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Abstract

Using the theorem of Carnot we give elementary proofs of two state-
ments of C. Bradley. We prove his conjecture concerning the tangents to
an arbitrary conic from the vertices of a triangle. We give a synthetic
proof of his theorem concerning the “Cevian conic”, and we also give a
projective generalization of this result.

1 Preliminaries

Throughout this paper we work in the Euclidean plane and in its projective
closure, the real projective plane. By XY we denote the signed distance of points

X, Y of the Euclidean plane. This means that we suppose that on the line
←−→
XY

an orientation is given, and XY = d(X,Y ) or XY = −d(X,Y ) depending on

the direction of the vector
−−→
XY . The simple ratio of the collinear points X, Y ,

Z (where Y 6= Z and X 6= Y ) is defined by

(XY Z) :=
XZ

ZY

and it is independent of the choice of orientation on the line
←−→
XY , thus in our

formulas we can use the notation XY without mentioning the orientation.

We recall here the most important tools that we use in our paper. The proofs
of these theorems can be found in [4].

Theorem 1.1 Let ABC be an arbitrary triangle in the Euclidean plane, and

let A1, B1, C1 be points (different from the vertices) on the sides
←−→
BC,

←→
CA,

←−→
AB,

respectively. Then

• (Menelaos) A1, B1, C1 are collinear if and only if

(ABC1)(BCA1)(CAB1) = −1,
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• (Ceva)
←−→
AA1,

←−−→
BB1,

←−→
CC1 are concurrent if and only if

(ABC1)(BCA1)(CAB1) = 1.

Referring to the theorem of Ceva, if P is a point that is not incident to any

side of the triangle, we call the lines
←→
AP ,

←−→
BP ,

←−→
CP Cevians, and we call the

points
←→
AP ∩

←−→
BC,

←−→
BP ∩

←→
AC,

←−→
CP ∩

←−→
AB the feet of the Cevians through P .

Now we formulate the most important theorem on projective conics, the
theorem of Pascal (together with its converse). We note that this theorem is
valid not only in the real projective plane, but in any projective plane over a
field (i.e. in any Pappian projective plane).

Theorem 1.2 (Pascal) Suppose that the points A, B, C, D, E, F of the real
projective plane are in general position (i.e. no three of them are collinear). Then

there is a conic incident with these points if and only if the points
←−→
AB ∩

←−→
DE,

←−→
BC ∩

←−→
EF and

←−→
CD ∩

←→
FA are collinear.

2 The theorem of Carnot

The theorem of Menelaos gives a necessary and sufficient condition for points
on the sides of a triangle to be collinear. The theorem of Carnot is a natural
generalization of this theorem, and gives a necessary and sufficient condition for
two points on each side of a triangle to form a conic. The proof ([4]) depends
on the theorems of Menelaos and Pascal. For completeness we recall it here.

Theorem 2.1 (Carnot) Let ABC be an arbitrary triangle in the Euclidean
plane, and let (A1, A2), (B1, B2), (C1, C2) be pairs points (different from the

vertices) on the sides
←−→
BC,

←→
CA,

←−→
AB, respectively. Then the points A1, A2, B1,

B2, C1 és C2 are on a conic if and only if

(ABC1)(ABC2)(BCA1)(BCA2)(CAB1)(CAB2) = 1.

Proof. Let A3 :=
←−→
BC ∩

←−−→
B2C1, B3 :=

←→
AC ∩

←−−→
A1C2 and C3 :=

←−→
AB ∩

←−−→
A2B1. By the

theorem of Pascal A1, A2, B1, B2, C1, C2 are on a conic if and only if A3, B3,
C3 are collinear. Thus we have to prove that the collinearity of these points is
equivalent to the condition above.

Since A3, B2, C1 are collinear, by the theorem of Menelaos

(ABC1)(BCA3)(CAB2) = −1.

Similarly,
(ABC2)(BCA1)(CAB3) = −1

and
(ABC3)(BCA2)(CAB1) = −1.
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Multiplying these equalities we get

(ABC1)(ABC2)(ABC3)(BCA1)(BCA2)(BCA3)(CAB1)(CAB2)(CAB3) = −1.

Using the theorem of Menelaos again, A3, B3, C3 are collinear if and only if

(ABC3)(BCA3)(CAB3) = −1.

By our previous relation this holds if and only if

(ABC1)(ABC2)(BCA1)(BCA2)(CAB1)(CAB2) = 1.

A similar generalization of the theorem of Menelaos can be formulated not
only for curves of second order (i.e., for conics), but also for the more general
class of algebraic curves of order n. By the general theorem, if we consider n
points on each side of a triangle (different from the vertices), these 3n points
are on an algebraic curve of order n if and only if the product of the 3n simple
ratios as above is (−1)n. The most general version of this theorem has been
obtained by B. Segre, cf. [5].

