
Power-Performance Trade-off using Pipeline Delays

G. Surendra, Subhasis Banerjee, S . K. Nandy
CAD Lab, SERC, Indian Institute of Science

Bangalore INDIA 560012
e-mail: {surendra@rishi., subhasis@rishi., nandy @}serc.iisc.emet.in

Abstract- We study the delays faced by instructions in the
pipeline of a superscalar processor and its impact on power and
performance. Instructions that are ready-on-dispatch (ROD) are
normally delayed in the issue stage due to resource constraints
even though their data dependencies are satisfied. These delays
are reduced by issuing ROD instructions earlier than normal and
executing them on slow functional units to obtain power benefits.
This scheme achieves around 6% to 8% power reduction with
average performance degradation of about 2%. Alternatively, in-
stead of reducing the delays faced by instructions in the pipeline,
increasing them by deliberately stalling certain instructions at ap-
propriate times minimizes the duration for which the processor
is underutilized leading to 2.54% power savin@ with less than
0.3% performance degradation.

I. INTRODUCTION

The units of a superscalar microprocessor often do not op-
erate at their full potential due to dynamic variations in data
dependencies and resource constraints. The performance hen-
etits obtained during such phases of underutilization is neg-
ligible and (such phases) can he reduced to some extent by
stallinghrottling [11[2] or shutting off (clock gating) cenain
stages of the processor pipeline. In this paper we investigate
the underutilization in the fetch stage of the pipeline since it
critically affects both power and performance. We show that a
complexity effective "early fetch throttling" heuristic applied
during fetch underutilization results in 2.5% to 4% power sav-
ings with less than 0.3% performance degradation. Most su-
perscalar processors also employ the oldest first instruction se-
lection policy in their issue logic. In such processors, younger
ready instructions suffer from delayed selection. In particular,
we show that instructions that are ready-on-dispatch (ROD)
(i.e. whose dependencies are satisfied at the dispatch stage)
are the ones that suffer from delayed issue with about 57%
of them spending more than I cycle in the instruction queue
(IQ). In this paper we modify the selection policy so that ROD
instructions are selected earlier than normal hut are issued to
slow low power functional units (Ris) [3l in an attempt to oh-
tain energy savings.

We use Wattch [4] (with cc3 style of clock gating), a perfor-
mance and power analysis simulation tool that is built on top
of SimpleScalar [5] which is a well known architectural sim-
ulator to cany out our experiments. The base processor con-
figuration used is a 4-way superscalar processor with in-order
commit, dynamic branch prediction with 7 cycles mispredic-
tion penalty, @(and 32) entry IQ (and load store queue), 64K

2-way set associative LI instruction and data caches with 1 cy-
cle hit latency and IMB L2 cache with 12 cycle latency. We
evaluate our ideas on a set of benchmarks from MiBench [6],
compile the benchmarks with -03 optimization and use the
input data sets provided along with the program distribution.
Statistics collection begins only after the initialization phase
elapses.

The rest of the paper is organized as follows. In section I1
we analyze processor underutilization and propose the fetch
throttling scheme for reducing underutilization. In section 111,
we analyze the delays faced by instructions in the IQ based
on their readiness at dispatch and evaluate the early issue pol-
icy mentioned previously. We summarize the main results and
conclude the paper in section IV.

11. FETCH STAGE UNDERUTILIZATION AND THROTTLING

Wall [7] showed that the amount of ILP (Instruction Level
Parallelism) within a single application varies by up to a factor
of three. In other words, at any instant in time, it is possible
for different pipeline stages to be operating in various degrees
of (underlfull) utilization. The fetch stage is said to be un-
derutilized if the number of instructions that can be fetched
per cycle from the instruction cache is less than the maximum
fetch rate. Our simulations indicate that the average fetch rate
is 3.5 instructionslcycle with the full fetch rate maintained for
only 50% of the time. The fetch stage fluctuates between nor-
mal and underutilized states depending on program behavior
and available resources. In this paper we assume that the fetch
stage is underutilized if 2 or fewer instructions can he fetched
per cycle which corresponds to about 30% of all instruction
fetches (not including zero instruction fetches).

