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ABSTRACT

The use of channel shortening techniques for speech
dereverberation is discussed in this paper. This ap-
proach is motivated by the observation that early rever-
beration caused by the early reflections in room acous-
tics is not perceived as a separate sound to the direct
sound but is perceived to reinforce the direct sound and
is therefore considered useful with regards to speech in-
telligibility. Compared with inverse filtering, the con-
vergence rate of iterative channel shortening is much
higher, which is significant in real-time speech derever-
beration. Two iterative channel shortening techniques
are presented in this paper and they are shown to out-
perform standard inverse filtering approaches in the
comparative tests described.

1. INTRODUCTION

In hands-free communications, the speech signal can be
distorted by room reverberation, resulting in reduced in-
telligibility to listeners. One method to achieve derever-
beration is to perform identification and inverse filtering
of the room impulse responses (RIRs). The methodol-
ogy is illustrated in Fig. 1. Consider a clean speech
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Figure 1: Illustration of identification and inverse filter-
ing of acoustic systems.

signal s(n) propagating through an M-channel acoustic
system, the channels of which are characterized by their
impulse responses h,, = [h,(0) k(1) -+ hp(L—1)]T,
m =1,---, M, where {-}7 denotes the transpose oper-
ation. Using the noisy reverberant speech signals

2 (n) = s(n) * hon(n) + 1m (1), (1)

estimates of the RIRs h,, can be obtained with blind
system identification techniques such as in [1], where
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* denotes linear convolution, and 7,,(n) is the chan-
nel noise of the mth channel. Then, with the esti-
mates h,, = [~ (0) hp(1) -+ hp(L — 1)]T, an in-
verse filtering system g = [gf g2 ... gI,]7, which is
formed by stacking column vectors of the components
gm = [gm(0) gm(1) ... gm(L; — 1)]T, can be designed
with some equalization algorithm. Equalization algo-
rithms are generally designed so that

M A
> hn(n) # gm(n) = d(n), (2)

m=1

where d(n) is the delta function. By summing up the
output of g, with input z,,(n), we expect a good esti-
mate, §(n), of s(n) can be obtained. In this paper, we
do not consider the channel noise or the errors that may
possibly be introduced into h,, by the system identifi-
cation. In this case, n,,(n) =0 and h,, = h,,.

Traditionally, inverse filtering systems can be ob-
tained, for single channel cases, by using the method of
least squares (LS), or employing multiple-input/output
inverse theorem (MINT) when multiple microphones are
deployed [2]. Generally, the LS method only gives an
approximate inverse system, which is usually of limited
effectiveness in the context of speech dereverberation
[3]. On the other hand, RIRs can, in theory, be exactly
inverse filtered for the multichannel case using MINT
providing that the multichannel RIRs do not share any
common zeros [2]. MINT has been generalized to a mul-
tichannel least squares (MCLS) method [4]. The MCLS
can be shown to invert those parts of the channels with
factors which are not common in the multichannel RIRs
and to perform the LS inverse of the parts with common
zeros [5]. Using MINT or MCLS, an inverse filtering sys-
tem g can be obtained by

g=H"d, (3)

where H = [H; --- H)y] is defined as the system matrix
formed by the convolution matrices H,,, {-}* denotes
pseudo inverse, and

d=[10... 07 (4)

isan (L+L; —1) x 1 vector. Hy, isan (L+L; —1) x L;
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convolution matrix of h,,

 h(0) 0 01
(1) hm(0) - 0
H, = | hn(L—1)
0 hm(L—1)
) 0 ho(L_1)

Although, compared with single channel LS, better per-
formance can be achieved by using MINT or MCLS,
MINT and MCLS are still computationally expensive
[4]. This motivates the use of subband and iterative al-
gorithms [4][6] to reduce the computational complexity.
However, the system matrix H is usually ill-conditioned,
which limits the convergence rate of the iterative algo-
rithms.

In this paper, we address the performance degrada-
tion in iterative inverse filtering algorithms due to the
ill-conditioning of the system matrix H. An additional
advantage of the proposed approach is that its computa-
tional complexity is much lower than MINT. We achieve
this by a process known as channel shortening which
has been extensively developed in the context of digital
communications to mitigate the inter-symbol and inter-
carrier interference. These techniques were firstly devel-
oped for the single-input/single-output (SISO) cases and
later extended for the multiple-input/multiple-output
(MIMO) cases [7][8]. In addition, both closed form
[9] and adaptive [10][11] methods have been studied.
A common frame work and an overview of the design
techniques for channel shortening can be found in [12].
For the shortening of acoustic systems, the closed form
channel shortening techniques have been studied in [13].
Since the closed form channel shortening techniques
need to compute the inverse of large scale matrix, they
are also computationally complex. The motivation be-
hind employing channel shortening techniques for our
acoustic system equalization application is based on the
fact that early reverberation caused by the early reflec-
tions in room acoustics is not perceived as a separate
sound to the direct sound but is perceived to reinforce
the direct sound and is therefore considered useful with
regards to speech intelligibility [14]. Therefore, it can be
argued that it is not necessary to use the delta function
as the target impulse response (TIR) in RIRs equaliza-
tion for the purpose of dereverberation. Shortening the
RIRs is indeed satisfactory for enhancing the intelligi-
bility of reverberant speech. By relaxing the TIR to be
less constrained than the delta function, we expect that
fast and high suppression of the tail of RIRs is corre-
spondingly achieved.

