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Miloš Milosavljević1 & David Merritt2

1 Theoretical Astrophysics, California Institute of Technology, Pasadena CA 91125;
milos@tapir.caltech.edu

2 Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903;
merritt@physics.rutgers.edu

Abstract. The coalescence of massive black hole binaries is one of the main sources of low-
frequency gravitational radiation that can be detected by LISA. When two galaxies containing
massive black holes merge, a binary forms at the center of the new galaxy. We discuss the evolution
of the binary after its separation decreases below one parsec. Whether or not stellar dynamical
processes can drive the black holes to coalesce depends on the supply of stars that scatter against
the binary. We discuss various mechanisms by which this supply can be replenished after the loss
cone has been depleted.

INTRODUCTION

The prospect that low-frequency gravitational radiation will be detected by LISA has
recently energized theoretical inquiries into the formation and the evolution of massive
black hole binaries (MBHB). MBHB are sourcesof low-frequency gravitational radia-
tion that will provide highest signal/noise for LISA, but the event rate for these sources
is much less well known than for the other two principal astrophysical sources, com-
pact binaries and extreme mass ratio inspiral (see contributions by G. Nelemans and
S. Sigurdsson, this volume). Astronomicalevidence for the existence of black holes
with massesMbh

�
� 106M � in galaxy spheroids with central stellar velocity dispersions

σ
�

� 100 km s� 1 is increasingly compelling; the evidence for black holes with masses
100 � 106M � in low-dispersion spheroids is still equivocal. When two galaxies merge, a
MBHB forms at the center of the new galaxy [1, 2]. There has been considerable inter-
est in determining whether black hole coalescence occurs efficiently following galaxy
mergers, since almost all predictions of MBH coalescence event rates equate the galaxy
merger rate – derived from models of structure formation in which galaxies merge hi-
erarchically [3, 4, 5, 6, 7] – with the MBH coalescence rate. Detailed estimates of the
MBH coalescence rate are fundamentally limited by the resolution of electromagnetic
telescopes. It is therefore expected that MBH coalescences as observed by LISA will
facilitate the first definite conclusions regarding galaxy merger rates and MBH demo-
graphics at high redshifts [8].

The mutual gravitational capture of the black holes is facilitated by the dynamical
drag imparted to the orbiting MBHs by the overlapping galaxies. The inner parts of
elliptical galaxies and many spiral bulges are well described by power-law (“cuspy”)
stellar density profiles of the formρ � r � γ with γ � 2 [9]. High luminosity ellipticals
often exhibit a shallowing of the density profile (γ � 2) near the very centers, where
the MBHs are located. Numerical simulations of galaxy mergers have shown that the
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black holes remain embedded in their donorcusps throughout the merger [10]. Since
the dynamical drag is a function of the combined black hole and stellar cusp mass,
which exceeds that of the black hole until the very final stages of the merger, the black
hole inspiral and the MBHB formation take place on a dynamical time scale for black
holes of comparable mass. In the unequal mass case, the infall time scale is lengthened
proportionally to the black hole mass ratioM1

�
M2 (M1 � M2), but for M2

�
� 106M �

remains short compared to time scale for the subsequent evolution [35], which is the
subject of this contribution.

GRAVITATIONAL SLINGSHOT AND BINARY DECAY

The galaxy merger delivers the black holes to within the distanceahard � Gµ
�
4σ2,

where µ � M1M2

� �
M1 � M2 � is the reduced mass. This distance is about 1 parsec

for M1 � M2 � 2 � 107M � . At that point, the binary continues to decay by scattering
stars super-elastically [11]. Stars in the merged galaxy with orbits approaching the
binary closely enough to be perturbed by the rotating quadrupole component of the
binary’s potential belong to the “loss cone.” The loss cone is defined in analogy with
a similar structure characterizing the distribution of the stellar-mass objects around
solitary massive black holes [12, 13]. When a star inside the loss cone impinges on
the MBHB, it exchanges kinetic energy with the binary and is shot out at an average
velocity comparable to the binary’s orbital velocity ¯v � � 
 G

�
M1 � M2 � �

a � σ . This is
a form of the gravitational slingshot mechanism commonly used to accelerate spacecraft
in the solar system. As a result, the binary’s binding energy increases and its semi-major
axisa decreases.

