing in worm­
hole networks, IEEE Trans. Parallel Distrib. Systems 4 (1993) 
1320-1331.

[36] J. Duato, A Necessary and Sufficient Condition for Deadlock-Free 
Routing in Cut-Through and Store-and-Forward Networks, IEEE  
Trans. Parallel Distrib. Systems 7 (1996) 841-855.

[37] J. Duato, S. Yalamanchili and L. Ni, Interconnection Networks: An 
Engineering Approach, IEEE Computer Society Press (1997).

[38] R. Duncan, A survey of parallel computer architectures, Computer 
23 (1990) 5-16.

[39] T.H. Duncan, Performance of the Intel iPSC/860 and Ncube 6400 
hypercubes, Parallel Comput. 17 (1991) 1285-1302.

[40] S. Felperin, P. Raghavan, and E. Upfal, A Theory of Wormhole 
Routin in Parallel Computers, IEEE Trans. Comput. 45 (1996) 
704-713.

[41] T.-Y. Feng, A survey of interconnection networks, Computer 14 
December (1981) 12-27.

[42] P. Fraigniaud, Complexity analysis of broadcasting in hypercubes 
with restricted communication capabilities, J. Parallel and Dist. 
Comput. 16 (1992) 15-26.

[43] M.R. Garey and D.S. Johnson, Computers and Intractability: A 
Guide to the Theory of NP-Completeness, Freeman (1979).

[44] P.T. Gaughan and S. Yalamanchili, Adaptive routing protocols for 
hypercube interconnection networks, Computer (May 1993) 12-23.

[45] P.T. Gaughan and S. Yalamanchili, A Performance Model of 
Pipelined Ar-ary n-cubes, IEEE Trans. Comput. 44 (1995) 1059- 
1063.

[46] D. Gelernter, A DAG-based algorithm for prevention of store-and- 
forward deadlock in packet networks, IEEE Trans. Comput. C-30 
(1981) 709-715.

131



[47] A. Gibbons, An Introduction to Distributed Memory Models of 
Parallel Computation, in Lectures on Parallel Computation (A. 
Gibbons and P. Spirakis, eds.), Cambridge University Press (1993).

[48] C.J. Glass and L.M. Ni, The Turn Model for adaptive routing, Proc. 
of the 19th Annual International Symp. on Computer Architecture, 
ACM (1992) 278-287.

[49] A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuliffe, L. 
Rudolph, and M. Snir, The NYU Ultracomputer: Designing an 
MIMD Shared Memory Parallel Computer, IEEE Trans, on Com­
put. 32 (1983) 175-189.

[50] L. Gravano, G.D. Pifarre, P.E. Berman, and J.L.C. Sanz, Adaptive 
Deadlock- and Livelock-Free Routing with all Minimal Paths in 
Torus Networks, IEEE Trans. Parallel Distrib. Systems 5 (1994) 
1233-1251.

[51] K.D. Gunther, Prevention of deadlocks in packet-switched data 
transport systems, IEEE Trans. Commun. COM -29 (1981) 512- 
524.

[52] E. Horowitz and A. Zorat, The binary tree as an interconnection 
network: applications to multiprocessor systems and VLSI, IEEE 
Trans. Comput. C-30 (1981) 247-253.

[53] K. Hwang, Advanced Computer Architecture: Parallelism, Scalabil­
ity, Programmability, McGraw-Hill, Inc. (1993).

[54] S. Johnsson and C. Ho, Optimum broadcasting and personalized 
communication in hypercubes, IEEE Trans. Comput. 38 (1989) 
1249-1268.

[55] P. Kermani and L. Kleinrock, A tradeoff study of switching systems 
in computer communication networks, IEEE Trans. Comput. c-29 
(1980) 1052-1060.

[56] J. Kim and K.G. Shin, Deadlock-Free Fault-Tolerant Routing in 
Injured Hyperrcubes, IEEE Trans. Comput. 42 (1993) 1078-1088.

[57] S. Lakshmivarahan, and S.K. Dhall, Analysis and Design of Paral­
lel Algorithms Arithmetic and Matrix Problems, McGraw-Hill Pub­
lishing Comp. (1990).

132



[58] Y. Lan, An Adaptive Fault-Tolerant Routing Algorithm for Hy­
percube Multicomputers, IEEE Trans. Parallel and Distrib. Syst. 
6 (1995) 1147-1152.

