
J. LOGIC PROGRAMMING 1994: 19,20: 199-260 199

TERMINATION OF LOGIC PROGRAMS:
THE NEVER-ENDING STORY

DANNY DE SCHREYEAND STEFAAN DECORTE

D We survey termination analysis techniques for Logic Programs. We give an
extensive introduction to the topic. We recall several motivations for the work,
and point out the intuitions behind a number of LP-specific issues that turn up,
such as: the study of different classes of programs and LP languages, of different
classes of queries and of different selection rules, the difference between existential
and universal termination, and the treatment of backward unification and local
variables. Then, we turn to more technical aspects: the structure of the termination
proofs, the selection of well-founded orderings, norms and level mappings, the
inference of interargument relations, and special treatments proposed for dealing
with mutual recursion. For each of these, we briefly sketch the main approaches
presented in the literature, using a fixed example as a file rouge. We conclude
with some comments on loop detection and cycle unification and state some open
problems. a

1. INTRODUCTION

1.1. Motivation

The study of termination properties of Logic Programs is a fairly recently explored research
topic. Before 1988, very few papers have been devoted to it. Since then, however, the
activity in this area has strongly increased. We studied and collected in our reference list a
total of 64 papers published on the topic over this period.

There are various motivations for the LP termination analysis work. The most important
of them, especially in the early work, is related to control generation and systematicprogram

Work partly supported by Esprit Basic Research Project COMPULOG II, Project No. 6810.

Research associate of the Belgian National Fund for Scientific Research.

Supported by GOA, “Non-standard applications of abstract interpretation,” Belgium.
Address correspondence to Danny De Schreye and Stefaan Decorte, Department of Com-

puter Science, K. U. Leuven, Celestijnenlaan 200A, B-3001 Heverlee, Belgium, E-mail:
(dannyd,stefaanJ@cs.kuleuven.ac.be.

Received May 1993; accepted January 1994.

THE JOURNAL OF LOGIC PROGRAMMING

0 Elsevier Science Inc., 1994
655 Avenue of the Americas, New York, NY 10010 0743- 1066/94/$7.00

200 D. DE SCHREYE AND S. DECORTE

development. For many years, the ease with which the logic and the control components
of a Logic Program can be dealt with as separate issues has been regarded as one of the
main advantages of the paradigm. Building on the Algorithm = Logic + Control equation
of [74], systematic LP program development can be addressed as a two phased process (see,
e.g., [61]). First, provide a correct logic specification of the problem domain in terms of
Horn clauses. Then, identify a suitable control for the obtained specification, and combine
it with the specification to obtain a correct and efficient program.

A minimal requirement for a suitable control is that the program should terminate for any
query of interest. As a result, termination analysis has been used to provide one of the basic
sources of input for control generation. Another, equally important source of information
is given by determinism analysis.

[86] has been a first major contribution along these lines and has inspired many other
works on the topic. [107] is another milestone. Here, the same problem is formulated
and solved in a deductive database context, where the necessity of executing declarative
specifications is often unavoidable, and where the additional tradeoff between bottom up
and top down evaluation strategies makes detection of (non)terminating subcomputations
even more crucial.

In more recent work, additional motivations have been related to program verification, to
the relevance of termination to LP approaches for nonmonotonic reasoning, to decidability
issues, and to applications in abstract interpretation and program transformation.

The relevance of termination for program verification should be obvious. As an example,
[98] presents an application proving the termination of a compiler.

Due to the treatment of negation as jnitefailure, termination proofs are also of great
relevance to LP approaches to nonmonotonic reasoning. The notions of acyclic and accept-

able programs, introduced in [7] and [111, provide characterizations of terminating normal
programs. The papers provide proofs that the various semantics developed for normal
programs coincide for these classes of programs.

Yet another motivation for termination analysis work is to obtain a better understanding
of the decidability of the halting problem for subclasses of Logic Programs. Here, work has
been done to identify the boundary between minimal subclasses of Logic Programs, which
still have the expressibility of a Turing machine, and maximal classes for which the halting
problem is decidable (see, e.g., [57]).

Finally, in recent work, termination analysis is being applied in abstract interpretation

and transformation techniques. With respect to analysis, the oracle semantics of [16]
forms the basis of a new class of abstract interpretation techniques, where termination
analysis is incorporated to improve the precision of the inferred properties. On the level of
transformation, [45] shows how termination conditions, adapted from termination analysis,
can be used in the preconditions for applying the transformation rules in order to ensure
preservation of finite failures.

1.2. An Initial Classification of Approaches

The different motivations for studying termination have been a first source of divergence in
the development of different analysis techniques. For a termination analysis aimed at control

generation, program verification, abstract interpretation, or transformation, automation is
a major concern. This is not the case for approaches that aim to gain understanding on
the semantics of normal programs or on the decidability issue. As a result, one basis for
classification of the termination literature is to distinguish automatic approaches for

TERMINATION OF LOGIC PROGRAMS 201

detecting (non)termination from more theoretical work, providing manually verifiable cri-

teria for (non)termination.
To refine this classification, some comments on the undecidability of the termination

problem are in order. Logic Programs can encode any computable function (see, e.g., [78]).
Therefore, they inherit the undecidability of the halting problem for Turing machines. The
undecidability means that no termination analysis technique can be encoded that is both
complete (returns a “yes” answer for every terminating program and query) and safe (always
terminates itself). Of course, the problem is semi-decidable. Given a program and query,
mere execution is a complete, but unsafe, semi-deciding procedure. It should be clear
that in termination analysis, one is more interested in safe, but incomplete, semi-deciding
procedures.

In view of these observations, we can refine our classification of LP termination analysis
works into three types of approaches:

1. Techniques that express necessary and sufficient conditions for termination. By
undecidability, such conditions cannot be verified through any automatic tool. The
purpose of these techniques is:
- to provide a better understanding of the termination problem and of other prob-
lems that depend on it, such as the semantics of negation as finite failure,
- to provide support for manual verification of termination properties,
- to serve as theoretical frameworks on which automatic techniques can build. In
particular, certain parts of such frameworks could involve decidable properties, and
they could directly be integrated in an automatic approach, while other parts could
be replaced by decidable, but weaker conditions.
Typical examples of this line of work are [7, 11, 12, 10, 18, 19,27,28,53, 110,421.

2. Techniques that provide decidable s@cient conditions for the termination problem,
or for some subproblem. As discussed above, the purpose of these techniques
is to provide support for development, verification, analysis, and transformation
tools. An additional purpose of many systems is to validate the practicality of the
termination conditions formulated in techniques of the first type. We omit the list
of references. In our full reference list, most works which are not cited under point
1 or 3 are of this type.

3. Techniques that prove decidability or undecidability for subclasses of programs
and queries. A class of programs that has been studied in much detail are pro-
grams consisting of a single clause of the type p(st, s,) t p(tl , t,,), where
si , ti , i = 1, n are terms, and of one single fact. Such programs have been

shown to be on the boundary of decidability. The computations they entail are often
referred to as cycle unijicution. Some works here are [57-59, 5 1,52, 20, 1191

From this classification, at least on the highest level, the main issues involved follow di-
rectly. For type 1) approaches, the main point is to come up with conditions that are easy to
reason about for humans. Also, in view of providing support for automatic techniques, the
conditions should be easily decomposable into some well-identified undecidable compo-
nents and their automatable complement. Most often, the latter is achieved by requiring the
existence of a well-founded order defined in terms of the program (and possibly the query).
By imposing certain properties on this order, the equivalence with termination is established.
Here, the selection of an appropriate order can be seen as the undecidable component. The
verification of the properties imposed on the order is its decidable complement.

For type 2) approaches, in light of the discussion above, a main issue is to automatically

202 D. DE SCHREYE AND S. DECORTE

generate useful orders, capable of proving termination for a large class of programs. Another
issue here is the efficiency of the analysis. This is particularly the case for techniques applied
at run time, such as [107].

Other main issues are of a more technical nature. They are closely related to some
specific features of Logic Programs and the problems these features cause in the analysis.
Specifically, backpropagation of bindings during unification and the occurrence of local
variables in bodies of clauses require special care. Both type 1) and type 2) approaches
need to deal with these problems, although their solutions are on a different level. We
clarify the problems in Section 1.4 and present various solutions in the remainder of the

paper.

1.3. Dejining the Termination Problem

An immediate observation that one can make when going through the literature on LP ter-
mination is that there exists a variety of different definitions of termination. This can be
related to three specific LP features: the absence of directionality and type declarations,
nondeterminism through backtracking, and, for some LP languages, the possibility of us-
ing different selection rules and other control constructs. We illustrate the divergence in
terminology caused by these features using the least original of all programs: append.

Example I. I. (append)

append(Ni1, x, x) +

append(txlyl, u, [xlzl) +- append(y, u, z>

a) Using append as a procedure to concatenate two ground lists, e.g., with a query c
append([1,2], [3], u), results in a finite computation, with one successful derivation.

b) In verification mode, with all three arguments bound to ground lists, e.g., t append
([1,2], [3], [4]), the program again terminates, either with one successful or with a
failing derivation.

c) For a third directionality, where the program is used as a procedure to generate all pairs
of lists (11,/z), such that a ground list, 13, in the third argument can be split up into 11
and 12, e.g., t append(lt , Z2, [1,2]), we again have termination, now with a finite
number of successful derivations.

d) Activating the program with only its second argument bound to a ground list, 12, with
the aim of computing all pairs of lists (It, /3), such that 13 is the concatenation of
11 and 12, e.g., + append(lt , [1,2], Z3), produces an infinite sequence of successful
derivations.

e) The same behavior is obtained for a query with all arguments free, t append(lt ,12,/3).

By allowing partially instantiated structures in the query, we even obtain other behaviors.

f) For instance, with a query t append([x] y], NiE, y), we get one single non-terminating
derivation.

g) For t append([x] y], y , [z] y]), we obtain one finite successful derivation, followed by
an infinite one. 0

1.3.1. LACK OF DIRECTIONALITY AND TYPES. Termination of Logic Programs cannot
be studied independently from the query or set of queries of interest. This is quite different

TERMINATION OF LOGIC PROGRAMS 203

from termination analysis in other contexts. For instance, a Term Rewrite System is called
terminating if rewriting terminates for all terms. Also, for (moded and typed) imperative
programs, the set of queries of interest needs no explicit specification: the calls of interest
are those that correspond to the directionality and types of the top-level procedure. In
LP, this set is not directly deducible from the program at hand, and either it needs to be
explicitly specified as an input to the termination analysis, or the termination analysis should
be designed to infer a set of terminating queries. This has been a source of divergence in
the LP termination literature: different techniques impose different limitations on the sets
of queries that can be specified or inferred. We briefly list some representative choices that
have been made:

- the study of termination for all ground queries.
- the specification of queries of interest through modes.
-generalizations of the above, specifying queries that are boundedor rigid with respect to

a measure function (see Sections 3.1 and 3.2 for formal definitions). The aim of these
generalizations is to allow specifications of queries involving partially instantiated
data.

- sets of queries specified through combinations of modes and types. Again, these are
aimed to allow the specification of partially instantiated data.

1.3.2. NONDETERMINISM. Cases d), e), and g) of Example 1.1 illustrate another specific
aspect of LP termination. Due to the inherent nondeterminism of the paradigm, it is not
clear that we should consider these examples as nonterminating, as we did in Example 1.1.
In all three cases, Prolog will produce an answer after a finite computation and return the
control to the user, who can then decide whether or not alternative answers are required. On
the level of termination analysis, this leaves us with the choice of studying either universal
termination or existential termination. A program is called universally terminating for a
given set of queries if, for all considered queries, the computation produces all solutions
and then terminates. It is called existentially terminating if, for all considered queries, it
either finitely fails or returns at least one solution (after which it may or may not enter
an infinite computation). Clearly, universal termination implies existential termination. In
Example 1.1, cases a), b), and c) are universally terminating. In addition, d), e), and g) are
existentially terminating under the Prolog evaluation strategy.

1.3.3. AVAILABILITY OF DIFFERENT CONTROL STRUCTURES. Of course, Logic Pro-
gramming represents not one single programming language, but a family of languages,
each with its own operational semantics. This is a further cause of divergence in the liter-
ature. Even when we restrict the attention to pure normal programs, with SLDNF as the
basis for the operational semantics, a wide range of actual procedures results from different
choices for the selection rule (subgoal selection) and search rule (clause selection).

The importance of the latter is illustrated in Example l.lg). For this goal,
t append([x] y], y, [z] y]), existential termination of the append program holds under the
top-to-bottom search rule of Prolog. But the existential termination property is lost if we
consider a search rule which selects clauses in the reversed order. Note, however, that in the
context of universal termination, the search rule is irrelevant. Here, all derivations under
the given selection rule must terminate, which is independent of the order in which clauses
are selected. Throughout the remainder of the paper, unless explicitly stated otherwise, we
restrict our attention to universal termination and we simply refer to it as termination.

204 D. DE SCHREYE AND S. DECORTE

The importance of the selection rule is illustrated with the permute program.

Example 1.2. (permute)

permute(NiZ, Nil) t

permute([xly], [ulv]) t delete(u, [x/y], w), permute(w, V)

delete@, [xlyl, y) +-
delete(u, [xlyl, [xlzl) + delete(u, y, z)

Under the left-to-right selection rule of Prolog, the query t permute([11, y) terminates.
We provide some explicit proofs for this statement in the following sections. With the
opposite, right-to-left selection rule, we get nontermination: a repeated selection of the
second clause for permute produces an infinite derivation. 0

Since the left-to-right selection rule is standard in Prolog, it is not surprising that this rule
has obtained most of the attention in the literature. Following [111, we refer to termination
under the left-to-right rule as lej&termination. [107] studies termination under the (non-
standard) selection rule generated in the NAIL!-system. Also [88] and [103] study non-
standard selection rules. Another type of analysis that received considerable attention
studies termination of the program and given queries under all selection rules. Here, all
derivations, for all considered queries and for all possible selection rules, are required to be
finite.

Several papers study termination for other operational semantics than those that are
purely based on SLDNF. Some work is devoted to termination of full Prolog [lo, 181.
[93] and [97] analyze termination for Guarded Horn Clause-Programs. [84] addresses the
termination problem for CLP languages.

To conclude the subsection, it should be noted that in addition to the three mentioned
sources of divergence, most techniques are developed to cope only with certain subclasses
of Logic Programs. In particular most works are, either implicitly or explicitly, restricted to
definite programs. [I 1, 12, 18, and 1161 are some notable exceptions that explicitly address
negation. Another restriction which is frequently imposed is the exclusion of indirect or
mutual recursion. In any case, with the exception of [IO] and [181, all works exclude the
nonpure features of Prolog.

1.4. Two Technical Problems in LP Termination Analysis

The issues raised in previous subsections merely present different alternatives for defining

the notion of LP termination. As yet, no mention is made of aspects involved in solving
the resulting termination problem. In Section 1.2, we announced that backpropagation of
bindings and the occurrence of local variables are two LP features that require spec@c
techniques in LP termination analysis. In this section, we introduce the problems caused by
these features and indicate some directions taken to solve them. A more technical account
of these solutions is included in the following sections.

Frequently, we will relate the issues to termination analysis in Term Rewriting. This
comparison is useful since the topic has received a great deal of attention in this field (see,
e.g., [56]). First, we briefly point out the basic reasoning underlying termination proofs in
general.

TERMINATION OF LOGIC PROGRAMS 205

1.4.1. WELL-FOUNDED ORDERS AND BZRMINATION PROOFS. A commonly used ap-
proach for proving termination of a computation process is to reason about the trace of
the computation. More precisely, one proves that this trace can be ordered by means of
a well-founded ordering. The ordering should be such that, between every two consec-
utive states in the trace, the order decreases. By well-foundedness of the ordering, this
implies that the trace cannot contain an infinite sequence of consecutive states. Thus, the
computation terminates.

Well-foundedness has been used for proving termination in many different contexts: for
imperative programs [64], for production systems [80], and Term Rewrite Systems (see,
e.g., [56]). It also forms the basis of most approaches to termination analysis in LP.

Above, the notion of a trace should be interpreted broadly. For Logic Programs, it could
stand for SLD-tree (or, collection of SLD-trees, in the context of SLDNF), proof-tree,
AND-OR-tree, and many others. In general, any representation of the computation will do,
as long as finite parts of it cannot be the representation of infinite processes in the actual
computation.

Of course, in the termination proof, one does not want to construct the trace explicitly
and then verify well-foundedness under some ordering since this construction itself may
be trapped in nontermination. Furthermore, verification proofs in general can usually be
strongly simplified by abstracting away from computations. Thus, one aims to formulate and
verify conditions in terms of some finite syntactic structures that imply well-foundedness
of the trace.

For instance, in the context of Term Rewriting, the trace could be the union of all rewrite
trees for all possible terms. The syntactic structures are precisely the rules of the given
rewrite system. The condition to verify is that there exists a well-founded ordering on
terms, such that for every instance (substituting variables by terms) of each rule, the term
on the right-hand side of the instance is smaller than the term at the left-hand side. In
addition, the ordering must have the replacement property, which we will not define here
since it has no counterpart in LP termination.’

1.4.2. BACKPROPAGATION OF BINDINGS. In an attempt to reformulate these conditions
for Logic Programs, the natural adaptation is to replace “term(s)” by “atom(s)” since atoms
form the basic unit of any representation of a computation state in LP. However, a direct
reformulation along these lines does not result in a sufficient condition for termination.
Consider again the recursive clause for append:

append(blyl, u, blzl) +- append(y, u, z>

We can define a well-founded, strict partial order on append-atoms by append([tt It2], t3, t4)
> append(t2, t5, t(j), for all terms ti, i = 1,6. With the given ordering, for any instance of
the clause, the atom on the right-hand side is smaller than that on the left-hand side. Still,
for some queries, for example, Example 1. Id), the program does not terminate.

