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Abstract— This study investigated a potential source of in-

accuracy for diode measurements in modulated beams; the 

effect of diode housing asymmetry on measurement results. 

The possible effects of diode housing asymmetry on the meas-

urement of steep dose gradients were evaluated by measuring 

5x5 cm2 beam profiles, with three cylindrical diodes and two 

commonly used ionization chambers, with each dosimeter 

positioned in a 3D scanning water tank with its stem perpen-

dicular to the beam axis (horizontal) and parallel to the direc-

tion of scanning. The resulting profiles were used to compare 

the penumbrae measured with the diode stem pointing into 

(equivalent to a “stem-first” setup) and out of the field (equiva-

lent to a “stem-last” setup) in order to evaluate the effects of 

dosimeter alignment and thereby identify the effects of dosime-

ter asymmetry. The stem-first and stem-last orientations re-

sulted in differences of up to 0.2 mm in the measured 20-80% 

penumbra widths and differences of up to 0.4 mm in the off-

axis position of the 90% isodose. These differences, which are 

smaller than previously reported for older model dosimeters, 

were apparent in the profile results for both diodes and small-

volume ionization chambers.  As an extension to this study, the 

practical use of all five dosimeters was exemplified by measur-

ing point doses in IMRT test beams. These measurements 

showed good agreement (within 2%) between the diodes and 

the small volume ionization chamber, with all of these dosime-

ters being able to identify a region 3% under-dosage which 

was not identified by a larger volume (6 mm diameter) ioniza-

tion chamber. The results of this work should help to remove 

some of the barriers to the use of diodes for modulated radio-

therapy dosimetry in the future. 

Keywords— Radiation therapy, diode dosimetry, relative 

dosimetry, quality assurance. 

I. INTRODUCTION  

Recent advances in diode dosimetry analysis techniques 

[1,2] and the resulting recommendations that diodes can be 

used to accurately measure relative dose in small radiation 

fields, provided that suitable corrections are applied to the 

results [2,3,4], have led to renewed interest in the use of 

diodes to measure point doses in modulated radiation fields. 

This study investigates one potential source of inaccuracy 

for diode measurements in modulated beams; the effect of 

diode housing asymmetry on measurement results. 

Intensity modulated radiotherapy (IMRT) and volumetric 

modulated arc therapy (VMAT) treatments use large num-

bers of small beam segments to produce dose distributions 

that are able to closely conform to curved and concave tar-

gets [5] while sparing adjacent healthy tissues [6]. Due to 

the complexity of these modulated beams and the resulting 

challenges of accurately calculating the treatment dose and 

precisely reproducing the planned collimation patterns, 

careful commissioning of the IMRT/VMAT treatment plan-

ning and delivery system is required [7], in addition to pre-

treatment verification of individual IMRT/VMAT treatment 

plans [5]. Point dose measurements in modulated beams can 

be used to augment dose plane measurements, for system 

commissioning and treatment verification. It is important 

that these point dose measurements provide an accurate 

indication of the dose delivered by each modulated beam.  

The use of ionization chambers with collecting volumes 

as small as 6 mm across can result in volume averaging 

effects that substantially reduce measurement accuracy in 

high dose gradient regions [8,9,10]. When used in modulat-

ed beams, therefore, these chambers are deliberately posi-

tioned in dose plateaus – a solution which may take time 

(finding an appropriate point in the treatment plan), result in 

unidentified inaccuracy (due to the difficulty of off-axis 

chamber positioning in a solid phantom) or be unachievable 

(if the beam fluence is especially modulated, such as in a 

head and neck treatment). The use of a dosimeter with a 

small active volume reduces the need to identify and use a 

dose plateau. For this reason, diodes are an attractive option 

for the measurement of IMRT/VMAT point doses. 

Diodes, however, use a non-water-equivalent (silicon) 

active volume and are known to over-respond in small radi-

ation fields [1,2,11], while also over-responding to the in-

creased low-energy component of large radiation fields 

[12,13,14]. Diode dies are often embedded in epoxy resins 

and surrounded by high-density shielding (even unshielded 

diodes can contain thin metal filters [15]) and electrical 

contacts. Cylindrical diodes designed to acquire relative 

dose measurements while aligned parallel with the radiation 

beam (usually vertically) in a water tank are designed 

asymmetrically in the longitudinal direction and may there-

fore produce inaccurate or unpredictable results when posi-
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tioned perpendicular to the beam (usually horizontally) in a 

solid phantom, for IMRT/VMAT point dose measurements.  

