SICE Journal of Control, Measurement, and System Integration, Vol. 11, No. 1, pp. 014-024, January 2018

“Flyable” Guidance and Control Algorithms
for Orbital Rendezvous Maneuver

Elisa CapeLLo ***, Fabrizio DABBENE **, Giorgio GucLIErl *, and Elisabetta Punta *™*

Abstract : Rendezvous orbital maneuvers are planned operations which intend to make two spacecraft meet, while avoid-
ing collisions. Aspects such as trajectory safety and robustness, as well as obstacle avoidance, are fundamental for the
mission success. The aim of this paper is to provide an overview of some recent algorithms for guidance and control
systems, and also their combined exploitation, which can provide significant enhancements. This overview focuses on
those algorithms that are characterized by key selected features: the discussed schemes guarantee low computational ef-
fort, low fuel consumption, and high safety and robustness. Different experimental setups, which can be used to evaluate
the performance of the considered algorithms, are also taken into account and presented.
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1. Introduction

Rendezvous maneuvers represent a focal point for the suc-
cess of spatial missions and explorations. Because of this, au-
tonomous rendezvous and proximity operations have been sig-
nificantly expanded in recent decades. Since the beginning of
the space era, manned orbital rendezvous and docking maneu-
vers have been deeply studied and tested in the Gemini pro-
gram [1], and further in the Apollo program [2], with the aim
to dock two spacecraft to reach the Moon, to land on it, and to
return the crew safely back to Earth.

More recently, automated mission to bring supplies to the
International Space Station (ISS) are continuously flying, in-
volving different type of spacecraft (ATV [3], HTV [4],
Progress [5], Cygnus [6], and more). These spacecraft are un-
manned, therefore an automated rendezvous mission has to be
successfully completed with the support of a robust flight soft-
ware.

Recent studies concern the use of unmanned spacecraft in or-
bital servicing mission and, in particular, the development of a
robust flight software. This on-board software has to be de-
signed so to manage unexpected events, such as environment
disturbances and noise, and/or crossing of small objects. The
present paper aims to provide an overview of some “flyable”
guidance and control algorithms, able to be combined and to
be implemented in real-time. The proposed approaches are
designed to be as close as possible to “flyable” format, as re-
quired by EASA standards [7]. Indeed, the guidance navigation
and control (GNC) system is implemented as space segment
in which control systems and mission planners are considered.
Some hardware constraints, such as limited updating frequency
of both guidance and control algorithms, are also included.
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A recent survey on orbital dynamics and control was pre-
sented in [8], in which the relative dynamics equations and dif-
ferent rendezvous problems were analyzed. However, even if
safety issues were presented in good details, no algorithms for
GNC were included, and only a brief description of some au-
tomated control algorithms was included. Guidance and con-
trol algorithms for automatic rendezvous maneuver have been
deeply discussed in the last ten years. More attention is usu-
ally dedicated to proximity maneuvers, as for instance in [9].
However, in general, disturbances or model uncertainties are
not specifically discussed. In [10], the proximity maneuver is
clearly described, in which the chaser is driven to a certain fixed
position along the docking port and the relative attitude is syn-
chronized for subsequent docking operations. External distur-
bances and model uncertainties are considered, but no trajec-
tory tracking is included. A real scenario is analyzed in which
both spacecraft are equipped with an on-board GNC system, to
perform various rendezvous functions in an autonomous way
and with extreme precision. The GNC system maintains and
changes the vehicle’s center of mass position and velocity, pro-
cessing the sensor measurements, the computation of the flight
trajectory, the navigation, the attitude and position control as
well as the flight control and safety monitoring. An overview
of the guidance and control algorithms is provided, focusing on
real time applications and hardware constraints.

The aim of this paper is to provide an overview of some re-
cent GNC systems, which are characterized by key features
such as low computational effort, low fuel consumption, and
high safety and robustness. Combinations of different guid-
ance and control algorithms are also presented. For guidance
algorithms, focusing on low computational effort and low fuel
consumption and considering the results obtained in the work
of Maclellan [11], feedback-based algorithms are selected. For
this reason, in this paper, the well-known proportional nav-
igation (PN) algorithm and the zero-effort-miss/zero-effort-
velocity (ZEM/ZEV) theory are included, as they are suitable
for on-board implementation. Moreover, in the same class of
guidance laws, algorithms based on the theory of artificial po-
tential fields can be also included. This last approach is con-
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sidered for avoiding undesired collisions. Indeed, most of the
literature on rendezvous assumes that the chaser may access
any region of the maneuver in the space. However, many sce-
narios involve operations to be performed either near large
space structures or, due to the increase of space debris, in prox-
imity of obstacles [12]. Consequently, one of the essential re-
quirements for automated rendezvous operations is the ability
to maneuver in proximity of them, without collision. An obsta-
cle avoidance algorithm for rendezvous maneuver is proposed
in [13]. Two aspects can be considered as possible limitations
of this approach: (i) an “ad hoc” method for guidance is pro-
posed and (ii) the control algorithm works at high frequency.
Starting from this work in [14] a method for spacecraft maneu-
ver with obstacles is proposed, yet no control algorithms are
considered and simplified dynamics is analyzed.

The paper is organized as follows. In Section 2 the consid-
ered maneuver is described and analyzed. Section 3 focuses on
the spacecraft dynamics. The overview of some recent algo-
rithms for guidance is provided in Section 4, while the control
strategies are presented in Section 5. The experimental setups
used to evaluate the performance of the considered algorithms
are presented in Section 6. Finally, some concluding remarks
are proposed in Section 7.