The cause of this difference with Term Rewrite Systems is the use of unification instead
of matching. Using matching, the application of a rule to a term has no effect on the term
itself. With unification, performing a derivation step for a goal with free variables, e.g., t
append(x, [1,2], y), may instantiate these variables. As a result, on the level of the trace,
we may end up with an infinite derivation in which the root (and, in fact, all other states)
contains infinite terms.

‘For the interested reader, the replacement property is needed in Term Rewriting because rules can be
applied to rewrite a subterm of a given term. In Logic Programs, rules can only be applied to entire atoms.

206 D. DE SCHREYE AND S. DECORTE

Of course, the problem is very closely related to the lack of directionality, discussed in
Section 1.3.1. But, in the context of formulating and verifying termination conditions, there
is one important new element. Not only do we need a specification of the set of queries of
interest, we also need specifications of the sets of calls to other predicates that can occur
in any derivation. Using these specifications, we can verify whether or not unification is
causing new instantiations in the call that change the order of the atom in the considered
well-founded ordering. As an example, in Example 1.1 a), a simple mode analysis reveals
that any call to append in any derivation will have its first argument ground. Thus, unification
of such a call with the head of the recursive clause has no effect on the order of the call and
the program terminates.

Considering only those programs and queries for which each call in every derivation con-
tains only ground input is a solution that has been taken by many LP termination techniques
in the past (e.g., [107, 91, 961). In the last few years, however, much attention has been
devoted to extending the techniques to the nonground case. Similar to what was mentioned
in Section 1.3.1, the notions of boundedness [191, rigidity [27], and combinations of modes

and types [111,331 have been designed for this purpose.

1.4.3. LOCAL VARIABLES. In a Horn clause, the body of the clause may contain variables
that are not present in the head. One usually refers to them as local variables. This generality
is not allowed in Term Rewrite rules. It is the cause of what is probably the most important
technical difference between termination analysis in the two fields.

Consider again the recursive clause for permute from Example 1.2:

permute([x]y], [ulu]) + delete(u, [x]y], w), permute(w, u)

and assume that we aim to prove left-termination for the query t permute([11, x).
For the query of interest, the input arguments of all descending calls will be ground, so

that the backpropagation problem does not arise. The difficulty in this example is that it is
impossible to provide a well-founded ordering on atoms, such that for each instance of the
clause, the order of the head is larger than that of the atoms in the body. More specifically,
focusing on the two permute atoms, we would like the order to be based on properties of
the first argument of permute since this is the input argument. But these arguments, [x]y]
and w, have no syntactic relation (w is a local variable), and therefore we fail to order all
their instances.

The solution is that, since we are proving left-termination, we do not need to show a
decrease in order between the two atoms for every instance of the clause. Under the left-
to-right selection rule, the recursive call to permute will only be selected after successful
termination of the intermediate call to delete. As a result, we only have to provide an
ordering which has a decrease between the two permute atoms, for those instances of the
clause with a delete atom which is a computed answer for delete. Only those instances can
occur under the given selection rule.

In the example, a useful order on permute atoms is: permute(st , ~2) < permute(tt ,t2)
whenever st and rt are lists and the length of st (counting the length of the tail of an
open-ended list as zero) is strictly smaller than that of ft. Given any instance

permute([xtlytl, [ullv~l) +- delete(ul, hlyll, wl),pemuWwl, ~1)

such that delete(ut , [xt]yt], wt) is a computed answer for some query to delete, it can be

proven that

1. [xl]yt] and wt are lists, and

TERMINATION OF LOGIC PROGRAMS 207

2. the length of [xt]yt] is strictly larger than that of wt.

Thus, the order decreases between the two permute atoms in such clause instances, estab-
lishing termination for the given query.

The example shows that we need techniques to prove properties of computed answers
for certain atoms.

This observation has had two major impacts on automatic LP termination techniques.
First, we need techniques to infer relations that hold between the terms in the computed
answer instances of a given atom. In the example: the properties 1) and 2) above. Such
relations are referred to as interargument relations. These techniques are surveyed in

Section 4.2. Second, orders on atoms are most often defined in terms of orders on certain
terms that occur within these atoms. In the example: the list-length of the term at the first
argument position of the permute atom. Such orders on terms are referred to as norms. The
restriction to norms has been useful to allow the development of computationally feasible
techniques to infer interargument relations. We survey the study of norms in Section 4.1.

1.5. Plan of the Paper

The remainder of the paper is organized as follows. The next section introduces some
conventions, notations, and basic definitions. In Section 3, we present and discuss some
frameworks for LP termination. Here, the emphasis is on the global structure and strategy of
the termination proof. In Section 4, we focus on more technical and fine-grained subtasks
that are needed within these strategies. We classify them as: issues related to the well-
founded measures and norms, inference of interargument relations, and dealing with mutual
recursion. We end with a brief discussion of contributions that fall outside the scope of the
general outline of the paper, and we present some open problems.

2. PRELIMINARIES

2.1. Notation

We assume familiarity with the terminology, the basic concepts, and results of Logic Pro-
gramming, as they are, for instance, presented in [78] and [6].

We use the following notational conventions. Variables, functors, and predicate symbols
start with a lower case character. Constants start with an upper case character. The Prolog
notation p/n is used to represent a predicate with symbol p and arity n. If there is no risk
of confusion, we simply write p. We also use the Prolog conventions for representing lists.
Substitutions are denoted by Greek characters. N-tuples of indexed objects, e.g., variables
or terms (xl, x2, x,), are denoted as X.

Given a program P based on a first order language fZ, we denote its Herbrand Base as Bp .

The set of all terms and the set of all atoms based on L are, respectively, denoted as Termp
and Atomp. For any expression E (a term, atom, n-tuple of terms, or n-tuple of atoms),
Var (E) denotes the set of variables occurring in E. If E and F are two expressions of the
same type and the expressions unify, then mgu(E, F) denotes their most general unifier. The
variant relation, both over Termp and over Atomp, is denoted as -. We use Termp/ -
and Atompi - to represent, respectively, the sets of equivalence classes of Termp and
Atomp modulo -. + denotes logical consequence in the first order language.

From this section onwards, we denote a query as the sequence of its literals, separating
literals by commas. This is convenient since it allows us to view sets of atomic queries

208 D. DE SCHREYE AND S. DECORTE

as sets of atoms. We take the convention that a program does not include a query. A pair
(P, Q) consisting of a program P and a query Q is referred to as a queried program.

2.2. Termination

Restricting our attention to universal termination, the following generic definition of termi-
nation is useful in light of our discussion in Section 1.3.

Dejinition 2. I. (termination, generic)
Let P be a program, S a set of queries, and ‘R a set of selection rules. P is terminating

with respect to S and R if, for each query Q in S and for each selection rule R in R : all
SLDNF-trees for the queried program (P, Q) under the selection rule R are finite. 0

This definition covers many notions of termination studied in the literature. In particular,
for R = {LDNF), where LDNF is the left-to-right selection rule of Prolog, it defines left-
termination for the queries in S. Taking R equal to all selection rules yields another
instance discussed in Section 1.3.3. The various choices that can be made on the level of
the query-specification-see Section 1.3.1-are parameterized through S.

Throughout the remainder of the paper, we only consider termination analysis for atomic

top-level queries. Although several works are formulated in terms of general top-level
queries, the restriction to atomic ones does not cause any loss of generality. Given a program
P and a set of compound top-level queries of interest, {p(P), q(y), r(Z)IS(.f, j, Z)},

where S(X, 7, 2) is some formal specification of the arguments X, y, . . ,j, under consid-
eration, the termination problem is equivalent to that of {s(j, j, Z)IS(X, y, Z)}, for

the program P’ = P U {s(i, jj, Z) t p(X), q(y), r(i)}, where s is a fresh predicate

symbol.

2.3. Well-Moded and Correctly Asserted Queried Programs

The main part of this section is devoted to the definitions of well-moded and correctly

asserted queried programs. These concepts turn up in several techniques. Their purpose is
to facilitate formal reasoning on certain properties of a queried program’s execution under
some selection rule. Here, the properties in focus are modes and generalizations of modes,
adequate for reasoning about computations with partially instantiated data. As such, their
use in termination analysis is related to the backpropagation problem discussed in Section
1.4.2.

We first introduce well-moded queried programs.

Dejinition 2.2. (mode)
A mode for a predicate p/n is a function mp : { 1, 2, ..,, n} + {in, out}. If m,(i) =

in, we say that i is an input argument of p, else i is an output argument. A queried program
(P, Q) is moded if it is augmented with a mode for every predicate in (P, Q). 0

Modes have been studied first by C. Mellish in [83]. Since then, numerous works have
been devoted to it. For notational convenience, we represent a mode m as p(mp(l),
m,(n)). As an example: consider permute(in, out). It is also notationally convenient

to assume that the argument positions of each predicate in a moded queried program are
reordered such that all input arguments precede all output arguments. This allows us to
represent any atom in the moded queried program as ~(3, f), where J is the m-tuple of all

TERMINATION OF LOGIC PROGRAMS 209

terms on input argument positions of p/n and t is the (n - m)-tuple of all its terms on
output argument positions.

The following definition implicitly assumes the use of the left-to-right selection rule.

Definition 2.3. (well-moded queried program)
Let (P, Q) be a moded queried program, with both P and Q definite.

The query Q = pt (cl, t;), p,(s;, t;) is well-moded, if
Var(s;:) s u;=‘, VU(G), for all i = 1, n

A clause po(6~, $+I) + pl(fj, &), pn(s;, t;) of P is well-moded, if
Var(fi) s UJ.,bVar(ifj), foralli= l,...,n+l

The queried program (P, Q) is well-moded if both Q and all clauses of P are
well-moded. q

Example 2.1. (permute)
For the permute program and a query Q = permute(x, y), consider the modes:
permute(in, out) and delete(out, in, out). A trivial transformation, switching the first two
arguments of any delete atom in the program, makes this conform with our notations in Def-
inition 3, with the adapted mode delete(in, out, out). One easily verifies that the queried
program is well-moded. The program is also well-moded for the modes permute(in, in)
and delete(in, in, out). 0

Intuitively, a moded queried program is well-moded if

1. input variables of a body atom occur either as input variables in the head or as output
variables of a body atom to the left of the atom,

2. output variables in a head atom occur either as input variables of the head or as
output variables of any body atom.

As a result, under the left-to-right selection rule, well-moded queried programs are dutu-
driven. This means that in any derivation under the selection rule, all input arguments
of any selected atom are ground. From this observation, the usefulness of this notion in
the context of the backpropagation problem is obvious: on input argument positions, no
backpropagation can occur.

Well-moded programs were first introduced and studied by Dembinksi and Maluszynski
in [55]. We used a formulation due to Rosenblueth [99].

The notion can straightforwardly be generalized to other selection rules, as long as the
selection is based on a local order among body atoms of each clause. It has also been
generalized to normal programs in [5].

[96] and related works use a more general notion of well-modedness. The main difference
is that the concept is introduced independently of a given selection rule and query. We recall
the following definitions from [96].

Dejinition 2.4. (producer/consumer)
Let C be a clause in a moded program. An atom A of C is a producer, respectively

consumer, of a variable, x, if either

210 D. DE SCHREYE AND S. DECOR’I’E

l A is the head of C and x is in an input (respectively, output) position of A, or,
l A is a body atom of C and x is in an output (respectively, input) position of A. 0

Dejnition 2.5. , (producer-consumer relation)
The producer-consumer relation of a clause, C : A + BI , B,, of a moded

program is the relation
((Bi, Bj) 1 there exists a variable x in C, such that Bi is a producer and Bj is a

consumer of x }. 0

Dejnition 2.6. (well-modedness”)
A clause or a query, C, is well-modes if

1. every variable in C has a producer, and
2. the producer-consumer relation of C is acyclic.

A moded program is well-mode8 if all its clauses are well-modes. 0

In [96], it is assumed that the considered selection rules induce a partial order on the
body atoms of each clause in the programs, corresponding to the order of selection.

The following definition links the two notions.

Dejinition 2.7. (implied selection rule)
A selection rule, R, is implied by the modes of a well-moded* program, P, if for each

clause C of P, the partial order induced by R on C contains the producer-consumer
relation for C. 0

Example 2.2. (permute)
The permute program is well-moded* for both the modes permute(in, out),
delete(out, in, out) and permute(in, in), delete(in, in, out) of Example 2.1. The left-
to-right selection rule is implied. It is also well-moded* for the modes permute(out, in),

delete(in, out, in). Notice that the program augmented with the latter modes (and with any
query) is not well-moded in the sense of Definition 3 due to the restriction to the left-to-
right selection rule. However, the right-to-left selection rule is implied by the well-moded*

program. 0

While well-modedness is defined in terms of a given selection rule, well-modedness*
allows us to determine a set of selection rules that are implied by it. As in the case of
well-modedness, the main property of a well-moded* program is that it is data-driven for
any well-moded* query and for any implied selection rule.

Although the condition of well-modedness is sufficient to avoid problems with back-
propagation, due to the property of data-drivenness, it is not applicable in the study of
termination of queried programs that compute on partially instantiated data. In this more
general context, there is a need for similar, but generalized concepts. The notion of a cor-
rectly asserted queried program is one solution. It provides the basis of a very general
method for reasoning about properties of a program’s execution. Below, we recall the basic
concepts involved: pre/post-specifications, asserted queried programs, and correctness of
such programs. We refer to [26,62], and [44] for more complete formal treatments. Again,

TERMINATION OF LOGIC PROGRAMS 211

our definitions apply to the left-to-right selection rule only.

Dejinition 2.8. (pre/post-specification)
A pre/post specijcation for a predicate p/n in a program P is an expression of the

form

where Prep(X) and Postp (X) are formulas in a first order language L’, whose set of functors
includes the functors in the language C underlying P and whose set of constants includes
the variables of L. ,f is an n-tuple of variables in C’. 0

DeJnition 2.9. (asserted program)
An asserted program P is a program such that all predicates p of P have a prelpost-

specification associated with them. 0

Definition 2.10. (substitution closed formula)
A formula F(x) in L’, containing an n-tuple, X, of free variables, is substitution closed

with respect to a theory T associated to L’, if for all n-tuples of terms, i E Term:, and
for all substitutions 0 in Cc:

Dejinition 2. I I. (asserted queried program)
An asserted queried program P is an asserted program augmented with a query

q(Z) and a formula Desc,(x) in L’, such that Descy (f) as well as all pre- and post-
specifications in P are substitution closed. Descq (X) is referred to as the call description

forq(Z). 0

Finally, we need the following definition, which is an informal version of Definition 3.4
in [26].

DeJinition 2.12. (correct asserted queried program)
An asserted queried program P, with query and call description (q(j), Descy (X)), is

correct with respect to an associated theory T, if for all left-to-right derivations for any
goal q(o, such that T + Desc,(f),

1. for every selected atom, p(S) : T + Prep(s)
2. for every success instance of such an atom, p(S0) : T + Post,(SO) 0

Example 2.3. (data-driven moded queried program)
A simple and commonly used instance of these notions is the characterization of a data-
driven queried program. Given a mode mp for a predicate p/n, it can be represented using
pre/post specifications as

{ground&,), . . , ground(xi,))p(j>{ground(xi,), . . , ground&))

where {il, im} = (iIm,(i) = in} and {i,+l, i,} = {ilm,(i) = out]. Here, ground/l
is defined in some associated theory T. This theory could be defined to contain a fact

ground(c)

212 D. DE SCHREYE AND S. DECORTE

for every constant c in LZ, and a clause

Vx(ground(f(Z)) + ground(@)

for every functor f in C.
If the moded queried program is data-driven, then it is a correct asserted queried program

in the sense of Definition 12, with respect to the theory T. In [9], it is shown that well-moded
queried programs are an instance of correctly asserted queried programs. It also provides
other instances of the concept (e.g., well-typedness). 0

Of course, correctly asserted queried programs aim to capture more general properties
than ground dataflow. Properties relevant to termination analysis are related to invariance
under substitution of certain arguments within a given order relation. We return to these
notions in Section 3.2, where such properties are formally introduced.

3. FRAMEWORKS FOR REASONING ABOUT TERMINATION

In the Introduction, we intuitively sketched a possible structure of an LP termination proof.
Here, we present in more detail several general structures for constructing such proofs. We
first devote attention to the approach proposed in the works of Apt, Bezem, and Pedreschi
[19,7, 11, 121, which is widely considered as a main theoretical foundation for the topic. We
then present the basics of two very similar variants of this approach, one inspired by [26],
the other proposed in [53]. These variants adapt the former framework to a line of reasoning
which is more often used in automatic systems (e.g., [107,90,116]). Next, we recall the key
concepts of a totally different approach, introduced in [96], that transforms Logic Programs
into Term Rewrite Systems and uses Term Rewriting termination techniques. Then, we
outline the method of [1001 as an example of a technique developed in a deductive database
context. Finally, we briefly sketch some other frameworks, proposed in [l 10, 65, 14, 421,

and 1181.

3. I. Recurrency and Acceptability

We first present the approach of Apt, Bezem, and Pedreschi in the context of dejinite
programs, thereby restricting our attention to [19] and [111. We conclude the subsection
with some comments on various extensions, including those to normal programs.

These works address termination with respect to the set of all ground atoms. [1 l] focuses
on left-termination, while [191 studies termination under every selection rule. In both cases,
a program P is said to be terminating (respectively, left terminating) if all SLD-trees for all
ground atomic queries and all the considered selection rules are finite.

The key concept of [191 is recurrency. It is based on the notion of a level mapping (see
also [40]).