This paper is organized as follows: firstly, two itera-
tive algorithms for RIRs shortening will be presented in
Section 2. Then, the efficiency of inverse filtering and
shortening will be compared by simulations in Section 3,
and the two proposed channel shortening algorithms will
also be compared and computational complexity will be
analyzed in this section. Finally, we will draw some
conclusions in Section 4.

2. ITERATIVE APPROACHES TO RIRs
SHORTENING

The closed form MINT, or the iterative algorithm [6]
based on it, usually aims to force the equalized impulse
response

y = [0)y@d) - y(L+L; —2)"

M=

hun (1) * gm (1) (5)

m=1

to be a TIR of the delta function (4).
minimize the cost function

Their aim is to

J=|d -yl (6)

where || - || denotes the Euclidean norm.

As stated above, forcing y to be d is not always
necessary for dereverberation. In many cases, the char-
acteristics of the early part of the TIR are not important
with regard to the intelligibility of the speech. There-
fore, in this work, the aim is to minimize the energy of
the late part of the equalized impulse response, some-
times referred to as the equalization tail; at the same
time, the early part of the TIR is left unconstrained.
We propose to achieve this by using a weighting func-
tion in the cost function

J=|wo(d-y)|? (7)
where
wo= [w(0) w(1) - w+ L —2)
= [10---01---1)7 (8)
L,

is the weighting function and o denotes the Hadamard
product. Here L, is the length of the ‘relaxing’ window.
We use w(0) =1 to avoid the trivial solution.

The steepest descent (SD) method [15] has been used
in [5] for shortening the RIRs. Here we will firstly review
it and then apply the conjugate gradient (CG) method
[16] to compute the shortening systems of the RIRs. We
will compare the performance of these two algorithms in
Section 3.2.

2.1 Steepest descent method for RIRs shorten-
ing

In matrix form, (7) can be written as
J =|W(d - Hg)]|?, (9)

where W = diag{w} and g = [g] g ... gT,]7 is the
shortening system. The gradient of J can be written as

VJ=-2(WH)"Wd +2(WH)"(WH)g.  (10)

The shortening system g can then be iteratively ob-
tained by
gk +1) =g(k) —uVJ, (11)

where k denotes the index of iteration, and u is the step-
size. The proposed steepest descent channel shortening
(SD¢g) algorithm is given in Algorithm 1.
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Algorithm 1 Proposed SD¢gg for computing g.
g(0) =0,
b= (WH)"Wd, A = (WH)T(WH)
for k=0,1,2,... do
VJ = —2b+ 2Ag(k)
gk +1) =g(k) —puVJ
end for

2.2 Conjugate gradient method for RIRs short-
ening

The CG method chooses A-conjugate search directions
in searching the optimal solution in order to avoid
the gradient directions that are possibly not differ-
ent enough during the iteration in SD [16]. The pro-
posed conjugate gradient channel shortening (CGgg) al-
gorithm using CG method is given in Algorithm 2.

Algorithm 2 Proposed CGgg for computing g.

g(0) = 0urr,
b= (WH)"Wd, A = (WH)"(WH)
r, =b—Ag(0), po =rq, p=(rlr,)/(PLAp,)
g(1) = g(0) + ppa, Ty =ra — AP,
for k=1,2,...do
B=(rfry)/(rlr,)
Py =Ty + Opa
q=Ap,
1= (r{ry)/(pfa)
g(k+1) = g(k) + ppy

rq =1rIp

rp, =T, — uq

Pa = Pb
end for

3. SIMULATION RESULTS

3.1 Comparison of inverse filtering and shorten-
ing

A comparison of the outputs obtained by inverse filter-
ing and channel shortening will now be given on the
basis of the results obtained with the CG¢g algorithm.

In simulations, an M = 2 channel acoustic sys-
tem was used and the channel RIRs were taken from
the MARDY database [17]. The length of the RIRs is
L = 2000, with a sampling frequency of 8 kHz. Both the
length of L; used for inverse filtering and L for short-
ening are L; = Ly, = L., where L, = (%W = 1999 is
the critical length. This length is the minimum length
to obtain an inverse filtering system [2] when channels
do not share any common zeros.