In a crude approximation, the factor by which the binary separation decays can be
related to the total mass in starsMscatthat are scattered against the binary between times
t1 andt2 via [14]:

a
�
t2 � � a

�
t1 � exp � �

Mscat
�
t1 
 t2 �� �

M1 � M2 � � 
 (1)

where
�

is the mass ejection coefficient which in fact depends weakly ona
�
ahard and

the black hole masses.
Approximation (1) is widely used in the semi-analytic modeling of the MBHB pop-

ulation dynamics within hierarchical structure formation scenarios. Value of the mass
ejection coefficient has beenestimated from three-body scattering experiments [14]:�

� 0 � 1 ln � 4ahard

a � � 0 � 1 � 1 � (2)

This agrees with the value
�

� 0 � 5 measured inN-body simulationsof equal-mass
MBH mergers [10]. If the galaxy is nearly spherical and the ejected stars return to
interact with the binary more than once, the efficiency of mass ejection depends on
the potential well depth∆Φ separating the energies at which stars enter and exit the loss
cone [15]: �

�
1�

∆Φ
�
2σ2 � �

a
�
ahard� � (3)
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To shrink the binary by onee-folding, a stellar mass of
�

Mbh must be transported from
an energy marginally bound to the black hole, to the galactic escape velocity.

COALESCENCE

If the semi-major axis decreases until it becomes less than [16]:

agr � � 64
5

G3M1M2

�
M1 � M2 � F

�
e �

c5 tgr �
1� 4 � (4)

the emission of gravity waves leads to the coalescence of the black holes on a time scale
tgr. Here,F

�
e � is an eccentricity-dependent factor equal to unity for a circular binary.N-

body simulations of MBHB formation in galaxy mergers suggest that the eccentricities
remain moderate, although ourunderstanding of the MBHB eccentricity evolution is
still incomplete. The factor by which the binary must shrink from its conception to
coalescence is:

ahard

agr
� 34 � e9 � 2� α 	 M1 � M2

106M � 

1� 4 � 2� α

p3� 4 �
1 � p � � 3� 2 	 tgr

109 yrs 
 � 1� 4 � (5)

wherep � M2

�
M1

�
1 andα � d logMbh

�
d logσ � 4 � 5 is the logarithmic slope of

the tight relation between the black hole mass and the central velocity dispersion of the
galaxy [17, 18].

Therefore, to achieve coalescence in a Hubble time, the MBHB must shrink by 4� 5
e-foldings, which requires the scattering of 10� 20 � µ worth of stars from the loss cone.
After its initial emptying and the accompanying rapid shrinking of the binary by a factor
of � 5 pastahard(as observed inN-body simulations withρ � r � 2 initial density profiles
[10]), the mass of the loss cone�� µ if the galaxy is approximately spherical. Once this
mass is expended, the binary is still a factor

�
� 10 wider than the separation at which it

would coalesce gravitationally in a Hubbletime; the binary decay may therefore stall
[2, 10, 19, 20, 21]. The problem is exacerbated if the initial cusp profile is shallower
than r � 2. The apparent inability of stellar dynamical processes to drive the binaries
to coalescence poses a potential problem for the detection of these sources by LISA.
Circumstantial evidence, however, suggests that long-lived MBHBs may be rare: no
smoking-gun detections of MBHBs have beenreported (with the possible exception
of OJ 287; see [22]), although a number of AGN have time-dependent features that
have been provisionally attributed to MBHBs (Komossa, this volume). The theoretical
difficulty of shrinking a MBHB by a factor of� 100 after its formation at a separation
of � 1 pc is called the “final parsec problem.”