Definition 3.1. (level mapping)
A level mapping is a function f : BP --+ N. 0

Dejinition 3.2. (recurrency)
A program P is recurrent if there exists a level mapping, f, such that for each ground

instance A t BI, B, of a clause in P:

TERMINATION OF LOGIC PROGRAMS 213

f(A) > f(R), foreachi = l,...,n. 0

One of the main results of [191 is:

Theorem 3.1. A program P is recurrent, if and only 8 it is terminating. 0

We illustrate the use of the theorem with the delete example. First, we give a more
formal definition of the list-length function, introduced in Section 1.4.3.

Defkition 3.3. (list-length)
list-length: Termp + N is defined as

list-length([tl Itz]) = 1 + list-length(tz), with tl and t2 any terms,
list-length(t) = 0, otherwise 0

Example 3. I. (delete, permute)
Let f be a level mapping defined on the delete program as

f (delete(tt , t2, t3)) = list-length(q), for any ground tl, t2, t3 E Termd,t,t,

To prove recurrency, take any ground instance of the recursive clause for delete, say:

delete(p, [qlsl, [qltl> + delete(p, s, t>

where p, q, s, t denote ground terms. We have

f (delete(p, [qbl, [q WI>> = list-lengthk IsI) > list-length(s) = f (delete(p, s, t))

so that the program is recurrent. Therefore, all derivations starting in a ground atom
delete(tl, t2, t3) are finite.
The permute program is not recurrent. Proving nontermination on the basis of Theo-
rem 3.1 is often difficult since one then needs to prove that no level mapping can sat-
isfy the recurrency condition. So, using a direct argument instead, consider the ground
goal permute([11, [1,2]). For this goal, there is a derivation in which delete(2, X, y) gets
generated as a subgoal. Since the latter is clearly non-terminating, this derivation for
permute([11, [1, 21) is infinite. 0

Note that, although the set of ground atoms is very important in the context of LP
semantics, it is not particularly useful in programming practice. [191 extends Theorem 3.1
to deal with more practical sets as follows.

Definition 3.4. (boundedness)
Let f be a level mapping. An atom A is bounded with respect to f if the set [f (A@) It3

a grounding substitution for A) is bounded in IV. 0

Theorem 3.1 can be generalized as follows.

Theorem 3.2. If a program P is recurrent with respect to some level mapping f, then P
terminates under every selection rule for all bounded atomic queries with respect to f,
Conversely, if P terminates under every selection rule for all bounded atomic queries
with respect to some level mapping, then P is recurrent. 0

214 D. DE SCHREYE AND S. DECORTE

Notice that the theorem is not formulated as an “if and only if’ statement. This is because
in the conclusion of the second implication, P is not necessarily recurrent with respect to
the same f.

Example 3.2. (delete)
With the level mapping of Example 3.1, an atom delete(tt, t2, t3) is bounded if t2 is a, not
necessarily ground, list of fixed length. With the same argument as in Example 3.1, Theorem
3.2 allows us to conclude termination for all such atoms. With an alternative level mapping,
g(delete(tt , t2, t3)) = list-length(tx), for any ground tl, t2, t3 E Termdetete, delete is also
recurrent. Again, using Theorem 3.2, we may now conclude that delete terminates for all
atoms delete(tt , t2, tg) such that t3 is a list of fixed length. In fact, by defining the level
mapping as the minimum of the two previous level mappings, we obtain termination for
the union of the two corresponding sets of queries. 0

In [111, the results of [191 are reformulated in the context of left-termination. Here, the
basic concept replacing recurrency is acceptability.

Dejinition 3.5. (acceptability)
A program P is acceptable if there exist a level mapping, f, and a model, I, for P,

such that for each ground instance A t BI , B, of a clause in P:

f(A) > f(Bi), for each i = 1, n, such that Z + Bj, Vj = 1, i - 1. 0

The definition expresses that, for ensuring left-termination, the level mapping only needs
to decrease between the head of a ground instance of a clause and a corresponding body
atom, Bi , provided that all atoms to the left of Bi already follow from the model. If one of
these atoms to the left of Bi would not follow from the model, then SLD-resolution under
the left-to-right selection rule would never reach the point in which Bi is selected. The
refutation would fail before that. Thus, there is no reason to impose that the level mapping
should also decrease for such atoms. This is completely in the spirit of the intuitions we
presented in Section 1.4.3.

The following theorem rephrases Theorem 3.1 in the context of left-termination.

Theorem 3.3. A program P is acceptable, if and only $ it is left-terminating. q

For bounded goals, the analog of Theorem 3.2 holds (see [111).

Example 3.3. (permute)
We show acceptability of permute. We extend the level mapping f of Example 3.1 on
permute atoms of Bpermure by:

f(permute(tt , t2)) = list-length(tt) + 1.

For the model I, let the domain of the interpretation be NV. The pre-interpretation is
determined by the function J : Termpermute -+ UV, J(t) = list-length(t). More in

particular, J maps every constant in Termpermute to 0, the list-functor to the function

(x, y) -+ 1 + y, and every other functor in the language to the constant O-function. Finally,
Z(permute) is the binary predicate on mwhich is true everywhere and Z(delete) is the re-
lation {(x, y, z) E Ar3]y = z + 1). Observe that Z is a model for the permute program.

TERMINATION OF LOGIC PROGRAMS 215

For the permute predicate, this is obvious since Z(permute) is true everywhere. In the case
of delete, for all ground terms tt, t2, t3 such that t3 is the list obtained from the list t2 by
deleting its member tl, we have that list-length(t2) = list-length(t3) + 1.
Since the clauses for delete have at most one body atom, acceptability of delete with re-
spect to f and Z coincides with recurrency of delete with respect to f, which we proved in
Example 3.1.
Next, consider the recursive clause for permute. There are two inequalities that we need
to prove for it. The first is that for any ground terms p, q, r, s, and t: f(permute([p]q],
[r Is])) > f(delete(r, [plq], t)). Thisreduces to list-length([p]q])+ 1 > list-length([p]q]),
which is true.
The second inequality is that for any ground terms p, q, r, s, and t: f(permute([p]q],
[r/s])) > f(permute(t, s)) should hold, given that I k delete (r, [plq], t). This reduces to
list-length ([plq])+ 1 > list-length(t)+ 1, given that list-length([p]q]) = list-length(t)+ 1.
Again, this is clearly the case, so that permute is acceptable and left-terminating. q

We briefly relate the approach to the general intuitions on termination analysis, presented
in the Introduction. The approach deals with the problems caused by backpropagation
(Section 1.4.2) by restricting the analysis to ground or bounded queries. It is not hard to
prove that for a ground or bounded query, every descending atom in any derivation for
a recurrent or acceptable program is also bounded. As a result, computations in which
the level mapping of some atoms grow unboundedly, due to instantiations caused in a
descending derivation, are avoided.

With respect to local variables, the model required in the definition of acceptability
serves the purpose of an interargument relation: it provides information on the bindings
that intermediate atoms in the body cause on the local variables in following atoms. Notice
that the model used in Example 3.3, is in fact, the essence of the interargument relation for
delete presented in Section 1.4.3.

The framework has been extended to normal programs. [7] investigates termination
under all selection rules, while [121 covers left-termination.

[7] generalizes the results obtained for recurrent programs. First, the notion of a level
mapping is generalized. Its domain is extended to the set of all literals by stating that
I -A I = IA 1, for all A E BP. The concept of an acyclic program is obtained by adapting
Definition 2 to normal programs and to the extended definition of a level mapping. The
following theorem is one of the main results of [7]:

Theorem 3.4. A normal program is terminating ifit is acyclic. 0

Just as for definite programs, the result extends to the termination of bounded queries.
The converse of Theorem 3.4 does not hold. The cause is the possibility offloundering
derivations. An SLDNF-derivation can terminate in one of three alternative states: either
because it fails or succeeds, or because the last goal consists entirely of negative atoms
containing variables. The derivation is said to have floundered. This form of termination
is not captured by acyclicity, as the following example from [7] illustrates:

Example 3.4.

P(0) +- -p(x).

The program is not acyclic. p(O) + -p(O) is a ground instance of the clause, and, by
definition, no level mapping can decrease between its head and body atom. However, the

216 D. DE SCHREYE AND S. DECORTE

program terminates. The only possible ground atomic queries, p(O) and -p(O), terminate
because of floundering. 0

An additional and closely related reason why the inverse implication does not hold is
safety. We refer to [7] for an example. For nonfloundering programs, the notions of
terminating and acyclic programs are equivalent.

Acyclic programs have several interesting properties that make them a valuable class to
study. Without going into detail (we refer to [7] instead), we describe the most appealing
ones. For acyclic programs, the various kinds of semantics defined for normal programs
coincide. With respect to the declarative semantics, the 2- and 3-valued fixpoint semantics,
which in general differ, now coincide. They also coincide with the perfect model approach
and the completion semantics. Furthermore, under the assumption of nonfloundering, these
semantics can also be better linked to the procedural semantics. More precisely, for acyclic
programs, SLDNF-resolution is a complete proof procedure. Whether a ground (bounded)
literal is a valid consequence of an acyclic program is a decidable property.

Another contribution of the paper is that a famous temporal reasoning problem, known
as the Yale Turkey Shooting problem (see [68]), can elegantly be solved using an acyclic
program. The problem has been used in [68] to illustrate that a number of well-known
approaches for temporal reasoning have difficulties in correctly representing and solving
this very simple application. [7] demonstrates that acyclic programs, using only negation as
finite failure as a basis for nonmonotonic reasoning, are sufficient to deal with the problem,
both on the knowledge representation and the temporal reasoning levels.

In [121, the framework is reformulated for the left-to-right selection rule. Similar to the
specialization of recurrency to acceptability, the difference for normal programs between
acyclicity and acceptability lies in the model, I, in the termination condition. The main
new aspect involved for normal programs is that, in essence, Z needs to be a model of the
completion of the program. Before recalling the definition from [121, we need the following:

Dejinition 3.6. (depends on)
Let P be a normal program and p, q predicates. We say that p refers to q if there is

a clause in P that uses p in its head and q in its body. The depends on relation is the
reflexive, transitive closure of refers to. 0

Let Negp denote the set of predicales in P which occur in a negative literal in a body of
a clause from P and let Neg; stand for the set of predicates in P on which the predicates
in Negp depend. By P-, we denote the set of clauses in P in whose head a predicate from
NegT, occurs.

Definition 3.7. (acceptability - normal programs)
Let P be a (normal) program, f a level mapping for P, and Z a model of P whose

restriction to the predicates from Neg: is a model of Comp(P-). P is called accept-

able with respect to f and Z if for every ground instance A t L 1, . . ., L, of a clause in P,

f(A) > f(Li), for each i = 1, n, such that Z /= Lj, Vj = 1, i - 1. 0

Again, acceptability is sufficient for left-termination and, restricted to nonfloundering
programs, the notions are equivalent.

The problems related to floundering, both in the case of termination under any selection

TERMINATION OF LOGIC PROGRAMS 217

rule and left-termination, are solved in [81]. The solution is based on replacing negation
as finite failure by constructive negation (see [41]). A formal definition of an extension
of SLD-resolution with constructive negation, SLDCNF-resolution, is given. The main
results are that a program is respectively terminating and left-terminating with repect to
SLDCNF-resolution and for all ground (or equivalently bounded) queries iff the program
is, respectively, acyclic and acceptable.

[4] provides another extension of the framework. Here, the results on left-termination
are generalized in the context of nonpure definite programs, including builtins, such as
vat-, nonvar, constant, compound, f unctor, arg, =, >, :=, \ ==. The work studies
strong termination, which is defined as left-termination for all queries. Due to the in-
troduction of the nondeclarative features, this notion is not as restrictive as it would seem
(see [4] for practical examples). To study the termination of such programs, a new seman-
tics, called 8-semantics, is introduced. It generalizes the S-semantics of [63]. For a specific
class of programs, called homogeneous programs, the notion of acceptability is generalized
with respect to the 0-semantics. For such programs, these notions of acceptability and
strong termination are shown to be equivalent.

In [131, two further extensions to the framework are provided. One is on modularization
of termination proofs for definite programs. Several results are presented, both on the level
of recurrency and of acceptability, which are in fact treated in a uniform way in this paper.
Given two recurrent, respectively acceptable, programs P and Q, the results formulate
conditions under which P U Q is recurrent, respectively acceptable. Different results deal
with different interdependencies between P and Q. Appropriate level mappings for P U Q
are defined in terms of the given level mappings for P and Q individually. [131 also adapts
the framework with respect to the treatment of recursion. We refer to the next subsection
for more details on the latter point.

3.2. Tuning on Recursion

For a Logic Program, nontermination can only be caused by infinite recursion. This is an
important observation (see also [90]), since for, e.g., imperative languages, various iterative
programming constructs-and goto statements-also need to be taken into account. Even
for full Prolog, writing a nonrecursive, nonterminating program is extremely difficult and
requires the use of nonstandard forms of assert and retract. This observation suggests that
termination conditions can take more advantage of the recursive structure of the program
than is the case for the techniques described in the previous subsection.

There are several issues involved in tuning on recursion. Some of them are specific
for mutually recursive programs. In order not to mix all issues, we restrict our attention
to direct recursive programs in this section, postponing issues specific to the treatment of
mutual recursion to Section 4.3. Note, however, that most of the techniques discussed below
were originally introduced in the context of mutual recursion, and that our reformulations
for direct recursion should not be understood as limitations of the surveyed works.

For directly recursive programs, the intuition is that termination conditions only need
to require a decrease, f(A) > f(B), of the level mapping between the head, A, of a rule
instance and every corresponding body atom, B, having the same predicate symbol as A.
Unlike the recurrency and acceptability approach, most works (e.g., [53, 26, 27, 107, 91,
92, 116, 1001, and [61]) propose termination conditions of this form, focusing on recursion.

To motivate the following definitions, note that, even in the context of directly recursive
programs, imposing f(A) > f(B) for atoms B with a different predicate symbol from A
is certainly not redundant in the definitions of recurrency and acceptability. The point is

218 D. DE SCHREYE AND S. DECORTE

that groundness or boundedness is only given for the top-level query. Due to the condition
f(A) > f(B), the boundedness property is inherited by every other call in the derivations,
solving the backpropagation problem.

As a result, termination conditions tuned on recursion need to compensate the omission
of the decrease f(A) > f(B) for body atoms, B, with different predicates from that of the
head, A, by a condition imposing some form of boundedness on all descending calls.

One such condition is formulated in [131. Here, the notions of semi-recurrency and
semi-acceptability are introduced. They are shown to be equivalent to, respectively, re-
currency and acceptability. In [131, the additional condition, mentioned above, is that the
level mapping should not increase between the head and a non-recursive body atoms, of a
ground instance of a clause. This condition still ensures boundedness of every atom in any
derivation, but only imposes a well-founding on the recursive part of the derivations.

As a second example, we present a simplified version of the conditions introduced in
[26]. The simplification is mostly due to our restriction to direct recursion. Here, a solution
to the backpropagation problem is formulated using program assertions (see Section 2).
The approach is developed for left-termination only. The following definitions are inspired

by WI.

Dejinition 3.8. (generalized level mapping)
A generalized level mapping for P is a function f : Atomp/- + nV. 0

With some abuse of notation, we will apply generalized level mappings directly on
elements of Atomp, omitting reference to the variant equivalence classes.

Definition 3.9. (rigidity wrt a generalized level mapping)
An atom A E Atomp is rigid wrt a generalized level mapping, f, if for all substitu-

tions 8 : f(AQ) = f(A). 0

The following sufficient condition for left-termination is adapted from [26] (Proposition
4.9).

Proposition 3.1. Let P be a correct asserted queried directly recursive program with asso-
ciated query, call description, and theory, respectively: q(X), Desc,,(.?), and T. P is
left-terminating for all queries q(f) such that T + Des+(?) if there exists a generalized
level mapping, f, for P, such that:

1. for every predicate p(X) in P: if T + Prep@, then p(t) is rigid with respect to f.
2. for every directly recursive clause in P, r : A t Bl, Bi-1, Bi, Bi+l, B,,

for every body-atom Bi of r, with the same predicate symbol as A, and for every
instance r@ of r such that (T + V(Pre(AB) A (A,~~~PoSt(B,jB)))), we have

f(AQ) > I=(&@). 0

We illustrate the condition with the permute program.

Example 3.5. (permute)
Let f be the generalized level mapping defined as

f(permute(tt , t2)) =list-length(tt)
f(delete(tt , t2, ts)) =list-length(q)

Permute is the asserted queried program consisting of the clauses of Example 1.2, augmented

TERMINATION OF LOGIC PROGRAMS 219

with
- the prelpost specifications:

{rigid(permute(x, y), f)} permute(x, y) (rigid(permute(x, y), f)},
{rigid(delete(x, y, z), f)} delete(x, y, z) {list - length(y)= list - Zength(z)+l,

rigid(delete(x,y,z),f)}, where T is a theory in which rigid(x, y) holds whenever
x is an atom which is rigid with respect to y, in which list-length is defined as in
Definition 3 and = /2 as the equality over IV,

- the query and call description:
(permute(x, y),rigid(permute(x, y), f)).

By definition off, rigid(permute(x, y), f) is equivalent to “the first argument of the permute
atom is a list of fixed length.” Thus, the proof of left-termination is for atoms of this
type. Similarly, rigid(delete(x, y, z), f) is equivalent to “the second argument of the delete
atom is a list of fixed length.” One can verify that this asserted queried program is correct
with respect to T, although a formal proof requires proof techniques based on e.g., the
axiomatic semantics of [44]. Condition 1) in Proposition 3.1 is trivially fulfilled since
every precondition for every predicate explicitly contains the condition of rigidity of the
atoms with this predicate with respect to f. We only verify condition 2) for the recursive
clause for permute. The recursive clause for delete can be dealt with in a similar manner.
Given an instance

permute([plql, [rbl) + delete(r, [plql, tl>, permute(t, s>

such that the pre-specification of the head and the post-specification of the delete atom hold,
we must prove that f(permute([p 141, [r Is])) > f(p ermute(t, s)). By the post-specification
of the delete atom, we know that list-length([p lq]) = list-length(t) + 1. Thus,

f(permute([plq], [rls])) = list-length([plq]) = list-length(t) + 1
> f(permute(t, 3)).