_-: - -
, , - - - - 1- I- 1- I-

S""l.lion C".

Fig. 1. Variation in (A) number of instructions in IFQ (below dashed line)
and (B) avg power as a function of simulation time for cjpq

The instruction fetch rate will be lower than the maximum
fetch rate when the number of free entries in the Instruction

Fetch Queue (IFQ) is less than the fetch width and becomes
zero when the IFQ is full. In the proactive early fetch throt-
tling scheme, we stall the fetch stage when the number of en-
tries in the IFQ crosses a threshold (a threshold of 70% with 2
cycles stall gave the best Energy-Delay Product (EDP) gains).
On a fetch stall, instruction cache, branch predictor and mem-
ory bus accesses are disabled (gated) resulting in lower energy
consumption. Fig I shows the variation of average power as
a function of simulation, time (port&
For comparison purdoses we alsd show
size (the maximum fetch queue size is 8) as simulation pro-
Leeds (portion A - below dashed line) It is seeh tl? power dis-
sipation is significantly lower when
in the IFQ is 4 rather than 8 indita
sity of instructions in the IFQ improves power. Fetch throttling
does this by ensuring that the IFQ is cleared to some extent he-
fore new instructions are fetched

Fetch throttling when applied during phases of underutiliza-
tion decreases the EDP by a maximum of 2.5% in most bench-
mark programs. The single most important component result-
ing in power savings due to early fetch throttling is the icache
power which reduces by 6.5%. Usually, every icache access
results in the entire cache line being fetched. However, some
of the fetched instructions are wasted in the event that the IFQ
has fewer empty slots than the cache line size. Another access
to the same cache line has to be initiated in the near future to
fetch the instructions that were not utilized. Fetch throttling
utilizes the entire fetch bandwidth by ensuring that most in-
structions in the cache line are used thereby saving power. In
other words, though the number of instructions fetched from
the icache is fixed (for a program), the number of cache line
accesses to fetch those instructions is reduced.

It is observed that only one or two instructions are fetched
per cycle (on average) for about 15% and 20% of the time. On
applying fetch throttling during reduced fetch bandwidth, the
above values reduce to around 3% and 4% respectively. Since
fetch stalls help in clearing the IFQ, the time spend by instruc-
tions in the IFQ decreases by 14% and average power reduces.
Also, in subsequent cycles, the maximum fetch bandwidth is
utilized in fetching instructions thereby ensuring that perfor-
mance degradation is minimized. Overflows in the Register
Update Unit (RUU) and Load/Store queue (LSQ) are also min-
imized by 15% and 5% due to fetch throttling. Since the oc-
cupancy of various queues is reduced due to stalls, the wakeup
logic power is decreased since it involves a broadcast of tags
(or results) to all entries in the RUU.

111. INSTRUCTION DELAYS I N THE ISSUE QUEUE

Instructions that enter the pipeline face varying amounts of
delay due to structural and data hazards. These delays increase
as more stalls are introduced due to techniques such as throt-
tling. However, performance degradation depends on other
factors such as criticality and utility of instructions being de-
layed. For example, delaying the execution of an instruction
fetched from a mispredicted path will not affect performance
but will save energy since it is likely to be squashed at a later
point in time.