3 The theorem of Carnot from the point of view
of barycentric coordinates

In this section we work in the real projective plane and represent its points
by homogeneous coordinates. It is well-known that any four points A, B, C,
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D of general position (no three of the points are collinear) can be transformed
by collineation to the points A′[1, 0, 0], B′[0, 1, 0], C ′[0, 0, 1], D′[1, 1, 1]. Thus
working with the images under this collineation instead of the original points,
we may assume for any four points of general position that their coordinates
are [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1], respectively.

Let us choose the four-point above such that D is the centroid of the
triangle ABC. Then, using the mentioned collineation we call the coordinates
of the image of any point P the barycentric coordinates of P with respect to
the triangle ABC.

Then [0, 1, α], [β, 0, 1] and [1, γ, 0] are the barycentric coordinates of the
points A1, B1, C1 such that (BCA1) = α, (CAB1) = β és (ABC1) = γ.

We prove this claim for the point A1 of barycentric coordinates [0, 1, α]. Let

AM be the midpoint of BC. Since D is the centroid of ABC, AM =
←−→
AD ∩

←−→
BC,

so an easy calculation shows that the barycentric coordinates of AM are [0, 1, 1].
Since the original points are sent to the points determined by the barycentric
coordinates by a collineation, and collineations preserve cross-ratio, it means
that (BCA1AF ) = α. Otherwise, since AM is the midpoint of BC, (BCAM ) =
1, so

(BCA1AM ) =
(BCA1)

(BCAM )
= (BCA1).

Thus we indeed have (BCA1) = α.

In terms of barycentric coordinates the theorem of Menelaos states that the
points [0, 1, α], [β, 0, 1], [1, γ, 0] are collinear if and only if αβγ = −1. Similarly,
we have the following reformulation of the theorem of Ceva: the lines of [0, 1, α]
and [1, 0, 0], [β, 0, 1] and [0, 1, 0], [1, γ, 0] and [0, 0, 1] are concurrent if and only
if αβγ = 1.

Finally, the theorem of Carnot takes the following form: [0, 1, α1], [0, 1, α2],
[β1, 0, 1], [β2, 0, 1], [1, γ1, 0] and [1, γ2, 0] are on a conic if and only if

α1α2β1β2γ1γ2 = 1.

4 Tangents to a conic from the vertices of a tri-
angle

The next result was formulated by C. Bradley [1] as a conjecture. In this sec-
tion we prove Bradley’s conjecture applying the theorem of Carnot and using
barycentric coordinates. We note that our proof remains valid in any projective
plane coordinatized by a field, so we may state our theorem in any Pappian
projective plane.

Theorem 4.1 Let a triangle ABC and a conic C in the real projective plane be
given. The tangent lines from the vertices of ABC to C intersect the opposite
sides of the triangle in six points that are incident to a conic.
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Proof. Let the vertices of the triangle be A = [1, 0, 0], B = [0, 1, 0] and

C = [0, 0, 1]. Suppose that the tangents of C incident to A intersect
←−→
BC

in A1[0, 1, α1] and A2[0, 1, α2]; the tangents incident to B intersect
←→
AC

in B1[β1, 0, 1] and B2[β2, 0, 1], the tangents incident to C intersect
←−→
AB in

C1[1, γ1, 0] and C2[1, γ2, 0].

If [0, 1, α] is an arbitrary point of
←−→
BC, then the points of the line of A

and [0, 1, α] have coordinates of the form [1, λ, αλ], where λ ∈ R. If this line
is a tangent of c, then there is exactly one λ such that [1, λ, αλ] satisfies the
equation

a11x
2
1 + a22x

2
2 + a33x

2
3 + 2a12x1x2 + 2a13x1x3 + 2a23x2x3 = 0

of C.
This condition implies that the equation

λ2(a22 + 2a23α+ a33α
2) + λ(2a12 + 2a23α) + a11 = 0

has exactly one solution λ. This holds if and only if the discriminant of this
quadratic equation vanishes, i.e.,

4(a12 + αa13)2 − 4a11(a22 + 2a23α+ a33α
2) = 0.

From this an easy calculation leads to the following equation:

α2(a213 − a11a33) + α(2a12a13 − 2a11a23) + (a212 − a11a22) = 0.

The solutions of this equations are the α1 and α2 coordinates of A1 and A2. The
product of the roots of this quadratic equation is the quotient of the constant
and the coefficient of the second order term, i.e.,

α1α2 =
a212 − a11a22
a213 − a11a33

.
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By similar calculations we find that

β1β2 =
a223 − a22a33
a212 − a11a22

and

γ1γ2 =
a213 − a11a33
a223 − a22a33

.

Thus

α1α2β1β2γ1γ2 =
a212 − a11a22
a213 − a11a33

· a
2
23 − a22a33
a212 − a11a22

· a
2
13 − a11a33
a223 − a22a33

= 1,

and by theorem of Carnot, this implies our claim.

5 The Cevian conic

In [2] C. Bradley proved the following theorem using barycentric coordinates.
We give here a purely synthetic proof, applying again the theorem of Carnot.