2. Problem Setup

As briefly discussed in the Introduction, in this paper we an-
alyze a complete rendezvous maneuver as depicted in Fig. 1.
The rendezvous mission is in general split into several major
phases, as described e.g. in [15]: (i) the homing phase, where
the chaser is driven form its starting orbit up to (or close to) the
target orbit through a Hohmann transfer, (ii) the closing phase,
i.e. a radial boost maneuver which brings the chaser closer to
the target, within the same orbital plane, and (iii) the final ap-
proach, in which the chaser is driven by means of a controlled
maneuver to reach and finally dock the target within a (cuboid)
safety zone.

The whole maneuver starts at the waypoint SO in Fig. 1,
which represents the initial condition for the simulation, and in
which the chaser is in a lower orbit with respect to the target,
and it is located some kilometers far from it. If the maneuver is
an impulsive (or quasi-impulsive) one, the resultant trajectory
corresponds to the ideal Hohmann transfer. The next maneu-
ver, from waypoint S2 to waypoint S3, is necessary to get closer
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Fig. 1 Complete rendezvous and docking maneuver in Hill frame.
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to the target, and it is executed when the chaser is in the same
orbit of the target. The position of the final point S3 depends on
safety requirements, but it is usually located hundreds of meters
far from the target position. The S3-S4 maneuver is a forced
motion of the chaser to get the target, generally similar to a
straight line approach. The simulation stops when the chaser is
few meters far from the target. During the analyzed maneuver,
the target is considered to lie in a fixed position, which is coin-
cident with the origin of a local reference frame. The docking
between the two spacecraft is not depicted because a multibody
dynamics has usually to be considered to clearly understand the
loads of contact.

3. Spacecraft Dynamics

The spacecraft dynamics consists of the superposition of po-
sition dynamics and attitude dynamics. The position - or or-
bital - dynamics is based on propagation of equations of rel-
ative dynamics, usually known as Hill’s or Clohessy-Wiltshire
equations [15]. Attitude dynamics is formulated in the quater-
nion notation and it is propagated relative to the inertial Earth
centered inertial reference frame (ECI) [16].

In this brief overview, we consider a classical spacecraft con-
figuration, consisting of a thruster actuation system for posi-
tion control, and an attitude control based on reaction wheels
(RWs). The thrusters can exert mono-directional actions, that
is, they can apply to the chaser thrusts of given magnitude and
along fixed directions, which depend on how and where the
thrusters have been assembled in the system (their orientations
and application points). Three reaction wheels are considered
for the attitude control. Spacecraft reaction wheels are typi-
cally between few kilograms to tens of kilograms of mass, and
are driven by electric motors powered by the spacecraft elec-
trical power supply. They are managed and controlled by the
onboard attitude control computer. A reaction wheel (RW) ac-
tuator can be modeled as a brushless motor attached to a high-
inertia flywheel which is free to spin along a fixed spacecraft
axis. It produces a moment Mgy, causing the angular momen-
tum to increase. For the representation of a realistic model
of RW, a first order filter and a saturation on the maximum-
minimum torque assigned by the RW are also included in the
actuator model.

For a complete description of the derivation of Hill’s equa-
tions from inertial equations, the reader is referred to [15].
Hill’s equations describe the relative motion between two ob-
jects orbiting in slightly different orbits and are computed
with respect to the origin of a local-vertical-local-horizontal
(LVLH) reference frame (Fig.2), usually coincident with the
center of mass of the target. The following assumptions are in
general formulated:

1. The orbit of the reference object must be circular. How-
ever, a modified formulation of Hill’s equations for non
circular orbits can be found in literature [17].

2. The validity of the approximation of Hill’s equations is
limited to few kilometers of distance along each axis. In-
troduction of curvilinear x and y coordinates may partially
extend the validity of Hill’s equations mitigating position
error due to the curvature of Earth. Curvilinear coordi-
nates are not considered here for the sake of simplicity.
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Fig.2 LVLH frame definition.

In the literature, the coordinates x;yrp, yovry and zpy gy are
sometimes referred to as V-bar, H-bar and R-bar, respectively.
Hill’s equations for circular orbit, which are time-integrated to
propagate the relative orbit [15], are as follows
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where X, ¥ and Z are accelerations, X, y and z are velocities,
X, y, and z are positions. All variables are computed with re-
spect to LVLH frame. The term w, denotes the orbital an-
gular velocity of the reference LVLH frame, and m, is the
mass of the spacecraft. The total force acting on the spacecraft
F =[F.F,,F .17 € R3 includes both force due to the thrusters
system and external disturbances. Hence, we have

F = Fe + Fexes (2)

where Fy, € R3 is the thruster force and F.y € R? is the exter-
nal disturbances perturbation, both expressed in LVLH frame.
The main disturbance affecting low Earth orbit (LEO) maneu-
vers, in terms of magnitude, is the drag force due to the resid-
ual atmosphere. The oblateness of Earth, which affects orbital
parameters of the reference object and the relative position dy-
namics, and the solar radiation pressure are one order of mag-
nitude smaller than the drag.