While methods to correct or avoid diode over-response 

are currently under investigation [16,17,18], the possible 

effects of diode housing asymmetry remain a concern 

[19,20,21]. For example, in 1994 Beddar et al used profile 

measurements made using Scanditronix photon and electron 

diodes (IBA Dosimetry GmbH, Schwarzenbruck, Germany) 

to illustrate the different effects of scanning the diode 

through the radiation field stem-first and stem-last, and 

showed that asymmetries in the diodes’ construction had 

substantial effects on the results, potentially altering the 

position of the 90% isodose by 0.6 mm [19]. While this 

study has been highly influential, encouraging the vertical 

(parallel to the beam) positioning of diodes for relative 

dosimetry [19], no published study has verified the results 

of this work, for contemporary diode designs.  

This study therefore aims to assess the effect of diode 

housing asymmetry on penumbra measurements, for a set of 

three contemporary diodes, and to compare these results 

with measurements made using plastic-walled ionization 

chambers. Additionally, this study exemplifies the use of 

both chambers and diodes for measuring at various high and 

low dose points in a modulated treatment beam. 

II. MATERIALS AND METHODS 

A. Dosimeter selection and preparation 

The dosimeters selected for use in this study were: the 

IBA (formerly Scanditronix/Wellhofer) CC13 compact 

ionization chamber (IBA Dosimetry GmbH, 

Schwarzenbruck, Germany) with 6 mm inner diameter and 

0.13 cm
3
 collecting volume; the Exradin A16 micro-

ionization chamber (Standard Imaging, Middleton, USA) 

with 2.4 mm inner diameter and 0.007 cm
3 

collecting vol-

ume; the IBA SFD stereotactic diode with 0.6 mm active 

area diameter and 0.06 mm active area thickness; the PTW 

60016 diode P (PTW, Freiburg, Germany) with 0.03 mm
3
 

active volume and low-energy shielding; and the PTW 

60017 diode E with 0.03 mm
3
 and minimal shielding.   

Prior to first use, all dosimeters were tested for overall 

system integrity, post-irradiation signal drift, short-term 

reproducibility and dose linearity, using procedures recom-

mended for use in the acceptance testing of diodes [12]. 

 

B. Beam profiles 

This study used an Elekta Infinity linear accelerator with 

Agility head (Elekta Ltd, Crawley, United Kingdom), oper-

ating in 6 MV photon mode, to produce a 5x5 cm
2
 field for 

use in beam penumbra measurements. Beam profiles were 

measured at the depth of maximum dose (separately identi-

fied via depth dose scanning, for each dosimeter), to max-

imize the effects of dosimeter housing asymmetry and min-

imize the contributions from electron contamination and 

phantom scatter. Measurements were made with each do-

simeter positioned with the stem horizontal, perpendicular 

to the beam axis and parallel to the profile scanning direc-

tion, in an IBA Dosimetry Blue Phantom 3D scanning water 

tank. A uniform scanning step size of 0.5 mm was used with 

a measurement time of 0.3 s. 

Profile scans were acquired using Scanditronix Wellhofer 

(IBA) Omnipro Accept water tank scanning software. Raw 

scan data was manually centered and normalized to the 

central axis. Profiles were not smoothed or symmetrized.  

The profiles were used to compare penumbrae measured 

with the diode stem pointing into (equivalent to a “stem-

first” setup) and out of the field (equivalent to a “stem-last” 

setup), to evaluate the effects of dosimeter alignment and 

thus identify the effects of dosimeter asymmetry. 

C. IMRT dose measurement 

Point doses from modulated beams, in a high dose plat-

eau as well as in small low dose regions, were measured 

with each dosimeter and compared with the doses predicted 

by the radiotherapy treatment planning system (RTPS) and 

measured with film, in order to evaluate measurement accu-

racy under different conditions. 

 

Fig. 1 IMRT beams and measurement points (white crosses) used to exem-

plify dosimeter response: (a) high-dose plateau, (b) narrow low-dose 

region, (c) low dose region, blocked by multileaf collimator (MLC).  

The two treatment beams and three measurement posi-

tions shown in Figure 1 were selected for use in this study. 

Measurements were made with each dosimeter positioned at 

the centre of a 20 x 20 x 10 cm
3
 block of water-equivalent 

plastic (Blue Water, Standard Imaging). The block was 

shifted laterally so that measurements could be made at the 

points shown in Figure 1 while maintaining full scatter 

conditions at the centre of the block. The dosimeters were 

also irradiated using a square reference field, so that their 

readings could be converted to dose in Gy and compared 

with the treatment plan. 

Both IMRT treatment beams were planned and calculat-

ed using the Varian Eclipse RTPS and delivered using a 
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Varian iX linear accelerator (Varian Medical Systems, Palo 

Alto, USA) operating in 6 MV photon mode. 

