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Abstract 

Anisometropia represents a unique example of ocular development where the two eyes 

of an individual, with an identical genetic background and seemingly subject to identical 

environmental influences, can grow asymmetrically to produce significantly different 

refractive errors.  This review provides an overview of the research examining myopic 

anisometropia, the ocular characteristics underlying the condition and the potential 

aetiological factors involved.  Various mechanical factors are discussed including; 

corneal structure, intraocular pressure and forces generated during near work that may 

contribute to anisomyopia development.  Potential visually guided mechanisms of 

unequal eye growth are also explored, including the influence of astigmatism, 

accommodation, higher order aberrations and the choroidal response to altered visual 

experience.  The association between binocular vision, ocular dominance and 

asymmetric refraction is also considered, along with a review of the genetic contribution 

to the aetiology of myopic anisometropia.  Despite a significant amount of research into 

the biomechanical, structural and optical characteristics of anisometropic eyes, there is 

still no unifying theory which adequately explains how two eyes within the same visual 

system grow to different endpoints. 
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Previous studies of both animals and humans have shown that refractive error is 

largely determined by axial length and that ocular growth is influenced by visual 

experience.1  While there is evidence to suggest a genetic influence in the 

development of refractive errors (in particular myopia),2,3 it is now generally accepted 

that environmental factors such as near work4-6 and outdoor activity7 also play a 

significant role.  However, there is currently no single theory that adequately explains 

the physiological mechanisms underlying the development of myopia.  Commonly 

proposed hypotheses of potential mechanisms leading to myopia development include 

those where mechanical or optical factors promote excessive axial eye growth. 

Myopic anisometropia or anisomyopia typically defined as a between eye difference in 

myopic spherical equivalent refractive errors of ≥ 1.00 D (usually due to an interocular 

asymmetry in axial lengths)8 is a unique refractive condition in which the fellow eyes of 

an individual have grown to two distinctly different end points.  The investigation of 

anisometropia in myopia research (i.e. comparing the more myopic eye to the fellow 

relatively less myopic eye within the same individual) allows for potentially novel 

insights into the mechanisms underlying refractive error development since it allows 

for; greater control of potential confounding variables such as age and gender, 

minimisation of inter-subject variations in genetic and environmental factors, and thus 

provides an increased sensitivity in detecting a between subject (eye) difference in a 

variable of interest.  The aim of this review is to summarise the literature regarding 

myopic anisometropia (primarily non-amblyopic anisometropia), with a specific focus on 

the optical (e.g. accommodation and higher order aberrations) and mechanical 

characteristics (e.g. corneal structure, intraocular pressure and forces generated during 

near work) of anisomyopia, which may provide further insight into the genesis of 

myopic refractive errors.
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CHANGES IN ANISOMETROPIA THROUGHOUT LIFE 

Numerous studies have examined the prevalence and magnitude of anisometropia at 

various stages throughout life.  Figure 1 (based on the data from a large clinical 

population9) illustrates the typical changes observed from early childhood to older age; 

a decrease in the prevalence of anisometropia occurs during infancy and an increase 

throughout childhood and in older age groups.  The change in the magnitude of 

anisometropia follows a similar trend, with an interocular difference ≥ 1.00 D (or an 

asymmetry in axial length > ~0.3 mm) being outside the typical range of anisometropia 

observed across all ages (0.00 - 0.75 D).  The hypotheses related to the underlying 

mechanisms governing such age related changes in anisometropia are discussed in 

the following section. 

Infancy and amblyopic anisometropia 

The subject of amblyopic anisometropia is outside the scope of this paper (for review 

see Barrett et al10).  However in this sub-group of amblyopic anisometropes the change 

in refraction of hyperopic, astigmatic and strabismic anisometropes does provide some 

insight regarding the development of asymmetric refractive errors. 

Abrahamsson et al11 followed 310 astigmatic one year olds (≥ 1.00 D in one eye) over 

a 3 year period and observed that large amounts of anisometropia can diminish during 

infancy.  Anisometropia persisted in 46% of the anisometropic infants throughout the 

study period, and approximately 25% of these children developed amblyopia.  In 

another study, Abrahamsson and Sjostrand12 retrospectively examined the change in 

refraction of 20 children who had marked anisometropia ≥ 3 D at one year of age.  

Thirty percent of these children experienced an increase in the magnitude of their 

anisometropia (mean 1.4 D) and developed amblyopia between the ages of 3 to 10 

years.  Anisometropia decreased in the remaining 70% of children over time.  Half of 

these children had a significant decrease in anisometropia (mean 3 D) and did not 
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develop amblyopia.  However, the other half of this cohort experienced only a mild 

decrease in anisometropia (mean 1.2 D), but all of these children developed 

amblyopia. 

A number of studies have also observed that the change in refraction over time varies 

between the amblyopic and non-amblyopic eyes of strabismic13,14 and non-strabismic15 

children, with the non-amblyopic eye typically undergoing a significantly greater myopic 

shift.  Caputo et al16 retrospectively reviewed the change in cycloplegic refractions of 

46 young myopic anisometropes, more than half of whom had an eye movement 

disorder.  The authors observed that the less myopic eye at the initial examination 

became more myopic over time, whereas the more myopic eye (often with amblyopia 

or strabismus) had a relatively stable refraction during development. 

In summary, in early childhood, anisometropia typically decreases during 

emmetropisation (the reduction in neonatal refractive error towards emmetropia 

through coordinated eye growth) with the development of binocular coordination.  

When anisometropia persists beyond three years of age, it typically results in 

amblyopia.  The refractive error of amblyopic eyes (associated with hyperopic 

anisometropia, strabismus or dysfunctional binocular vision) remains relatively stable 

over time, whereas fellow non-amblyopic eyes tend to undergo a myopic shift during 

youth.  This suggests that clear vision and possibly accommodation (which is impaired 

in amblyopia17,18) are required for successful emmetropisation and potentially also for 

myopia development.  Dysfunctional or compromised binocular vision may also be 

related to the development of asymmetric myopic refractive errors. 

Non-amblyopic anisometropia in childhood 

Several longitudinal studies have examined the development of anisometropia during 

childhood and typically report an increase in the magnitude of interocular difference in 

refraction with age which is proportional to the increase in myopia (Figure 2).  It has 

been suggested that divergent refractive errors between fellow eyes during childhood 
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associated with myopia development and progression are the result of a failure of 

internal (between eye) homeostatic mechanisms regulating symmetrical eye growth.24  

However, deliberate unilateral optical interventions in young children25-28 which result in 

asymmetric eye growth (discussed in detail later) suggest that a local vision dependent 

mechanism may also play a role in the development of anisometropia in youth. 

The Ojai longitudinal study29 followed the refractive development of children from age 6 

to 17 years.  Of 359 children with at least 22 refractive time points (over an 11-12 year 

period), 2.5% developed myopic anisometropia (≥ 1.00 D SER).  In this first study 

examining the development of non-amblyopic myopic anisometropia during childhood, 

Hirsch stated that “...any theory for the development of myopia must explain how two 

eyes in an individual attain different refractive states, since both eyes accommodate 

and converge similarly, receive the same hormonal influences, perform the same tasks 

and have many other similarities”. 

Parssinen20 followed the change in refraction of 238 myopic children aged 9-11 years 

over a 3 year period and found that anisometropia remained stable in 67%, increased 

in 27% and decreased in 6% of subjects.  As myopia increased over time (mean SER 

changed from -1.43 to -3.06 D), the magnitude of spherical equivalent anisometropia 

increased from 0.30 to 0.51 D.  The initial refractive error, magnitude or axes of 

astigmatism and type of spectacle correction (single vision or bifocal) were not related 

to the change in anisometropia.  However, the development of anisometropia 

correlated with the increase in myopia.  The authors suggested that the greater the 

disruption in emmetropisation, due to either genetic or environmental factors, the 

greater the potential for an asymmetry in eye length to develop. 

In a cohort of predominantly emmetropic Japanese schoolchildren (initial mean SER 

+0.91 D), Yamashita et al23 also observed that spherical anisometropia remained 

relatively stable over a five year period (mean approximately 0.25 D) from age 6-11 

years.  Over the study period, anisometropia remained stable in 84% of children, while 

in 16% the magnitude increased or decreased with age.  The interocular difference in 
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the magnitude of astigmatism was also stable over time (mean approximately 0.32 D) 

however, there was a significant positive correlation between the magnitude of 

spherical and astigmatic anisometropia.  The interocular difference in astigmatism 

could potentially be a factor contributing to the development of spherical anisometropia 

or may be a consequence of asymmetric eye growth. 

In a three year longitudinal study of almost two thousand children in Singapore aged 7 

to 9 years, Tong et al22 found the mean spherical equivalent anisometropia increased 

slightly over time; from 0.29 D at baseline to 0.44 D at study completion.  Less than 4% 

of children had anisometropia of 1.0 D or more at baseline.  Of these children with 1.0 

D or more of anisometropia, 5.1% had an increase in anisometropia of at least 0.5 D, 

whereas 3.4% had a decrease of at least 0.5 D.  The change in anisometropia 

correlated with the change in inter-eye axial length.  Compared with isometropic 

children, each eye of the anisometropic children had a higher rate of myopia 

progression, but the change in anisometropia over time was similar between the two 

cohorts. 

Pointer and Gilmartin21 retrospectively examined the longitudinal change in refraction of 

a slightly older population aged 6-19 years.  They compared the rate of refractive 

change in 21 unilateral myopic anisometropes (one eye myopic, fellow eye 

emmetropic) to an age matched control group of bilateral myopes.  The rate of 

progression in the myopic eye of anisometropes was not significantly different to the 

rate of progression in bilateral myopes, the opposite trend to that reported by Tong et 

al.22 

Recently, Deng and Gwiazda19 examined the change in anisometropia during a 

longitudinal study of children from the age of 6 months to 12-15 years.  The magnitude 

of anisometropia increased over time and was associated with an increase in both 

myopic and hyperopic refractive errors.  This suggests that mechanisms other than 

excessive eye growth during childhood may promote the development of anisometropia 

(for example changes in binocular vision or ocular dominance). 
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The magnitude of anisometropia in children with active accommodation could 

potentially vary depending upon the method used to assess refractive error.  However, 

there is evidence to suggest that the use of cycloplegia during the determination of 

refractive error has minimal influence upon the magnitude and prevalence (less than 

1% difference in prevalence between cycloplegic and non-cycloplegic techniques) of 

anisometropia in both children30 and adults31 of varying refractive errors. 

In summary, the prevalence and magnitude of anisometropia typically increases 

steadily throughout childhood to young adulthood in association with age (Figure 2) 

and an increase in myopic or astigmatic refractive error.  Changes in anisometropia 

during childhood correlate with asymmetric changes in axial length between the fellow 

eyes.  The evidence regarding the rate of myopic progression in anisometropic eyes 

compared to isometropic eyes is conflicting. 