Theorem 5.1 Let ABC be an arbitrary triangle in the Euclidean plane, and
let P be an arbitrary point not incident to any of the sides of ABC. Denote the
feet of the Cevians through P by A0, B0 and C0. Suppose that the circle through

A0, B0 and P intersect
←−→
BC in A1 and

←→
AC in B2; the circle through B0, C0 and

P intersect
←−→
AB in C1 and

←→
AC in B1; the circle through A0, C0 and P intersect

←−→
BC in A2 and

←−→
AB in C2. Then A1, A2, B1, B2, C1, C2 are on a conic (called

the Cevian conic of P with respect to ABC).

Proof. Let the circle through B0, C0 and P be ca; the circle through A0, C0

and P be cb; and the circle through A0, B0 and P be cc. The power of the point
A with respect to the circle ca is

AC1 ·AC0 = AB1 ·AB0,

whence

AC1 = AB1 ·
AB0

AC0
. (1)

Similarly we get

BA2 = BC2 ·
BC0

BA0

and

CB2 = CA1 ·
CA0

CB0
.

The point A is on the power line of cb and cc, thus

AC2 ·AC0 = AB2 ·AB0.
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Hence

AC2 = AB2 ·
AB0

AC0
.

Similarly we get

BA1 = BC1 ·
BC0

BA0

and

CB1 = CA2 ·
CA0

CB0
.

Using these results,

AC1 ·AC2 ·BA1 ·BA2 · CB1 · CB2 =

=
(AB0)2 · (AB1) · (AB2) · (BC0)2 ·BC1 ·BC2 · (CA0)2 · (CA1) · (CA2)

(AC0)2 · (BA0)2 · (CB0)2
.

Applying the theorem of Ceva to the Cevians through P , we get

(C0B)2

(AC0)2
· (A0C)2

(BA0)2
· (B0A)2

(CB0)2
= 1,

thus

AC1 ·AC2 ·BA1 ·BA2 · CB1 · CB2 = C1B · C2B ·A1C ·A2C ·B1A ·B2A,
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AC1

C1B
· AC2

C2B
· BA1

A1C
· BA2

A2C
· CB1

B1A
· CB2

B2A
= 1,

(ABC1)(ABC2)(BCA1)(BCA2)(CAB1)(CAB2) = 1.

By the theorem of Carnot this proves our claim.

Remark. It is well known that for any triangle the lines connecting the ver-
tices to the point of contact of the incircle on the opposite sides are concurrent.
(This statement can easily be proved using the theorem of Ceva, or the theorem
of Brianchon, which is the dual of the theorem of Pascal.) The point of concur-
rency is called the Gergonne point of the triangle. In [3] Bradley proved, using
lengthy calculations, that the Cevian conic of the Gergonne point with respect
to a triangle is a circle, whose centre is the incentre of the triangle. We give an
easy elementary proof of his result.

We use the notations of the previous proof and we suppose that P is the
Gergonne point of ABC. In this case AB0 = AC0, so from (1) we get AC1 =
AB1. So B1C1A is an isosceles triangle, thus the perpendicular bisector of B1C1

is the bisector of the angle ∠BAC. Similarly we can prove that the perpendicular
bisector of B2C2 is the bisector of ∠BAC, the perpendicular bisector of A1C1

and A2C2 is the bisector of ∠ABC, and the perpendicular bisector of A2B1 and
A1B2 is the bisector of ∠BCA. Thus the perpendicular bisectors of the sides of
the hexagon A1B2C2A2B1C1 pass through the incentre of ABC, so the vertices
of the hexagon are on a circle whose centre is the incentre of ABC.

The following result is a projective generalization of the previous theorem.

Corollary 5.2 Let ABC be an arbitrary triangle in the real projective plane,
and let P , I, J be arbitrary points not incident to any of the sides of ABC.
Denote the feet of the Cevians through P by A0, B0 and C0. Suppose that the

conic through I, J , A0, B0 and P intersect
←−→
BC in A1 and

←→
AC in B2; the conic

through I, J , B0, C0 and P intersect
←−→
AB in C1 and

←→
AC in B1; the conic through

I, J , A0, C0 and P intersect
←−→
BC in A2 and

←−→
AB in C2. Then A1, A2, B1, B2,

C1, C2 are on a conic (called the Cevian conic of P with respect to ABC and
(IJ)).

Proof. The real projective plane is a subplane of the complex projective plane,
so we may consider our configuration in the complex projective plane. Apply
a projective collineation of the complex projective plane that sends I and J to
[1, i, 0] and [1,−i, 0] (i.e., to the circular points at infinity), respectively. It is
well known (see e.g. [6]) that a conic of the extended euclidean plane is a circle
if and only if (after embedding to the complex projective plane) it is incident
with the circular points at infinity. Thus applying our collineation we get the
same configuration as in our previous theorem.
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