We remark that the RCS model is defined in Body frame, so,
to obtain the thrust force in the LVLH frame, a rotation has to
be applied, that is

Fuw = Revims($, 0,0)F),,

where F 3” € R? is the thrust force expressed in Body frame
and Ryyrup(9, 0,4) is the rotation matrix from Body frame to
LVLH frame.

The magnitude of the thrust produced by each thruster is af-
fected by bias and random errors, as well as the thrust direction
is affected by both type of errors. Hence, the magnitude of each
thruster i can be expressed as
+ AF!

_ i
- Fnom ias noise®

Fi

mag

+ AF),
where F! is the nominal thrust, AF?. is the bias thrust error

] bias
and AF, .  is the thrust noise. Both these contributions are
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different for each thruster. A similar formulation can be used to
model the thrust direction:

fl = [R;[,nd(éraizds €rand» grand)] [R;;,'as(ﬁbiau €bias gbia.s)]flénm’

where f' € R3 is the unitary vector representing the thrust
direction of thruster i affected by errors, fi,, € R?® is the
unitary vector representing the nominal thrust direction of
thruster i, Rzm(ébm, €pias» {pias) 1S the rotation matrix relative
the nominal direction of thruster i computed with bias angles
and Rian 4(Orand> €rand {rana) 18 the rotation matrix relative to the
nominal direction of thruster i computed with random angles.
Finally, the thrust provided by thruster i expressed in Body
frame can be computed as

F' = [f1F;

mag?

3

where F' € R3 is the force provided by thruster i. Hence, the
total force provided by the RCS is expressed as

Nune

b .
Fthr_ZFl’
i=1

with Ny, number of thrusters.

As previously mentioned, the attitude dynamics is propa-
gated using the quaternion formulation. Angular velocity in
body frame can thus be obtained by

@p ="' (Mg — wp x (Iwg + Irwwrw)),

where @wp € R? is the angular acceleration with respect to Body
frame, I € R>3 is the inertia tensor, M € R? is the total torque
acting on the spacecraft, wg € R3 is the angular velocity of
the spacecraft, Ipw € R>3 is the inertia of the reaction wheels
system and wrw € R? is the angular velocity of the reaction
wheels system. The total torque acting on the spacecraft is the
sum of different elements

Mp = My + AMey + Mgw,

where My, € R? is the torque due to the RCS, AM, € R3 is the
torque due to external disturbances and Mgyw € R? is the torque
generated by the reaction wheels system. The torque generated
by the thrusters system is obtained by

Ny

i i
Z P X F°,
i=1

My, =

where rihr is the position of the thruster i relative to the center of
mass and F' is defined by (3). The external torque affecting the
attitude dynamics of the spacecraft is mainly due to the grav-
ity gradient torque. Other torque disturbances such as aerody-
namic torque and torque due to the solar radiation are one order
of magnitude smaller than the gravitational moment.

For the quaternions, the following notation can also be used
(useful for the attitude control definition)

)
where ¢ = [q1 g2 g3 q4]7 € R* is again the vector of quaternions
and X(¢g) € R*>* is the quaternion matrix, defined as
[61413 +0 13]
T ’
43

q = 35(q)ws,

X(q) = (&)
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where g4 € R is the quaternion scalar component, g3 € R>
is the vector of the first three components of the vector ¢ and
013 € R33 is the skew-symmetric matrix

0 43 92
Oin= | g3 0 -qf.
- q 0

The attitude is propagated with respect to the Earth centered
inertial (ECI) frame.

4. Guidance Algorithms

The main goal of a guidance scheme is to obtain a planned
trajectory for the spacecraft translational dynamics, and to as-
sign desired attitude for rotational dynamics. Thus a guidance
algorithm defines the desired variations that constitute the in-
puts of the control system, whose design is discussed in Sec-
tion 5. In layman’s terms, the guidance law defines the trajec-
tory that the spacecraft has to follow to reach the desired final
position.

Guidance algorithms may be divided in two classes: (i) pre-
dictive guidance schemes, and (ii) feedback-based guidance
laws, which also use on-off pulses. The first class includes
the following guidance laws (i) Lambert guidance [18] and
(ii) time-varying state transition matrix (STM) guidance [19].
Other guidance laws, based on the same theory, have been
derived to follow a known path to the target, for example the
work [20], or to intercept an asteroid with terminal velocity di-
rection constraints [21]. As pointed out in the Introduction, in
this paper we do not discuss this first class of laws, and con-
centrate on feedback-based guidance algorithms. As discussed
in [11], this class of guidance laws can guarantee safety ro-
bustness and low computational effort, thus resulting to be well
suitable for real-time applications.

Different feedback-based approaches have been considered
in the last years. The following guidance algorithms are ana-
lyzed in this paper.

a. Proportional navigation (PN) algorithm, which issues ac-
celeration commands perpendicular to the instantaneous
chaser-target line-of-sight (LOS), that are proportional to
the LOS rate and closing velocity [22].

b. ZEM/ZEV optimal feedback guidance laws are usually
used for asteroid intercept and rendezvous missions,
through the definition of an acceleration command related
to terminal velocity direction or magnitude requirements,
when the gravitational field could be assumed as an ex-
plicit function of time [23],[24].

c. In the same class of guidance law, algorithms based on
artificial potencial field (APF) theory can be considered,
to handle model uncertainties and obstacles [25].