[59] S. Latifi, S. Zheng, and N. Bagherzadeh, Optimal ring embedding 
in hypercubes with faulty links, Proc. Fault-Tolerant Computing 
Symp., IEEE Press (1992) 178-184.

[60] T.C. Lee and J.P. Hayes, A Fault-Tolerant Communication Scheme 
for Hypercube Computers, IEEE Trans. Comput. 41 (1992) 1242- 
1256.

[61] F.T. Leighton, Introduction to Parallel Algorithms and Architec­
tures: Arrays. Trees. Hypercubes, Morgan Kaufmann (1992).

[62] D.H. Linder and J.C. Harden, An adaptive and fault-tolerant 
wormhole routing strategy for A;-ary n-cubes, IEEE Trans. Com­
puters 40 (1991) 1-12.

[63] S. Loucif, L.M. Mackenzie, and M. Ould-Khaoua, The “Express 
Channel” Concept in Hypermeshes anh k-Ary n-Cubes, Proc. 8th 
IEEE Symp. on Parallel & Distrib. Processing, IEEE Press (1996) 
566-569.

[64] P.K. McKinley, H. Xu, A.-H. Esfahanian and L.M. Ni, Unicast- 
based multicast communication in wormhole-routed networks, 
IEEE. Trans. Parallel Distrib. Syst. 5 (1994) 1252-1265.

[65] P.M. Merlin and P.J. Schweitzer, Deadlock avoidance in store-and- 
forward networks, IEEE Trans. Commun. COM -28 (1980) 345- 
354.

[66] V.P. Nelson, Fault-Tolerant Computing: Fundamental Concepts, 
Computer 23 (July 1990) 19-25.

[67] I. Newman and A. Schuster, Hot Potato Worm Routing Via Store- 
and-Forward Packet Routing, IEEE Trans. Parallel Distrib. Sys­
tems 30 (1995) 76-84.

[68] L. Ni and P. McKinley, A survey of wormhole routing techniques 
in direct networks, Computer 26 (1993) 62-76.

[69] D. M. Nicol and W. Mao, On Bottleneck Partitioning of &-ary 72- 
cubes, Parall. Proc. Lett. 6 (1996) 389-399.

133



[70] W. Oed, The Cray Research massively parallel processor system: 
CRAY T3D, Cray Research Inc. Tech. Rep. (1993).

[71] A. Olson and K.G. Shin, Fault-Tolerant Routing in Mesh Architec­
tures, IEEE Trans. Parallel and Distrib. Syst. 5 (1994) 1225-1232.

[72] W. Peterson and E. Weldon, JR, Error-correcting Codes, MIT 
Press (1972).

[73] D. Pradhan and D. Avrasky, Fault-Tolerant Parallel and Dis­
tributed Systems, IEEE Computer Society Press (1995).

[74] M.J. Quinn, Parallel Computing: Theory and Practice, McGraw- 
Hill, Inc. (1994).

[75] C.S. Raghavendra, P.-J. Yang, amd S.-B. Tien, Free Dimensions- 
An Effective Approach to Achieving Fault Tolerance in Hyper­
cubes, IEEE Trans. Comput. 44 (1995) 1152-1157.

[76] C.P. Ravikumar and C.S. Panda, Adaptive routing in k-ary n-cubes 
using incomplete diagnostic information, Microprocessors and Mi­
crosystems 20 (1997) 351-360.

[77] D.A. Rennels, Fault-Tolerant Computing-Concepts and Examples, 
IEEE Trans. Comput. C -33  (1984) 1116-1129.

[78] Y. Saad and M. Schultz, Topological prperties of hypercubes, IEEE  
Trans, on Comput. 3 7  (1988) 867-872.

[79] Y. Saad and M. Schultz, Data communications in hypercubes, J . 
Parallel Dist. Comput. 6 (1989) 115-135.

[80] Y. Saad and M. Schultz, Data communication in parallel architec­
tures, Parallel Computing 11 (1989) 131-150.

[81] I.D. Scherson and A.S. Youssef, Interconnection Networks for High- 
Performance Parallel Computers, IEEE Computer Society Press 
(1994).