The two basic functions involved in the instruction issue

42-3
logic are instruction wakeup and selection. The selection

Fig. 2. Top: ROD imtructions that spend (A) I cycle, (B) > 1. < 3 cycles,
(C) > 3 cycles in IQ. Bottom: NROD i~StNctions issued in I cycle. For
example, in c j p q , 53.8% of ROD instructions spend >3 cycles in the IQ;
13.6% of NROD instructions spend more than 1 cycle in the IQ qfrer they
become ready to issue; 24.4% of NROD instructions (which happen to be
loads) are issued immediately after they become ready.

logic is responsible for selecting ready instructions from the
IQ based on either oldest first, random or highest latency first
policy [S1[91 and issuing them to available FUs for execution.
The larger the IQ, the larger is the pool of instructions available
for selection and higher is the pelformance and power. Ready
instructions spend more than one cycle in the IQ if they are not
immediately selected for issue by the selection logic. There
are two possible reasons for this. Firstly, if the FU than can
execute the instruction is busy and secondly, if the instruction
is not selected because there are other older ready instructions
that are selected earlier and the issue pons are exhausted.

Fig 2 shows the time (in cycles) spent by ROD and NROD
(Not-Ready-On-Dispatch) instructions in the IQ ufer their de-
pendencies are resolved. Each bar in the top figure (ROD
instructions) is funher subdivided into three distinct portions
(having different shades) denoted by A, B, and C. Poltion C
represents ROD instructions that spend more than 3 cycles in
the IQ. Portion B depicts ROD instructions that spend more
than I cycle and less than 3 cycles in the IQ while portion
A represents ROD instructions that are immediately issued
(in the next cycle) after dispatch. We see that nearly 60%
of all ROD instructions spend more than 1 cycle in the IQ
while 40% spend more than 3 cycles waiting to be issued.
Further, our simulations indicate that most ROD instructions
are non-critical [IO] and can therefore he executed on slow
low power functional units. Also, most ROD instructions that
spend greater than 3 cycles in the IQ belong to the integer
ALU (denoted by Or in Fig. 2) class which normally com-
plete execution in I cycle. Fig 2 (bottom) shows the number
of NROD instructions issued immediately (in the next cycle)
after they become ready. A significantly larger fraction of the
older NROD instructions are critical (compared to ROD in-
structions) and are not delayed in the IQ once their dependen-
cies are satisfied. This is due to the oldest first selection pol-
icy which gives priority to these older instructions. A further
breakup indicating the types of instructions issued in I cycle
is also shown in the figure. The portion indicated by the white
shade (denoted by "Rest" in the legend) represent NROD in-
structions that spend more than I cycle (non critical NROD

385

4c-3
instructions) in the IQ.

To reduce the waiting time of ROD instructions in the IQ,
we use an early selection policy so that these instructions are
issued earlier than normal. To obtain energy gains these ROD
instructions are issued to slow low power FUs. Early issue with
slow execution ensures that performance degradation does not
exceed acceptable levels. Every cycle, the selection logic picks
a certain number of ready instructions to be issued based on
resource availability using the oldest first selection policy. A
funher check is carried out to determine if a ROD instruction is
selected for issue in the current cycle. If an ROD instruction is
selected, it is issued to a slow N if one is available. If no ROD
instruction is selected for issue in the current cycle, the IQ is
searched for a ROD instruction. If one is found, the search is
terminated and the ROD instruction is given a higher priority
(over other selected NROD instructions) and issued (provided
the slow FUs are available) in the current cycle. Since search-
ing the IQ takes up additional energy (this is about 2% over-
head) and is known to be i n the critical path [9], we limit our
search to a window of a maximum of 5 entries. Funher, we
begin our search at some arbitrary point (preferably near the
tail of the queue) since ROD instructions are more likely to be
found near the tail. If no ROD instruction is found within the
specified window, the issue logic proceeds in the normal way.
We assume that only one ROD instruction can be issued percy-
cle (we use one slow FU in our experiments since the number
of NROD instructions exceeds ROD instructions by roughly
a factor of 3). With this scheme, the IQ continues to contain
entries in the oldest first order, but the selection mechanism is
altered to give priority to a ROD instruction. The effect of fetch
throttling and early issue of ROD instructions with delayed ex-
ecution on performance and EDP is shown in fig 3. We assume
that the slow FUs operate at 2.2V, 300MHz while the normal
FUs operate at 2.W. 600MHz.