Myopic Anisometropia in Adulthood 

While anisometropia decreases during the early years of life (presumably through 

emmetropisation and binocular vision development) and increases during childhood 

and adolescence (associated with myopia development), throughout middle age 

(approximately 30 - 50 years) the prevalence and magnitude of anisometropia remains 

relatively stable (Figures 1 and 3).  This may be related to the stability of distance 

refraction during this period of adult life.  However, later in life (beyond 60 years), there 

is a marked increase in the prevalence of anisometropic refractive errors.31-35 

It has been suggested that the increase in anisometropia in older adults may be a 

result of asymmetric cataract development or unilateral cataract extraction.  However, 

studies restricted to phakic patients still demonstrate an increase with age and a higher 

proportion of anisometropia in patients with bilateral compared to unilateral cataract,32 

and anisometropia is found to be significantly associated with age even after controlling 

for the presence of cataract.36 
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Figure 3 illustrates the age related changes in magnitude and prevalence of 

anisometropia for a large cohort of myopic subjects (refractive surgery candidates) 

excluding cases of pathology such as unilateral cataract (based on the data of Linke et 

al31).  While this study has fewer younger (< 20 years) and older (> 60 years) subjects 

compared to the analysis of Qin et al9 (Figure 1), the data display an increase in the 

prevalence of anisometropia into old age in healthy eyes without pathology. 

Weale34 collated data from several studies examining the association between the 

prevalence of anisometropia and age and observed an approximate increase in 

prevalence of 1% for every seven years of life.  He suggested that an asymmetry in 

cataract development could not explain the significant increase in anisometropia and 

suggested that neuro-senescence, or a breakdown in binocular vision may play a role 

in the genesis of divergent refraction in the later years.  A recent study has shown that 

the prevalence of binocular vision disorders does increase significantly in older age 

groups.37 

In summary, the prevalence and magnitude of anisometropia varies throughout life.  

Studies of large clinical populations over a wide range of age groups and refractive 

errors have shown that while anisometropia is associated with spherical ametropia and 

astigmatism, it is also independently associated with age.  A rapid decrease in 

anisometropia is observed during the early years of life, followed by an increase from 

childhood to adulthood.  Anisometropia is typically stable in adulthood, but increases 

significantly in prevalence in older age.  The increase observed later in life may be 

related to a regression of neural control of binocular vision.  The increase in the 

prevalence and magnitude of anisometropia during the period of life typically 

associated with the onset and development of myopia is of particular interest, as 

understanding the mechanism underlying the development of anisometropia may 

provide insight into the development of myopia. 

GENETICS AND ANISOMYOPIA 
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While numerous studies have investigated the influence of genetics on the 

development of myopia (e.g. familial studies,38,39 twin studies,2,3 identification of genetic 

loci in high myopia40), relatively few studies have examined the heritability of 

anisometropic refractive errors.  In an early genealogical study, Goldschmidt41 

investigated the immediate family of thirty-six teenagers with high myopia (greater than 

6 D in one eye), nine of whom had moderate to severe unilateral myopia (average 8 D, 

range 4 - 14 D).  None of the siblings of the anisometropic probands displayed 

significant asymmetric refractive errors.  Also, the refractive status of parents varied 

considerably; with 55% showing emmetropia or low hyperopia, 22% with isometropic 

myopia, 11% with myopic anisometropia and 11% with antimetropia.  Based on these 

findings, Goldschmidt41 concluded that unilateral high myopia does not “conform to a 

simple, monomeric mode of inheritance” and speculated that environmental factors 

may also influence the symmetry of refraction between the fellow eyes. 

A number of other studies have also examined the pedigree of myopic anisometropes, 

with conflicting findings.  Ohguro et al42 observed an autosomal dominant inheritance 

pattern in a young male with 20 D of anisomyopia.  More recently, Feng et al43 reported 

an autosomal-recessive inheritance pattern in a Chinese family with myopic 

anisometropia of approximately 5 D.  However, in a study of 48 anisometropic children, 

Weiss44 reported that three female patients had a strong family history of anisomyopia 

and suggested an x-linked recessive inheritance pattern existed in cases of unilateral 

high axial myopia. 

Several case reports of young monozygotic and dizygotic twins also suggest that 

genetics may play a role in the aetiology of moderate to severe myopic anisometropia 

(approximately 8 - 10 D).  Mirror-image (Sibling 1 refraction: R-L ∞ Sibling 2 refraction: 

L-R) or directly symmetric (Sibling 1 refraction: R-L ∞ Sibling 2 refraction: R-L) severe 

anisometropia has been observed in both twins45-47 and non-twin siblings.48,49  Such 

high levels of anisometropia are typically due to abnormal ocular development in the 
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affected eye such as optic nerve hypoplasia45, macular hypoplasia47 or coloboma48 or 

are associated with significant pathology such as chorioretinal atrophy.50 

Conversely, Angi et al51 observed two cases of discordant anisometropia in young 

monozygotic twins (i.e. anisometropia in one twin only).  Asymmetries in refractive 

astigmatism were also observed in each of the affected (anisometropic) twins with a 

higher degree of astigmatism in the more myopic eye.  The authors hypothesised that 

asymmetric visual deprivation due to uncorrected astigmatism during the preschool 

years directly influences anisomyopia development.  In a pair of older monozygotic 

twins (62 years old), Dirani et al52 also observed significant discordant anisometropia (8 

D of anisomyopia in one twin only).  Given the identical genetic makeup and the 

absence of any ocular pathology or significant astigmatism, the refractive asymmetry 

between the twins might be a result of environmental factors such as trauma during 

embryonic development, injury during birth or incomplete genetic penetrance.53 

While conflicting evidence exists from familial studies regarding the inheritance of 

myopic anisometropia (which potentially suggests a multifactorial mode of inheritance); 

moderate to severe anisometropia present from a young age appears to be a result of 

genetic rather than environmental influences.  Such cases of anisometropia are 

typically associated with a unilateral structural abnormality causing excessive axial 

elongation.  However, in the absence of ocular pathology, it is likely that anisomyopia is 

a result of a combination of genetic and environmental factors such as abnormal 

(asymmetric) visual experience. 

To date, no studies have specifically examined the role of genetics in the development 

of lower levels of myopic anisometropia, which are more commonly encountered.  

However, recent advances in genetic testing which have enabled the identification of 

numerous genetic loci associated with myopic refractive errors54-57 could also 

potentially provide new insights into the genetic contributions to anisometropic 

refractive errors. 
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OCULAR CHARACTERISTICS OF ANISOMETROPIA 

In this section we discuss the anatomical differences between the fellow eyes of 

anisometropes and speculate how such differences may come about or potentially 

influence the development and progression of anisomyopia.  A number of studies have 

examined the various structural elements of anisometropic eyes (Table 1).  Briefly, the 

primary biometric basis of anisometropia is the between eye difference in axial length, 

in particular the vitreous chamber depth (Figure 4). 

There appears to be minimal contribution from the anterior segment including corneal 

thickness, anterior chamber depth or crystalline lens thickness (except in lenticular 

anisomyopia associated with cataract66), suggesting that anisometropia is primarily an 

interocular asymmetry in the magnitude or rate of posterior eye growth.  A number of 

studies have also reported on the ocular characteristics in anisometropic amblyopia 

with the asymmetry in refractive errors also being primarily axial in nature13 (but may 

also involve interocular differences in the cornea68,69 or crystalline lens structure70) and 

has also been associated with alterations in optic nerve head morphology.71,72  Some 

debate still exists as to whether higher order aberrations play a role in the genesis of 

amblyopic anisometropia.73-77 

MECHANICAL CONSIDERATIONS IN ANISOMYOPIA 

If mechanical factors contribute to anisometropic eye growth, then differences may be 

apparent in the biomechanical properties between the fellow eyes such as corneal 

thickness, corneal hysteresis or intraocular pressure (IOP).  This section summarises 

the literature on the between eye symmetry of biomechanical factors in anisometropia 

and discusses potential mechanically driven pathways of asymmetric axial elongation.  

Cornea 
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An early study examining the between eye symmetry of corneal thickness with an 

electronic digital pachometer revealed that both epithelial and stromal corneal 

thickness is similar between the fellow eyes of hyperopic and myopic anisometropes 

(mean absolute anisometropia 3.33 ± 3.15 D; 1-2 µm interocular corneal thickness 

differences).78  This finding has also been confirmed using more recent technology 

(optical coherence tomography [OCT]) in severe levels of anisomyopia (~10 D, with 

less than 3 µm interocular difference in central corneal thickness).79 

While corneal thickness appears highly symmetrical between the fellow eyes of 

anisometropes, Xu et al79 observed a small but statistically significant reduction in 

corneal hysteresis (1.00 mmHg) in the more myopic eye of severe anisometropes 

(mean anisometropia > 10 D), suggesting a slight change in the cornea’s mechanical 

properties.  Hysteresis is also reduced in conditions associated with corneal thinning 

such as advanced keratoconus or following corneal laser refractive surgery.80  Shen et 

al81 also observed significantly lower levels of corneal hysteresis in high myopes 

(SER > -9.00 D) compared to a control group of emmetropes and low myopes with 

similar corneal thickness and suggested that corneal collagen structure may be altered 

with higher levels of myopia similar to the changes in scleral composition and 

biomechanics observed in high myopia.82,83  Conversely, in lower levels of myopic 

anisometropia (~2 D) corneal biomechanics appear to be unaltered between the fellow 

eyes.62  These studies suggest that changes in corneal structure or biomechanics 

appear to be limited to high levels of myopic anisometropia. 

Intraocular pressure 

Another potential mechanical factor in myopia development is the eye’s intraocular 

pressure (IOP).  The role of IOP in myopia development has been studied extensively 

in both animals and humans; however the findings have been equivocal.  Since myopia 

is primarily axial in nature, early theories proposed that raised IOP was responsible for 

excessive inflation or elongation of the globe.  Van Alphen84 demonstrated that 
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increasing IOP in both enucleated cat and human eyes resulted in significant axial 

elongation of the globe without radial expansion.  The author concluded that the tone of 

the ciliary muscle mediates the tension within the choroid and subsequently the sclera, 

which in turn influences expansion of the globe and leads to an increase in axial length. 

Since the measurement of IOP may be influenced by variables such as age, blood 

pressure, corneal thickness85 and diurnal variation,86 a number of studies have 

compared the more and less myopic eyes of anisometropes to control for individual 

variations, which may potentially confound results in comparative cohort studies 

investigating the association between IOP and different refractive errors (e.g. 

emmetropes compared with age-matched myopes) (Table 2). 