The first two proposed guidance algorithms (PN and
ZEM/ZEV) are usually used for asteroid maneuver. However,
in [26] the authors proposed to employ these algorithms for
a final cone-approach maneuver, in which strict requirements
in terms of positions and speeds are required. The novelty of
the approach proposed in [26] was to test and combine guid-
ance and control algorithms, usually not implemented for ren-
dezvous maneuver, and to validate these “non-standard” com-
binations, in order to be translated into a numerical algorithm
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(i.e. to be implemented on board). Main results are presented
and discussed in [26] and extensive simulations are performed
to prove the efficiency of the selected guidance algorithms.

4.1 Proportional Navigation

The first guidance algorithm we discuss is the so-called pro-
portional navigation (PN) guidance. The PN takes into account
the line-of sight angle A, which represents the angle between the
actual chaser velocity vector and the chaser-target connection
line. This algorithm tries to drive the related LOS rate to zero
though the application of an acceleration command, perpendic-
ular to the LOS direction. The PN guidance law is expressed
as

a=nV.a, (6)

where a € R3 is the required control acceleration, V, is the
chaser closing velocity with respect to the target, A is the LOS
rate, and n is a designer-tunable parameter that represents the
effective navigation gain, typically chosen between 3 and 5,
where larger values are used when the robustness has to pre-
vail on disturbances [22]. In terms of orbital components in
LVLH frame, we have

a, = —nV,Asin A, (N
a. = nV,Acos A. (3)
The other two terms can be evaluated as
V.= —i= _M’ ©)
r
1= —(xz_zzx), (10)
r

with x and z positions with respect to LVLH frame, and x and
z velocities. This guidance law is usually used in missile appli-
cations as an interceptor guidance law because it is very easy to
implement and is very effective, as described in Zarchan [22].

4.2 Zero-Effort-Miss/Zero-Effort-Velocity

The ZEM term is the distance between the chaser and the
target considering that the target is moving along a pre-defined
path (known). It is assumed that no additional control action is
provided. The ZEV term can be defined as the end-of mission
velocity offset with no acceleration applied. In particular, in
order to get these two terms, the dynamic equation of motion
with no control acceleration has to be integrated, leading to

ZEV:v_,«-—[v+ f /g(‘r)dr], (1n

ZEM = rp - [vtg,, + ff(tf - T)g(T)dT] , (12)

where r; € R? and v, € R? are the desired final position and ve-
locity, t,, represents the time-to-go, i.e., the mission flight time
necessary to achieve the target, usually evaluated with respect
to relative position and velocity, and ¢/ is the final maneuver
time. The term g(7) denotes the acceleration gravity evaluated
at time 7. Starting from these terms, the optimal control law
with specified terminal position and velocity, associated to the
target, is obtained in a general formulation as
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a=—ZEM - —ZEV, (13)
tgo tgo

where a € R3 is the required control acceleration, ty, = 17—t is
the time-to-go.

4.3 Modified Zero-Effort-Miss/Zero-Effort-Velocity

Starting from the general formulation of the ZEM/ZEYV, a
novel approach for the development of a GNC algorithm was
proposed in [27] for low Earth orbit environment. The idea is
to modify the classical ZEM/ZEV (as in [23],[24] and in Sec-
tion 4.2), starting from an ideal trajectory and considering the
ideal positions and velocities as final parameters. The goal is to
avoid high acceleration commands.

As extensively discussed in [27], the modified ZEM/ZEV is
very effective in driving a chaser spacecraft along a complete
rendezvous and docking maneuver, even in the presence of dis-
turbances due to external perturbations and to the imperfections
of the actuation system.

Expanding the ZEM and ZEV terms in (11) and (12), we
obtain

ZEM = I'f — ff,

14
ZEVZVf—\N/f, ( )

where r; € R? and v, € R? are the desired final position and
velocity as in (11)-(12), while 7; € R? and Vp € R? are the
predicted position and velocity at t = .

Choosing properly the final maneuver time ¢ is not a trivial
task: indeed a bad choice of 7 could cause extremely high val-
ues of the command acceleration, since 1/, tends to infinity
as the time ¢ increases.

The proposed approach is as follows. Instead of computing
the final position and velocity vectors required as terminal con-
ditions of the entire maneuver, the ZEM/ZEV terms in Eq. (14)
are implemented as positions and velocities that the spacecraft
should maintain while it is following an ideal maneuver.

In order to generate the ideal trajectory that the chaser shall
follow to complete a phase of the rendezvous and docking ma-
neuver, the Clohessy-Wiltshire equations have to be propagated
forward with time from a starting time 7o to a finish time #;
which varies according to the specific maneuver.

As depicted in Fig. 1 the whole maneuver is composed by
different phases (Hohmann, R-bar pulse (Radial Boost), etc.).
This means that the initial conditions of the generated ideal
maneuver have to be changed when a different phase is con-
sidered [15]. As a consequence, the GNC software has to com-
pute the coeflicients of Eq. (14) using different initial conditions
for each phase before starting running the ZEM/ZEV algorithm
and generate the guidance law.

To compute ZEM and ZEV errors, it is required to estimate
the predicted terminal conditions, which, in this proposed ap-
proach, are the position 7y and the velocity ¥, computed for-
ward in time by At.