The inverse filtering approach can be seen equivalent
to using a weighting function of w = [1 1 ... 1]T in (7).
For shortening, since reflections arriving within 20 ms of
the direct sound cause little or no disturbance in hearing
even when the amplitude of the reflections is greater
than the direct sound [14], we aim to shorten the channel
to less than 20 ms (160 taps). Accordingly, the window
length L, in (8) is set as L, = 160.

The squared coefficients of y after 1000 iterations
are shown in Fig. 2 for the cases of inverse filtering and

Inverse filtering Shortening
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Figure 2: Equalization results of inverse filtering and
shortening.

— — —inverse filtering
\ shortening

tail energy (dB)

200 400 600 800 1000
iteration

Figure 3: Comparison of the convergence of the tail en-
ergy.

shortening. The energy of the equalization tail

L+L,—2

>y (12)

n=160

Et:

against iterations is shown in Fig. 3. We can see from
Fig. 2 that for shortening, the tail energy was highly
suppressed after L, = 160, whereas the inverse filtering
result shows a tail remaining relatively strong.

3.2 Comparison of SDcg and CGgg

In this experiment, the efficiency of SDcg and CGgg will
be compared. In the simulation, L, = 160, L; = L., are
used. For comparison, a step-size p equal to the largest
eigenvalue of the matrix A in Algorithm 1 is used. This
corresponds a step-size capable of achieving the high-
est rate of convergence. Comparison of the convergence
of F; using the SD¢g and CGgeg is given in Fig. 4.
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Figure 4: Comparison of F; between SDcg and CGes.

It shows that F; descends much faster using the CGcg
than SD¢g. Listening tests have indicated that the tail
is negligible when its energy E} is less than -30 dB. In all
the experiments for the remainder of this paper, we ter-
minate iteration when F; < —30 dB. For E; to descend
to -30 dB, SD¢g requires 1469 iterations, whereas CGcg
only needs 69. Since for each iteration, both SD¢cg and
CGcg execute about 2(M L)? floating point operations
(flops) [16], the CGes shows significant computational
complexity saving.

3.3 Effect of L, and L,

In this section, the effect of L, and Ls on the perfor-
mance of the proposed CGcg algorithm will be inves-
tigated. Firstly, a summary of the effect of L, and L
will be given. Then, the simulation results will be shown
and analyzed.

a. window length L,. The window length L, in the
TIR can be chosen as required for the target application.
For inverse filtering, it corresponds to L, = 1. In the
above experiments, we chose it to be L, = 160. Smaller
L, may sometimes be preferred by applications such as
in speech recognition and speaker verification. Using
smaller value of L, however can reduce the convergence
rate of the algorithm.

b. L, length of the components of shortening sys-
tems. Since we only try to shorten, rather than inverse
filter the RIRs, a length of Ly < L, may be sufficient for
the tail energy to reduce below some preferred level, for
instance, —30 dB. The length Ls can be much smaller
than L. for large L,.. However, a small value of Ly can
cause the algorithm to converge slowly beyond which it
will limit the lower bound of the tail energy.

The iterations needed for the CGgg to make the tail
energy to descend to -30 dB for different combinations
of L, and L, are given in Table 1. It can be seen
that for the same L,, more iterations will be needed
to achieve —30 dB when using smaller L,. However,
as stated above, the flops needed for each iteration is
about 2(MLg)?. When Ly is reduced, the flops needed
for each iteration will be reduced. Therefore, though

L Ly
s 8 32 64 96 | 128 160
L. 198 | 123 | 99 95 85 69
L.-100 | 207 | 133 | 106 | 105 | 90 75
L.-200 | 246 | 151 | 118 | 118 | 98 83
L.-300 | 423 | 198 | 146 | 137 | 110 92
L.-400 X 321 | 185 | 165 | 128 106
L.-500 X X 419 | 267 | 172 139
L.-600 X X X X | 441 240
where x means that -30 dB is not achievable.

Table 1: Iterations used for the tail energy to descend
to —30 dB for different combinations of L, and L.

x 10°

Ops

1699 1599 1499 1399
L

S

fo99 1899 1799
Figure 5: Total operations used for different L.

more iterations are needed for smaller L, the overall
computational complexity

Ops = 2(ML,)? x iterations (13)
may be reduced. The Ops against Ly for L, = 160 is
plotted in Fig. 5. We can see that the lowest computa-
tional complexity is given by Ls = L. — 300. Compared
with (L + Lg — 1) x (MLg)? + (MLs)3/3 ~ 6 x 1010
[16][4], which is needed for the computation of matrix
inverse when using MINT, we can see a reduction by a
factor of about 30.

It can also be seen from Table 1 that, for the same
L, fewer iterations are needed when using larger L,.
For some combinations of L, and L, the tail energy
converges above -30 dB.

4. CONCLUSION

In this paper, two algorithms for shortening of multi-
channel RIRs have been introduced. It has been shown
that, compared with inverse filtering, channel shorten-
ing is more efficient in suppression of the tail of the RIRs
and in computational complexity. The CGcg algorithm
is more effective than the SD¢s.
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