It is observed that introducing stalls in the fetch stage (bar 1)
during phases on underutilization has negligible impact on the
execution time, reduces power by 2.5% to 4%, and improves
the EDP for all benchmarks (except mpeg dec). Early issue
of ROD instructions with slow execution (bar 2) yields better
power savings (around 6% to 7.5%) but also degrades perfor-
mance by an average of 2% (max 7.5% for mpeg dec). Com-
bining fetch throttling with early issue (bar 3) results in the
best power and EDP gains among all schemes for most bench-
marks. Issuing ROD instructions earlier and executing them on
normal FUs (bar 4) is also an equally competitive scheme and
reduces EDP to some extent. This indicates that early issue of
ROD instructions (regardless of whether they are executed on
slow N s or normal FUs) is beneficial and confirms the fact
that ROD instructions are normally latency tolerant.

1V. C O N C L U S I O N S

In this paper we examined the effect of introducing pipeline
stalls during phases of processor underutilization on power and
performance. Power profiles of programs indicate that power
dissipation is dependent on the instruction density in pipeline
stages. Stalls help in clearing up various queues within the
pipeline reducing the instruction occupancy time and power
with some performance degradation. The impact of introduc-

~

386

Fig. 3. Statistics with fetch throttling and early issue of ROD insmctions

ing stalls on power depends on the branch prediction accu-
racy and the available parallelism. We have also shown that
instructions that are normally ready-on-decode (ROD) suffer
from delayed selection in an oldest first issue policy and that
close to 40% ROD instructions wait for more than 3 cycles in
the IQ. We evaluate an early issue policy to reduce the waiting
time of ROD instructions in the IQ and show that this early
issue achieves around 6% to 8% power reduction with about
2% degradation in performance (average value) when a single
fixed slow low power FU is used. Finally, we combine throt-
tling with early issue to exploit the mutually beneficial tenden-
cies seen them and achieve higher power savings.

REFERENCES

1 I I J. L. Aragon, J. Conzalez, and A. Conzalez, "Power-Aware Control Spec-
ulation through Selective Throttling," In Pmc. HPCA, 2003.

121 A. Buniasadi. and A. Moshavos. "Instruction Flow-Based Front-end
Throttling for Power-Aware High-Performance Pmcesson:' In Pmc.
ISLPED. 2001

131 J . S . Sen& E. S. Tune, D. M. Tullsen, "Reducing Power with Dynamic
Critical Path Information", In Pmc. Micm-34, Dec 2001.

141 D. R m k s , V. Tiwari. and M. Mmonosi. "Wauch: A framework for
Architectural-Level Power Analysis and Optimizations", In Proc. ISCA,
June 2wO.

IS] D. Burger. T.M Austin, and S. Rennet, "Evaluating F U N T ~ Micropro-
ECSSOTS: The SimpleScalar Tool Set," Technical Repon CS-TR-96.1308,
University of Wisconsin-Madison, July 1996.

161 M. Guthaus. J. Ringenberg, D. Emrt. T. Austin. T. Mudge, R . Brown.
"MiRench: A free. commercially representative embedded benchmark
suite:' IEEE 4lh Workshop on Workload Characrerimlion, Dec 2001.

171 D. W. Wall, "Limits of Instruction-level Parallelism,*' I n Pmc. ASPLOS,
NUV 1991.

181 A. Ruyuktosunoglu. A. El-Mousy. D. Albonesi, "An Oldest-First Se-
lection Logic Implementation for Non-Compacting Issue Queues''. 15th
I~ I~ ' IASIC /SOC C o f . 2002.

191 S . Palacharla, N. P. Jouppi, and J. E. Smith, "Complexity-Effective Su-
perscalar Proccsrors:' In Pmc. ISCA 1997.

[I O] 8. Fields, S . Rubin. R. Bodik,"Focusing RWCSSO~ Policies via Critical-
Path Prediction,"In Pmc. ISCA 2001