If a relationship does exist between IOP and axial elongation, one might expect that 

IOP would be higher in the more myopic eye of anisometropes, at least during myopia 

development or progression.  However, cross-sectional studies using both contact and 

non-contact applanation techniques have shown no significant differences in IOP 

between the fellow eyes of low-moderate level anisometropes (~2-5 D).62,87,89-91  These 

studies suggest that axial elongation due to a simple IOP induced expansion of the 

globe is unlikely to be involved in the development of axial anisomyopia.  However, 

studies examining the symmetry of IOP in moderate to severe anisometropes (on 

average approximately 5-10 D anisomyopia)61,88 observed a slightly higher IOP (1-2 

mmHg) in the more myopic eye, which approached79 or reached61,88statistical 

significance.  An isolated case report of unilateral chronic angle closure in a young 

female described a marked myopic shift in the affected eye (8 D change in SER over 

eleven years), however, the asymmetric change in refraction was primarily due to 

altered corneal curvature (5.45 D interocular difference in mean corneal power) and not 

axial elongation (0.4 mm interocular difference).92 

However, it may also be possible that anisometropia could develop through an IOP 

dependent mechanism in the presence of symmetrical IOP, if between eye differences 

exist in scleral biomechanics.  Lee and Edwards90 calculated that the stress exerted 
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upon the sclera was significantly higher in the more myopic eyes of anisometropes 

compared to the fellow eye.  The authors proposed that an interocular difference in 

scleral thickness due to different rates of collagen synthesis might result in asymmetric 

axial elongation and the development of anisomyopia despite symmetrical IOP. 

While small, clinically insignificant differences in IOP have been detected between the 

fellow eyes of severe myopic anisometropes (~1-2 mmHg), in general, cross-sectional 

studies of anisomyopes do not support an IOP related mechanism of asymmetric axial 

expansion of the globe.  The cross sectional nature of the above studies leaves open 

the possibility that either short-term (e.g. diurnal variations or IOP spikes93) or longer-

term fluctuations in IOP may vary in anisometropic eyes.  Although no studies have 

specifically reported on the change in IOP over time during the development of 

anisometropia, longitudinal studies of myopia development in children have failed to 

find an association between IOP and axial growth.94,95 

Mechanical effects of near work 

Since a number of epidemiological studies4,96-98 have reported an association between 

near work and myopia, it has been suggested that mechanical forces generated during 

near work such as those produced during convergence, or ciliary muscle contraction 

could potentially promote axial elongation.  When near work is performed the eyes 

typically converge and accommodate in order to maintain clear, single binocular vision 

of near targets.  Here we consider potential mechanical pathways associated with 

convergence and accommodation in asymmetric myopia development. 

Convergence 

Forces exerted by the extraocular muscles during convergence are thought to have the 

potential to lead to changes in axial length.99  Bayramlar et al100 concluded that 

transient axial elongation associated with near work was a result of convergence rather 

than accommodation after observing significant vitreous chamber elongation measured 
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with ultrasound biometry in young subjects following near fixation with and without 

cycloplegia.  However, Read et al101 reported that axial length measured with partial 

coherence interferometry appears largely unchanged in adults both during and 

following a period of sustained convergence. 

Recently, Ghosh et al102 examined the influence of gaze direction (9 different directions 

were examined) upon axial length during distance fixation and also found no significant 

change in axial length with nasal gaze (i.e. convergence).  However, a significant 

increase in axial length (relative to primary gaze) was observed during inferior and 

infero-nasal gaze directions.  Importantly, axial elongation was only evident when the 

eye was turned to maintain fixation, rather than a head turn, suggesting that the 

changes in eye length were due to extraocular muscle forces.  Interocular differences 

in the size or insertion points of the extraocular muscles, in particular those associated 

with convergence and downward gaze (i.e. the superior oblique and inferior rectus), or 

asymmetric convergence in downward gaze (one eye converging more than the fellow 

eye) as a result of an abnormal head turn could potentially result in different forces 

transmitted between fellow eyes and an asymmetry in transient axial length changes 

during near work. 

It has also been suggested that anisometropia may be related to facial structure, 

specifically the position of the orbits.  Lateral displacement of one orbit would induce an 

asymmetric convergence demand between the fellow eyes, potentially causing greater 

mechanical stress on the eye further from the vertical midline.  Martinez103 noted that 

anisometropes tended to have asymmetric naso-pupillary distances, however the 

interocular difference did not correlate with the magnitude or sign of the between eye 

difference in refractive errors.  If convergent muscle forces do play a role in 

anisomyopia development, one might expect that in cases of unilateral esotropia the 

squinting eye would typically be myopic relative to the fixating eye.  However, studies 

of strabismic children have found the opposite to be true (the fixing eye becomes more 

myopic relative to the squinting eye over time).13-15 
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Accommodation 

Ciliary muscle contraction has also been found to be associated with small but 

significant increases in the eye’s axial length.  Various studies have documented 

transient changes in axial length using highly precise non-contact instruments during104-

106 or following107 periods of accommodation.  However, the magnitude of axial 

elongation between myopic and emmetropic cohorts varies between studies. 

In two separate studies of anisomyopes, no significant difference was observed 

between the fellow eyes with respect to transient axial length changes following a ten 

minute binocular reading task (2.5 D accommodation demand) or during an 

accommodation task at 2.5 and 5 D stimuli during monocular fixation.108  While the 

more myopic eye displayed a slightly greater change in axial length during 

accommodation compared to the less myopic eyes for both the 2.5 D (3 µm greater) 

and 5 D stimuli (4 µm greater), these interocular differences did not reach statistical 

significance.  Over time, or for larger accommodative demands, it may be possible that 

an asymmetric accommodative response could potentially lead to transient axial length 

elongation of different magnitude between the fellow eyes, potentially leading to axial 

anisometropia. 

If ciliary body forces or choroidal tension generated during accommodation cause 

transient axial length changes following near work and are related to longer term 

changes in eye growth, then ciliary body (or ciliary muscle) thickness might be larger in 

myopes compared to emmetropes or larger in the more myopic eye of anisomyopes 

relative to the fellow eye.  This finding has been reported previously in children 

(emmetropes compared to myopes)109 and in cases of unilateral high myopia (mean 

anisometropia 8 D).110  However, in a recent study of anisometropes (≥ 1.00 D 

spherical anisometropia), ciliary muscle size was largely symmetrical between the 

fellow eyes (slightly thinner in the more myopic eye).111 
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Factors other than ciliary body size may also influence the amount of force transmitted 

to the posterior eye during accommodation such as the structural and biomechanical 

properties of the choroid and sclera.  Significantly thinner choroids have been observed 

in myopic children compared to emmetropes112 and in the more myopic eyes of 

anisomyopic adults,64 which could potentially promote unequal axial elongation (or at 

least result in asymmetric biomechanical stress at the posterior globe) in the presence 

of symmetrical ciliary body structure and function.  On the other hand, it has also been 

suggested that a thicker ciliary muscle may restrict equatorial eye growth (producing 

greater axial expansion), or result in poor contractility leading to a reduced 

accommodative response, both of which could potentially initiate axial elongation and 

myopia development.113 

In a retrospective case series examining long-term complications of unilateral traumatic 

hyphema, Lin and Lue114 observed significant anisometropia (≥ 1.00 D) in 44% of their 

patients.  On average, the unaffected eye was 1.23 ± 2.13 D more myopic than the 

injured eye for all trauma patients and 2.76 ± 2.47 D for the subset of ‘traumatic’ 

anisometropes.  A strong correlation was observed between the extent of anterior 

chamber angle recession (i.e. 0 - 360 degrees) and the between eye asymmetry in 

refraction (r = 0.60, p < 0.01) and axial length (r = -0.57, p < 0.01).  Following trauma, 

the majority of patients also displayed an asymmetry in accommodation.  Given that 

IOP was not significantly different between the fellow eyes; the authors suggested that 

“traumatic cycloplegia” halted myopia progression in the injured eye compared to the 

fellow eye, similar to the effect of atropine115 or pirenzepine.116  This study adds some 

weight to the theory that the ciliary body (or accommodation) is involved in asymmetric 

axial elongation.  However, whether this is an optical or mechanical mechanism (or a 

combination of the two) remains unclear. 

OPTICAL FACTORS IN ANISOMYOPIA 
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Numerous studies with animal models have shown that unilateral manipulation of visual 

input such as hyperopic defocus (via spectacle lens) or form deprivation (via lid suture 

or diffuser) results in compensatory eye growth (choroidal thinning and axial elongation 

to adjust the position of the retina) to achieve emmetropia in the experimentally treated 

eye.1,117,118  This results in the development of anisometropia (or unilateral myopia).  If 

anisomyopic eye growth in humans is influenced by an interocular difference in visual 

experience, then asymmetries in optical properties (e.g. corneal or total ocular higher 

order aberrations) may be evident between the fellow eyes of anisometropes.  In this 

section, we examine the literature on image mediated asymmetric eye growth in 

humans, and studies comparing the optical properties between the fellow eyes of 

anisometropes. 

Asymmetric visual experience and eye growth 

Deprivation of form vision during infancy results in the most severe form of amblyopia.  

Retinal image degradation due to ptosis,119 corneal scarring,120 congenital cataract121 or 

vitreous haemorrhage122 typically leads to excessive axial elongation (form deprivation 

myopia) and dense amblyopia.  The magnitude of myopia, and thus anisometropia, is 

related to the degree and age at the onset of image degradation. 

Similarly, studies have shown that deliberate unilateral manipulation of the retinal 

image in humans can alter axial elongation between the fellow eyes.  Cheung et al26 

observed asymmetric eye growth in an eleven year old myopic anisometrope 

undergoing unilateral orthokeratology treatment in the more myopic eye.  Over a two 

year treatment period, the less myopic eye grew 0.34 mm (an increase in myopia of 

approximately 1 D) compared to the treated more myopic eye which grew only 0.13 

mm, suggesting that the corneal reshaping slowed myopia progression in the treated 

eye.  Similarly, in a contralateral design clinical trial of 26 children wearing an 

orthokeratology lens in one eye and a conventional RGP lens in the fellow eye, 

Swarbrick et al28 observed a significant interocular difference in both eye growth and 



 

 
 

20 

refraction after one year; the eye wearing the conventional RGP lens was on average 

0.09 ± 0.17 mm longer and 0.57 ± 0.66 D more myopic than the fellow eye wearing the 

orthokeratology lens. 

Phillips27 followed 13 eleven year old myopes fitted with monovision spectacles (≥ 2.00 

D) over a period of thirty months.  Using dynamic retinoscopy, the author observed that 

all children accommodated to read using the distance corrected dominant eye rather 

than the near corrected eye.  As a result, the near corrected eye received myopic 

defocus for all levels of accommodation.  Myopia progression was significantly slower 

in the near corrected eye compared to the fellow distance corrected eye.  All subjects 

developed anisometropia due to the interocular symmetry in vitreous chamber growth 

(interocular difference of 0.13 mm/year).  When these subjects returned to conventional 

distance spectacle wear, the anisometropia reduced to baseline levels within 18 

months. 

In a larger study, Anstice and Phillips25 examined the change in refraction and axial 

length in 40 young non-anisometropic myopes (11-14 years old) over a period of 

twenty months while wearing a different design of soft contact lens in each eye.  A 

single vision lens was worn in one eye and a multifocal lens (simultaneous vision - 

distance centre) was worn in the fellow eye.  The mean increase in myopia progression 

(spherical equivalent and axial length) over ten months was significantly reduced in the 

eyes wearing the multifocal lens (-0.44 ± 0.33 D and 0.11 ± 0.09 mm) compared to the 

single vision lens (-0.69 ± 0.38 D and 0.22 ± 0.10 mm).  The reduction in myopia 

progression associated with multifocal lens wear was attributed to the constant 

peripheral myopic defocus induced during all levels of accommodation. 