LOSS-CONE DIFFUSION

The final parsec problem is most severe in nearly spherical galaxies where the mass
inside the loss cone is the smallest. The loss cone boundary is defined by the minimum
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angular momentumJloss
� � G

�
M1 � M2 � a that a star can have and still avoid being

perturbed by the MBHB. Consider the state of the loss cone after all the stars inside
have been scatteredonce. Since the depletion of the orbital population inside the loss
cone leads to a stalling in the decay rate, continued decay hinges on the rate at which
stars diffuse into the loss cone via collisional relaxation. The relaxation can be modeled
by means of the orbit-averaged Fokker-Planck equation [23] describing the evolution
of the phase space densityf

�
E � J � t � subject to the boundary conditionf

�
E � Jloss� t � � 0;

i.e., stars are assumed to be removed from thesystem by the gravitational slingshot once
they straddle the loss cone boundary. The losscone flux is proportional to the gradient
of the phase space distribution at its boundary,� ∝ ∂ f

�
∂J � Jloss

.

Although it is tempting to seek a steady-state solutionfequi

�
E � J � ∝ log

�
J

�
Jloss� [24,

25, 21], in reality the center of the galaxy is not likely to be collisionally relaxed [26],
and thus the distribution of stars near the loss cone is never in a steady state on time
scales of order the relaxation time. Indeed, the final stages of a galaxy merger when the
MBHB forms proceed in a time much shorter than the galaxy crossing time. Therefore
the distribution functionf

�
E � J � immediately following the formation of a hard binary

can be far from that describing a steady-state flux of stars into the loss cone. Sudden
draining of the loss cone during formation of the hard binary produces steep phase space
gradients that are closer to the step function:

f
�
E � J � � � f̄

�
E � � J � Jloss

0 � J � Jloss
� (6)

Since the collisional transport rate in phase space is proportional to the gradient off with
respect toJ, steep gradients imply an enhanced flux into the loss cone. The depletion
of starsoutside the loss cone affects the density profile of the galaxy and is identified
with the cusp destruction. The broken power-law profiles of high-luminosity elliptical
galaxies can be interpreted as fossil evidence for this process [27, 28].

The time evolution of the stellar distribution near the loss cone is an initial value
problem equivalent to the diffusion of heatin cylindrical coordinates [12]. Ignoring the
diffusion inE, the Fokker-Planck equation for diffusion inJ reads (J 	 Jloss):

∂ f
�
E � J � t �
∂ t � λ

�
E �

J
∂
∂J

�
J

∂ f
�
E � J � t �
∂J � � (7)

whereλ
�
E � is related to the orbit-averaged diffusion coefficient. Since the boundary

angular momentumJloss decreases with time, equation (7) can be solved iteratively by
discretizing the decrements inJloss and interpolatingf between these via the Fourier-
Bessel synthesis [15]. Solutions obtained this way can be compared to the collisionally
relaxed, steady state (∂ f

�
∂ t � 0) solution normalized to the isotropic distribution (Fig-

ure 1a). In an example scaled to the galaxy M32 with a 3
 106M � black hole, the binary
in the exact solution has decayed only� 30% more than that in the steady-state solution.
The difference between the two, however, is much more substantialearly on (Figure 1b),
which is of crucial importance if episodic,violent dynamical perturbations such as the
infall of satellite galaxies or giant molecular clouds rejuvenate the loss cone [29] by
restoring the steep phase-space gradients instrumental for the enhanced diffusion (Fig-
ure 1c). For example, if the episodic replenishment in a galaxy like M32 occurs every
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loss cone refilled

loss cone refilled

(c)

t

a

FIGURE 1. (a) Evolution of the semi-major axisa in a merger of equal galaxies with� 106M � black
holes starting from the initial separation ofa

�
0� � 0 � 1 pc (solid line). The evolution is always more rapid

than that predicted assuming that the galaxy is collisionally relaxed (dashed line). (b) Enhancement of
the decayed compared with that of the collisionally-relaxed, steady-state solution, expressed in terms of
Θ � ∆a � ∆aequi (triangles) and a power-law fit (solid line). (c) Schematic illustration of the evolution of
the semi-major axis in the presence of episodic refilling of the loss cone. (From [15].)