This means that the new coefficients #; € R* and 7; € R
are computed during each phase of the simulation. Applying
this approach, as discussed in [27], the overall control law is
less sensitive to the time-to-go #g,, as compared to what usu-
ally happens in the classical ZEM/ZEV approach. Moreover,
the use of a short-term prediction horizon Ar allows computing
predicted position and velocity with small errors even in the
case of high nonlinear systems.
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The complete formulation is presented in [27], where simu-
lation results are presented, confirming that this algorithm is
promising in terms of disturbance rejection, robustness and
performance, providing strict compliance of terminal condi-
tions with nominal reference states, as a major achievement
of ZEM/ZEV algorithm implementation. The authors of [27]
combine this guidance design with a classical linear quadratic
regulator (LQR) attitude control, discussed in Section 5.

4.4 Artificial Potential Fields

Since one of the essential requirement for automated ren-
dezvous maneuver is the ability to reach the target and to ma-
neuver in proximity of obstacles, as discussed in the Introduc-
tion, the motivation of using APFs is to provide an analytical
method to reach the target in a safe way.

The main idea of the artificial potential field theory is to con-
struct a potential field with a gradient acting attractive toward
the goal and repellent from obstacles (see Fig. 3). The desired
velocity and attitude are defined by the APF algorithm with the
aim to avoid obstacles. This interpretation of the gradient was
proposed in [25], in which a sliding mode control strategy for
tracking the gradient due to artificial potential field is described.

As discussed in details in [28], the advantage of the use of the
artificial potential fields for a rendezvous maneuver is twofold:
(i) an autonomous way for the desired path is designed with a
low computational effort, and (ii) an online update of the path
is guaranteed, in particular in the the presence of obstacles. The
algorithm, here described, can be combined with a sliding mode
control (SMC), including both position and attitude dynamics.
In [29] the problem of controlling an autonomous wheeled ve-
hicle with an SMC is proposed, including collision avoidance.

The rendezvous maneuver requires, in presence of obstacles,
to be performed completely autonomously with only sensors
and on-board GC algorithms. Moreover, the GC algorithms
must be able to simultaneously achieve a series of translational
maneuvers in presence of external disturbances and uncertain-
ties. The potential field method can produce low impulsive fuel
and can be implemented on-line with a low computational ef-
fort. At each time step, the artificial potential field algorithm
generates the desired velocity and orientation, required to reach
the target. The desired vectors are generated considering the
end of each maneuver as a minimum and the obstacle as a max-
imum and are not known a priori (no predetermined trajectory
is considered).

A paraboloid artificial potential field is considered and the
speed of the chaser decreases, as it approaches the goal (target
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Fig. 3 Attractive and repulsive potential field [30].
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spacecraft).
The attractive potential field is evaluated as
Ua(x) = 3kalle()II%, 5)
Ja(x) = =V Uy(x), (16)

where k, defines how fast the attractive gradient goes to the
goal, e(x) is the error in position in which x = (x,y,z)" € R
is the position in LVLH frame. The attractive force is due to
the gradient of the artificial potential field. To assign the direc-
tion of the desired speed, a unit vector of the potential field is
evaluated

Ja(x)
IV Ul

U=
thus the desired speed x; € R? is

xd = xd,maxEUv

where X;,,4, 1s the maximum speed to perform the maneuver,
which is scalar and equal along the three axes.

To avoid the obstacles, a repulsive potential field is defined,
one for each obstacle (i = 1,...N,,s with N,,; number of ob-
stacles)

ki 1 _ 1 it . .
U,i(x) = Y T i) ) ?f n:(x) < noi(x), a7
0 if ;(x) > 10;(X),

where k,; is the gain related to the repulsive field, y = 2
is defined for hyperbolic field, 7;(x) = miny ccoi [IX — Xopsll,
Xobs € R3 is the obstacle position, and noi(x) is the safety ra-
dius. CO' is the convex set of obstacles. The repulsive field is
defined for each obstacle that is assumed convex. As before,
the repulsive force is

fri(x) = {”l;&)(ﬁ =) V) i) < ;%)
’ 0 if ;(x) > no;i(x).

(18)

As discussed, the radius ng; for i = 1,... Ny, is the safety
radius, and it means that the chaser senses the obstacle when it
is 1o,; m far from the obstacle. The applied artificial potential
field is the sum of the attractive and repulsive parts (see Fig. 4),

Nobs
Ui(x) = Us(x) +

i=1

Ur,ia
and the total vector indicating the motion direction opposite of
the artificial potential field is

E(x) = =VU(x),

with E(x) € R3.

Fig. 4 Total artificial potential fields [31].
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5. Control Algorithms

The aim of the control strategy is twofold: i) the controller
must guarantee that the chaser tracks the specified position of
the target while ii) the attitude stability is maintained. These
goals must be reached despite the uncertainties due to the en-
vironmental disturbances and due to the actuation system, the
performance of which is subject to physical constraints related
to their feasible switching frequency and intensity of the thrusts.
Concerning the attitude stabilization, it should be remarked that
it represents a problem of particular importance for spacecraft,
since it is fundamental for enforcing precision, and also for
guidance, as short propulsive maneuvers must be executed with
extremely accurate alignment [32].