Thus, the condition is fulfilled and the program is left-terminating for all queries in the call
description. 0

Let us briefly compare Proposition 3.1 to the notion of acceptability and (the extension
to bounded goals of) Theorem 3.3. None of the concepts involved in the notion of a correct
asserted queried program, nor condition 1) in Proposition 3.1, has a direct counterpart in the
approach of Section 3.1. Their only purpose is to ensure a form of boundedness, not only
of the top-level query, but also of all descending selected subgoals. The notion of rigidity
is more restrictive than boundedness. However, we should point out that the formulation
in Proposition 3.1 is also more restrictive on this point than the conditions formulated in
[26]. The same is true for the distinction between the necessary and sufficient condition in
the case of acceptability and the sufficient condition in Proposition 3.1. [26] also provides
a necessary and sufficient condition, which we omitted due to space restrictions.

The model I which is explicit in the definition of acceptability has a counterpart in the
post-specifications for the intermediate body atoms in Proposition 3.1.

The main reason why we reformulated the termination conditions of [26] in the above
form is that most automatic termination analysis techniques make use of conditions that are
instances or close variants of Proposition 3.1. The works of Ullman and Van Gelder [1071
and Pliimer [9 1,92,90] are based on termination conditions that are similar to Proposition
3.1, but restrict attention to well-moded programs. Another approach using this type of
termination condition, but phrased with the full generality of rigidity instead of (ground)

220 D. DE SCHREYE AND S. DECORTE

well-modedness, is [931. 1611 and [116], if restricted to the directly recursive case, are also
similar within the context of well-modedness.

A closely related approach is formulated in [1171. The main differences are that it is
not restricted to the left-to-right selection rule, and that, unlike the work of Bossi et al.,
pre/post-specifications are associated to each literal in the program. Apart from a correct-
ness condition analogous to the one in Definition 12, the fact that pre/post-specifications are
expressed on a more local level requires a safety condition. For direct recursion, a condition
very similar to Proposition 3.1 is obtained. We return to the technique in Section 4.3.

We conclude the subsection with a brief description of another closely related approach,
proposed in [53]. In form, the termination conditions presented here are more similar to
recurrency and acceptability, although they are still tuned on recursion. A main differ-
ence is that termination and left-termination are characterized with respect to any set S of
atoms. The method requires information on how the queries in S propagate throughout the
considered derivations.

Definition 3.10. (call set)
The call set, Call(P, S, R), associated to a program P, a set of queries S, and a set

of selection rules R, is the set of all A E AtompIN, such that a representant of A is a
selected atom in some derivation for a pair (P, Q), Q E S, under some selection rule of
R. 0

[53] suggests the use of abstract data domains for the specification of S and abstract
interpretation over these domains as a way to approximate Call(P, S, R) by a superset.
In this sense, the notions of S and Call(P, S, R) are very closely related to the formulas
De.rcq (x) and Prep(x) of [26]. Program assertions, with proofs of properties via axiomatic
semantics, and abstract data domains, with inference of properties through abstract inter-
pretation, are known to be two closely related approaches, often geared towards solving
similar problems.

Dejnition 3. II. (recurrency wrt S)

Let S be a set of atoms and P a directly recursive program. P is recurrent with respect

to S if there exists a generalized level mapping, f, such that

l for any representant A’ of A E CaZl(P, S, R), where R contains all selection rules,
l for any clause A” + B1 , Bi , B, , such that mgu(A’, A”) = 8 exists,
l for any atom Bi, 1 5 i 5 n , with the same predicate symbol as A”:

f(A’) > f(W). EI

Proposition 3.2. A directly recursive program P terminates for any query in a set S if and
only if P is recurrent wrt S. 0

Similarly, [53] contains a reformulation of acceptability. It can be obtained from Def-
inition 11 by requiring that: 1) in addition to the existence of f, there exists a model, I,
for P, 2) the considered call set is CaZZ(P, S, {LD}) instead of CaZl(P, S, R), where LD
is the left-to-right selection rule, 3) f(A’) > f(Bi0) should only hold for those Bi0 such
that Z i= Bj@, 1 (j (i - 1. We have:

Proposition 3.3. A directly recursive program P is left-terminating for all queries in a set
S if and only if P is acceptable with respect to S. •I

TERMINATION OF LOGIC PROGRAMS 221

With respect to [26], apart from the distinction of using abstract interpretation instead
of pre/post specifications, the main differences are that: 1) the decrease is between the
previous call and the next call, instead of between the head and the body-atom, and 2) the
fact that no rigidity conditions (or any related ones) are imposed. To illustrate the latter
point, consider the following example.

Example 3.6. (append)
Take the append program and a query append(x, y, z), with all its arguments free. Clearly,
the program is nonterminating for this query. The termination conditions in Proposi-
tion 3.1 fail to hold because there is no nontrivial generalized level mapping such that
Pr+pend(X, y, Z) is rigid with respect to it. Using Proposition 3.2 or 3.3, nontermination
follows from the fact that for any generalized level mapping, f, f(A’) = ffBle), for every
pair of descending calls A’ and BtB to append/3. In fact, all such calls are variants. 0

Although the absence of any requirement of boundedness or rigidity in Propositions 3.2
and 3.3 is theoretically intriguing, it has little or no practical impact. Experiments illustrate
that, in those cases in which these termination conditions hold, the atoms in Call(P, S, R)

are, in fact, bounded or rigid with respect to the selected generalized level mapping. Con-
versely, it is the case that for rigid calls, the generalized level mapping has the same value
on the call and the corresponding head of any clause. So, the conditions of Proposition 3. I
also imply a decrease between every two calls. Moreover, in the generalizations to mutually
recursive programs, formulated in [53], explicit rigidity requirements do turn up.

The above approach has been the basis for a fully automatic termination analysis system,
described in [11 l] and [1141. Several components of the system, including the inference of
interargument relations [1131 (see also Section 4.2), rely on the use of abstract interpretation.
Termination conditions are formulated as a system of linear inequalities, the solvability of
which is automatically verified using the constraint logic programming system Prolog III

]431.
As a final comment on the relation between the frameworks proposed in this subsection

and the previous one, we should point out that the termination conditions in Section 3.1
require no information on properties of derivations of the considered queried program. This
is not the case for the two main approaches discussed in the current subsection. Properties
such as rigidity in pre/post-specifications and knowledge on the call set are explicitly related
to derivations. Global analysis techniques are needed to infer or verify them.

3.3. A Transformational Approach

Some termination analysis techniques make use of program transformation. A first motiva-
tion for introducing transformation in an approach is to simplify the given program and/or
query. As a typical example, mutually recursive programs can often be transformed into
equivalent directly recursive ones (see [90] and Section 4.3). Another type of transformation
maps the given Logic Program to an associated program in a different language. Typical
target languages are Term Rewrite Systems or Functional languages. Here, the point is that
for the target language, rich theories and powerful tools for termination analysis may be
available. This is especially the case for Term Rewrite Systems. If the transformation is
such that the termination properties of the transformed program are inherited by the Logic
Program, then LP termination can benefit indirectly from the results obtained for the target
language.

222 D. DE SCHREYE AND S. DECORTE

A very successful approach of this type is presented in [96]. The approach is developed
for well-moded*, definite programs. The target language is Term Rewrite Systems.

As can be expected, the core of the approach is the transformation scheme. Since Term
Rewrite Systems do not allow local variables, the transformation must eliminate all such
variables. This is done by introducing Skolem functions. More precisely, for each moded
predicate p of arity n and having k output positions, k new function symbols, p’, p2, pk,

are introduced. Each function p’ has arity n - k. Then, for each defining clause for p and
each output position i, a rewrite rule for p’ is introduced. Intuitively, the rule expresses
how the input arguments of p need to be rewritten to obtain an output for the ith output

argument of p.
We illustrate the transformation with the permute program.

Example 3.7. (permute)
To clarify the transformation, we recall the clauses from Example 1.2:

(1) permute(iVil, Nil) t

(2) permute([xly], [ulu]) t delete(u, [xly], w), permute(w, u)

(3) delete(x, [xlyl, Y) t

(4) delete(u, [xlyl, [xlzl> + delete(u, y, z)

Assume that the modes permute(in,out) and delete(out,in,out) are given. With respect to
these modes, the transformation introduces three function symbols: permute2, delete’, and
delete3, all of arity 1.
First consider clause 3). It gives rise to one rewrite rule for delete’ and one for delete3:

delete’([xly]) + x

delete3([xly]) + y

Observe that the right-hand sides of these rules are precisely the output values for the con-
sidered argument positions. For clause 4), the associated rules are slightly more complex,
due to the recursion. We get

delete’([xly]) + delete’(y)

delete3([xly]) + [x I delete3(y)]

Clause 1) trivially transforms to: permute2(Nil) + Nil. Finally, for clause 2), we need to
deal with the local variable w. Since this variable is on the third argument position of the
delete(u, [x I y], w) atom, we can represent it as delete3 ([x Iy]). For similar reasons, u can
be represented as delete’ ([x 1 y]) and u as permute2(delete3 ([x I y])). Thus, we get the rule:

permute2([xly]) + [delete1([xly])lpermute2(delete3([xly]))]

Note that the resulting TRS is in no way semantically equivalent with the given Logic
Program. For instance, it can be used to rewrite the term permute2([11[21NiZ]]) to the term
[21[21Nil]]. 0

An additional aspect of the transformation is that it may be necessary to introduce inverse
functions for the functors occurring in the Logic Program. This is the case when a compound
term occurs on an output position in the body of a clause. As an example, assume that
the modes for the permute program are permute(out,in) and delete(in,out,in). Now, the
generated functions are permute’ of arity 1 and delete* of arity 2. Consider clause 2). The
local variable w causes no new problems. It can be represented as permute’(v). However,

TERMINATION OF LOGIC PROGRAMS 223

the output variables x and y in the second argument of the atom delete(u) [X] y], w) cannot
be directly represented in terms of the input variables and the available functors. We
need to introduce two inverse functions for the [.].I functor, say car and cdr, both of arity
1, which allow us to represent x as car(delete2(u,permute’(u))) and y as cdr(delete2(u,
permute’ (v))). The resulting TRS now is:

permute’(Nil) + Nil

permute’([u]u]) + [car(delete2(u, permute’(v)))]cdr(delete2(u, per-

mute’(u>>)l
delete2(x, y) + [XIYI
delete2(u, [xlz]) -+ [x]delete2(u, z)]

cdblvl> +X

cWblv1) +Y

Note that in this specific example, the introduction of car and cdr could be avoided since
neither x nor y occurs in isolation on an output position in a head. In fact, the transfor-
mation could easily be adapted to generate a more natural version of the second rule for
permute’, avoiding inverse functions. However, the example sufficiently illustrates the
point. Furthermore, we use it to clarify some further issues below.

The main result of [96] is the following.

Theorem 3.5. A well-moded* program, P, terminates for all well-moded* queries, Q, and

under any selection rule implied by the modes (see Section 2), if its associated TRS
terminates. 0

Example 3.8. (permute)
The TRS derived for the modes permute(in,out) and delete(out, in, out) in Example 3.7
is nonterminating. No conclusion on the termination of the well-moded* program can be
drawn. In particular, left-termination of permute for queries permute(tt , tz), with tl ground,
cannot be proved on the basis of Theorem 3.5. We comment on this example below. For the
second well-moding*, permute(out, in) and delete(in, out, in), however, the resulting TRS
terminates. Theorem 3.5 allows us to conclude termination for all queries permute(tt , tz),
with t2 ground, and for all selection rules implied by the modes. In particular, the queries
terminate under the right-to-left selection rule. 0

The example illustrates both advantages and drawbacks of the approach. First, it should
be noted that a TRS is said to be terminating if the rewriting terminates for any order
of application of the rules. This is the reason why, in the first part of our example, we
were unable to prove left-termination. In this example, one possible rewrite order is to
continuously alternate the application of the second rule for delete3 and the second rule
for permute2, which does not terminate. In particular, an initial term permute2([A]Nil]) is
rewritten as:

Note that the corresponding query permute([Al Nil], res) to the LPprogram has a similar
infinite derivation under the corresponding selection rule. Here, the sequence of descending

224 D. DE SCHREYE AND S. DECORTE

goals is

delete(ut, [AINiZ], WI), permute(zul, ut) @es = lu1lu11)
delete(u1, Nil, ~21, permute([A]z21, ~1) (~1 = [Alz21)

delete(ut, Nil, z2), delete(u3, [Alz21, w3), permute (~3, ug) (ul = [ug]ugl)

Although in some cases the lack of focus on an individual selection rule is a draw-back
of the method, in others it is an advantage. The method is not tied down to one specific
selection rule, which is the case for many other approaches. Given a well-moded* program,
if the associated TRS terminates, the method allows us to suggest a set of selection rules
under which the program terminates. This is particularly well suited for control generation.

Some drawbacks of the method, as it is presented in [96], are the restriction to well-
moded* programs and the fact that, due to the transformation, the method provides little
new insight in LP termination.

[1031 provides solutions for both issues. It adapts the approach in two different ways.
A first adapted version allows us to treat termination under all selection rules. This is
essentially based on a more simple transformation, under which a clause H t B1, B,

gives rise to n rewrite rules H + B1 , H -+ B,. The work also devotes attention to
termination under one specific selection rule. This is done by encoding the selection rule
within the terms and rewrite rules. This part of the paper links the approach more closely to
other works in the area. A second extension, in the same paper, is to remove the restriction
of well-modedness*. Within the context of termination under all selection rules, notions of
boundedness, similar to the one of Subsection 3.1, are introduced. One notion is defined
on the atoms of the Logic Program and a related notion on the terms of the Rewrite System.
Termination of the Logic Program for bounded queries is then characterized in terms of
termination of the corresponding TRS and boundedness of its terms.

Notice that the approach does not require the inference of models or interargument
relations to deal with local variables. This is important because several techniques for
inferring interargument relations, for various technical reasons, impose restrictions on the
given programs (see Section 4.2). Since such restrictions are not needed here, the technique
can prove termination for some programs that are beyond the scope of some other techniques.
Termination of the ProCos compiler [98] is an example.

Finally, it should be noted that the technique can benefit from the extensive amount
of work done on Term Rewrite Systems termination. Many term orderings, in particular,
the simplification orderings (see [56]), such as recursive path ordering, lexicographic path
ordering, and elementary interpretations, are available and are implemented in rewrite the-
orem provers, such as RRL [71] and REVE [76]. The method has been automated using

RRL.
In [2], the idea of adapting the technique to the study of termination under one specific

selection rule is elaborated in much more detail. Here, the logic program, P, and query,
Q, are transformed into a TRS, T, and a starting term, t, respectively. It is proved that if
P is well-moded with respect to the left-to-right selection rule, then t has a finite reduc-
tion tree under T iff (P, Q) is left-terminating. This is achieved through a more specific

transformation that compiles the selection rule.

3.4. A Deductive Database Approach

A large amount of work has been devoted to termination of query-evaluation in a deductive
database context. Important contributions in this line of work are [1, 30, 31, 32, 73, 75,

TERMINATION OF LOGIC PROGRAMS 225

95, 100, 101, 105, 1071, and [109]. Distinction is made between the problem of proving
termination under top-down evaluation and proving that a bottom-up evaluation generates a
finite answer. The latter property is referred to as safety. In what follows we restrict attention
to top-down evaluation, merely mentioning [73,75, 951, and [1011 as some approaches for
studying safety.

Several of the contributions to top-down termination analysis are focused on the inference
of interargument relations. We review these works in Section 4.2, which is entirely devoted
to this problem. The main contribution in [1051 is to provide support for the automatic
generation of appropriate level mappings. It is discussed in Section 4.1, in the context of
providing well-founded orderings.

On the level of the underlying structure of the termination proofs, these approaches are
very similar to the ones discussed in Section 3.2. Well-modedness is most often required
and termination conditions are tuned on recursion.

Technically, two specific aspects, different from the previous frameworks, usually arise.
First, a deductive database is composed of two components: an extensional database (EDB),
which consists of a set of database facts, and an intensional database (IDB), which consists of
rules defining how additional relations can be computed from the EDB. In most approaches,
the IDB is assumed to be a Datalog Program. This is not a restriction with respect to general
Logic Programs since the latter can be transformed to Datalog Programs with an infinite
EDB (see, e.g., [95]). Of course, this extends the notion of a Datalog program.

Example 3.9. (permute)
The permute program can be transformed to the Datalog Program:

perm(r, r) +- pnil(S).

permb, t) + ~.](s,x, ~1,

del(u,s, w>,

perm(w, u>,

q.](t, u, u>.

del(x, s, Y> +- p[,](s,x, Y).

de](u, s, t> + f'[,](s,x, Y>,

Wu, Y, z),

fj.]U, x, z).

The program is augmented with the infinite EDB for the 4.1 relation, which defines the
cons constructor. It contains such tuples as: (Nil, Nil, Nil), (a, 1, Nil), where a denotes
the list [l], (b, 2, a), where b denotes the list [2, 11, etc. The relation Pnil has only one
tuple, P,il(NiZ). 0

A second technical difference is that most approaches in this line of work rely on dataflow
graphs for representing and expressing solutions for various tasks involved in the termina-
tion analysis, e.g., the layout of the termination conditions, the inference of interargument
relations, the propagation of modes for the moded top-level query.

By way of example, we give an outline of the approach presented in [1001. It is formulated
for Datalog. Note that for Datalog Programs augmented with a finite EDB, termination is
decidable. In particular, the conditions formulated in [1001 are necessary and sufficient for
termination. The considered selection rule is the left-to-right one, but any other selection
rule can be dealt with by adapting the notion of an augmented argument mapping (see
below). The queries of interest are specified through modes.