Recently, Read et al123 examined the short-term change in axial length and choroidal 

thickness in young adults following one hour of imposed monocular defocus.  Using an 

optical biometer, significant changes in axial length were observed which corresponded 

to the direction of the induced defocus.  Lens induced hyperopic defocus (-3 D) and 

form deprivation (diffuser) both resulted in choroidal thinning and axial elongation, while 
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lens induced myopic defocus (+3 D) resulted in a thickening of the choroid and a 

decrease in axial length (only in the eye with the imposed defocus).  This study 

suggests that the adult human visual system is capable of detecting the direction of 

defocus and adjusting the position of the retina to minimise the imposed blur by altering 

the thickness of the choroid.  Previous studies with young animals have shown similar 

short term changes in choroidal thickness occurring within minutes in response to 

defocus that precede longer term changes in eye growth. 

These studies demonstrate that deliberate manipulation of the focal properties of the 

retinal image in young subjects has the potential to influence eye growth and lead to 

changes in the refractive state of the eye.  It follows that interocular differences in 

retinal focus may underlie anisomyopic eye growth. 

A recent case report of non-amblyopic progressive adult antimetropia124 (anisometropia 

in which one eye is myopic and the fellow eye is hyperopic) also adds weight to the 

above evidence for a local mechanism of eye growth regulation in humans with 

relatively independent control in each eye.  In this particular case, the increase in 

antimetropia was due to a combination of unilateral axial elongation in one eye and the 

gradual manifestation of latent hyperopia in the fellow eye. 

Sorsby et al8 reported on the ocular characteristics of six antimetropic children (aged 7 

- 16 years).  All of the children exhibited low hyperopia in one eye (1 - 2 D) and a 

moderate degree of myopia in the fellow eye (mean absolute anitmetropia 4.93 ± 1.33 

D).  The origin of the antimetropia varied substantially; three cases of axial length 

asymmetry (mean 2.44 ± 0.13 mm), two due to an interocular difference in crystalline 

lens power (mean 4.25 ± 0.48 D) and one as a result of an asymmetry in corneal power 

(1.7 D).  Using more sophisticated techniques (ultrasonography and corneal 

topography), Kuo et al61 examined a larger cohort of older antimetropes of similar 

magnitude (19 - 30 years old, mean SER antimetropia 5.28 D) and found no significant 

differences between the fellow eyes for anterior eye biometrics (corneal thickness and 
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anterior chamber depth), but a significant difference in axial lengths (mean 2.00 mm, 

95% CI 1.7 - 2.5 mm) and concluded that the biometric basis of antimetropia is the 

interocular asymmetry in axial length. 

Antimetropic eye growth in the absence of amblyopia or pathology is an intriguing 

refractive anomaly, perhaps even more so than anisomyopia, since the two eyes within 

the one visual system have not only developed markedly different refractive errors, but 

in opposite directions from emmetropia.  While the existing literature regarding 

antimetropia is limited (potentially due to its low prevalence, up to 0.1%125,126), future 

research into antimetropic eye growth may provide valuable insights into retinal image 

mediated asymmetric eye growth and myopia development. 

Pupil size 

When considering the optical properties or image quality of the eye, an important factor 

to take into account is pupil size.  Asymmetry in pupil size (anisocoria) or an interocular 

difference in the quality and size of the fundus reflex is often used as a screening 

technique for interocular differences in refractive errors or ocular misalignment in 

children.127  However, in a cohort of anisomyopic subjects,108 pupil dimensions were 

measured using digital photography and customised software and were found to be 

highly symmetrical between the more and less myopic eyes.  Although the difference in 

pupil diameter between the more and less myopic eyes approached significance (more 

3.53 mm and less 3.48 mm, p = 0.09) there was no correlation between the degree of 

physiological anisocoria and anisometropia. 

Corneal power 

It is generally accepted that in an individual with no eyelid abnormalities, the two eyes 

display some degree of corneal symmetry (direct or mirror symmetry) with respect to 

the axes of astigmatism.128,129  A high degree of symmetry exists between fellow eyes 

for corneal power in both isometropic eyes130 and anisometropic eyes measured with 



 

 
 

23 

keratometry (i.e. the central cornea)58-60,63 (Table 3).  Although there is significant 

variability in corneal power in emmetropia and myopia,131 several studies have shown 

greater corneal power132-134 and a less prolate corneal shape135  in myopes compared 

to emmetropes. 

Using videokeratoscopy, Vincent et al62 observed small interocular differences between 

the flat and steep corneal meridians of fellow eyes in a cohort of anisomyopes.  The 

more myopic eyes exhibited more prolate corneas, in contrast to previous studies, 

which have shown that corneas tend to become less prolate with increasing levels of 

myopia.136,137  The mean refractive corneal power (average of the steep and flat corneal 

meridians) was also significantly greater (steeper) in the more myopic eyes which is in 

contrast with previous biometric studies of anisometropic subjects8,58,61 and may be due 

to the more accurate method used to assess the corneal shape. 

Gwiazda et al138 followed a cohort of children from an early age (1 year) and observed 

that infantile against the rule astigmatism was associated with increased myopia and 

astigmatism during childhood (school age) and hypothesised that uncorrected 

astigmatic errors during the emmetropisation period may play a role in the development 

of myopia. 

Buehren et al139 also postulated that altered mid-peripheral corneal shape and optics 

due to lid pressure during reading might be a potential trigger for refractive error 

development.  Temporary corneal distortions (changes in corneal astigmatism or higher 

order aberrations) resulting in hyperopic defocus or retinal image degradation may lead 

to compensatory axial elongation.  A similar mechanism could be proposed in the 

development of myopic anisometropia.  A greater amount of peripheral corneal 

flattening in one eye could result in peripheral hyperopic defocus, triggering asymmetric 

axial elongation. 

Vincent et al140 investigated the change in corneal optics following a short reading task 

in young non-amblyopic anisomyopes.  The more myopic eye displayed a small but 

significantly greater increase in against the rule astigmatism compared to the less 
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myopic eye over a 6 mm analysis diameter.  This finding lends some support to the 

notion of an astigmatic image mediated mechanism associated with the development 

of anisomyopia. 

However, it could also be argued that altered corneal shape may be a result of vision-

dependent eye growth rather than a cause of myopia development.  Kee and Deng141 

reported significant changes in corneal astigmatism following various visual 

manipulations in young chicks including form deprivation, hyperopic and myopic 

defocus.  Small corneal differences observed between the eyes of anisometropic 

subjects may be attributed to axial elongation (rather than cause it) and subsequent 

alterations in scleral structure which could potentially impact upon the cornea at the 

limbus. 

Together, these studies suggest that alterations in corneal optics could potentially play 

a role in the development of myopia and anisometropia.  Given the association 

between the progression of astigmatism and anisometropia during childhood and the 

observation of higher levels of astigmatism in the more myopic eye of anisometropic 

twins, the relationship between astigmatism, retinal image quality and asymmetric eye 

growth requires further research. 

Accommodation 

The accuracy of the accommodative response and optical effects of accommodation in 

various refractive error groups has been investigated in detail.142  Typically a greater 

lag of accommodation (under accommodation during near work) has been reported in 

myopes compared to emmetropes.143-146  It has been suggested that hyperopic defocus 

associated with a lag of accommodation may provide a cue to eye growth and myopia 

development. 

A number of studies have explored the plausibility of aniso-accommodation in 

isometropic individuals.  Koh and Charman147 reported that during binocular viewing, 

when the eyes are presented with stimuli of unequal accommodative demand, the eye 
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which requires the least accommodative effort to maintain clear focus of the target will 

control the accommodative response in both eyes.  Marran and Schor148 also observed 

that when presented with unequal accommodative targets, subjects demonstrated 

aniso-accommodation to approximately one quarter of the interocular difference in 

demands.  However, at a stimulus difference of approximately 3 D there appeared to 

be a suppression mechanism involved in eliminating the image from the eye with the 

higher accommodation demand.  Conversely, Troilo et al149 suggested that the 

binocular accommodative response in marmosets reared with imposed anisometropic 

defocus was an average of the two different demands rather than an aniso-

accommodative mechanism or a response driven by the lower of the two demands. 

Thus, interocular differences in the accommodation demand (or response) could 

potentially provide a stimulus to asymmetric eye growth.  Charman150 postulated that 

the simple act of reading across a page induces an unequal accommodative demand 

between the eyes (when not viewing directly along the midline), which increases as the 

working distance to the text is decreased (or interpupillary distance increases).  

However, if the eyes remain relatively centred and stationary over the reading task, the 

defocus experienced in one eye will also be experienced in the fellow eye in the 

opposite direction of gaze, and each eye would receive the same amount of blur 

(averaged over time).  When a head tilt or turn is adopted, or any position in which the 

reading material is not centred in front of the eyes, the accommodative demand for 

each eye will again change.  At a working distance of 10 cm when reading on an A4 

page, the interocular difference in accommodative demand at the end of a line of text 

may reach up to 2 D.150  Therefore, viewing reading material at a short working 

distance (with a head tilt) may lead to hyperopic defocus in one eye, assuming a 

consensual accommodative response to the lower of the two demands. 

In a qualitative study, Childress et al151 examined refractive error types in a range of 

occupations and considered the potential influence of specific work related visual tasks 

(with respect to the vertical midline) upon the development of anisometropia.  The 
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authors questioned participants regarding their typical visual demands, in particular the 

position of reading material and work instruments.  In general, those who reported a 

habitual reading posture centred on the vertical midline displayed symmetrical 

refractive errors (both spherical and astigmatic), while individuals who placed reading 

material to one side (due to office environment or job requirements) were more often 

anisometropic with the eye closer to the visual task usually the more myopic eye. 

In a similar study, Harris152 investigated the association between the specific visual 

demands of different symphony musicians (i.e. the effect of instrument type on head tilt 

or turn and seat position relative to the conductor and sheet music) and their refractive 

errors.  A number of musicians exhibited myopic and astigmatic anisometropia.  

Typically, the eye positioned closer to the visual task at near displayed greater 

spherical myopia and less astigmatism compared to the fellow eye.  The findings from 

these studies suggest a potential role for asymmetric viewing during near work in the 

development of anisomyopia; however, the underlying mechanism (e.g. unequal 

accommodative demands, eyelid forces or asymmetric convergence) remains 

unknown. 

A limited number of studies have directly examined the accommodative response in 

myopic anisometropes (Table 4).  In an early study, Hosaka et al153 measured the 

monocular amplitude of accommodation in a large cohort of anisometropes (interocular 

difference ≥ 1.00 D and including some amblyopes) and a control group of 

isometropes.  Ninety-seven percent of isometropes had an interocular difference in 

amplitude of accommodation of less than 2.00 D, compared to 69% in the 

anisometropic cohort.  Of the anisometropic subjects with an interocular difference in 

accommodation greater than 0.5 D, the amplitude of accommodation was reduced in 

the more myopic eye 70% of the time.  However, there was no significant correlation 

between the interocular difference in accommodative amplitude and the magnitude of 

anisometropia.  Seventeen subjects (mean age 21 ± 7 years) exhibited an interocular 

difference in accommodative response between 2-3 D; but again, there was no clear 
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evidence of a refractive error-accommodation interaction (i.e. the more myopic eye 

showed a greater lag in only 50% of these cases). 

