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Abstract- We study the delays faced by instructions in the 
pipeline of a superscalar processor and its impact on power and 
performance. Instructions that are ready-on-dispatch (ROD) are 
normally delayed in the issue stage due to resource constraints 
even though their data dependencies are satisfied. These delays 
are reduced by issuing ROD instructions earlier than normal and 
executing them on slow functional units to obtain power benefits. 
This scheme achieves around 6% to 8% power reduction with 
average performance degradation of about 2%. Alternatively, in- 
stead of reducing the delays faced by instructions in the pipeline, 
increasing them by deliberately stalling certain instructions at ap- 
propriate times minimizes the duration for which the processor 
is underutilized leading to 2.54% power savin@ with less than 
0.3% performance degradation. 

I. INTRODUCTION 

The units of a superscalar microprocessor often do not op- 
erate at their full potential due to dynamic variations in data 
dependencies and resource constraints. The performance hen- 
etits obtained during such phases of underutilization is neg- 
ligible and (such phases) can he reduced to some extent by 
stallinghrottling [11[2] or shutting off (clock gating) cenain 
stages of the processor pipeline. In this paper we investigate 
the underutilization in the fetch stage of the pipeline since it 
critically affects both power and performance. We show that a 
complexity effective "early fetch throttling" heuristic applied 
during fetch underutilization results in 2.5% to 4% power sav- 
ings with less than 0.3% performance degradation. Most su- 
perscalar processors also employ the oldest first instruction se- 
lection policy in their issue logic. In such processors, younger 
ready instructions suffer from delayed selection. In particular, 
we show that instructions that are ready-on-dispatch (ROD) 
(i.e. whose dependencies are satisfied at the dispatch stage) 
are the ones that suffer from delayed issue with about 57% 
of them spending more than I cycle in  the instruction queue 
(IQ). In this paper we modify the selection policy so that ROD 
instructions are selected earlier than normal hut are issued to 
slow low power functional units (Ris) [3l in an attempt to oh- 
tain energy savings. 

We use Wattch [4] (with cc3 style of clock gating), a perfor- 
mance and power analysis simulation tool that is built on top 
of SimpleScalar [ 5 ]  which is a well known architectural sim- 
ulator to cany out our experiments. The base processor con- 
figuration used is a 4-way superscalar processor with in-order 
commit, dynamic branch prediction with 7 cycles mispredic- 
tion penalty, @(and 32) entry IQ (and load store queue), 64K 

2-way set associative LI instruction and data caches with 1 cy- 
cle hit latency and IMB L2 cache with 12 cycle latency. We 
evaluate our ideas on a set of benchmarks from MiBench [6],  
compile the benchmarks with -03 optimization and use the 
input data sets provided along with the program distribution. 
Statistics collection begins only after the initialization phase 
elapses. 

The rest of the paper is organized as follows. In section I1 
we analyze processor underutilization and propose the fetch 
throttling scheme for reducing underutilization. In section 111, 
we analyze the delays faced by instructions in the IQ based 
on their readiness at dispatch and evaluate the early issue pol- 
icy mentioned previously. We summarize the main results and 
conclude the paper in section IV. 

11. FETCH STAGE UNDERUTILIZATION AND THROTTLING 

Wall [7] showed that the amount of ILP (Instruction Level 
Parallelism) within a single application varies by up to a factor 
of three. In other words, at any instant in time, it is possible 
for different pipeline stages to be operating in various degrees 
of (underlfull) utilization. The fetch stage is said to be un- 
derutilized if the number of instructions that can be fetched 
per cycle from the instruction cache is less than the maximum 
fetch rate. Our simulations indicate that the average fetch rate 
is 3.5 instructionslcycle with the full fetch rate maintained for 
only 50% of the time. The fetch stage fluctuates between nor- 
mal and underutilized states depending on program behavior 
and available resources. In this paper we assume that the fetch 
stage is underutilized if 2 or fewer instructions can he fetched 
per cycle which corresponds to about 30% of all instruction 
fetches (not including zero instruction fetches). 
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Fig. 1. Variation in (A) number of instructions in IFQ (below dashed line) 
and (B) avg power as a function of simulation time for cjpq 

The instruction fetch rate will be lower than the maximum 
fetch rate when the number of free entries in the Instruction 