226 D. DE SCHREYE AND S. DECORTE

(PA (P,2)

I’

k&a

(q,U

/’

/ d
(PJ) (p,2)

FIGURE 1. Example of an argument mapping.

The approach uses a well-founded ordering induced by so called monotonic&v con-

straints. A monotonicity constraint for a predicate p has the form pj < pi , where pi and
pj denote the sizes of the arguments on positions i and j. Several monotonicity constraints
could be derived for one single predicate. [30] presents an algorithm for inferring them.
In addition, in the context of programs with function symbols, or alternatively, their repre-
sentations as Datalog Programs with an infinite EDB, a more general form of constraints,
called inequality constraints, is needed. Their most simple form is pj 5 pj + c, where c is
an integer. [32] proposes a technique for inferring them (see also Section 4.2).

Combinations of modes and monotonicity constraints, as well as the way in which they
propagate through clauses, are represented by means of argument mappings. An argument
mapping is a graph with two kinds of nodes, corresponding to either bound or free arguments.
The nodes may be connected through either arcs or edges. An arc from a node (p, i) to a node
(p, j) denotes a monotonicity constraint p,i < pi. Edges represent occurrences of the same
variable. An argument mapping can be constructed for each clause, making both modes and
monotonicity constraints explicit. For instance, for the clause p(x, y) +- q(x, z), p(z, y)
with mode p(in, out) and constraint q2 < 41, the associated argument mapping is presented
in Figure 1.

An augmented argument mapping is an argument mapping associated to a rule and a
selected atom from the body of the rule. It is organized in layers: one layer for each
atom preceding the selected one. The top layer, corresponding to the head of the clause,
is referred to as the domain, the bottom layer, corresponding to the selected atom, as the
range. Equality information about the variables occurring in the clause, as well as the
monotonicity constraints for all atoms preceding the selected one, are taken into account.
A summary of a mapping restricts the graph to its domain and range and summarizes the
connections between these nodes in a straightforward way. Figure 2 presents a summary for
the augmented argument mapping of Figure 1, where the recursive call to p is the selected
atom.

A query pattern is an argument mapping containing the argument positions of only one
atom. A query mapping pair consists of a query pattern rr and a summary mapping p
such that the domains of rr and p are labeled by the same predicate. Query mapping pairs
(n, CL) may be composed with each other or may generate new pairs by coupling the range
of the summary mapping with the summary of the composition of p with any augmented
argument mapping. If (x, p) is a query mapping pair and the range of p is identical to

TERMINATION OF LOGIC PROGRAMS 227

W.l.1)

(Pa @,a

5 0 I
0 0

(PA (p2)

FIGURE 2. Summary of the argument mapping in Figure 1.

(peml) (perm2)

W.l,3)

(perm,l)

T
(perm2)

0

a
(de&l) (W’4 7 WW) x 0

(peml) (perm2)

0
(perml) (perm2)

FIGURE 3. An augmented argument mapping and its summary for permute.

n, then we may construct a circular variant (7r, w’) out of it by connecting corresponding
nodes of domain and range by an edge. Given a top-level query pattern K, the termination
conditions are defined on the circular variants of the set fll(P, K) (the set of relevant query
mapping pairs), which is defined as the minimal set of query matching pairs containing the
pair (K, K) which is closed under generation and composition.

The following theorem from [1001 characterizes left-terminating Datalog Programs with
respect to a given set of monotonicity constraints.

Theorem 3.6. A Datalog Program P is left-terminating for all queries matching a pattern

K if and only if every circular variant of n?(P, K) has an arc oriented from domain to
range. 0

Example 3. IO. (permute)
Assume that we aim to prove left-termination for the Datalog version of the permute program
in Example 3.9, with respect to the mode perm(in, out). We assume that the monotonicity
constraints de13 -C de12 and 4.1~ -C 9.1, have been derived. First, we compute all aug-
mented argument mappings. As an example, the one for the recursive clause for perm and
the third atom in its body is represented in Figure 3.

Next, we compute W(P, K) by generating new query-mapping pairs and by composing

228 D. DE SCHREYE AND S. DECORTE

(de&l) ww) WW

0 a 0

(peml) (perm2)

(a 0

wa (d&V

(perm.2)

0)

0
(perm.2)

FIGURE 4. Circular variants for the perm example.

them. From the resulting set, circular variants are constructed. They are shown in Figure 4.
The condition of Theorem 3.6 is fulfilled so that we may conclude left-termination for the
considered queries. 0

In conclusion, note that these termination conditions are indeed conceptually similar
to those in Section 3.2. However, the transformation to Datalog and the graphical repre-
sentation of the different concepts and conditions makes a detailed comparison difficult.
Observe that a restriction to direct recursion is not needed. Even for mutually recursive
Datalog Programs, only a finite number of circular variants exist.

3.5. Other Approaches

One of the first contributions to the topic is by Vasak and Potter in [1 lo]. They present a
theoretical characterization of the set of universally terminating queries to a program. A
key notion is a sequence of sets, M,, c Atompj-, n E NV, such that Mn contains all atoms
for which there exists a proof tree with a depth of at least n. To each of these sets, we can
associate its complement, co-M,, = AtompI- - M,, , where - stands for the set difference
operator. The terminating queries can then be characterized as UnEm co-M,,.

The paper presents a formalization of the termination problem in terms of fixpoint charac-
terizations, but it provides little or no support for-even manual-termination verification.

Another theoretical characterization of terminating and nonterminating queries is de-
scribed in [14]. In this work, a first-order formula is associated to each program: the
completion formula of$niteness. It is proved that ground valid consequences of this for-
mula cannot have any infinite SLDNF-computation. A fixpoint characterization is provided
to identify the ground atomic consequences. Secondly, a completion formula of injiniteness
is constructed for each program. This formula is expressed in the language of first-order
modal logic of provability (see [25]). G round valid consequences of this formula may have

TERMINATION OF LOGIC PROGRAMS 229

an infinite SLDNF-computation. Because modal logic of provability is not axiomatizable
[25], it is, in general, not possible to conclude which atoms are consequences of this formula.

[65] deals with existential termination. The property is proved by constructing proof
rules based on the notion of parametrized invariants. Sequences of computation states are
mapped into a decreasing sequence of a well-founded set by means of a variantfunction.
However, as the execution states and transitions are described by proof rules, the approach
is rather complex, even for very simple programs.

Another alternative for proving termination is to use structural induction proofs. As an
example, we can prove left-termination of permute for all queries +- permute(tl, t2), with
tl a list of fixed length, by first proving left-termination for the case that tl is the empty list,
and then proving that left-termination for a list tl of length n follows from the assumption
of left-termination for lists t; of length smaller than n.

[42] and [181 propose techniques of this type. We briefly comment on the latter. [181
is a transformational approach. It defines a semantics for Prolog, including features as cut
and negation as finite failure, by assigning a function [[pJ of arity n, to every predicate
p of arity n. The function [TpJ maps each n-tuple of terms, t, to a sequence of answer
substitutions. The sequence is identical to the sequence of computed answers generated
for t ~(0 under the Prolog inference rule. Then, [18] uses inductive termination proof
techniques, for Functional Programs, adapted from the work of Cartwright and McCarthy
[37-391, to prove the termination or nontermination of the Prolog program.

The technique is very general. It can deal with indirect recursion, normal programs,
both existential and universal termination, and with impure features of Prolog. On the
other hand, with respect to automation, it requires the use of general inductive theorem
proving techniques. It is unclear to us whether this can lead to more powerful automated
termination analysis than with other techniques presented in the literature. We refer to [181
for an explicit treatment of the permute example.

Similarly, [42] uses structural induction to prove a variant of the existential termination
property. As complete abstraction is made of the selection rule, termination means the
existence of a solution in some SLD-tree.

4. SOME SPECIFIC TECHNICAL ISSUES

In this section, we survey contributions to LP-termination analysis that are related to more
specific technical issues than those addressed in the previous section. We have grouped
them as follows. Section 4.1 contains additional concepts and techniques related to norms,
level mapping, and well-founded orderings. In Section 4.2, we survey several approaches
for inferring interargument relations. Section 4.3 is on how techniques tuned on recursion
deal with mutual recursion.

4. I. Norms, Level Mappings and Well-Founded Orderings

We address three issues related to the study and the selection of useful well-founded or-
derings. First, we devote considerable attention to the study of various norms. The use of
norms as a basis for defining well-founded orderings is rather specific for LP termination
analysis. In Term Rewriting, well-founded orderings are most often defined through syn-
tactic subterm orderings. A next issue is to provide norms that are suitable for appropriately
ordering partially instantiated terms. Here, dealing with the backpropagation problem is

230 D. DE SCHREYE AND S. DECORTE

again the main concern. Finally, we discuss the problem of how to select a well-founded
ordering, adequate for proving termination of a program at hand.

The work of Naish in [86] and [87] has had a significant impact on LP termination
analysis. The work addresses control generation, with an emphasis on the avoidance of
infinite derivations. Although the analysis is at the clause level and mostly of a heuristic
nature rather than providing formal termination conditions, the technique allows us to avoid
many infinite derivations in practice, and was a source of inspiration and motivation for many
other works.

The main drawback of Naish’s approach is that his well-founded orderings are based on
the syntactic subterm order. Ullman and Van Gelder’s work [107] was motivated by the
fact that such a subterm order is incapable of adequately dealing with local variables: such
variables have no syntactic relation to the head of the clause. As far as we know, they were
the first to introduce an abstraction function, mapping terms to their sizes, as a basis for
the well-founded ordering in a top-down termination analysis. Their abstraction function
is list-length. Later, the concept was generalized to that of a norm.

Dejinition 4.1. (norm)
A norm is a function II.]] : TermpI- + LV. 0

With slight abuse of notation, we also write lltll, for t E Termp. Examples of norms
that are often used in practice are list-length and term-size. Term-size counts the number
of function symbols in a term.

Dejinition 4.2. (term-size)
The term-size norm, denoted I I. I It, is defined in the following way:

IIf(tl,. , tn)llr = I + Cyz’=l lltilll with f any function symbol
and n > 0

llxllt =o otherwise. 0

Another frequently used norm is term-depth, which gives the maximum depth of (the
tree representation of) a term.

Dejinition 4.3. (term-depth)
The term-depth norm, denoted I I. I Id, is defined in the following way:

Ilf(tlt.~’ , tn)lld = 1 + maxl~i~nllti IId with f any function symbol
and n > 0

IlXlld = 0 otherwise.

In [90], [91], Phimer introduces the class of linear norms.

Dejinition 4.4. (linear norm)
A norm (].(I is linear if, for each term t E Termp and for each substitution 0 such

that ta is ground, we have

llt~ll = lltll + 2 lluiall
i=l

where {ut , u,} is the multiset of variable occurrences in t. 0

TERMINATION OF LOGIC PROGRAMS 231

Term-size is linear; list-length and term-depth are not.
In [26], the more general class of semi-linear norms is introduced.

Dejinition 4.5. (semi-linear norm)
A norm 1 (.I 1 is semi-linear if it is recursively defined by means of the following

schema:

IIVII =o if V is a variable, and

]]f(tt, &)]I = c + llt~,]] + + lIfi,II with c E IV, c, in, i, only
dependent on f/n, and

1 (il < < i, 5 n. 0

Linear norms are semi-linear. Again, term-depth is an exception. The relevance of
semi-linear norms relates to the notion of rigidity. In Section 3.2, we introduced this notion
for atoms with respect to a generalized level mapping. It was originally introduced in [26]
as a property of terms with respect to a norm.

Dejinition 4.6. (rigid term)
Let I I. I I be a norm and t E Termp We say that t is rigid with respect to I (.I I, if for

any substitution 0,]]t0]] =]]t]]. 0

Since level mappings are usually inferred from norms by computing a sum or positive
linear combination of the norms of the terms occurring on some fixed argument positions
of the atoms, the two rigidity notions on atoms and terms are closely linked. An atom is
rigid with respect to such a level mapping if all terms occurring on the selected argument
positions of the atom are rigid with respect to the underlying norm.

In general, it is difficult to decide which terms are rigid. This is precisely why semi-
linear norms were introduced: terms that are rigid with respect to a semi-linear norm can be
syntactically characterized. Essentially, a term is rigid with respect to a semi-linear norm
I I. II if and only if recursively decomposing the term over the relevant argument positions
il, ., i, for its principle functor (see Definition 5) does not produce any variables. In other
words, no variable can occur at any (nested) relevant argument position of the given norm
(see [26] for a more formal treatment).

Example 4. I.

Let f /3 and g/2 be the functors in the language underlying to P. Let 11. I I be the semi-linear
norm

((x I] = 0 if x is a variable

IIf(t1, t2, bll = 1 + Ilhll + lb311

y;;l~‘;ll = llhll

ll~ll = 0
Then, g(f (a, g(x, y), g(b, x)), z) is rigid. The norm of any of its instances is 1. The term
g(f (x, a, b), c) is not rigid. Taking x = f (a, a, a), its norm is 2; taking x = a, its norm
isl. 0

Most of the techniques that do not impose the restriction of well-modedness study termi-
nation for queries that are characterized through rigidity of certain arguments with respect

232 D. DE SCHREYE AND S. DECORTE

to a semi-linear norm. As such, these notions play a central role in several recent works
(e.g., [93, 1131).

Using a semi-linear norm and given a functor f, the norm relates the size of all terms
with top-level functor f in the same way to the size of its subterms. This is not always
convenient. As a hypothetical example, if, in the same program, both terms of the form
f(tl, f(t2, f(...))) and terms of the form f(f(f(..., TV), tl) are processed, then it may be
desirable to measure them in different ways. Terms of the first type could be measured by
I I f(tl , t2) 1) = 1 + I It2 II, while terms of the second type are measured by 1 If(tl , t2) I I =
1 + I It1 11. In [26], semi-linear norms are generalized to typed norms, allowing this increased
flexibility. Also, [54] introduces more general norms with a similar expressivity. In addition,
the latter work presents a technique for automatic generation of suitable norms, using type
inference.

Even when a norm has been fixed, one is still faced with the problem of defining a
suitable generalized level mapping on the basis of the norm. In the context of well-moded
programs, a straightforward solution is to define for each predicate symbol p of arity n in
P:

f(P(h 1 .“1 bd> = c I Iti II
iEI,

where In is the set of all input arguments according to the mode of p. However, this
approach is insufficiently refined, as the following example illustrates.

Example 4.2. (reverse)

reverse(Nil, x, x) +.
reverse([xjy], z, u) +- reverse(y, z, [xlu]).

Assume that we aim to prove termination for the queries specified by the mode reverse(in,
out, in). The program is well-moded with respect to this mode. With list-length as the
selected norm and following the above construction for the level mapping, we get f(reverse(
tl, t2, tj)) = list-length(tl)+list-length(t3) Proving termination on the basis of this level
mapping is impossible since, for any derivation, it assigns the same value to every reverse

atom in it. 0

The problem is, of course, that the third argument of reverse should not be taken into
account. To solve the problem, one could consider all possible subsets of input positions
for each predicate, and attempt to prove termination for each resulting level mapping. This,
of course, strongly increases the complexity of the analysis. Sohn and Van Gelder in
[105] propose a solution based on linear programming techniques. In the context of the
example, they suggest a symbolic level mapping of the form f(reverse(tl , t2, tg)) = a.list-
length(tl) + b.list-length(@), where a and b are variables ranging over the natural numbers.
The problem is to assign values to a and b such that the resulting level mapping can be used
to prove termination.

Computing such values is done using linear programming. A termination condition
similar to the ones expressed in Section 3.2 is formulated as a system of linear inequalities
over the variables in the symbolic level mapping. For each recursive clause, an inequality
expresses that, for each instance of the clause, the symbolic level mapping of the head

TERMINATION OF LOGIC PROGRAMS 233

should be larger than that of a recursive call. In our example, we get the inequality

a(1 + y’) + bu’ > ay’ + b(l + u’)

Here, the variables y’ and U’ are abstractions for the values that the list-length norm
would produce for any specific instance of the variables y and u. The inequality has a
minimal solution: a = 1 and b = 0. Obviously, the resulting level mapping decreases at
every derivation step, thereby proving termination.

Our presentation of [1051 only sketches the main intuitions. Many aspects are omitted.
Dealing with left-termination and local variables is solved by adding interargument relations
to the system of inequalities.

We conclude the subsection with some comments on a very different approach, both for
providing well-founded orderings and for dealing with the backpropagation problem. It

was recently proposed in [33].
Instead of using norms and level mappings, this technique relies on general term or-

derings, as is done in Term Rewrite Systems. It imposes no restriction of groundness,
boundedness, or rigidity of the input. To deal with backpropagation, [33] assumes that
refined type information on the calls is available, and that this type of information satisfies
a generalized notion of well-modedness, not restricted to ground input and output. Then,
the program is transformed. The head of every clause is compared with the call type for the
corresponding predicate. If the head contains terms that are more specific than the call type,
then these more specific parts are generalized. Finally, the termination conditions impose
a decrease under the term ordering for the transformed clauses.

The result of the transformation is that only part of the structure occurring in the head of
the original clauses is taken into account to prove well-foundedness, namely, the part that
is guaranteed to consume data from the call. Parts that may construct data in some calls are
disregarded.

This is very similar to the approach of Naish in [87]. The purpose of his wait-declarations
is precisely to delay unifications that cause construction of data in the call. Calls that are
less specific than the head are delayed.

Whether the approach of [33] can adequately deal with local variables, without addi-
tionally incorporating interargument relations computed through norms, is unclear at this
stage. We return to this point in the next subsection.

4.2. Deriving Interargument Relations

In this subsection, we review several techniques for deriving interargument relations.