Xu et al154 used an infrared optometer to measure the interocular symmetry of the 

accommodative response in twenty anisometropes with 2.50 - 7.00 D of spherical 

anisometropia at a range of accommodative demands.  The more myopic eyes 

exhibited a larger accommodative lag compared to the less myopic eyes for 

accommodation demands of 2, 3, and 4 D; however, these differences did not reach 

statistical significance. 

Recently, Lin et al65 investigated the magnitude of near work induced transient myopia 

(NITM, a slight myopic shift in refractive error following near work) in the more and less 

myopic eyes of young anisomyopes (~2 D anisometropia) during binocular viewing.  

On average, the more myopic eyes displayed a slightly greater level of NITM and a 

longer decay period to baseline refraction, which reached statistical significance.  A 

moderate correlation was also observed between the interocular difference in NITM 

and the magnitude of anisometropia (r = 0.31, p < 0.05).  The authors suggested that 

interocular differences in ciliary body thickness110 may be related to the observed 

differences in NITM between the fellow eyes.  However, for this relatively low level of 

anisomyopia, ciliary body biometrics are similar between the more and less myopic 

eyes.111 

To our knowledge these are the only previous studies to directly examine the 

interocular symmetry of accommodation in anisomyopia.  This may be due to previous 

research, which has shown a symmetric accommodative response between the eyes of 

normal subjects during both monocular155 and binocular156 viewing.  It has been 

suggested that the dominant eye (traditionally the preferred eye for distant sighting) 

may exhibit different accommodative responses to the fellow non-dominant eye.  In 

amblyopia, the non-dominant (amblyopic) eye shows impaired accommodation;76,157,158 

however, few studies have examined the role of ocular dominance and accommodation 

in non-amblyopic subjects.  Given the potential association between accommodation 
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and myopia development, the characteristics of accommodation between the dominant 

and non-dominant eyes are of interest with respect to refractive error development. 

Higher order aberrations 

Higher-order aberrations (HOA) are optical imperfections of the eye (excluding defocus 

and astigmatism) that degrade retinal image quality and may influence eye growth.  

Although the unaccommodated eyes of myopes and emmetropes exhibit similar levels 

of aberrations,159,160 during or following near work myopes tend to have higher levels of 

aberrations in comparison to their emmetropic counterparts.161-163  Recent studies 

suggest this may be due to differences in the cornea or palpebral aperture 

morphology.162,164  Several studies have compared the higher order aberration profile 

between the fellow eyes of anisometropes, with conflicting results (Table 5). 

Corneal higher order aberrations 

In non-anisometropic populations, there is a high degree of symmetry between the 

fellow eyes for measures of corneal aberrations.169,170  Plech et al74 also observed that 

corneal higher-order aberrations were similar between fellow eyes in cases of unilateral 

amblyopia including isometropic and anisometropic refractive errors.  In a population of 

non-amblyopic anisomyopes, Vincent et al62 found a high degree of interocular 

symmetry for corneal higher order aberrations, which increased as the corneal analysis 

diameter increased.  This suggests that the optical quality of the cornea is similar for 

the two eyes of myopic anisometropes, which does not support a model of myopia 

development driven by corneal aberrations.  However, these measurements were not 

taken during or following near work, which has been shown to alter corneal optics due 

to eyelid pressure.  Using the same non-amblyopic anisomyopes, a further study140 

was conducted to examine the symmetry of the change in corneal optics following a 

short duration reading task.  The changes in corneal higher order aberrations following 

reading were not significantly different between the fellow eyes, however, the more 
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myopic eyes exhibited a significantly greater increase in corneal against the rule 

astigmatism which resulted in a greater reduction in image quality over a 6 mm pupil 

diameter. 

Total ocular higher order aberrations 

A high degree of interocular symmetry also exists for the total HOA of the eye after 

correcting for enantiomorphism (between eye mirror symmetry) in various isometropic 

populations during distance171-175 and near fixation.176  However, studies of chicks177,178 

have reported a significant increase in higher order aberrations following monocular 

form deprivation and myopia development and recently Colletta et al179 observed that 

experimentally form deprived eyes of marmosets had significantly higher levels of the 

asymmetric aberration trefoil compared to the fellow control eye.  These animal models 

suggest that interocular asymmetries in higher order aberrations may be a result of 

asymmetric visual experience and/or eye growth, rather than a cause. 

In a cohort of human anisomyopes (~3.40 D anisometropia) Kwan et al165 also 

observed significant interocular symmetry in higher-order aberrations, however they 

also noted significantly higher levels of third order and total higher-order aberrations in 

the less myopic eye compared to the more myopic eye.  Conversely, more recent 

studies examining lower levels of anisomyopia (~1.75 D anisometropia) have found a 

high degree of interocular symmetry (and no significant interocular differences) in 

individual higher order aberrations, 3rd order, 4th order and 5th order aberrations or total 

higher-order aberrations62,166 (Table 5, Figure 5).  Retrospective clinical studies of total 

HOA in anisometropia also report a high degree of symmetry between the fellow eyes 

for almost all individual wavefront coefficients167 or a higher degree of interocular 

symmetry in anisometropes compared to isometropes.168 

In summary, these studies (which generally captured aberration measurements during 

distance fixation) do not support the hypothesis that increased aberrations (and hence 

reduced retinal image quality) in the unaccommodated eye play a role in the 
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development of myopic anisometropia.  However, this does not rule out the possibility 

that higher-order aberrations play a role in the development of myopia or anisometropia 

during or following near work, or that the sign of the aberrations (e.g. relative peripheral 

hyperopia) may play a role.  Additionally, no longitudinal studies have currently been 

published examining the symmetry of higher order aberrations in children during 

myopia development. 

THE POSTERIOR EYE IN ANISOMYOPIA 

Structural alterations of the posterior eye such as staphyloma and optic disc 

abnormalities are often associated with high myopia and excessive axial elongation.180  

With recent advances in posterior eye imaging (OCT), more subtle changes in retinal 

and choroidal thickness have also been observed over a range of myopic refractive 

errors (typically a thinning of the retina and choroid with increasing levels of 

myopia).181-183 

Retina 

While a number of studies have examined the interocular symmetry of retinal thickness 

in amblyopic anisometropia, few studies have examined retinal biometrics in myopic 

anisometropia.  For lower levels of myopic anisometropia (1.5 - 3 D) there appears to 

be no obvious structural differences between the fellow eyes with respect to retinal 

thickness at the macula184 or in paramacular regions64 and the retinal nerve fibre layer 

thickness surrounding the optic nerve.185  Additionally, a recent study examining retinal 

characteristics in severe myopic anisometropia (~10 D) found no significant differences 

between the fellow eyes for measures of foveal retinal thickness, but some retinal 

thinning was observed in the inferior and nasal paramacular regions in the order of 10-

20 μm.186 

Logan et al58 calculated the posterior retinal contour in Asian and Caucasian low 

myopic anisometropes of ~2 D (using peripheral refraction coupled with corneal 
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curvature and axial length data) and observed an ethnic influence upon interocular 

differences in posterior eye shape.  Caucasians exhibited between eye differences in 

axial length that were greater nasally compared to temporally in the posterior retinal 

contour, while in anisometropes of Taiwanese-Chinese descent, the interocular 

difference in axial length was similar between corresponding nasal and temporal 

locations. 

Choroid 

Until recently, choroidal thickness had not been directly measured in anisometropic 

eyes.  Early studies estimated the interocular symmetry of choroidal blood flow in 

anisomyopes by measuring the ocular pulse amplitude (OPA) and the pulsatile ocular 

blood flow (POBF).  Shih et al89 observed that when anisometropia exceeded 3 D, 

there was a significant interocular ocular difference in the OPA (0.27 mmHg).  Similarly, 

Lam et al91 found that in anisometropic subjects (> 2.0 D) both OPA and POBF were 

significantly lower in the more myopic eye of axial anisometropes and the interocular 

difference in OPA and POBF were both significantly correlated with the interocular 

difference in axial length.  These studies suggest that reduced choroidal blood flow is 

associated with increasing myopia. 

Vincent et al64 directly measured choroidal thickness in adult anisomyopes using OCT 

and observed significant interocular differences proportional to the degree of axial 

anisometropia.  These differences (a thinner choroid in the more myopic eye) were 

more apparent in Asian anisometropes compared to Caucasians.  This finding was 

consistent with the previous posterior retinal findings of Logan et al,58 since Asians 

displayed relatively symmetrical interocular differences in choroidal thickness at 

corresponding nasal and temporal locations, while in Caucasians choroidal thinning 

was limited to a region nasal to the fovea of the more myopic eye.  Together, these 

studies suggest that some of the structural changes in the eye associated with 

anisomyopia differ between Asian and Caucasian subjects. 
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Since previous animal studies have shown an active choroidal mechanism to 

emmetropise (by adjusting the position of the retina) to imposed defocus118,187 and 

evidence for a similar mechanism has been reported in humans,123 it is possible that 

the choroid plays a role in the development of anisomyopia.  Since the above study64 

was cross sectional it is unclear if the thinning of the choroid in the more myopic eye 

was a cause or consequence of myopia development.  However, modelling suggested 

that the interocular differences observed were not accounted for by a simple passive 

stretching of the globe.  This supports the theory that the between eye differences in 

choroidal thickness may be a result of an active ocular mechanism, similar to the 

response observed in monocular manipulation of refractive error in animal models. 

OCULAR DOMINANCE 

Several studies have investigated the association between ocular sighting dominance 

(the preference for the visual input from one eye when viewing binocularly) and 

anisometropia (Table 6).  In a cohort of adult Asian myopes Cheng et al188 observed 

that when the degree of anisometropia exceeded 1.75 D, the dominant eye was always 

the more myopic eye and hypothesised that an aniso-accommodative response (due to 

unequal accommodative demand during reading) may be responsible for the dominant 

eye being more myopic.  Similarly, a study examining predominantly Asian myopic 

anisometropes found that when the magnitude of anisometropia exceeded 1.75 D, the 

more myopic eye was almost always the dominant sighting eye (90% of cases) and 

when anisometropia exceeded 2.25 D the more myopic eye was always the dominant 

eye.62  This finding is in agreement with studies of young amblyopic strabismics in 

which the fixating (dominant) eye typically undergoes a greater myopic shift during 

childhood compared to the fellow amblyopic eye.13-15 

Conversely, in a study of Asian children, Chia et al189 found no such association.  The 

authors reported that when anisometropia was greater than 1.50 D, the dominant eye 

was more myopic in only 56% of subjects.  A large retrospective study of over ten 
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thousand patients screened for refractive surgery in Western Europe31 (presumably a 

predominantly Caucasian/European cohort) also recently found that in myopic 

anisometropia the dominant eye is typically the eye with the lower refractive error.  