10, 100, or 1,000 Myrs, the average MBHB decay rate will beΘ � 10, 5, or 3 times
higher than what the equilibrium theory would have implied [15].

Brownian motion of the MBHB in the neighborhood of the geometric center of the
galaxy can to some extent mimic the effects of collisional relaxation and drive stars
into the loss cone. The Brownian motion results from the equipartition of kinetic energy
between the MBHB and the stars in the galaxy,� v2

brown	 � �
m � �

Mbh � σ2, wherem � is the
average stellar mass [30, 31, 32]. As the binary wanders in space, it can sweep up stars
that would have remained just outside the loss cone for a static binary. The time scale on
which the loss cone refills in this fashion is:

tbrown
� 400 Myr � a

ahard
� m �

M � � � 1 � M1 � M2

106M � �
2 � 3� α

e14� α K
�
E � � (8)

whereK
�
E � is a function of the orbital energy such thatK

�
2σ 2 � � 1. The amplitude of

the Brownian motion is only modestly enhanced by “super-elastic scattering” by the
binary [30]. In galaxiestbrown

�
� 1 Gyr and thus the Brownian motion probably fails

to significantly enhance the flux into the loss cone, in spite of earlier suggestions to
the contrary [33]. InN-body simulations, however, the Brownian motionsaturates the
loss cone flux which is one of the many pitfalls that plague the numerical modeling of
MBHBs.

SPHERICAL AND ASPHERICAL GALAXIES

Mode of interaction between the stars in a galaxy and a MBHB is also influenced by the
geometry of the galactic potential, which could either be nearly spherical or substantially
aspherical (axisymmetric, triaxial, or irregular).

In spherical galaxies all stars that are candidates for slingshot ejection by the MBHB
encounter the binary within one crossing time from the moment the binary forms. The
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FIGURE 2. (a) Snapshots of the binding energy distribution� � E � t � of the stars residing inside the
loss cone att � 0. From right to left the data were taken at exponentially-increasing time intervals. As
the binary separation decreases and the velocity of the slingshot ejection increases, stars inside the loss
cone are heated through repeated scattering and shift to smallerE; a significant fraction of them remain
inside the loss cone at all times. (b) Evolution of the semi-major axis exhibiting the logarithmic behavior
motivated in the text (solid line). The slope ofda � d lnt is close to that given by the theoretical prediction
(10); P � 0� is the dynamical time of the potential well in which the galaxy is embedded (dashed line).
(From [15].)

time-dependent loss cone solution derivedin the previous section was based on the
“sink” paradigm, in which a star is lost from the system as soon as it transgresses the loss
cone boundary. This model is valid in the case of capture or tidal disruption of stars by a
single black hole but is less relevant to MBHBs, since stars that interact with the binary
simply receive kicks (∆E � ∆J) that transport them to another orbit without necessarily
ejecting them from the galaxy. If the binary orbit decays on a time scale longer than
the orbital period of an interacting star, stars inside the loss cone can remain inside the
loss cone after ejection, encountering the binary again at their next pericenter passage.
In principle a star can interact many times with the binary before being ejected from the
galaxy or falling outside the loss cone; each interaction takes additional energy from the
binary and hastens its decay.