III. RESULTS AND DISCUSSION 

A. Penumbra measurements 

 

Fig. 2 Beam penumbrae measurement results: (a) results for all dosimeters 

on 0-100% dose scale, (b) and (c) results on a 50-100% dose scale, separat-

ed for clarity. Stem-first and stem-last results are shown overlying each 

other, producing one pair of lines for each dosimeter.  

Figure 2 shows that there are noticeable differences be-

tween the penumbrae measured in the stem-first and stem-

last directions, for all five different dosimeters used in this 

study. While differences are very slight (barely distinguish-

able above the 0.1 mm certified accuracy of the IBA Blue 

Water scanning system) for the IBA CC13 chamber, all 

pairs of lines representing the stem-first and stem-last 

measurements diverge at the 80-90% isodose level.  

The off-axis positions of the 90% dose points measured 

in the two directions differ by 0.2 mm for the IBA CC13 

chamber, 0.3 mm for the IBA SFD diode and the PTW 

diode E, and 0.4 mm for the Exradin A16 chamber and the 

PTW diode P. All of these differences are smaller than the 

0.6 mm difference measured by Beddar et al using an older 

photon diode [19].  

20-80% penumbra widths are similarly affected (see Ta-

ble 1); there are differences of up to 0.2 mm in the penum-

bra widths measured using the stem-first and stem-last ori-

entations, with the result for the Exradin A16 chamber 

being similar to the results for the three diodes.  

Table 1 Beam geometry measurements (mm) derived from profiles. 

Item CC13 A16 SFD Diode P Diode E 

Beam width (50-50%) 51.26 51.20 51.17 51.16 51.19 

Penumbra width  

(20-80%), stem first  
6.76 5.53 4.93 4.90 4.65 

Penumbra width  

(20-80%), stem last 
6.70 5.61 5.07 4.99 4.83 

B. IMRT dose 

Routine quality assurance testing (film dosimetry) 

showed good agreement with the RTPS calculated dose 

plane for the IMRT beam shown in Figures 2(a) and 

throughout most of the beam shown in Figures 2(b) and (c). 

However, the RTPS was unable to accurately predict the 

extent of the dose falloff in the narrow low-dose region 

indicated in Figure 1(b) and a local under-dose of approxi-

mately 3% was detected. The chambers and diodes exam-

ined in this study reproduced these results with varying 

degrees of success.  

Results shown in Figure 3 indicate that all five dosime-

ters measured the same dose, within 2%, for the high-dose 

plateau point (Figure 1(a)) and the four small-volume do-

simeters (the Exradin A16 and the three diodes) all identi-

fied the under-dosage at the point in the narrow-low dose 

region (Figure 1(b)). The four small-volume dosimeter 

measurements in the narrow low-dose region differed by 

7%, which is 1% of the maximum dose in the field (see 

Figure 3(b)). This under-dosage was not identified by the 

CC13 measurements, probably due to volume averaging 

(the low dose region is surrounded on all sides by higher 

doses). 

Figure 3(b) shows that the SFD diode measured a higher-

than-planned dose when the beam is blocked by MLC 

leaves, while all other dosimeters measured a lower-than-

planned dose in this region (Figure 1(c)). Further investiga-

tion is warranted, to identify whether this difference arises 

from a genuine over-response from the SFD or whether the 

small active volume of this dosimeter allowed it to detect a 

local dose increase due to MLC interleaf-leakage. 

 

Fig. 3 Comparison of IMRT point dose measurement results for different 

dosimeters in terms of (a) measured dose (Gy) and (b) difference between 

measured and planned dose (% of maximum). 
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IV. CONCLUSIONS 

While the longitudinally asymmetric housing of contem-

porary diodes can affect measurement results, in particular 

the shape of the dose falloff into a high-gradient region, 

these effects were observed to be similar to the orientation 

effects identified in small-volume ionization chamber pro-

files and smaller than the orientation effects identified for 

older diode models in the existing literature. 

When used to measure point doses in IMRT test fields, 

the diodes used in this study did not over-respond relative to 

the ionization chambers. Rather, they were able to accurate-

ly identify the presence of a small region of under-dosage, 

which was identified by only the smaller of the two ioniza-

tion chambers used in the study. 

This study does not attempt to resolve the issue of diode 

over-response in the small beam segments (one of the di-

odes may have over-responded to the MLC-blocked beam), 

however the results of this work should help to remove 

some of the barriers to the use of diodes for modulated 

radiotherapy dosimetry in the future.  
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