While these studies all employed similar techniques to determine ocular dominance 

(variations of the hole-in-the-card test191), differences in subject ethnicity and age may 

account for some of the discrepancies observed in the findings between the studies. 

In summary, cross sectional studies of adult myopes (of predominantly Asian ethnicity) 

have found that beyond a threshold level of anisometropia (1.75 - 2.25 D), the more 

myopic eye is typically the dominant sighting eye.  However, studies of Asian children 

or European adults have observed that the non-dominant eye is typically the more 

myopic eye, or the eye with a greater level of astigmatism.  

Retinal image quality and ocular dominance 

In anisometropic amblyopia, the dominant sighting eye is typically the eye with better 

visual acuity, although there may be exceptions in some cases with intermittent 

strabismus.192  If visual acuity influences ocular dominance in myopic anisometropia, 

one might expect to see a significant difference in acuity between the fellow eyes of 

anisometropes, or a greater difference between eyes in acuity with increasing levels of 

myopic anisometropia.  In non-amblyopic myopic anisometropes, no significant 

difference in visual acuity was observed between the fellow eyes for either high (> 1.75 

D) or low levels of anisometropia (≤ 1.75 D).62  Furthermore, total higher order 

monochromatic aberrations (which alter the retinal image) were compared between the 

dominant and non-dominant eyes to examine if subtle optical differences between the 

eyes might somehow influence ocular dominance.  However, the dominant and non-

dominant eyes displayed similar root mean square (RMS) error values for HOA 

measurements taken during distance fixation.  This does not point to an obvious 

underlying optical reason (i.e. reduced retinal image quality) for the more myopic eye 

typically being the dominant eye for higher levels of anisometropia.  However, some 
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studies have reported that the non-dominant eye has a significantly higher level of 

astigmatism compared to the dominant eye, which increases with greater levels of 

anisometropia.31,189,193  While this suggests that image quality may play a role in the 

development of ocular dominance or anisometropia, the cross sectional nature of these 

studies prevents any firm conclusions regarding the causal nature of this association.  

One longitudinal study190 examined the rate of myopia development between dominant 

and non-dominant eyes of young Asian myopes and concluded that sighting 

dominance has no influence upon refractive error development.  However, this study 

only included isometropic children (mean anisometropia 0.22 D, [range 0 - 1 D] at initial 

examination) and excluded moderate myopes, astigmatic myopes and children whose 

parents had myopia greater than -3.00 D, significantly reducing the likelihood of 

including participants who may have developed anisometropia. 

Accommodation, binocularity and ocular dominance 

Beyond a certain degree of anisometropia, the more myopic eye may be favoured for 

near work during binocular vision due to the reduced ocular accommodative demand 

relative to the fellow eye and thus dominates during binocular viewing.  Studies of 

ocular changes of both eyes simultaneously during near tasks with binocular viewing 

may provide insight into characteristics that influence ocular dominance.  Yang and 

Hwang194 compared the interocular equality of the accommodative response in children 

with intermittent exotropia, without amblyopia or anisometropia.  During monocular 

viewing, the dominant and non-dominant eyes of intermittent exotropes both showed a 

small lag of accommodation.  However, during binocular fixation, a significant number 

of subjects displayed a greater lag of accommodation in the non-dominant eye 

compared to the fellow dominant eye.  This finding suggests a potential mechanism for 

the non-dominant eye becoming more myopic (due to hyperopic defocus) compared to 

the dominant eye, in cases of atypical ocular alignment. 
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There is conflicting evidence regarding the association between the magnitude of 

myopic anisometropia and ocular dominance and its role, if any, in asymmetric 

refractive development.  The fact that the more myopic eye is typically the dominant 

eye in some cohorts with higher levels of myopic anisometropia62,188 seems 

counterintuitive.  In amblyopic eyes, the dominant eye is the eye with better visual 

acuity, which has experienced normal emmetropisation and has a lower degree of 

ametropia.  Conversely, in non-amblyopic myopic anisometropia, initial reports 

suggested that the dominant eye tends to be the eye with the greater refractive error 

and further from emmetropia,62,188 but more recent findings from a much larger 

population31 suggests that the eye with the greater refractive error is typically the non-

dominant eye, a trend which is amplified with increasing magnitude of anisometropia. 

One explanation may be that ocular dominance is predetermined genetically.195  The 

eye which is then favoured for near work (as genetically determined) may be exposed 

to greater amounts of optical blur or mechanical stress resulting in greater axial 

elongation and myopia in the dominant eye causing anisometropia to develop.  If this 

were the case, we might expect to see a greater lag of accommodation in the dominant 

eyes of anisometropes.  An alternative explanation may be that ocular dominance is 

influenced by the development of anisometropia (particularly in Asian ethnicities).  

Beyond a certain degree of anisometropia, the more myopic eye may be favoured for 

near work during binocular vision due to the reduced ocular accommodative demand 

relative to the fellow eye and thus it may dominate during binocular viewing.  This could 

explain why there is a significant shift to the more myopic eye as the dominant sighting 

eye when anisometropia exceeds 1.75 D in adult Asian myopes, but not children. 

To date, studies examining ocular dominance and anisometropia have been cross-

sectional and have employed a simple forced choice method of determining sighting 

preference (the hole-in-the-card test191).  A longitudinal study into the ocular changes of 

dominant and non-dominant eyes during the development of anisometropia (using 

more sophisticated techniques to quantify ocular dominance196) may provide further 
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insight into the potential causal nature of this association.  Characteristics of the 

dominant eye during binocular near work may help explain the underlying mechanism, 

if ocular dominance influences the development of myopic anisometropia.  Apart from 

one study of myopic children,189 the majority of adult subjects examined in other 

cohorts were presumably established anisometropes (i.e. not developing 

anisometropia).  As such, we cannot rule out that visual acuity (or the quality of vision 

received) during anisometropia development plays a role in determining sighting 

dominance. 

CONCLUSION AND FUTURE RESEARCH DIRECTIONS 

A high degree of symmetry exists between the fellow eyes of myopic anisometropes for 

a range of biomechanical, biometric and optical parameters.  To date, a single specific 

optical or mechanical factor has not been identified that is consistently associated with 

asymmetric axial elongation, but it is possible that there are many individual or 

combined stimuli that lead to a difference in eye growth between fellow eyes.  The 

findings from the studies discussed in this review suggest many areas of potential 

interest that require further research. 

There appears to be a strong association between ocular dominance and myopic 

anisometropia in Asian adults.  A longitudinal study into the ocular changes of 

dominant and non-dominant eyes during anisomyopia development may provide 

further insight into the potential causal nature of this association.  Characteristics of the 

dominant eye during binocular near work may also help to explain the underlying 

mechanism, if ocular dominance influences the development of myopic anisometropia. 

An interocular asymmetry in choroidal thickness has been observed that is proportional 

to the magnitude of anisomyopia.  Previous animal studies have shown an active 

choroidal mechanism to emmetropise to imposed defocus118,187 and evidence for a 

similar mechanism in humans has recently been reported.123  Given that the between 

eye differences in choroidal thickness cannot be explained by a simple passive stretch 
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model, interocular differences in myopiagenic stimuli may be driving asymmetric 

myopia development.  Therefore, a longitudinal study examining factors such as the 

interocular symmetry of ocular biometry, optical quality (including corneal and total 

ocular astigmatism and higher order aberrations) and changes in the choroid during 

childhood-adolescent myopia development may provide important information 

regarding the development of asymmetric refractive errors. 
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FIGURES 

 

 

 

Figure 1. The prevalence and magnitude of anisometropia throughout life (based on 
data from a large clinical study of more than 85 000 patients including myopes, 
hyperopes, amblyopes and cases of ocular pathology9).  The black bars represent the 
prevalence of mean absolute SER anisometropia ≥ 1.00 D (corresponding to the left y-
axis).  The red line represents the magnitude of mean absolute SER anisometropia, for 
all patients including isometropes and anisometropes (corresponding to the right y-
axis).  The prevalence and magnitude of anisometropia vary significantly over time. 
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Figure 2: Combined data from longitudinal studies of non-amblyopic anisometropia 
throughout childhood and adolescence.19-23  A small but significant increase in the 
magnitude of mean absolute SER anisometropia is observed with increasing age, 
which is associated with the progression of myopic and astigmatic refractive errors.  
Solid line represents the line of best fit and dotted lines 95% confidence intervals. 
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Figure 3. The prevalence and magnitude of anisometropia throughout life in myopia 
(based on data from a clinical study of refractive surgery candidates31).  The black bars 
represent the prevalence of mean absolute SER anisometropia ≥ 1.00 D 
(corresponding to the left y-axis).  The red line represents the magnitude of mean 
absolute SER anisometropia, for myopic patients only including myopic isometropes 
and anisometropes (corresponding to the right y-axis). 
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Figure 4. Optical low coherence reflectometry A-Scan output for the more myopic 
(RED, Axial length 24.70 mm, refraction -2.75/-1.75 x 5) and the less myopic (BLUE, 
Axial length 23.11 mm, refraction pl/-0.25 x 5) eyes of a typical non-amblyopic 
anisometrope.  Biometric studies of anisometropic eyes have shown a high degree of 
symmetry is observed between the fellow eyes for measures of anterior segment 
structures.  In this particular example; central corneal thickness (1) (more 501 µm, less 
501 µm), anterior chamber depth (2) (more 3.12 mm, less 2.98 mm) and lens thickness 
(3) (more 3.53 mm, less 3.47 mm).  The biometric basis of axial anisomyopia is the 
interocular difference in the vitreous chamber depth (4) (more 17.55 mm, less 16.15 
mm).  RPE – retinal pigment epithelium. 
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Figure 5: Mirror symmetry of astigmatism and comparison of higher order aberrations 
in a typical anisometropic subject (R: -4.25/-1.75 x 15 and L -2.75/-1.75 x 170).  The 
above refractive power maps (4 mm pupil) are generated from the total ocular 
wavefront for Zernike terms up to the 8th radial order: 4-6 (lower order terms, A and B), 
4-45 (lower and higher order terms, C and D) and 7-45 (higher order terms only, E and 
F).  Cross sectional studies of anisomyopes typically report similar levels of aberrations 
between the fellow eyes, or slightly higher levels in the less myopic eye. 
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Table 1: Summary of biometric studies of myopic anisometropia 

Study 
Cohort  

Method 
IOD: More minus Less myopic eye (mm) 

Note 
Criteria, Age, Mean Anisometropia, (n) CCT ACD LT VCD AXL 

Sorsby et al (1962)8 † 

IOD vertical meridian ≥ 2.00 D 

POP 

 

Crystalline lens equivalent power;  
IOD in anisomyopia (-0.19 D) 

IOD in unilateral myopia (-0.67 D). 
Anisomyopia (23 ± 12 years) 5.30 D, (27) — - 0.06 + 0.05 — + 2.66 

Unilateral myopia (23 ± 15 
years) 6.73 D, (8) — + 0.04 + 0.05 — + 3.81 

Logan et al (2004)58 
Caucasian (18-26 years) 2.32 D, (14) 

US 
— - 0.05 + 0.01 + 0.92* + 0.88* Regional asymmetries (nasal – temporal) in 

peripheral IOD in AXL is more pronounced in 
Asian anisomyopes compared to Caucasians. Asian (14-26 years) 2.59 D, (14) — - 0.03 - 0.01 + 1.33* + 1.29* 

Tong et al (2004)59 

8 ± 1 years 

US 

 
IOD in AXL significantly greater in 

anisometropes compared to isometropes and 
weakly but significantly correlated with SER 

anisometropia (r = 0.123). 