Different control techniques have been proposed in the lit-
erature for automated rendezvous and docking, including H.,
control [33], Riccati equation techniques [34],[35], graph the-
ory [36], feedback-linearization-based approach [37]. In the
last years, special attention has been reserved to the adoption
of model predictive control (MPC) as control techniques for
autonomous rendezvous and docking (ARVD), due to its capa-
bility of dealing with the constraints that typically characterize
this maneuver, both in terms of relative position and velocity.
Moreover, MPC offers a certain degree of robustness to sys-
tem uncertainties due to its receding-horizon implementation.
One example related to a space system is the linear quadratic
MPC (LQ-MPC) adopted to enforce thrust magnitude limita-
tion, line of sight (LOS) constraints, and velocity constraints for
soft docking in [38]. In [39] a low-complexity MPC scheme for
three degree-of-freedom (DoF) spacecraft system is developed
for the low-thrust rendezvous and proximity operations. In the
proposed approach, the thrust profile is parametrized with a set
of Laguerre functions. In [40] a nonlinear model of spacecraft
and cone constraints are described, considering a constant atti-
tude variation.

However, it should be remarked that most of these ap-
proaches do not take into specific account orbital perturbations,
disturbances, and model errors. Motivated by these considera-
tions, in this overview we focus our attention on the following
control approaches:

a. Sliding mode controllers (SMC) were implemented both
for the position and the attitude control. The authors
of [41] and [42] proposed SMC algorithms, easily im-
plementable on-board and able to guarantee good perfor-
mance even if hardware constraints and actuator dynamics
are taken into account.

b. Tube-based model predictive control is proposed in [43],
in which the results show that it can be implemented on-
board for the real-time control of the final phase of a ren-
dezvous and docking (RVD) maneuver.

c. Stochastic model predictive control (SMPC) is introduced
in [44], starting from the work of the authors in [45],[46].
A sampling-based SMPC approach is proposed in [44] to
control the proximity phase of an ARVD.

As already discussed, the proposed control algorithms are suit-
able to be combined with the described guidance laws, to obtain
the desired performance, with a minimum fuel consumption
and with an optimal tracking, including real-time applications.
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5.1 Linear Quadratic Regulator

In this section, before discussing more advanced tech-
niques, we briefly review the classical linear quadratic regula-
tor (LQR), which is frequently considered for attitude stabiliza-
tion [47]-[50]. In this case, the task of the control function is to
provide the force and torque commands which will be executed
by the reaction wheels to correct the deviations of the actual
state vector from the nominal one, compensating also the effects
of disturbances and errors. In particular, in [26],[27], LQR con-
trol is proved effective when combined to the described guid-
ance laws. We need to remark that, for the design of an LQR, a
linearized dynamic model needs to be considered, in which gy-
roscopic torque due to RW is neglected, as detailed in [26],[27].
That is, we consider a linear system of the form

X = Ax + Bu, (19)

where x € R? and u € R? represent respectively the state and
the input vectors at time 7. As well known, the design of an
LQR controller consists in generating a control torque equal to

u=-Kx, (20)

where x is the state and K = R~ BT P is the static gain obtained
by the solution P of the associated algebraic Riccati equation
(ARE):

PA+ATP-PBR'BTP+(Q =0, 21)

where Q and R are weighting matrices of suitable dimen-
sions. The corresponding control action minimizes the classical
quadratic cost function

J(x,u) = f m(xT Ox + u’ Ru)dt. (22)
0

5.2 Sliding Mode Controllers

The authors of [41] proposed an approach based on the de-
sign of two controllers: (1) a first-order SMC for position track-
ing and (2) a super-twisting (STW) second-order SMC for at-
titude stability, in which the mutual influence is taken into ac-
count by the introduction of additional disturbances. Key fea-
tures and the feasibility of the approach proposed in [41] are
in terms of i) fuel consumption, ii) robustness to model uncer-
tainty and exogenous disturbances, and iii) fault tolerance.

Sliding mode methods provide controllers which are ro-
bust under large uncertainties. SMC can counteract uncertain-
ties and disturbances, if the perturbations affecting the system
are matched and bounded (first order SMC) [51] or smooth
matched disturbances with bounded gradient (second order
SMC) [52],[53]. The case of unmatched bounded disturbances
is more involved. Nevertheless, under some posed conditions,
it can be dealt with by suitably designed sliding mode control
strategies [54]-[56].

For the position tracking, in [41] a first order sliding mode
is designed, motivated by the intrinsic nature of the thrusters,
which cannot provide continuously modulated thrusts, but can
only be switched on and off. Indeed, the limited switching fre-
quencies of the thrusters already pose serious feasibility issues
to the implementation of a first order sliding mode control, con-
sidering both the fuel consumption and the capability to guar-
antee that the system trajectories reach and maintain a motion
on the desired sliding manifold. In order to overcome these
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problems, the design of the control strategy is divided into two
stages, which are identified mainly based on the chaser distance
from the target and on different control switching parameters.

The control vector u is designed according to the following
first order sliding mode control law

u, = —B;'Ksgn(oy), (23)

where B;l = m.() 13, K = nT,,,,, being n = 2 to reflect that two
thrusters are switched on simultaneously, and o, represents the
designed sliding output. In general, the control gain K in (23)
must guarantee that the sliding motion on the desired sliding
manifold is reached and maintained. The sliding output o,
which is the switching function in the controller (23), is

O = (X = Xq) + cx(x = Xq), 24

where x; and x; are the vectors of the desired speed and the
desired positions, respectively. The vectors of position x =
[X, y, z]" and speed X = [X, y, z]” are measured at each time
step. The constant ¢, is chosen positive. The desired sliding
surface is o, = 0.