We illustrate this “secondary slingshot” with a simple model in the spherical geom-
etry. Consider a group of� stars of massm 	 and energy per unit massE that interact
with the binary and receive a mean energy increment of
 ∆E � . Averaged over a single
orbital periodP � E 
 , the binary hardens at a rate [15]:

d
dt

�
GM1M2

2a � � m 	 
 ∆E � �
P � E 
 � (9)

In subsequent interactions, the number of stars that remain inside the loss cone scales
as J2

loss ∝ a, while the ejection energy is� Φeject � G � M1 � M2 
 � 2a � a � 1. Hence� 
 ∆E � ∝ a1a � 1 ∝ a0. Assuming a singular isothermal sphere for the galaxy potential,
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we derive the result [15]:

a
�
0�

a
�
t � � 1 � 4σ2a

�
0�

G
�
M1 � M2 � ln

�
1 � m � � � ∆E �

2µσ2

t
P

�
E0 � �

� 1 � 0 � 25 ln

�
few � 10 � t

P
�
E0 � � � (10)

Hence the binary’s binding energy increases as the logarithm of the time. Figure 2
illustrates the evolution ofa � 1 in an N-body simulation where star-star interactions
have been replaced by a smooth potential to inhibit relaxation. The observed rate of
decayda � 1 �

d ln t � 1 � 7 � 104 is close to the prediction of equation (10), where we
have 4σ2 �

G
�
M1 � M2 � � 2 � 104. Re-ejection at the rate of equation (10) would by

itself induce changes ina � 1 by factors of a few over a Hubble time, in addition to the
shrinkage due to collisional loss cone refilling. ForP

�
E0 � � 103 � 5 � 7 years, we obtain

a
�
0� �

a
�
tHubble� � 5, 4, and 3, respectively.

In non-spherical galaxies where the total angular momentumJ is not a conserved
quantity, there exists a potentially largerpopulation of orbits that can encounter the
binary but only once per several orbital periods. The mechanisms of loss cone evolution
and re-ejection discussed above in the spherical geometry would be modified somewhat
in axisymmetric [21] or triaxial galaxies [36]. The triaxial case is potentially the most
interesting: stellar bars are commonly observed in galactic nuclei, and torques from
barlike potentials are often invoked to drive gas inflows during the quasar epoch [47].
Since orbital angular momentum is not conserved in the triaxial geometry, a large
fraction of the stars in a triaxial bar can potentially interact with the central MBHB.
These “centrophilic” orbits are typically chaotic due to scattering off the central mass;
in spite of their unfavorable time-averaged shapes, chaotic orbits can make up 50% or
more of the total mass of a triaxial nucleus [34].

Numerical integrations [36] reveal that the frequency of pericenter passages with
rperi � a for a chaotic orbit of energyE is roughly linear ina, � �

rperi � a � � A
�
E � a,

up to a maximum pericenter distance ofrperi� max

�
E � . The total rate at which stars pass

within a distancea of the center is therefore:

Ṁ � a
�

A
�
E � � chaos

�
E � dE (11)

where � chaos

�
E � dE is the mass on chaotic orbits in the energy rangeE to E � dE. In a

triaxial nucleus with densityρ � r � 2 and central massMbh, the numerical integrations
reveal:

A
�
E � � 5

σ5

G2M2
bh

e �
�
E � Φ � rbh � � � σ2 � r

�
� rbh � GMbh

2σ2 � (12)

The feeding rate due to stars with energiesE � Φ
�
rbh � is then

Ṁ � � chaos
σ3

G
a

rbh
� 103M � yr � 1 � chaos

0 � 5 	 σ
200 km s� 1 


3 a
rbh

(13)
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with � chaos the fraction of stars on chaotic orbits. Even a small� chaos implies a
substantial rate of supply to a MBHB when it first forms, witha � ahard

� �
µ

�
2Mbh � rbh.

Such high feeding rates would imply substantial changes in MBHB separations even
if triaxial distortions to the potential were transient, due for instance to mergers or
accretion events.

N-BODY SIMULATIONS

Several attempts have been made to model the formation and the long-term evolution
of MBHBs using large-scaleN-body simulations [37, 33, 10, 38]. Because of the dis-
creteness effects associated with approximating a galaxy withN

�
� 109 stars by a model

consisting of only, at best,N �� 106 particles, the applicability of directN-body simula-
tions appears to be limited to the early stage of the MBHB evolution. The rapidity with
which a galactic merger proceeds guarantees that the discreteness effects do not affect
the state of the galaxy just after the merger is complete. That point marks the transition
to a much more gradual decay in the MBH separation when the effective relaxation time
in the simulation can easily become shorter than the decay time.