[82] S.L. Scott and J.R. Goodman, The Impact of Pipelined Channels 
on fc-ary n-cube Networks, IEEE Trans. Parall. Distrib. Syst. 5 
(1994) 2-16.

[83] C.L. Seitz, Concurrent VLSI Architectures, IEEE Trans. Comput. 
C -3 3  (1984) 1247-1265.

134



[84] C.L. Seitz, The cosmic cube, Comm. Assoc. Comput. Mach. 28
(1985) 22-33.

[85] C.L. Seitz, W.C. Athas, C.M. Flaig, A.J. Martin, J. Scizovic, C.S. 
Steele and W.-K. Su, Submicron systems architecture project semi­
annual technical report, California Inst, of Technology Tech. Rep. 
Caltec-CS-TR-88-18 (1988).

[86] I.A. Stewart, Hamiltonian cycles and all-to-all broadcasts in faulty 
hypercubes and fc-ary n-cubes, Leicester Univ. Tech. Rep. 1997/I f
(1997).

[87] C.-C. Su and K.G. Shin, Adaptive Fault-Tolerant Deadlock-Free 
Routing in Meshes and Hypercubes, IEEE Trans. Comput. 45
(1996) 666-683.

[88] Y.-J. Suh and S. Yalamanchili, Algorithms for All-to-All Pesonal- 
ized Exchange in 2D and 3D Tori, Proc. of the 10th In ti  Parallel 
Processing Symp., IEEE Comput. Society Press (1996) 808-815.

[89] H. Sullivan, T.R. Bashkow, and D. Klapholtz, A large-scale, ho­
mogeneous, fully distributed parallel machine, Proc. of the Fourth 
Annual Computer Architecture Symp., IEEE Press (1977) parts I 
and II 105-124.

[90] M.N. Swamy and K. Thulasiraman, Graphs, Networks, and Algo­
rithms, John Wiley & Sons, Inc. (1981).

[91] Y.-J. Tsai and P.K. McKinley, A Broadcasting Algorithm for All- 
Port Wormhole-Routed Torus Networks, IEEE Trans. Parallel and 
Distrib. Sysyt. 7 (1996) 876-885.

[92] Y.-C. Tseng, Embedding a ring in a hypercube with both faulty 
links and faulty nodes, Inform. Process. Lett. 59 (1996) 217-222.

[93] Y.-C. Tseng and S.K.C. Gupta, All-to-All Personalized Commu­
nication in a Wormhole-Routed Torus, IEEE Trans. Parallel and 
Distrib. Syst. 7 (1996) 498-505.

[94] L. Valiant and G. Brebner, Universal schemes for parallel compu­
tation, 13th ACM  Symp. on Theory of Computing (1981) 263-277.

[95] A. Varma and C.S. Raghavendra, Interconnection Networks for 
Multiprocessors and Multicomputers: Theory and Practice, IEEE 
Comput. Society Press (1994).

135



[96] A. Wang and R.Cypher, Fault-tolerant embeddings of rings, 
meshes, and tori in hypercubes, Proc. 4th IEEE Symp. Parallel 
Distributed Processing, IEEE Press (1992) 20-29.

[97] S.-Y. Wang, Y.-C. Tseng, and C.-W. Ho, Efficient Single-Node 
Broadcasting in Wormhole-Routed Multicomputers: A Network- 
Partitioning Approach, Proc. 8th IEEE Symp. on Parallel and Dis­
trib. Processing, IEEE Press (1996) 178-185.

[98] C.B. Weinstock and W.L. Heimerdinger, The State of the Practice 
in Fault Tolerant Systems, Proc. Fault-Tolerant Computing, IEEE 
Press (1992) 2-5.

[99] A.Y. Wu, Embedding of tree networks into hypercubes, J. Parallel 
and Distrib. Comput. 2 (1985) 238-249.

[100] M.-Y. Wu and W. Shu, The Direct Dimension Exchange Method 
for Load Balancing in fc-ary n-cubes, Proc. 8th IEEE Symp. on 
Parallel and Distrib. Processing, IEEE Press (1996) 366-369.

[101] C.S. Yang, Y.M. Tsai, S.L. Chi, and S.S.B. Shi, Adaptive wormhole 
routing in fc-ary n-cubes, Parallel Computing 21 (1995) 1925-1943.

136