For the tracking control problem of the attitude of the chaser
a second order sliding mode (2-sliding mode) algorithm, known
as super-twisting (STW) [53], is analyzed in [41]. The STW
algorithm designs a continuous control law, which steers to zero
in finite time both the sliding output and its first time derivative,
in the presence of smooth matched disturbances with bounded
gradient for which a bound is assumed to be known. The STW
algorithm contains a term which is obtained as the integral of a
discontinuous component. The chattering is not eliminated, yet
strongly attenuated.

The input u,, is defined in accordance to the STW algorithm
[53] as follows:

1
Uy = —Alo,|2 Sgn(o-w) + Vo,

if ug| > Uy, (25)

. —Uy
Vo = .
—a/sgn(o-w) if |Mw| <Uwm,

where the control parameters A, @, and U)y, have to be chosen
as specified in [53].

The sliding output for the super-twisting controller is defined
as

0w = wp + Cuoq13, (26)

with C,, € R33 positive definite matrix. The vector §¢3 is eval-
uated starting from the desired attitude vector g¢; = [0001]7,
that means that the LVLH and body frames are aligned

5q13 = 2 (qa)q (27)

where Z(g4) is defined from the matrix X(¢) (Eq. (5)) in which
the desired quaternion vector g4 = [0,0,0, 1]” is included.

More details about the formulation and the results of the pro-
posed maneuver are in [41]. Simulation analysis demonstrates
good performance of the controller, even when the switching
frequencies of the thrusters are low. Future directions of re-
search will be focused on using second-order sliding-mode al-
gorithms with adaptive gains for the attitude control. They
will be mostly focused on exploiting advanced simplex SMC
strategies, as introduced in [42], with the aim of deriving better
shooting strategies and of developing position tracking systems
that could be configurable in case of failures.
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5.3 Tube-Based Model Predictive Control

A very promising control strategy for the control of the
rendezvous maneuver is that based on model predictive con-
trol (MPC). In particular, since we are interested in ap-
proaches able to cope with real-world situations, we concen-
trate here on robust MPC. In [43], the authors present an anal-
ysis of the real-time performance of tube-based robust MPC
(TRMPC) [57]-[59] able to handle uncertainties due to exter-
nal disturbances and additive noise. This novel approach fo-
cuses on two main goals: (i) to provide robustness to additive
disturbances and (ii) to maintain the computational efficiency of
a classical MPC. To this end, as discussed in [43],[57], this al-
gorithm is split in two parts: (i) an offline evaluation of the con-
straints to ensure that the uncertain future trajectories lie in se-
quence of sets, known as tubes, and (ii) the online MPC scheme
applied to the nominal trajectories, representing the center of
the tube itself as in [57].

Let consider a generic discrete-time model of the form

Xis1 = AgXg + Baug + B, W, (28)

where the noise is a realization of a stochastic process, each one
being an independent and identically distributed (i.i.d.), zero-
mean random variable, with bounded and convex support W e
R”, containing the origin in its interior.

The system is subject to hard constraints on the state and input
of the form

xeX, uel, (29)

where X and U are polytopes. To solve the control problem,
the algorithm proposed in [58] is repeatedly solved to minimize
the quadratic cost Jy(x, u) at the current time k, where u is the
control sequence.

Due to the presence of a bounded and persistent unknown
disturbance w, the state of the system x;; can be split into a
nominal part, z;, and an error part, e;;, which represents the
deviation of the actual state x;; with respect to the nominal one.

We apply the following feedback policy
ik = Vig + K(Xik — zip), (30)

where v is the new control input, and the matrix K is chosen
sothat Ay, = Ay+B,4K is Schur stable. Then, the corresponding
nominal and error dynamics can be described respectively by

(3D

(32)

Zit1k = Adzi\k + Bgvi, Zolk = X0lk»

vk = AgeCip + By, Wik,  eop = 0.

Hence, the finite horizon optimal quadratic cost Jy(x,u) can
be re-defined in terms of nominal state z; and control input se-
quence Vi as

N-1
In(zi, Vi) = Z(ngQZﬂk + V,'T‘kRVilk) + Z1T\/|kPZN|k7 (33)
i=0
and the related finite horizon optimal control problem can be
reformulated.

The solution of the optimization problem is the optimal nom-
inal control sequence voy(z). The optimal control applied to the
nominal system is the first control action of this sequence, i.e.,
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kn(z) = vg(O; 7). The control strategy applied to the uncertain
system, according to the adopted feedback policy, is

Kn(Xies i) = Kn(zp) + K(Xp = Zg). (34
The closed-loop system then satisfies
Xistk = AgXjk + Bakn (i, Xg, ) + By, Wik, (35)

Zivlk = AazZi + Bakn (i, zp).

In [43], this robust MPC is compared in terms of computa-
tional cost, fuel consumption, and constraints satisfaction with
a classical MPC, based on linear-quadratic (LQ) MPC, when
the system is affected by persistent bounded uncertainties. On
one side, the classical MPC allows real-time implementation
ensuring stability with a reasonable computational effort.

Starting from the approach proposed in [58], the authors of
[43] evaluated the performance of the tube-based MPC within
the space rendezvous scenario both in simulations, in which
a three DoF orbital simulator is considered, and in an experi-
mental setup. Hence, the TRMPC effectiveness of a real-time
implementation on a spacecraft is already verified. A reason-
able computational effort for the robust approach, as clearly
explained in [43], is obtained with a time-varying control law
where the feedback gain matrix is evaluated offline. As verified
in [43], the use of a linear-matrix-inequality (LMI) method im-
proves the computational efficiency of robust MPC even when
using low-thrust propulsion.