Simulations fail to reproduce the long-term evolution correctly because in the simula-
tions the loss cone is almost completely full, while in real galaxies it is largely empty. In
the general case there exists a critical stellar orbital energyEcrit separating the full region
E � Ecrit (large radii) from the empty regionE � Ecrit (small radii). Assuming a density
profile ρ � r � 2 and a potential of the form 2σ 2 ln

�
r

�
r0 � such thatr0 � 103GMbh

�
2σ2

we find [15]:

Ecrit � 2σ2 ln � 7 � 5 � 104

� bh

GMbh

�
8σ2

a � � (14)

where � bh � Mbh

�
m � is the number of stars that make the mass of the black hole. The

transition from a full to an empty loss cone happens whenEcrit becomes smaller than
a few � 2σ2, implying that � bh

� 104 � 105. Since a typical MBH contains 0.1% of
its host galaxy’s mass [39], and thusN � 103 � bh, an N-body simulation would have
to contain 104 � 5 � 103 � 107 � 8 bodies to reproduce the correct, diffusive behavior of a
real galaxy. This requirement isa severe one for direct-summationN-body codes, which
rarely exceed particle numbers of� 106 even on parallel hardware [32]. One route might
be to couple the special purpose GRAPE hardware1, which is limited toN �� 106, to
algorithms that can handle large particle numbers by swapping with a fast front end.

OUTSTANDING PROBLEMS

We conclude by mentioning two outstanding problems related to the dynamics of MBHB
binaries. Although the gravitational back-reaction tends to circularize binary black holes,

1 http://grape.astron.s.u-tokyo.ac.jp/grape/
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some residual eccentricity can remain, especially if stellar dynamical processes prior
to the emission of gravitational waves act to amplify the eccentricity to large values.
Residual eccentricities result in the excitation of higher harmonics in the signal [40],
thereby complicating the detection of a gravitational wave event severely. In spite of
the importance of eccentricity for detection, an accurate and general evaluation of the
MBHB eccentricity evolution remains a challenge.

Similarly, large-mass-ratio black hole binaries deserve extra attention. Although the
best understood MBHBs are those of consisting of nearly equal-mass black holes, it is
probable that most coalescences involve black holes of very unequal mass. For example,
intermediate-mass black holes (IMBHs) with masses of 102 � 4M � may be able to form
in young star clusters—such the Arches and the Quintuplet clusters in the Milky Way
bulge [41, 42]—via the segregation of massivestars to the cluster center [43], followed
by the runaway growth in stellar mergers and the collapse of the agglomerate star into
an IMBH [44, 45]. An IMBH makes its way to the galaxy center and forms a binary
with the nuclear MBH [46]. Therefore, large-mass-ratio MBHBs are expected to exist
even in galaxies that had not experienced recent mergers. The orbital evolution of these
systems remains another challenge to dynamical exploration.

CONCLUSIONS

We have focused on stellar dynamical mechanisms for extracting energy from a MBHB,
but other schemes are possible and even likely. We note a close parallel between the
“final parsec problem” and the problem of quasar fueling: in both cases, a quantity of
mass of order� 108M � must be supplied to the inner parsec in a time much shorter
than the age of the universe. Nature clearly accomplishes this in the case of the quasars,
probably through gas flows driven by torques from stellar bars [47]. The same inflow
of gas could contribute to the decay of a MBHB, by leading to renewed star formation
or rapid accretion of gas [48]. Similarly, the presence of a third black hole in a galactic
nucleus could accelerate the decay by increasing the MBHB’s eccentricity through the
Kozai mechanism [49], or by extracting thebinary’s energy via the triple black hole
slingshot interaction [50].
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