Dejinition 4.7. (interargument relation)
Let P be a definite program, p/n a predicate in P, and]I.]]: Termp/, + W a

norm. An interargument relationfor p wrt) I. I I is relation Rp E IV, such that for every

computed answer, p(tl , t,),foranypossiblecall top, (IjtlII, Iltnll) E Rp. 0

Example 4.3. (delete)
For the delete predicate and the list-length norm, some interargument relations are ((x, y, Z) E

NV3 I y = z + 1 1, I (x9 y, z> E iv3 I y > z }, and ((x, y, Z) E RV3 (y > 0]. The first of
these three is more precise than the others, in the sense that the others are only supersets of
the set of n-tuples ([It] II, Ilt,ll) that can occur for computed answers p(tl, t,).

234 D. DE SCHREYE AND S. DECOR-K

Some works introduce a notion of interargument relation which is less restrictive than
the one above. In particular, the condition (I (tl 11, . . . , 1 Itn I I) E R, is often only required for
atoms p(tt, t,) in the Least Herbrand model of P.

Notice that the latter definition generalizes the previous one due to a completeness result
for SLD-resolution: any ground atomic consequence of P has an SLD-refutation (see,
e.g., [78]). The latter definition can also be alternatively formulated as follows: a relation
R, E ZiV” is an inter-argument relation for a predicate p/n of P if there exists a model,
I, of P such that the domain of Z is N, the preinterpretation of Z is (in a natural way)
induced by the restriction of I), 1 I to the ground terms in Termp, and R, = Z(p). We
omit the proof of the equivalence of these formulations. Our main reason for stating the
equivalence is to establish the connections with the termination conditions expressed in
Section 3. Here, in the notions of acceptability and acceptability with respect to a set
of atoms, interargument relations are further generalized to any models of the program.
In this last generalization, the restrictions on the domain of the interpretation and on the
preinterpretation have disappeared.

Several formulations in the literature are often more restrictive than Definition 7 on the
level of the type of relation R, that is allowed. For instance, the technique of [107] only
allows relations of the form I Iti I) + c >_ (Itj) 1, for some integer constant c and two argument
positions i and j. This technique is particularly restrictive in this respect. At the other end
of the spectrum, [109] allows relations R,,/n that are the integer solutions of systems of
linear inequations over n variables. These differences in expressivity are surveyed in detail
in the following subsections, in which our main focus is on presenting the main techniques
proposed for inferring the relations.

As mentioned in Section 1.4.3, the motivation for deriving such relations is the treatment
of local variables in the context of left-termination. Returning to the permute example, in
order to prove a decrease of the list-length norm between the first argument of the head,
[xl lyt], and that of the permute atom in the body, wt, of

pennute([xlly~l, [ullull) + delete(ul, [xllyll, WI), permute(wl, ~1)

we restrict our attention to instances of the clause in which delete(ut, [xtlyl], wt) is a
computed answer for some query to delete. Then, both the first and the second interargument
relations for delete in Example 4.3 are sufficient to prove the decrease.

One might observe that, in view of this motivation, it is unclear why increased expres-
sivity, such as solutions to systems of linear inequations, is useful. The final purpose of the
interargument relation is to prove a simple inequality between the sizes under some norm

of some argument positions anyway.
The reason is that, although in the termination condition we might only need a simple

inequality, relating two argument positions, there may be many intermediate predicates
involved in linking the head atom’s arguments to the local variable in the recursive call.
The interargument relations for all these predicates need to be computed and combined to
obtain the desired inequality in the termination condition. By restricting the expressivity
with which the interargument relation of each separate predicate involved in this link is
represented, their combination may become too imprecise to conclude a decrease.

TERMINATIONOFLOGICPROGRAMS 235

We illustrate the point with a simple (although not very practical) example.

Example 4.4. (confused delete)

conf(x) t delete2 (x, z) ,
delete(u, y, z),
conf(y).

deleteT(x, y) t delete(u, x, z),
delete(u, z, y).

Procedurally, using the left-to-right selection rule, during every recursion cycle, two
members of a list, x, are removed to obtain z and a new member, u, is added to z to obtain
y, which is then processed in the next recursive cycle. Under the list-length norm, a precise
interargument relation for delete2 is ((x, y) E NV2 1 x = y+2 }. For delete, a precise relation
is {(x, y, z) E Arv3 1 y = z + 1 }. Combining these relations allows us to conclude that in
any instance of the recursive clause for conf/l, such that the delete:! and the delete atom
are computed answers, list-length(y) < list-length(x). Thus, left-termination is proved.

If we were only offered the expressivity of interargument relations of the form 1 Iti 11 >
I Itj 11, then the most precise interargument relation for delete2 and delete would, respectively,
be {(x, y) E NV2] x > y } and ((x, y, z) E NV3 1 y > z }. As a result, no conclusion on the
relation between the size of the instances of y and x could be drawn. 0

Although the example is not convincingly practical, the point is that reduced refinement
in the interargument relations can-due to propagation of the relations throughout the
derivation-often degenerate below any point of usefulness. This is a main reason why
norms have been used in this context. By ordering atoms via natural numbers assigned to
their terms, the gain is the arithmetic structure over the natural numbers. In the context
of syntactic subterm orderings, this advantage cannot be obtained. This motivates our
comment at the end of the previous Section in relation to [33].

The remainder of the subsection is organized as follows. We start with two technically
very similar approaches, one by Ullman and Van Gelder [107], the other by Phimer [90].
Then we sketch an approach based on abstract interpretation by Verschaetse and De Schreye
[53] and, again, a related one by Brodsky and Sagiv [32]. We end with some comments
on alternative approaches by Van Gelder [109], Cousot and Cousot [46], and Mesnard and
Ganascia, [85].

4.2.1. AN APPROACH BASED ON VARIABLE/ARGUMENT GRAPHS. Ullman and Van
Gelder were the first to address and successfully tackle the problem. Their approach [1071
is of somewhat restricted applicability, in the sense that it only allows us to derive inter-
argument relations that take the form of inequalities between the sizes of two argument
positions. More precisely, they compute relations of the form

Pi +C 1 Pj

where pi and p,j are so-called argument designators and c is an integer. An argument
designator, pi, is a variable denoting the size-abstraction of any term that can occur at the
ith argument position of a computed answer p(tl , tn). In [1071, “size” refers to the terms
value under the list-length norm.

Efficiency has been a main concern in the design of the method. The analysis is meant
to be effected at run-time within the NAIL! system, providing the system with information
to control its derivations. As a result, a polynomial time algorithm is required. Both the

236 D. DE SCHREYE AND S. DECOR-E

restricted expressivity of the derived relations and the restriction to list-length are limitations
imposed in order to achieve this desired efficiency. The purpose of the latter restriction is
that, within a clause, the size of any argument can be related to at most one variable appearing
in the clause: namely, for an open-ended list, the tail of the list. This avoids a search over
various possible relations.

The analysis is top-down, in the sense that the derivation of an interargument relation
for a predicate p will activate the analysis for all predicates on which p depends. The basic
concept is the variable/argument (WA) graph. Given a clause, its VIA graph represents
relations between sizes of arguments and sizes of variables occurring in the clause. The
graph contains a node for each argument position of each atom in the clause. It also contains
a node for each variable. A labeled arc connects an argument node to a variable node if the
argument contains an open-ended list and the variable is the tail of the list. The arc is labeled
by their difference in size. The relation expressed in the arcs is transitive. Exploiting the
transitivity allows us to infer relations between the size of different arguments of an atom:
the desired interargument relation.

More formally, a V/A graph is defined as follows.

Dejinition 4.8. (basic VIA Graph)
For each clause A + Bl, B, in a program P, there is a corresponding (basic)

V/A graph. Nodes in this graph are defined as follows.

For each argument of the clause head A, there is a node with label pi (1 5 i 5 n),

where p/n is the predicate symbol of A. The label pi is primed in order to distinguish
it from a corresponding pi in the body.
For each variable appearing in the clause, there is a node labeled by that variable.
For each argument of an atom Bj in the body of the clause (with corresponding
predicate symbol qj/,,j), there is a node whose label is an unprimed argument

designator q/(1 5 i 5 nj). In case there is more than one atom with the same
predicate symbol in the body, corresponding labels are distinguished by adding
extra superscripts.
There is one special node labeled 0, which is needed to represent the size of constant
terms.

For each node corresponding to an argument position pi, there is an arc to the node V if
pi corresponds to a list with tail V. It has the label -d if d is the difference in list-length
between pi and V. There is also a corresponding arc from V to pi labeled +d. If pi stands
for a nil-terminated list, there is instead an arc to the O-node, labeled with -d, if d is the
list-length of pi and vice versa.
All variables have an unlabeled arc going to the O-node, formalizing the idea that their size
is at least zero. 0

Example 4.5. (permute)
In Figure 5, the basic V/A graph for the second clause of the permute predicate is shown.
For simplicity, the O-node and its connecting arcs are omitted.

We explain the way in which the interargument relation is inferred from the V/A graph on
the basis of our example. Assume that we aim to prove a relation of the form perm 1 +x1 2
permz. This can be achieved by finding a path in the graph connecting node perm’, to
node perm; and by adding up the labels on this path. By the assumption that the relation

TERMINATION OF LOGIC PROGRAMS 237

FIGURE 5. Basic V/A graph for the recursive perm clause.

perm’ pWld

T!!P 0

FIGURE 6. V/A graph for the clause perm(Nil,Nil).

perm 1 +x1 >_ perm;? holds for all correct answers permute(u t , uz), we may connect node
perm 1 to node permz by an arc labeled by xl.

Then we try to add new arcs to the graph, such that a path from perm; to perm; is
obtained. A restriction on adding such new arcs is that they should correspond to potential
interargument relations for the predicates on which permute depends. In the example, the
only possibility that produces a path is to add an arc connecting node delete2 to node
deleteg. We label it with a variable x2. Adding this labeled arc corresponds to a new
hypothesis that there exists an interargument relation for the delete predicate of the form
delete2 +x2 >_ deleteg.

Under the assumption that this hypothesis holds for some x2, adding up the labels for the
path connecting permi to perm;, we get the new inequality: perm 1 +x2+x1 + 1 > perm2.
If we want the inequality perml +x1 > permz to be a safe approximation of the relations
expressed in all clauses, we can derive: xl > x2 + x1 + 1.

Then, the same reasoning is applied to the V/A graph for the nonrecursive clause for
permute. Its VfAgraph is shown in Figure 6. We derive arelation perml > permz. Again,
since perml + x1 2 perm:! must safely approximate all relations, the constraint xt 2 0
immediately follows.

The next step is to start the same analysis for the delete predicate and the assumption
delete2 +x2 >_ delete3. Both V/A graphs for the clauses for delete contain a path connecting
delete; to delete;. Only the clause for the base case imposes a constraint x2 >_ -1.

238 D. DESCHREYEANDSDECOR'TE

Finally, all constraints are combined in a system of inequalities:

(

Olxz+l

XI >O
x2 > -1

The aim is to obtain a minimal solution for x1 since any X; > xt will trivially also satisfy
perm, + xl > permi.

Ullman and Van Gelder define a fixpoint operator to compute the minimal solution. The
operator requires at most II iterations if n is the number of symbolic constants (e.g., XI and
x2) in the constraint set. The resulting interargument relations are proven to hold for all
atoms in the least Herbrand model. In the example, the minimal solution is reached for
xt = 0 and x2 = - 1. The corresponding relations are perml > perm2 and delete:! - 1 1
deleteg. 0

As mentioned, the main concern in [1071 is efficiency of the analysis. To this purpose,
they impose an additional uniqueness restriction on the program clauses. Uniqueness of a
clause forbids the existence of more than one path between any two nodes corresponding
to arguments in the head. This transforms the combinatorial problem of guessing what
set of inequalities will be needed into a deterministic one. On the level of the program,
uniqueness essentially means that each variable has at most one producer (see Section 2).

4.2.2. AN ANALYSIS BASED ON AND/OR DATAFLOW GRAPHS. The two most important
restrictions imposed in the previous techniques are removed in the approach of Phimer [90].
On the level of expressivity, observe that even for the very simple case of append, the V/A
graph approach only allows us to derive the interargument relations append3 > append1

or append3 > appendz. A more expressive relation would be append3 > append2 +

appendl. In [90-921, Phimer extends the work of Ullman and Van Gelder by allowing
more general linear predicate inequalities of the form

c pj+c> -CPj*
icI jE.l

where I and J are, respectively, subsets of the sets of input and output positions for the
predicate, pi and pj are argument designators, and the offset c E Z U {cm}. Input and
output positions are specified using mode information. In [90] and [91], all input is assumed
ground, and a successful computation binds all output variables to ground terms. In more
recent work [92], the technique is extended by allowing rigid terms instead of ground terms.

Another difference with respect to Ullman and Van Gelder’s technique is the use of more
general linear norms (see Section 4.1). Similar to the motivation for the selection of list-
length in [1071, linear norms allow us to relate the size of a term to the size of any variable
occurring in it. Recall that list-length is not linear. In [92], Pliimer extends his technique
by incorporating semi-linear norms.

Essential in Pliimer’s approach is considering sets of argument positions instead of single
argument positions. The entire generalization over [1071 is very similar to the way in which
the problem of finding a solution graph in an And/Or graph generalizes the path-finding
problem for graphs (see, e.g., [SS]). This motivates the notion of anAnd/Orduta$ow graph.

De$nition 4.9. (And/Or dataflow graph)

TERMINATION OF LOGIC PROGRAMS 239

Let G = Al,..., A, be a conjunction of atoms. Let In = {u 1, . , u,) s Varc

denote the set of variables that occur on input positions and Out = (WI, . . . , wk} C
Varc the set of variables occurring on output positions. For every atom Ai, there is a
corresponding linear predicate inequality LZi (1 5 i 5 n). An And/Or dataflow graph
for G is an And/Or graph, which is constructed as follows.

Nodes:
. For each variable u E Varc, there is a node labeled u. Such nodes are called

Or-nodes.
. There are two special And-nodes: the “start node” is labelled Out, while the

“end node” has label In.
. For each atom Ai in G, there is a corresponding And-node.

Connectors:
l There is a k-connector (Out, ~1, . , wk).
l For 1 5 i 5 m, there are l-connectors (ui, In).
. Let n be the node representing atom Ai in G, LZi is the corresponding linear

predicate inequality, and V = {VI, . . , u,} and V’ = {u;, . . . , ui) are the sets
of variables occurring on, respectively, the input and the output positions of
Ai with respect to LZi. There is an r-connector (n, ut , , u,), and for all
u’ E V’, there is a l-connector (u’, n). If V = 0, then an additional dummy
node 1 v is added, together with the l-connector (1 v, Zn). 0

Example 4.6. (permute)
The And/Or dataflow graph for the body of the recursive clause for permute is shown
in Figure 7. Specification of the mode permute(in,out) gives the sets In = (x, y} and
out = (u, u}. 0

Starting from an And/Or dataflow graph, several solution graphs (subgraphs) can be
obtained by choosing nondeterministically one descendant in each Or-node.

In Figure 7, the And/Or dataflow graph forms its own (unique) solution graph since every
Or-node has exactly one descendant.

For purely technical reasons, Pliimer imposes some restrictions. The important one is
that his algorithms require solution graphs to be admissible, i.e., each Or-node must have
exactly one ingoing connector. This comes down to restricting the technique to clauses that
have only one consumer for each variable that acts as a producer (see Section 2).

Another important concept is the weight of an admissible solution graph. It generalizes
the result of summing up the labels on the path connecting pi to pJ found in the previous
approach. It is computed as the sum of the weights of each And-node in the graph, where
the weight of an And-node corresponding to an atom & = p(tl, . , tn) is on its turn
defined as

ok=Clltill-_Clltill+C,

isl .ieJ

where LIk = CiEr pi + c > cjCJ pj is the corresponding linear predicate inequality for

Ak.
The admissible solution graphs are both used for verifying termination conditions for

the recursive clauses and for deriving valid linear predicate inequalities. Mutual recursion
is excluded. This enables the processing of all predicates in a purely bottom-up fashion,

240 D. DE SCHREYE AND S. DECORTE

x Y ::_:_lj::‘;l In

FIGURE 7. And/Or dataflow graph for the recursive clause of permute/2.

using the termination conditions and predicate inequalities that are obtained for lower level
predicates, to derive the same information for the higher situated predicates.

Computation of the weight of the admissible solution graph requires that the linear
predicate inequalities for the atoms Al, . . . , Aj are known. Pliimer gives an algorithm
that first constructs all admissible solution graphs for these atoms. The solution graphs
themselves give on their turn rise to sets of constraints, which are solved using a specialized
algorithm. The optimal solutions finally yield the desired linear predicate inequalities.

As formulated in [90] and [91], the technique is deliberatively restricted to directly
recursive programs, relying on program transformation (see Section 4.3) to deal with the
mutually recursive case. In [67], it is extended to deal with mutual recursion directly. The
main problem involved in the extension is that the derivation of an interargument relation
for a mutually recursive predicate, on the basis of the interargument constraints local to
each clause, is in general NP-complete. It is shown that, due to the special form of the
constraints, the algorithm presented in [67] is polynomial.

4.2.3. DERIVING LINEAR SIZE RELATIONS BY ABSTRACT INTERPRETATION. The ex-
pressivity of Phimer’s interargument relations has been further improved upon. Consider
the following program.

Example 4.7. (duplicate)

duplicate(NiZ, Nil) +-
duplicate([xly], [x, xlz]) c duplicate(y, z)

The list in its second argument contains a duplication of every member of the list in
its first argument. Using list-length, the most precise interargument relation that can be
obtained is duplicate2 = 2.duplicatet. Neither of the previous approaches supports this

TERMINATION OF LOGIC PROGRAMS 241

type of expressivity. In the case of Pliimer’s approach, the limitation of not being able to
express linear combinations of argument designators is directly related to the admissibility
restriction. 0

[1121 presents a technique based on abstract interpretation to infer interargument relations
of the form cn + Cy=, ci pi = 0, where ci, i = 0, IZ, are integers. The technique
is extended in [I 131, where conjunctions of such linear equations are derived. They are
referred to as linear size relations. The advantage of allowing conjunctions is illustrated by
the following program, which defines the addition of two vectors.