5.4 Stochastic Model Predictive Control

MPC offers a certain degree of robustness to system uncer-
tainties due to its receding-horizon implementation.

As discussed in the Introduction, in the classical approaches,
orbital perturbations, disturbances, and model errors are not
taken into account. For this reason in [44] the authors pre-
sented a real-time stochastic model predictive control (SMPC),
in which autonomous docking is achieved. The reasons behind
this research are the development of a controller able to per-
form the docking between the chaser and the target, in a safe
way and in an experimental setup. The choice of adopting a
stochastic approach instead of robust MPC ones is motivated
by the fact that the type of uncertainties typically encountered
in the ARVD operations in general have a probabilistic descrip-
tion, and that the trajectory constraints imposed to the space-
craft may indeed allow a probability of violation, in trade of a
better performance.

The novelties of the approach proposed in [44] are: (i) from
the theoretical point of view, both parametric uncertainties and
additive disturbances are included, (ii) from the experimental
point of view, the proposed experimental setup allows the com-
putational effort largely to be reduced with respect to other
SMPC techniques, thanks to the offline evaluation of the feed-
back gain matrix. Moreover, a realistic model (based on the
experimental setup described in Section 6), which takes into ac-
count both external disturbances and uncertainties due to varia-
tions of the spacecraft parameters during the flight and to model
linearization, is included.

From a theoretical viewpoint, the approach in [44] is based
on the works [45] and [46], extending the results by consider-
ing the simultaneous presence of parametric uncertainties and
of the additive noise, modeled in accordance to an experimental
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Fig. 5 NPS-POSEIDYN testbed with the Vicon motion capture cameras,
FSSs, and granite monolith in the Spacecraft Robotics Laboratory
at the Naval Postgraduate School. The target FSS is on the right
and the chaser FSS is on the left.

setup. It should be remarked that the approach proposed in [44]
shares all the attractive features of [45] and [46]. First, the sam-
pling is performed offline, thus allowing to reduce the online
computational cost of the algorithm. This allows to largely mit-
igate the potential drawback of sampling-based SMPC meth-
ods, related to the high online computational cost, as clearly
explained in [60],[61], which may render these approaches not
easily implementable in real applications.

6. Simulation and Experimental Models

To assess the goodness and applicability of a GNC scheme,
a key role is played by software simulations and experimental
test-beds. To design a flight software as close as possible to a
“flyable” format, a six degree-of-freedom (six DoF) orbital sim-
ulator is usually considered. For “flyable” verification of the
GNC system in simulation, a local connection, in which the six
DoF simulator is the server and the GNC system is the client,
is adopted. The simulator sends sensor data to the GNC sys-
tem and the GNC sends the inputs data to the actuation sys-
tems. In this way, a two-channel segment is considered, as ex-
plained before, as in the case of real space software, in which
the space segment includes the guidance and control system
and the ground segment has simulators and flight dynamics sys-
tems.

In this section, we briefly describe two different testbeds
where the discussed algorithms have been tested: (i) a three
DoF testbed in the the Naval Postgraduate School (NPS) of
Monterey [62], and (ii) a three DoF testbed in Thales Alenia
Space, Turin [63]. For obvious reasons, both testbeds can ana-
lyze only the proximity maneuver.

The testbed at NPS is called POSEIDYN — Proximity Oper-
ation of Spacecraft: Experimental hardware-In-the-loop DYN-
namic simulator, and it consists of floating spacecraft simula-
tors (FSS), a polished granite monolith, a Vicon motion cap-
ture system, and a ground station computer. Figure 5 shows an
overview of the testbed. The floating surface is a 15t, 4-m-by-
4 m granite monolith, with a planar accuracy of +0.0127 mm
and a horizontal leveling accuracy of less than 0.01°. The FSSs
float over the granite surface via three flat air bearings. The
quasi-frictionless environment with the low residual accelera-
tion of the FSS emulates the environment in space. The FSS
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Docking Mechanism

Target

Structures: 2 decks of sandwich panel
and a lifting plate of stiffened stainless |~
steel.
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Ground
Station

Fig. 6 The experimental rig: chaser (right) and target (left).

Fig. 7 The rendezvous experimental rig: chaser and target vehicles.

has eight cold gas thrusters fed by compressed air from an on-
board tank [64]. Using the on-board computer, the FSS is able
to perform real-time computation of guidance and control algo-
rithms.

The second testbed we briefly describe was developed in the
frame of STEPS (systems and technologies for space explo-
ration) program, which was a project co-financed by Regione
Piemonte (Piedmont Region) within the P.O.R.-F.E.S.R. 2007-
2013 EC program [63]. The vehicles float using a thin air film
of 60 um over a very flat floor, which produces a nearly fric-
tionless environment in planar dynamic with three DoF (Figs. 6
and 7). The target vehicle is supposed to keep on moving on a
predefined trajectory, while the chaser vehicle has full maneu-
ver capabilities. Vehicles motion is controlled by 14 cold gas
actuators with three different levels of thrust.

7. Conclusions

This paper presented an overview of GNC computational-
efficient algorithms for real time applications in space. The
distinguishing feature of the presented approaches are related
to the combination of different guidance and control algorithms
for a complete space maneuver, in which the controller design is
focused on a real application: (1) reduced frequency of the con-
troller for fuel saving, (2) pulse width modulation of thrusters
and (3) realistic actuator models.
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