Fetch Queue (IFQ) is less than the fetch width and becomes 
zero when the IFQ is full. In the proactive early fetch throt- 
tling scheme, we stall the fetch stage when the number of en- 
tries in the IFQ crosses a threshold (a threshold of 70% with 2 
cycles stall gave the best Energy-Delay Product (EDP) gains). 
On a fetch stall, instruction cache, branch predictor and mem- 
ory bus accesses are disabled (gated) resulting in lower energy 
consumption. Fig I shows the variation of average power as 
a function of simulation, time (port& 
For comparison purdoses we alsd show 
size (the maximum fetch queue size is 8) as simulation pro- 
Leeds (portion A - below dashed line) It is seeh tl? power dis- 
sipation is significantly lower when 
in the IFQ is 4 rather than 8 indita 
sity of instructions in the IFQ improves power. Fetch throttling 
does this by ensuring that the IFQ is cleared to some extent he- 
fore new instructions are fetched 

Fetch throttling when applied during phases of underutiliza- 
tion decreases the EDP by a maximum of 2.5% in most bench- 
mark programs. The single most important component result- 
ing in power savings due to early fetch throttling is the icache 
power which reduces by 6.5%. Usually, every icache access 
results in the entire cache line being fetched. However, some 
of the fetched instructions are wasted in the event that the IFQ 
has fewer empty slots than the cache line size. Another access 
to the same cache line has to be initiated in the near future to 
fetch the instructions that were not utilized. Fetch throttling 
utilizes the entire fetch bandwidth by ensuring that most in- 
structions in the cache line are used thereby saving power. In 
other words, though the number of instructions fetched from 
the icache is fixed (for a program), the number of cache line 
accesses to fetch those instructions is reduced. 

It is observed that only one or two instructions are fetched 
per cycle (on average) for about 15% and 20% of the time. On 
applying fetch throttling during reduced fetch bandwidth, the 
above values reduce to around 3% and 4% respectively. Since 
fetch stalls help in clearing the IFQ, the time spend by instruc- 
tions in the IFQ decreases by 14% and average power reduces. 
Also, in subsequent cycles, the maximum fetch bandwidth is 
utilized in fetching instructions thereby ensuring that perfor- 
mance degradation is minimized. Overflows in the Register 
Update Unit (RUU) and Load/Store queue (LSQ) are also min- 
imized by 15% and 5% due to fetch throttling. Since the oc- 
cupancy of various queues is reduced due to stalls, the wakeup 
logic power is decreased since it  involves a broadcast of tags 
(or results) to all entries in the RUU. 

111. INSTRUCTION DELAYS I N  THE ISSUE QUEUE 

Instructions that enter the pipeline face varying amounts of 
delay due to structural and data hazards. These delays increase 
as more stalls are introduced due to techniques such as throt- 
tling. However, performance degradation depends on other 
factors such as criticality and utility of instructions being de- 
layed. For example, delaying the execution of an instruction 
fetched from a mispredicted path will not affect performance 
but will save energy since it is likely to be squashed at a later 
point in time. 

The two basic functions involved in the instruction issue 
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logic are instruction wakeup and selection. The selection 

Fig. 2. Top: ROD imtructions that spend (A) I cycle, (B) > 1. < 3 cycles, 
(C) > 3 cycles in IQ. Bottom: NROD i~StNctions issued in I cycle. For 
example, in c j p q ,  53.8% of  ROD instructions spend >3 cycles in the IQ; 
13.6% of  NROD instructions spend more than 1 cycle in the IQ qfrer they 
become ready to issue; 24.4% of NROD instructions (which happen to be 
loads) are issued immediately after they become ready. 

logic is responsible for selecting ready instructions from the 
IQ based on either oldest first, random or highest latency first 
policy [S1[91 and issuing them to available FUs for execution. 
The larger the IQ, the larger is the pool of instructions available 
for selection and higher is the pelformance and power. Ready 
instructions spend more than one cycle in the IQ if they are not 
immediately selected for issue by the selection logic. There 
are two possible reasons for this. Firstly, if the FU than can 
execute the instruction is busy and secondly, if the instruction 
is not selected because there are other older ready instructions 
that are selected earlier and the issue pons are exhausted. 