Isometropes SER < 1.50 D, (1948) — — — — + 0.21 

Anisometropes SER ≥ 1.5 D, (31) — — — — + 1.14 

Huynh et al (2006)60 
Anisometropia SER ≥ 1.00 D, (28) 

OLCR 
(IOL) 

— 0.10 — — 0.72 Absolute IOD reported.  IOD in ACD and AXL 
significantly different between anisometropes 

and isometropes. Anisometropia SER < 1.00 D, (1696) — 0.05 — — 0.09 

Kuo et al (2011)61 

29 anisomyopes, 20 antimetropes, 2 
anisohyperopes 

US + 0.005 + 0.05 — — + 1.6* 
Presented thinnest corneal thickness, not CCT. 

The greater the magnitude of anisometropia, 
the greater the contribution of the IOD in AXL 

compared to ACD. 23 ± 2 years 4.87 D, (51) 

Vincent et al (2011)62 Anisomyopia (24 ± 4 years) 1.70 D (34) OLCR 
(IOL) — — — — + 0.57** 

IOD in AXL significant correlation with SER 
anisometropia (r = -0.81). 
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Table 1 continued: Summary of biometric studies of myopic anisometropia 

Study 
Cohort  

Method 
IOD: More minus Less myopic eye (mm) 

Note 
Criteria, Age, Mean Anisometropia, (n) CCT ACD LT VCD AXL 

Kim et al (2013)63 SER ≥ 1.00 D 

2.35 D, (5) 

US 

— + 0.13 - 0.12 
+ 0.94 + 0.93 

IOD in VCD and AXL significantly correlated 
with magnitude of anisomyopia (both r = 0.96, p 

< 0.0001).  On average, no significant IOD in 
ACD or LT. 

2.89 D, (11) — + 0.09 0.00 
+ 1.22 + 1.32 

4.86 D, (9) — + 0.07 + 0.04 
+ 1.59 + 2.80 

7.12 D, (12) — + 0.10 - 0.06 
+ 2.69 + 2.73 

10.14 D, (7) — + 0.32 - 0.27 
+ 4.06 + 4.10 

15.29 D, (6) — + 0.15 + 0.01 
+ 5.98 + 6.14 

Vincent et al (2013)64 

SER ≥ 1.00 D Anisomyopia 

OLCR 
(LS) 

     

ChT significantly thinner in more myopic eyes.  
Regional and ethnic variations in IOD of ChT. Caucasian (24 ± 7 years) 1.43 D, (10) - 0.001 - 0.03 + 0.02 + 0.42* + 0.42* 

Asian (23 ± 4 years) 2.09 D, (11) 0.000 + 0.03 - 0.03 + 0.67* + 0.77* 

Lin et al (2013)65 
Anisomyopia (16 ± 5 years)  

2.04 D, (43) US + 0.001 + 0.08 - 0.05 + 0.77** + 0.79** 

No significant difference in refractive 
astigmatism between the fellow eyes. NITM and 

its decay significantly greater in more myopic 
eye SER > 1.00 D 

Cho et al (2013)66 
Anisomyopia (68 ± 2 years) 

5.78 D, (34) US — - 0.35* + 0.16 + 0.02 + 0.20 
IOD LT (r = -0.70) and crystalline lens density (r 

= 0.79) highly correlated with magnitude of 
lenticular anisomyopia (p < 0.001). Lenticular only, not axial 
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Table 1 continued: Summary of biometric studies of myopic anisometropia 

Study 
Cohort  

Method 
IOD: More minus Less myopic eye (mm) 

Note 
Criteria, Age, Mean Anisometropia, (n) CCT ACD LT VCD AXL 

O’Donoghue et al 
(2013)67 

SER 
Anisometropia 

≥ 1.00 D 

7 years (33) 

OLCR 
(IOL) 

— 0.10 — — 0.40 

Data presented as absolute IOD.  IOD in AXL 
significantly greater in anisometropes compared 

to isometropes.  Degree of anisometropia 
correlated with IOD in AXL, not ACD or corneal 

ROC. 

12 years (62) — 0.10 — — 0.60 

SER 
Anisometropia 

< 1.00 D 

7 years (356) — 0.10 — — 0.10 

12 years (559) — 0.13 — — 0.10 

Aniso-astigmatism 
≥ 1.00 D 

7 years (30) — 0.10 — — 0.28 

Data presented as absolute IOD.  IOD in AXL 
significantly greater in aniso-astigmatism 

compared to iso-astigmatism.  Risk of aniso-
astigmatism greater in myopes compared with 

emmetropes. 

12 years (62) — 0.11 — — 0.33 

Aniso-astigmatism 
< 1.00 D 

7 years (356) — 0.10 — — 0.11 

12 years (559) — 0.13 — — 0.14 

 
Positive values (+) indicate a larger measurement in the more myopic eye.  Bold values indicate a significant interocular difference p < 0.05 (* p < 0.001, ** p < 0.0001). 
 
† Authors reanalysis of Sorsby et al8  (excluding anisohyperopes and antimetropes). 
 
ACD – anterior chamber depth, AXL – axial length, CCT – central corneal thickness, ChT – choroidal thickness, IOD – interocular difference, IOL – IOL Master (Zeiss), LS – 
LenStar biometer (Haag-Streit), LT – lens thickness, NITM – near work induced transient myopia, OLCR – optical low coherence relectometry, POP – photographic ophthalmic 
phakometry, ROC – radius of curvature, RT – retinal thickness, US – A-scan ultrasonography, VCD – vitreous chamber depth. 
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Table 2.  Summary of cross sectional studies of IOP in anisometropic cohorts 

Study Age 
(years) Anisometropic cohort Method 

IOP (mean ± SD) (mmHg) Statistical 
significance More myopic eye Less myopic eye 

Tomlinson & Phillips (1972)87 8-16 Criteria not specified (n = 13) GAT 14.0 13.3 p > 0.05 

Bonomi et al (1982)88 7-68 

Unilateral high myopia     

Myopic eye  (SPH < -5.00 D) vs GAT 16.1 ± 2.6 16.4 ± 2.4 p > 0.05 

Fellow eye (EMM/HYP) (n = 42) Schiotz 18.3 ± 3.0 17.2 ± 3.0 p < 0.05 
Anisomyopia     

More myopic eye (SPH < -5.00 D) vs GAT 16.1 ± 2.5 16.8 ± 2.3 p < 0.05 

Less myopic eye (-5.00 D < SPH < 0.00 D) (n = 95) Schiotz 17.8 ± 3.3 17.1 ± 3.0 p < 0.05 

Mean anisometropia (all subjects): 11.15 D     

Shih et al (1991)89 18-58 

< 1.00 D (n = 57) 

GAT 
Mean absolute 

interocular 
difference 

1.14 ± 1.30 p > 0.05 

1.00 - 3.00 D (n = 49) 1.35 ± 1.91 p > 0.05 
> 3.00 D (n = 82) 1.34 ± 1.24 p > 0.05 

Lee & Edwards (2000)90 8-14 

SPH difference ≥ 2.00D 

NCT 

   

Anisomyopia cohort: Mean 3.14 D (n = 24) 16.08 ± 3.09 16.21 ± 3.12 p = 0.65 

Antimetropia cohort: Mean 4.24 D (n = 28) 16.86 ± 3.60 17.11 ± 3.45 p = 0.31 
Lam et al (2003)91 20-34 SER ≥ 2.00 D (n = 31), Mean 3.89 ± 1.86 D OBF 14.50 ± 2.85 14.27 ± 2.5 p = 0.41 

Xu et al (2010)79 18-56 

More myopic eye SER < -8.00 D     

Less myopic eye SER > -4.00 D (n = 23) IOPg 14.0 ± 3.8 13.5 ± 3.6 p = 0.60 

Mean anisometropia 10.82 ± 3.22 D IOPcc 14.6 ± 3.8 12.8 ± 3.4 p = 0.07 

Kuo et al (2011)61 19-30 
SPH difference ≥ 4.00 D (n = 29) 

NCT Mean interocular 
difference 

1.00  
p = 0.004 

Mean anisomyopia 4.59 D (95% CI 0.3 - 1.9) 

Vincent et al (2011)62 18-34 
SER ≥ 1.00 D (n = 31) IOPg 15.60 ± 2.98 15.66 ± 2.86 p = 0.83 

Mean 1.70 ± 0.74 D IOPcc 15.05  ± 2.20 15.15 ± 2.14 p = 0.66 
 
Bold values indicate a statistically significant interocular difference (or borderline).  EMM (emmetropia), GAT (Goldmann applanation tonometry), HYP (hyperopia), IOPcc – Corneal compensated 

IOP, IOPg – Goldmann correlated IOP, NCT (non contact tonometry), OBF (ocular blood flow tonometry), SER (spherical equivalent refraction), SPH (spherical component of refraction). 
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Table 3: Summary of cross sectional studies of corneal power (or radius of curvature) in anisometropia 

Study Cohort: Criteria, Age, Mean Anisometropia, (n) Method IOD in Corneal Power (D)/ROC (mm) Other 

Sorsby et al (1962)8 † 

IOD vertical meridian ≥ 2.00 D 

POP 

 No correlation between IOD corneal power and 
anisometropia in anisomyopes (r = 0.04), but 

moderate correlation in unilateral myopes (r = 0.75). 
Anisomyopia (23 ± 12 years) 5.30 D, (27) + 0.02 D 

Unilateral myopia (23 ± 15 years) 6.73 D, (8) + 0.00 D 

Logan et al (2004)58 
Caucasian (18-26 years) 2.32 D, (14) 

Keratometry 
ROC: 0.00 mm No anterior segment contribution to anisomyopia in 

Asians or Caucasians Asian (14-26 years) 2.59 D, (14) ROC: - 0.02 mm 

Tong et al (2004)59 

8 ± 1 years 

Autokeratometry 

 Reported right minus left eye (absolute) not more 
minus less myopic.  No significant difference in IOD 
between isometropic and anisometropic children. 

Isometropes SER < 1.50 D, (1948) Absolute difference 0.24 D 

Anisometropes SER ≥ 1.5 D, (31) Absolute difference 0.37 D 

Huynh et al (2006)60 

Anisometropia ≥ 1.00 D, (28) 

OLCR 
(IOL) 

Absolute difference 0.28 D IOD in corneal power not significantly different 
between anisometropia and isometropia. Anisometropia < 1.00 D, (1696) Absolute difference 0.22 D 

Aniso-astigmatism ≥ 1.00 D, (17) Absolute difference 0.87 D Aniso-astigmatism is related to corneal, not internal 
astigmatism. Aniso-astigmatism < 1.00 D, (1707) Absolute difference 0.23 D 

Kuo et al (2011)61 
29 anisomyopes, 20 antimetropes, 2 anisohyperopes 

Orbscan + 0.11 D Mean simulated K reading (p = 0.15).  No significant 
interocular difference in WTW dimensions. 23 ± 2 years 4.87 D, (51) 

Kim et al (2013)63 

 2.35 D, (5) 

Keratometry 

+ 0.14 D 

Interocular difference in corneal power not correlated 
with magnitude of anisomyopia. 