Example 4.8. (sum)

sum(Ni1, Nil, Nil) t

sum(hlyll, b21~21~ b31~31) +- ~3 is XI + ~2, sum(yl, ~2, ~3)

The most precise interargument relation here is sumi = sumgA sum2 = sum3. 0

The main contribution of [1131 is that the technique is not a special purpose analysis
designed for inferring interargument relations, as is the case for the two previous approaches.
The technique is formulated as an instance of a generic framework for abstract interpretation.

The framework is the one of Bruynooghe [35], which is a top-down analysis based on
abstract AND-OR-trees.

The main advantage of inferring the interargument relations by means of a generic
analysis tool is that it simplifies the correctness proof. The abstract interpretation framework
itself guarantees correctness of any application developed within it, provided that the specific
abstract domain satisfies some properties and that certain basic operations over this domain
are specified and proved correct.

Not surprisingly, the abstract domain for the application consists of systems of linear
equations over the variables of the clauses. Given that the number of variables in a clause
under consideration is rr, such systems can be geometrically interpreted as affine subspaces
of F, intersected with mVn. Every individual linear equation corresponds to a hyperplane in
this space. This interpretation is exploited for defining the structure of the domain (a partial
order with a minimal and maximal element, an upper bound operation, and a condition on
the absence of infinite ascending chains under this order) and the basic operations required
in the framework (initialization, procedure entry, procedure exit, and the interpretation of
built ins). Each of these can be related to properties or operations known from linear
algebra. With respect to the operations, they are defined in terms of the intersection, union,
projection, and extension operators for affine spaces, defined by Karr in [72]. Again, this
facilitates the correctness proofs.

As a last comment on the technique, no restrictions such as uniqueness or admissibility
are imposed. The only requirement is that the used norm is semi-linear.

242 D. DE SCHREYE AND S. DECORTE

4.2.4. BOTTOM-UP INFERENCE OF DISJUNCTIVE CONSTRAINTS. For some programs,
all previous approaches still lack expressivity. Consider merge.

Example 4.9. (merge)

merge(l\ril, x,x) c

merge(x) Ni 1, x) t

mew(blx,l, [yl~.~l~ bIzsl) + x 5 y7 mew&, [YIY.~I, G)
merge(t-hl, [yhl, [~lz.~l) + y < x7 merizeUxkYl~ Y,, 2,)

In a termination proof, we may require an interargument relation for merge, expressing
that, for nonempty lists, merges is strictly larger than either merge2 or merge1 :

(0 = merge, = merge2 = merge3) V (merge3 2 merge2 + 1) V (merge3 >_ merge, + 1)
The information cannot be expressed using the previous approaches. 0

In [32], Brodsky and Sagiv present a technique for deriving disjunctions of conjunctions
of inequalities of the form pi + k > pj. They are referred to as disjunctive constraints.
The method is bottom-up and expressed in terms of Datalog programs.

It starts from a set of given inequality constraints for all EDB relations, and iteratively
derives disjunctive constraints for the IDB relations.

The basic tool for deriving inequalities is a graph which resembles the V/A graph of
Ullman and Van Gelder: the characteristic graph, which is constructed local to each clause.
Its main purpose is to relate the sizes of the different variables. Therefore, such a graph
contains nodes for all variables in the clause and includes relationships between them,
induced by the constraints which are known for the body atoms. If S(X) is an atom of
the body and pi + k > p,j is a valid inequality constraint for the S predicate, then the
characteristic graph contains an arc with weight k from variable node xi to node xi. To find
an inequality between two variables xi and x,j in argument positions i and j of the head, the
minimum path between them must be determined. Supposing it has weight w, the authors
prove that the inequality pi + w >_ p,j is a valid inequality for the predicate.

Note that for predicates in the body, disjunctive constraints may be available. Each of
these disjuncts should be considered separately, thereby leading to disjunctive constraints
for the clause head predicate.

To generate all disjunctive constraints, Brodsky and Sagiv introduce an immediate infer-
ence operator Zp. Initially, all disjunctive constraints for all IDB predicates are defined to be
false (empty disjunction) and disjunctive constraints for all EDB predicates are assumed to
be available. At each iteration, each program clause is visited. One disjunct is selected for
each atom in the body. All possible relations that can be found between any two argument
positions for the head of the clause and for this constraint selection form a new disjunct for
this predicate. Valid interargument relations for all predicates are obtained in the fixpoint

IP t 0.

Example 4.10. (permute)
We illustrate the above with the perm program of Example 3.9.
The analysis requires that for all EDB predicates, inequality constraints are expressed a
priori. For 9.1, we assume that the conjunction (9.1 1 - 1 > 4.1 3, q.13 + 1 1 9.1 I}
is given. P,il trivially has no constraints. Figure 8 shows the characteristic graphs for the
de1 clauses, while those for both perm clauses are pictured in Figure 9. Full lines represent

TERMINATION OF LOGIC PROGRAMS 243

0 X 0 s&o @ @ @
+l

+l -1 +l -1

0 X
Li LI

y _r_--J-- -27%
-7-____--- 2

+l

FIGURE 8. Characteristic graphs for the base and recursive clauses for del.

FIGURE 9. Characteristic graphs for the permute clauses.

the information captured in the constraints for the EDB predicates, dashed lines denote
relationships that are added during application of the Zp operator.

The first iteration allows us to induce two constraints for the delete predicate: for
the base case, in Figure 8, there exists one path from the s-node (corresponding to the
second argument) to the y-node (third argument) and vice versa. As yet, the charac-
teristic graph for the second, recursive clause exhibits no paths. In a similar fashion,
the characteristic graph for the base case for perm shows two (trivial) paths. Summa-
rizing, Zp t 1 consists of the following constraints: for the delete predicate, the con-
junction (delete2 - 1 > deletej, delete3 + 1 > deZete2) and for the perm predicate:
{ perm 1 + 0 1 permz, permz + 0 1 perm I}. The constraints for the EDB predicates also
belong to Zp f 1, but are not shown as they are part of every iteration.

For the next step, Zp is applied to Zp f 1. In Figures 8 and 9, the characteristic graphs
corresponding to Zp f 1 now include the dashed lines. Although some new paths appear,
no new information is derived, and the operator has reached a fixpoint. 0

In general, w iterations of the Zp operator are needed, thereby causing termination
problems for the generation procedure. Also, in the limit, an infinite number of disjuncts
could be generated.

To remedy these problems, Brodsky and Sagiv propose to keep track of only one con-
junction of constraints instead of multiple ones in disjunction. They introduce a colzvex
union operator, which can be seen as an upper bound operation on the domain of their
constraint sets. A modified inference operator, Sp, is introduced by constraining the result
of Zp to be one conjunct per predicate, taking the convex union with all previously derived

244 D. DE SCHREYE AND S. DECORTE

sets. By further imposing a uniqueness condition, which is weaker than the one of Ullman
and Van Gelder, the authors can guarantee termination of their generation scheme. The
resulting algorithm is proven to be polynomial.

To guarantee termination when generating disjunctive constraints, it is shown that a hard
condition of strong uniqueness must be imposed on the program. A combined approach is
also proposed, where n disjuncts are considered, with n > 2. Two of these disjuncts act
as, respectively, a lower bound and an upper bound disjunct.

It is interesting to note that the different algorithms proposed here could easily be mim-
icked as instances of the bottom-up abstract interpretation framework of [171. As such, the
technique can be regarded as similar to the previous one.

To conclude, we comment on some alternative approaches. In 11091, Van Gelder presents
an approach which improves on theexpressivity of [1131 by allowing systems (conjunctions)
of linear inequalities in addition to systems of linear equations. Note that for any program
in which an arbitrary number of members of input lists are disregarded in producing the
members of the output lists, the interargument relation can typically not be represented
using only equations.

In terms of a geometrical interpretation, systems of linear inequalities correspond to
convex polyhedrons. This increases the mathematical machinery needed to process such
relations. One basic operation which is essential is the computation of a convex hull.

As in [32], the method is bottom-up and characterizes the interargument relation as a
fixpoint of an immediate inference operator. No general method for deriving the fixpoint
is provided. Instead, the paper presents a practical heuristic for proposing a fixpoint and
a technique for verifying the conjectured solution. In [46], P. Cousot and R. Cousot give
a sketch of how abstract interpretation can be used to fully automate the derivation. Their
proposal is rooted in earlier work by Cousot and Halbwachs in [47] on the derivation of the
same type of interargument relations for imperative programs.

Finally, observe that all the approaches use numerical constraints that are derived locally
for each clause and provide some (either top-down or bottom-up) inference scheme to
combine, simplify, and propagate these constraints in order to obtain some constraint which
holds globally for some predicate. In [85], Mesnard and Ganascia take advantage of the fact
that a CLP-language, such as CLP(Q), already provides such an inference engine. They
present a technique that transforms a program to a CLP(Q) program in which all the local
constraints are made explicit. Then, the interargument relation is returned as a computed
answer by executing the CLP(Q) program.

4.3. Dealing with Mutual Recursion

The treatment of mutual recursion, in the context of techniques tuned on recursion, is only
interesting in view of automation. From a purely theoretical point of view, the problem is
trivial. There are at least two obvious solutions to it. A first one is to adapt the termination
conditions in Section 3.2 by imposing a decrease of the level mapping, not only for the body
atoms with the same predicate symbol as the head, but also for those atoms with a predicate
that is mutually recursive with respect to the predicate in the head. By adapting Definition
11 and its refinement to acceptability with respect to a set of atoms in this way, we obtain
necessary and sufficient conditions for, respectively, termination and left-termination of any
definite program with respect to the set.

Example 4. Il. (parsing boolean expressions)

TERMINATION OF LOGIC PROGRAMS 245

The following program defines the structure of some well-formed Boolean expressions.

(cll) dis(bt v b2) t con(bl),dis(&).
(c/2) dis(b) t con(b).

(~13) con(bt&bz) t dis(bt),con(bz).
(~14) con(b) + bool(b).

(~15) bool(0) +-
(~16) bool(1) +-

The program is clearly terminating for the set of all ground queries. The following level
mapping can be used in an altered version of Definition 11, along the lines described above,

to prove it.

f(dis(x)) = 2xterm-size(x) f 1
f(con(x)) = 2x term-size(x)

All atoms in the bodies of clauses (cll) - (~13) are mutually recursive with respect to the
head of their clause. The level mapping decreases between each possible call and each of
these body atoms in the corresponding instances of clauses (cll) - (~13). Thus, the program
terminates. 0

A second solution is program transformation. There exist several simple techniques to
transform mutually recursive programs into directly recursive ones, having identical termi-
nation behaviors. The most trivial transformation is to introduce a new predicate symbol,
say meta/l, and to replace every atom, A, in the mutually recursive (definite) program by
meta(The resulting program is directly recursive, so that the termination conditions
of Section 3.2 are applicable. More precisely, Propositions 3.2 and 3.3 provide necessary
and sufficient conditions for (left)-termination of the transformed program with respect to
a set of goals. Furthermore, the two programs have identical termination behaviors: there
is a one-to-one mapping relating their sets of SLD-trees, under which an SLD-tree for the
original program is transformed by replacing each atom, A, in it by meta(

Example 4.12. (parsing Boolean expressions)
Introducing the meta/ predicate in Example 4.11 gives

meta(dis(bt v bz)) +- meta(con(bt)),meta(dis(b-J).
meta(dis(b)) t meta(con(b)).

meta(con(bt&&)) + meta(dis(bt)),meta(con(bz)).
meta(con(b)) t meta(bool(b)).

meta(bool(0)) +-
meta(bool(1)) t

To show recurrency, the level mapping of Example 4.11 can be reused (with some obvious
adaptions):

f(meta(dis(x))) = 2xterm-size(x) + 1
f(meta(con(x))) = 2xterm-size(x) 0

So, with respect to characterizing termination, all issues seem solved. However, there is
an angle. The idea of tuning techniques on recursion is entirely based on the intuition that,

246 D. DE SCHREYE AND S. DECORTE

for a terminating program and query, some data consumption takes place between every
pair of descending calls to the same predicate. Recursion is only used to define problems
in terms of more simple problems of the same type, using some well-founded recursive
data structure. This, in turn, leads to the heuristic that for conditions tuned on recursion,
straightforward level mappings, measuring the data consumption (e.g., the list-length or
term-size of the input arguments), should be sufficient to prove termination. With the two
approaches above, neither this intuition nor the heuristic is valid.

In the case of the “meta’‘-transformation, the transformed program has only one predicate.
It completely hides the recursive structure of the original program. The decreases imposed
by the generalized level mapping in the various conditions tuned on recursion of Section
3.2 all coincide with those imposed by recurrency and acceptability of Section 3.1: the level
mapping must decrease for every body atom. As a result, more complex level mappings,
such as the one in Example 4.12, are needed.

A similar conclusion holds for the first tentative solution. There, the adapted termination
conditions impose a decrease on every intermediate call involved in a recursive loop. The
intuition is that, in general, one can only expect data consumption after any full traversal of
such a loop. Again, the solution requires more refined level mappings.

There are three ways in which automatic termination analysis can deal with these prob-
lems. The first is to apply transformations from mutually recursive to directly recursive
programs that do not introduce new recursion within the transformed program, but only
translate the given recursive structure into a directly recursive form. Unfolding is the main
example. [90] proposes a solution based on it.

A second way out is to provide new termination conditions that are more refined than the
ones sketched in our first tentative solution. One idea here is to select a minimal number
of predicates involved in the mutual recursion and to impose decreases only for these
predicates, thereby avoiding putting constraints on all intermediate predicates involved in
the recursion. [I 16,70,26,67], and [53] provide conditions of this type.

A last solution would be to improve the existing techniques for automatic generation of
appropriate level mappings, given the program and queries of interest. These techniques
could be extended to provide support for the generation of the level mappings needed in the
termination proofs based on recurrency and acceptability. Although this seems feasible, we
know of no work in this direction.

All mentioned works, either explicitly or implicitly, rely on the notion of a predicate

dependency graph [90,70,67,53] or the related notion of a U-graph [116], also referred to
as a specijic graph in [26]. The latter notion differs from the predicate dependency graph
in the sense that unification is taken into account. More in particular, a U-graph contains
a node for each atom in the program. It also contains two types of arcs: clause arcs and
unijicution arcs. There is a clause arc from atom H to atom B if H is the head of a clause
and B is a body atom of the same clause. There is a unification arc from atom B to atom H if
B is a body atom and-after renaming-it unifies with the head, H, of another or the same
clause. For the well-formed expressions example, the graphs are represented, respectively,
in Figure 10 and Figure 11. In general, the U-graph is a more fine-grained representation
for the recursive structure in a program.

In [90], Phimer suggests the use of algorithms from [66] and [3] as a basis for transforming
mutually recursive programs into directly recursive ones by unfolding. These algorithms
compute all maximal strongly connected components (MSCCs) and all feedback nodes of
a predicate dependency graph. Here, a feedback node is a node contained in every cycle of
the MSCC it belongs to. If every MSCC contains a feedback node, then the program can

TERMINATION OF LOGIC PROGRAMS 247

FIGURE 10. Predicate dependency graph for the program of Example 4.19.

be transformed into a directly recursive one by unfolding. The algorithms are linear-time.
For the program in Example 4.11, the condition above is not fulfilled. In fact, unfolding

is insufficient to transform it into a directly recursive one. Still, it is hard to find sensible
programs of this type. We only found parsing-type examples, similar to Example 4.11, in
the literature. Therefore, the practical value of the result is very significant.

[90] also contains several other transformations. One allows us to transform any mutually
recursive program into a directly recursive one with the same termination behavior, but it
suffers from the same problems as the “meta’‘-transformation.

Hogger, in [70], also uses unfolding and-implicitly-the predicate dependency graph.
Here, the aim is not to transform the program, but to formulate more refined termination
conditions, tuned on recursion. The idea is to unfold atoms involved in mutual recursion to
produce resultants of the unfolding (see [79]), in which the head and at least one body atom
have the same predicate symbol. Let us refer to them as directly recursive resultants. The
predicate dependency graph can be used to guide the unfolding to obtain such resolvents.
Then, a decrease under some well-founded ordering, between the head and each body atom
with the same predicate, is imposed on each directly recursive resultant.

Example 4.13. (parsing Boolean expressions)
For the program in Example 4.11, some directly recursive resultants for the dis/l predicate
are

dis(bi v 62) +- con(bt),dis(bz).
dis((bi&bz) v b3) + dis(bt),con(62),dis(b3).
dis(bt&bz) t dis(bt),con(bz).

All of them satisfy a decrease between the dis atoms in the head and body of the resultants,
using the well-founded ordering based on the term-size of their only argument. Note that
this ordering is much simpler than the ones in Examples 4.11 and 4.12. 0

The approach is intuitively appealing, but suffers from the problem that, in general,
there may be infinitely many directly recursive resultants. It is unclear whether verifying
the decrease for a finite number of them is always sufficient and, if so, how to select them.

The approaches in [26,67], and [53] are conceptually similar to the one of Hogger. They
inspect the dependencies in the program to detect all different ways in which a predicate may
depend on itself. To do so, they collect all elementary cycles from the predicate dependency
graph (in the case of [67] and [53]) or the U-graph (for [26]).

The associated directly recursive resultants are not explicitly constructed. Instead, rather
technical termination conditions are formulated that ensure that

1. for any partial derivation corresponding to a full traversal of an elementary cycle, a
given well-founded ordering on the atoms decreases;

248 D. DE SCHREYE AND S. DECORTE

___________-_-____--__----------,

FIGURE 11. U-graph for the Boolean expressions example. Full arcs denote clause arcs, dotted
arcs are unification arcs, double circled atoms are heads of clauses.