Fig 2 shows the time (in cycles) spent by ROD and NROD 
(Not-Ready-On-Dispatch) instructions in the IQ ufer their de- 
pendencies are resolved. Each bar in the top figure (ROD 
instructions) is funher subdivided into three distinct portions 
(having different shades) denoted by A, B, and C. Poltion C 
represents ROD instructions that spend more than 3 cycles in 
the IQ. Portion B depicts ROD instructions that spend more 
than I cycle and less than 3 cycles in the IQ while portion 
A represents ROD instructions that are immediately issued 
(in the next cycle) after dispatch. We see that nearly 60% 
of all ROD instructions spend more than 1 cycle in the IQ 
while 40% spend more than 3 cycles waiting to be issued. 
Further, our simulations indicate that most ROD instructions 
are non-critical [IO] and can therefore he executed on slow 
low power functional units. Also, most ROD instructions that 
spend greater than 3 cycles in the IQ belong to the integer 
ALU (denoted by Or in Fig. 2) class which normally com- 
plete execution in I cycle. Fig 2 (bottom) shows the number 
of NROD instructions issued immediately (in the next cycle) 
after they become ready. A significantly larger fraction of the 
older NROD instructions are critical (compared to ROD in- 
structions) and are not delayed in the IQ once their dependen- 
cies are satisfied. This is due to the oldest first selection pol- 
icy which gives priority to these older instructions. A further 
breakup indicating the types of instructions issued in I cycle 
is also shown in the figure. The portion indicated by the white 
shade (denoted by "Rest" in the legend) represent NROD in- 
structions that spend more than I cycle (non critical NROD 
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instructions) in the IQ. 

To reduce the waiting time of ROD instructions in the IQ, 
we use an early selection policy so that these instructions are 
issued earlier than normal. To obtain energy gains these ROD 
instructions are issued to slow low power FUs. Early issue with 
slow execution ensures that performance degradation does not 
exceed acceptable levels. Every cycle, the selection logic picks 
a certain number of ready instructions to be issued based on 
resource availability using the oldest first selection policy. A 
funher check is carried out to determine if a ROD instruction is 
selected for issue in the current cycle. If an ROD instruction is 
selected, it is issued to a slow N if one is available. If no ROD 
instruction is selected for issue in the current cycle, the IQ is 
searched for a ROD instruction. If one is found, the search is 
terminated and the ROD instruction is given a higher priority 
(over other selected NROD instructions) and issued (provided 
the slow FUs are available) in the current cycle. Since search- 
ing the IQ takes up additional energy (this is about 2% over- 
head) and is known to be i n  the critical path [9], we limit our 
search to a window of a maximum of 5 entries. Funher, we 
begin our search at some arbitrary point (preferably near the 
tail of the queue) since ROD instructions are more likely to be 
found near the tail. If no ROD instruction is found within the 
specified window, the issue logic proceeds in the normal way. 
We assume that only one ROD instruction can be issued percy- 
cle (we use one slow FU in our experiments since the number 
of NROD instructions exceeds ROD instructions by roughly 
a factor of 3). With this scheme, the IQ continues to contain 
entries in the oldest first order, but the selection mechanism is 
altered to give priority to a ROD instruction. The effect of fetch 
throttling and early issue of ROD instructions with delayed ex- 
ecution on performance and EDP is shown in fig 3. We assume 
that the slow FUs operate at 2.2V, 300MHz while the normal 
FUs operate at 2.W. 600MHz. 

It is observed that introducing stalls in the fetch stage (bar 1) 
during phases on underutilization has negligible impact on the 
execution time, reduces power by 2.5% to 4%, and improves 
the EDP for all benchmarks (except mpeg dec). Early issue 
of ROD instructions with slow execution (bar 2) yields better 
power savings (around 6% to 7.5%) but also degrades perfor- 
mance by an average of 2% (max 7.5% for mpeg dec). Com- 
bining fetch throttling with early issue (bar 3) results in the 
best power and EDP gains among all schemes for most bench- 
marks. Issuing ROD instructions earlier and executing them on 
normal FUs (bar 4) is also an equally competitive scheme and 
reduces EDP to some extent. This indicates that early issue of 
ROD instructions (regardless of whether they are executed on 
slow N s  or normal FUs) is beneficial and confirms the fact 
that ROD instructions are normally latency tolerant. 

1V. C O N C L U S I O N S  

In this paper we examined the effect of introducing pipeline 
stalls during phases of processor underutilization on power and 
performance. Power profiles of programs indicate that power 
dissipation is dependent on the instruction density in pipeline 
stages. Stalls help in clearing up various queues within the 
pipeline reducing the instruction occupancy time and power 
with some performance degradation. The impact of introduc- 
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Fig. 3. Statistics with fetch throttling and early issue of ROD insmctions 

ing stalls on power depends on the branch prediction accu- 
racy and the available parallelism. We have also shown that 
instructions that are normally ready-on-decode (ROD) suffer 
from delayed selection in an oldest first issue policy and that 
close to 40% ROD instructions wait for more than 3 cycles in 
the IQ. We evaluate an early issue policy to reduce the waiting 
time of ROD instructions in the IQ and show that this early 
issue achieves around 6% to 8% power reduction with about 
2% degradation in performance (average value) when a single 
fixed slow low power FU is used. Finally, we combine throt- 
tling with early issue to exploit the mutually beneficial tenden- 
cies seen them and achieve higher power savings. 
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