IOD ≥ 1.50 D 2.89 D, (11) + 0.13 D 

Anisomyopia (36 ± 15 years) 4.86 D, (9) + 0.04 D 

Included 12 amblyopes 7.12 D, (12) + 0.01 D 

 10.14 D, (7) + 0.17 D 

 15.29 D, (6) - 0.09 D 

Vincent et al (2011)62 

 

1.70 D, (34) Medmont 

 
No significant difference in refractive astigmatism 
between fellow eyes.  Average corneal asphericity 

(Q) values were slightly more prolate (greater 
peripheral flattening) in the more myopic eye. 

Anisomyopia (24 ± 4 years) Flat: + 0.14 D*, Steep: + 0.20 D 

SER ≥ 1.00 D Mean: + 0.17 D ** 

  

Lin et al (2013)65 
Anisomyopia (16 ± 5 years)  

2.04 D, (43) Autokeratometry 
ROCh: - 0.04 mm* No significant difference in refractive astigmatism 

between the fellow eyes. SER > 1.00 D ROCv: + 0.01 mm 

Cho et al (2013)66 
Anisomyopia (68 ± 2 years) 

5.78 D, (34) Scheimpflug - 0.02 D 
Denser nucleus and thinner lens (greater asymmetry 

in lenticular refractive index) responsible for age-
related lenticular anisomyopia. Lenticular only, not axial 
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Table 3 continued: Summary of cross sectional studies of corneal power (or radius of curvature) in anisometropia 

Study Cohort: Criteria, Age, Mean Anisometropia, (n) Method IOD in Corneal Power (D)/ROC (mm) Other 

O’Donoghue et al (2013)67 

Anisometropia ≥1.00 D 
7.1 years, 8.5% (33) 

OLCR 
(IOL) 

0.04 mm Data presented as absolute IOD.  No significant 
IOD in corneal ROC in anisometropic or 

isometropic children. 12.1 years, 9.4% (62) 0.05 mm 

Aniso-astigmatism ≥1.00 D 
7.1 years, 7.7 % (30) 0.83 D Data presented as absolute IOD.  Greater IOD in 

corneal astigmatism associated with greater IOD in 
visual acuity (amblyopia). 12.1 years, 5.6 % (62) 0.76 D 

 
* p < 0.05, ** p < 0.01 
 
† Authors reanalysis of Sorsby et al8 (excluding anisohyperopes and antimetropes). 
 
IOD – interocular difference, OLCR (IOL) – Optical low coherence reflectometry, IOL Master (Zeiss), POP – photographic ophthalmic phakometry, ROC – radius of curvature, 
WTW – white to white.  
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Table 4: Summary of studies of accommodation in myopic anisometropia 

Study Cohorts examined Method Results Note 

Hosaka et al (1971)153 
Isometropia (n = 94), 0-50 years 

Anisometropia (n = 98), 0-40 years 
(≥ 1.00 difference in refraction, range 1-7 D) 

“Monocular near point of 
accommodation using the Ishihara 

near point scale” 

97% of isometropes with IOD AA < 2.00 
D compared with 69% of anisometropes. 

Authors consider near point of 
accommodation test limited to 0.50 D 

accuracy.  Inclusion of amblyopic 
anisometropes may confound results. 

Xu et al (2009)154 
Iso-emmetropia (n = 20), 20-31 years 
(SER +0.37 to -0.25 D in both eyes) 

Anisometropia (n = 20) (2.50 - 7.00 D SPH) 

Grand Seiko WV-500 optometer 
Binocular viewing with CL correction 

1, 2, 3, & 4 D stimuli 

No significant difference between fellow 
eyes in anisometropia for all 
accommodation demands. 

 
For 3 & 4 D stimuli, more myopic eye of 
anisometropes significantly greater lag 

compared to emmetropes. 

Overall trend for lag of 
accommodation; 

More myopic eye > Less myopic eye 
> Iso-emmetropic eyes 

(But not statistically significant). 

Lin et al (2013)65 
Anisomyopia (n = 43), 15.7 ± 5.4 years 

(SER anisometropia > 1.00 D, mean 2.04 D) 
No amblyopic or strabismic participants 

Grand Seiko WAM-5500 
autorefractor 

Non-cycloplegic autorefraction 
measured pre and post near task 

(5 minutes, 5 D demand). 

NITM and decay time significantly 
greater in more myopic (0.21 D, 108 s) 

eye compared to less myopic eyes 
(0.15 D, 87 s) (p < 0.05). 

Moderate correlation between the IOD 
in NITM decay area and the 

magnitude of SER anisometropia (r = 
0.31, p < 0.05). 

 
AA – amplitude of accommodation, CL – contact lens, IOD – interocular difference, NITM – near work induced transient myopia, SER – spherical equivalent refraction, SPH – 
spherical component anisometropia 
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Table 5: Summary of studies of higher order aberrations in anisometropia 

Study Anisometropia Cohort Technique Results 

Corneal HOA  

Vincent et al (2011)62 
SER ≥ 1.00 D 34 anisomyopes Medmont E300 corneal height data, translated 

to the line of sight. 4 & 6 mm corneal 
diameters. 

No significant interocular differences between the fellow 
eyes for 3rd, 4th and total corneal HOA  
(slightly higher in less myopic eyes). Mean 1.70 ± 0.74 D 23.9 ± 4.3 years 

Vincent et al (2013)140 
SER ≥ 1.00 D 34 anisomyopes Pre and post reading Medmont E300 corneal 

height data, translated to the line of sight 4 & 6 
mm corneal diameters. 

Symmetrical change in corneal HOA profile following a 
reading task.   Significantly greater change in corneal 

astigmatism in the more myopic eye over 6mm diameter. Mean 1.70 ± 0.74 D 23.9 ± 4.3 years 

Total ocular HOA  

Kwan et al (2009)165 
SER ≥ 2.00 D 26 anisomyopes H-S aberrometer (COAS) 

Natural pupils, 5mm analysis diameter 
Distance fixation 

Less myopic eyes significantly more aberrated: 
3rd order RMS: Less 0.201 μm, More 0.157 μm (p < 0.05) 

C (4,0): Less 0.108 μm, More 0.088 μm (p < 0.01) 
Total HOA RMS: Less 0.245 μm, More 0.200 μm (p < 0.05) Mean: 3.40 D 29.4 (range 19-48) years 

Tian et al (2011)166 
SER > 1.00 D 15 anisomyopes 

23.87 ± 3.52 years H-S aberrometer (COAS) 
Dilated pupils, 5 mm analysis diameter 

Distance fixation 

No significant between fellow eyes or between group (Iso vs 
Aniso) differences in HOA (3rd to 5th order and total HOA). 

Mean: 1.73 ± 0.67 D 16 isomyopes 
Mean: 0.14 ± 0.27 D 

Vincent et al (2011)62 
SER ≥ 1.00 D 34 anisomyopes H-S aberrometer (COAS) 

Natural pupils, 4 & 6 mm analysis diameters 
Distance fixation 

No significant interocular differences between the fellow 
eyes for 3rd, 4th order terms and total corneal HOA 

(slightly higher in less myopic eyes). Mean 1.70 ± 0.74 D 23.9 ± 4.3 years 

Hartwig & Atchison 
(2012)167 

SER > 2.00 D 614 anisomyopes.  Age, 
amblyopia, pathology and 
surgical status unknown. 

H-S aberrometer (i.Profiler) 
Pupil status unknown, 4.5 mm analysis 

diameter 
Internal fixation target 

Examined the relationship between the coefficient of each 
aberration term (up to the 4th order) as a function of SER for 

the more and less myopic eyes.  Significant between eye 
difference in slope and intercept for trefoil term. Range 2 – 10 D 

Hartwig et al (2013)168 
SER ≥ 1.00 D 20 anisomyopes/hyperopes 

43 ± 17 years H-S aberrometer (i.Profiler) 
Pupil status unknown, 4 mm analysis diameter 

Internal fixation target 

In general, a higher degree of interocular symmetry in the 
anisometropic group compared to isometropic control group 

(up to 4th order).  Analysis conducted as right vs left eye 
comparison instead of more vs less ametropic eye. Mean: 2.81 ± 2.04 D 20 isometropes 

Mean 0.28 ± 0.21 D 

 
C(4,0) – Zernike coefficient spherical aberration, COAS – Complete Ophthalmic Analysis System (Wavefront Sciences), HOA – higher order aberrations, H-S – Hartmann Shack, i.Profiler (Carl Zeiss), RMS – root mean square 
error, SER – spherical equivalent refraction. 
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Table 6: Summary of studies of ocular sighting dominance and refractive error 

Study Anisometropia Participants Method Result Note 

Cheng et al (2004)188 ≥ 0.5 D SER 

Adult anisomyopes 
HIC, 
NPT 

> 1.75 D anisometropia, dominant eye 
significantly more myopic (~3 D, p < 

0.001). 

Authors suggest an influence of an aniso-
accommodative response Mean age 30 ± 10 years 

Taiwanese, n = 55 

Chia et al (2007)189 ≥ 0.50 D SER 

Data from 5th annual review in SCORM  

HIC ≥ 1.75 D anisometropia, dominant eye 
more myopic in only 56% (p > 0.05). 

Greater astigmatism in the non-dominant eye 
(~0.20 D, p < 0.001) 14-year-old children 

Chinese, n = 162 

Yang et al (2008)190 ≤ 1.00 D 

7-13 year old myopes (-0.50 to -3.00 D)  

HIC No effect of ocular dominance on 
refractive development over two years. 

Excluded children with: myopia > 3.00D, 
astigmatism > 1.50 D and parental myopia > -

3.00 D. 
Mean anisometropia 0.22 D 

Chinese, n = 130 

Vincent et al (2011)62 ≥ 1.00 D SER 

Adult anisomyopes  

HIC > 1.75 D anisometropia, dominant eye 
more myopic eye in 90% (p < 0.05). 

Similar levels of corneal and total HOA in 
dominant and non-dominant eyes (p > 0.05). Mean age 24 ± 4 years 

Predominantly South East Asian, n = 34 

Linke et al (2011)31 ≥ 2.50 D SER 

Non-amblyopic myopic anisometropes  

HIC ≥ 2.50 D SER, non-dominant eye more 
myopic in 64% (p < 0.001). 

Interocular difference in astigmatism > 0.50 D, 
non-dominant eye more astigmatic (p < 0.001). Mean age 35 ± 9 years 

European clinic sites, n = 278* 

 
HIC – hole-in-the-card test, HOA – higher order aberrations, NPT – near point test, SER – spherical equivalent refraction, SCORM - Singapore Cohort Of the Risk factors for 
Myopia study 

 

 