2. by intertwining full traversals of different elementary cycles (e.g., starting along one
cycle and, intermediately, fully traversing another cycle, after which the traversal of
the first one is completed), the decrease attached to the associated partial derivation
is the composition of the decreases for the partial derivations associated to the
individual elementary cycles.

By formulating their conditions to respect these two requirements, the approaches solve
the problem of the potential existence of infinitely many different directly recursive re-
sultants. On the other hand, by doing so, the technicality of the conditions is strongly
increased. We do not present them in detail here, but refer to the papers instead. [11 l]
contains a detailed discussion on the similarities and differences between [26] and [53].

Finally, we discuss the approach presented by Wang and Shyamasundar in [1161 (see also
[118, 1171). This work has introduced the notion of the U-graph and expresses termination
conditions in terms of it. Again, the intuition is that one should impose a decrease of a well-
founded measure with respect to all partial derivations associated to cycles in the graph.
The key concept of the analysis is that of a cycle cut of an MSCC of the U-graph. A cycle
cut, C, of an MSCC, S, is a set of clause arcs from S, such that every cycle in S contains
at least one arc of C. Since a clause arc determines a pair of atoms, (25, B), such that H

is the head of a clause and B a body atom of the same clause, termination conditions can
easily be expressed in terms of a given cycle cut, S: there should be a decrease under the
well-founded ordering between H and B, for every clause arc in S. Moreover, the order

TERMINATION OF LOGIC PROGRAMS 249

should not increase for any of the arcs in S\C.

Example 4.14. (parsing boolean expressions)
The U-graph in Figure 11 contains only one MSCC. One possible minimal cycle cut consists
of the clause arcs:

(dis(bt v b2), dis(b2)), (con(bt&b2), dis(bl)), (con(bt&b2), con&)).

Again, the term-size norm applied to the unique argument of any of these atoms defines a
well-founded ordering, satisfying the conditions of [1161. 0

Compared with the previous approaches, the conceptual simplicity of the termination
condition is an important advantage. The simplicity results from the fact that decreases are
imposed locally, at the clause level. In the four previous approaches, decreases are imposed
between atoms and descending atoms with the same predicate.

One can also relate the approach to the unfolding technique of Pliimer via extensions of
the latter for optimizing unfolding transformations. For instance, [29] contains an extension
of the feedback node algorithm of [66] that, given an MSCC, S, computes a minimal set
of nodes, N, of S, such that every cycle in S contains a node of N. The purpose of the
algorithm is to control an unfolding transformation in order to produce a program with a
minimal number of mutually recursive predicates.

5. CONCLUSIONS

Due to the way in which we decided to structure the paper, a few issues could not be classified
within any of the sections. Some important ones are run-time termination techniques and
cycle unification. They are discussed below. We end by stating some open problems.

5. I. Some Further Issues

5.1.1. LOOP DETECTION. Up until now, the entire discussion has been devoted to com-
pile-time termination analysis, with the possible exception of [1071. Important results
concerning run-time detection and elimination of infinite loops are reported in [8, 22, 24,
341, and [1081. Most run-time approaches towards termination try to prune SLD-trees when
some kind of repetition occurs, i.e., when the current resolvent is “sufficiently similar” to
one of its ancestors. Examples of such loop checks are (see [22])

l the current resolvent is a variant of an ancestor,
l the current resolvent is an instance of an ancestor,
l the current resultant is a variant of an ancestor,
l the current resultant is an instance of an ancestor,
l the current (resolvent / resultant) subsumes a (variant/instance) of an ancestor.

Besides the above loop checks, several others were published before as well. Unfor-
tunately, some of them are not always sound, in the sense that they may remove answers
from an SLD-tree (see the discussion in [48, 491, and [94]). An example of an unsound
loop check is the “variant of an atom check,” which prunes a derivation at the first goal
with a selected atom A, which is a variant of the selected atom A’ of an earlier goal. To
overcome this problem, loop checking was put on a firm theoretical basis by Bol et al. (see

2.50 D. DE SCHREYE AND S. DECORTE

[221 and [241). The authors define important notions such as soundness ofa loop check (no
computed answer substitution to a goal is missed) and completeness of a loop check (all
resulting derivations are finite), and they propose a number of concrete loop checks. For
each of them, they prove an appropriate soundness result.

Besides formal correctness and precision, efficiency of the loop check is another im-
portant issue when trying to control termination at run time. The computational overhead
must be reduced to the absolute minimum. This forms the main motivation for the work in
[21] and [1081. The basic idea there is to compare only a restricted number of resolvents,
without losing soundness.

Loop checking is also relevant in the context of controlling unfolding in partial deduction.
Recent contributions can be found in [23, 1021, and [36]. In this context, efficiency is,
in general, not the major concern. Instead, emphasis lies on completeness of the loop

check (unfolding is guided through a well-founded ordering or is forced to terminate by
incorporating a depth-bound) and on correctness and completeness of the transformation
(the residual program and the original program are equivalent).

An extension to loop checking is in some sense provided by tabulation techniques such
as OLDT-resolution [1061 and other, closely related approaches that were proposed in the
literature (see, e.g., [104, 151, and [1151). All these techniques essentially tabulate answers
for selected atoms. When a variant of such an atom is recursively called, execution is delayed
and the selected atom is not further resolved; instead, all corresponding answers computed
so far are looked up in the table, and execution is resumed by consecutively applying the
corresponding answer substitutions to the delayed atom. This process is repeated for all
subsequent computed answer substitutions that correspond to the atom. By doing so, a lot
of potential loops are eliminated.

5.1.2. CYCLE UNIFICATION. As a second complement to the work discussed so far, we
further elaborate on our comments on decidability and cycle unification. In the context of
Term Rewriting Systems, [56] proves the undecidability of the halting problem for these
systems by simulating a Turing machine by means of two rewrite rules. This result is
improved in [50], where only one rewrite rule is needed. This has inspired work in LP to
identify minima1 classes of programs for which the problem is undecidable.

Research in this area has been focused on cycle unification. A cycle unification is defined
by a Logic Program of the form

p(r1, . . , m).
Pbl, ... , s,> + pot, . . 1 h).

augmented with a query p(u 1, . . . , u,).
It has only one fact, one binary, directly recursive rule, and an atomic query, all with the

same predicate symbol. It has been shown in [57] that minimal extensions of the expressivity
of a cycle unification problem have the expressivity of a Turing machine. A main result
from [57] is that termination of a cycle unification problem is decidable provided that both
the query and the fact are linear. An atom is called linear if it does not contain the same
variable twice. The nonterminating queries are characterized by means of a weightedgraph,
which captures the infinite sequence of unifications that the cycle unification produces.

In [20] and [1191, related issues, such as 1) how many independent solutions does a cycle
unification problem have, and 2) does there exist a unification algorithm which enumerates
a minima1 set of solutions for a cycle unification problem, are dealt with. [51] studies the
problem on the basis of rational trees, and [52] provides an efficient decision procedure in
the context of weighted graphs.

TERMINATIONOFLOGICPROGRAMS 251

The decidability of cycle unification for nonlinear queries has finally been settled inde-
pendently in [60] and [69]. It is proved that for nonlinear queries, the problem is undecidable,
thereby solving a problem which has been open since 1973 [77], on the decidability of logic
formulas involving only four atomic subformulas.

5.2. Open Problems

Of course, many issues remain, as yet, unsolved.
problems. We address the issues of

In this section, we identify some key

l existential termination and its relevance for the treatment of negation,
l improved inference of interargument relations,
l improved generation of well-founded orders,
l treatment of dynamic selection rules and of concurrent and constraint languages,
l comparability of different techniques.

5.2.1. EXISTENTIAL TERMINATION. Few works have addressed this problem. [65] stud-
ies the concept in the datalog context. [42] and [181 address the problem using inductive
theorem proving.

The lack of work in this direction is not surprising: the problem is hard. It requires
to prove that, following the order imposed by the selection rule, infinite derivations are
preceded by a successful one. Clearly, if one makes any abstraction of the concrete data
which are available in the considered queries, then proving that a derivation is successful
(and not finitely failing) is difficult. Unifiability needs to be taken into account.

Nevertheless, more results on existential termination would be useful to provide more
refined analysis techniques for normal programs. The reason is that a program terminates for
a ground negative literal, -A if and only if it existentially terminates for A. In the treatment
of normal programs in Sections 2.2 and 3.1, this refinement is not taken into account. On the
basis of a short initial study of the problem and of our knowledge of the technical problems
involved in termination of cycle unification, we conjecture that linearity conditions, both on
query and program, will be helpful to provide practical existential termination conditions.
As an example, note that the only nonexistentially terminating query to append in Example
1.1, append([x)y], Nil, y), is a nonlinear one.

5.2.2. IMPROVED INFERENCE OF~NTERARGUMENT RELATIONS. In this context, we ad-
dress thetreatmentofnegation and open issues related to automation.

With respect to negation, the following problem turns up. Assuming that an interargu-
ment relation, R,, has been inferred for a predicate p/n, what is the relation one should
attach to a literal -p(o? Intuitively, one would propose a relation based on the complement,
LV’ - Rp. However, this is inadequate for two reasons. First, R, is a safe approximation
(superset) of the relation that holds between the sizes of the arguments of the computed
answers for p. Thus, unless R, is precise, the complement, liV” - R,, is not a superset
for the relation imposed by the negation of p. Second, under the closed world assumption,
negation as finite failure is more restrictive than classical negation. Therefore, even if a
precise interargument relation R, could be inferred, its complement might be an imprecise
interargument relation for -p(t7 under the finite failure semantics.

Since selected negative literals are ground, one might question the relevance of inferring
such interargument relations since their entire purpose is to deal with local variables. As

252 D. DE SCHREYE AND S. DECORTE

an example, a clause of the type

P(X) + -4(x, Y)? P(Y)

gives rise to a floundering derivation using the left-to-right selection rule.
However, as in Section 4.2, the point is that a negative literal might occur in combination

with other intermediate body atoms. For instance, in the clause

p(n) t generate(x, y), -shorter_or_equal(x, y), p(y)

the goal generate(x, y) might produce a ground list y, while shorter_or_equal(x, y) succeeds
for pairs of lists (x, y), such that list-length(x) 5 list-length(y). Here, the inference of the
interargument relation for 1 shorter_or_equal(x, y) - although easy in this case - is
obviously crucial for the termination proof.

Another issue related to interargument relations is the automation, evaluation, and inte-
gration into a termination analysis system of the more refined inference techniques presented
in Section 4.2.4 and in the conclusions of Section 4.2. The increased expressivity and the
high precision that could, in principle, be obtained using the approaches of [32] and [1091
are desirable. Although [46] sketches a possible automation using abstract interpretation,
as far as we know, no successful experiments were carried out to fill in the details and
integrate the approaches in a termination analysis. The required mathematical machinery
seems heavy. Also, deciding upon some tradeoffs involved in the requirements of precision
and efficiency seems to need considerable work.

5.2.3. GENERATION OF USEFUL WELL-FOUNDED ORDERS. With respect to the selection

of appropriate well-founded orders, a number of issues are unresolved.
First, given a norm, the method of Sohn and Van Gelder sketched in Section 4.1 allows

us to generate an appropriate level mapping, defined as a particular linear combination of
the norms of certain argument positions. In some cases, however, level mappings defined in
terms of more general functions of the used norm (e.g., maximum or minimum) are known
to be more useful. Example 3.2 illustrates the point. Whether such level mappings could
also be generated in a systematic way is unclear.

A related issue is providing automatic support for the generation of the level map-
pings needed in the notions of recurrency and acceptability (or semi-recurrency and semi-
acceptability). As argued in Section 4.3, with these concepts, often some seemingly un-
natural offsets or coefficients turn up in the level mapping. These can clearly be related
to syntactic properties of the program, and we are convinced that their generation could
be automated to a reasonable extent. In particular, this could provide an interesting al-
ternative to the automatic treatment of mutual recursion, based on semi-recurrency and
semi-acceptability. The gain would be that the complexity involved in treating mutually
recursive programs would not be noticeable in the termination conditions, but in the level
mapping generation instead.

A next issue is the generation of norms. [54], discussed in Section 4.1, presents a first
contribution. A set of potentially useful norms is generated on the basis of type inference.
Further delimiting the search for an appropriate norm is challenging. An approach based
on linear programming, similar to that of Sohn and Van Gelder for level mappings, seems
most promising. Symbolic norms could be introduced and termination conditions could be
formulated as constraints on the symbolic coefficients in the norm.

Nevertheless, the problem seems more difficult than the generation of level mappings.
The point is that interargument relations are needed to formulate termination conditions

TERMINATION OF LOGIC PROGRAMS 2.53

and norms are needed to infer the interargument relations. Furthermore, inferring the in-
terargument relations on the basis of a symbolic norm seems unfeasible since it involves
global analysis. Thus, the problem is that concrete norms seem necessary to compute in-
terargument relations, while interargument relations are needed to compute concrete values
for the coefficients in a symbolic norm. A breakthrough is needed here.

A next issue is whether orderings based on the syntactic subterm ordering could be
sufficient to deal with local variables in practice. As far as we know, the problem has not
been studied in any depth so far, while it is of particular relevance to evaluate the practicality
of elegant approaches, such as [33].

A final and related issue is the study of more general well-founded orders than those
based on norms and level mappings. In the definition of a norm (or level mapping), one
could replace EV by any well-founded ordered set. The gain is that new types of orders,
such as lexicographical orders over JVVn, can be incorporated. It is well known that, in some
cases, termination of a program cannot be proved without resorting to such more refined
orderings. The Ackerman function is a typical example, in which any natural termination
proof requires a lexicographical ordering over LV’. Also, in the study of coroutining
executions of programs, such orderings naturally show up (we return to coroutining in
the next subsection). In [82], the use of more general well-founded orders is studied in
the context of control of unfolding in partial deduction. A similar study in the context of
termination analysis would be desirable, in particular since it would allow us to further
clarify the relations with the work on termination of Term Rewriting.

5.2.4. TREATMENT OF DYNAMIC SELECTION RULES AND OF CONCURRENT AND CON-

STRAINT LANGUAGES. The left-to-right selection rule has been standard in most logic pro-

gramming languages in the past. The current trend is to support more flexible, dynamic
selection rules. Many systems support delay declarations, concurrency, or even both. We
refer to [88] for a brief overview of such systems. Termination analysis for derivations fol-
lowing a dynamic computation rule requires specialized techniques. In particular, analyzing
termination of coroutining procedures is an important open problem.

Two recent contributions to this problem are [93] and [97]. These works adapt previously
developed techniques for analyzing sequential logic programs, proposed in, respectively,
[90] and [96], to GHC-programs. Both take a transformational approach. [93] simulates
GHC-computations by means of sequential SLD-derivations, and then applies the termi-
nation analysis of [90]. [97] adapts the transformation scheme to Term Rewrite Systems
of [96] to the GHC-context. The latter approach seems to be more naturally applicable
to the GHC- than to the SLD-context. One of the reasons is that unification is already
restricted to matching, which allows us to avoid the earlier requirement of having a well-
moded* query. The main limitation of these approaches is that they are both incapable of
adequately treating coroutining in its full generality. The key point seems to be that corou-
tining, in general, involves cyclic producer-consumer relations. Since in both techniques
the termination analysis applied to the transformed program (respectively, a sequential logic
program and a TRS) requires some form of producer-consumer acyclicity of the program,
general coroutines are beyond their scope.

In [88], L. Naish indicates some directions for more generally applicable solutions. It
is emphasized that a combination of mode and type information is essential to conduct a
sufficiently refined analysis. The purpose of such information is to allow a precise descrip-
tion of the dynamic data flow. Contributions are made on two different levels. A first result
deals with the termination of derivations, under a dynamic selection rule, for a query which
is a conjunction of atoms, such that the derivations of each separate atom terminate and

254 D. DE SCHREYE AND S. DECORTE

such that the procedures defining the atoms have no recursive interdependencies. Given
an acyclicity condition on the producer-consumer relation in the conjunction (and some
additional conditions on the dynamic selection rule), it is proved that the termination of the
individual atoms is inherited by the conjunction.

A more speculative contribution is on the treatment of general coroutining, involving
recursive dependencies between the atoms in the conjunction. Here, performing speculative
output bindings is identified as the main cause for potential divergence of the computation.
A typical example of speculative output bindings is presented in the permute example in
Section 3.3. In this example, following a nonstandard selection rule, output bindings for
delete atoms are generated before it is known that the calls to these atoms may succeed. Due
to these bindings, the recursive inference is allowed to proceed while, in fact, full evaluation
of an ancestor call would establish failure.

Termination analysis could detect such diverging computations by associating a lexico-
graphical well-founded ordering with conjunctions of atoms. Some data structures involved
in a coroutining computation could then be allowed to increase in size, as long as a data
structure with a higher priority (possibly occurring in another atom) decreases. This is
completely in the spirit of our comments in Section 5.2.3. Further work on the issue seems
essential.

Constraint Logic Programming provides another important new class of LP languages.
Here, the new issues in termination analysis are the interaction between the external solvers
and SLDNF-resolution and-especially for finite domain CLP-the dynamic selection rules
used to enforce first-fail principles on the activation order for the constraints.

[84] provides an initial study of the topic. It generalizes many of the concepts and tech-
niques developed for LP within the CLP context. A basic notion which is introduced is that
of an approximation between two CLP languages. Such approximations are functions that
map each program of a first CLP language to an associated program of the second language,
with the fundamental property that any model of the associated program corresponds-
through composition with the approximation itself-to a model of the initial program. The
inverse of the approximation preserves the termination property with respect to the different
procedural semantics of the two languages. The latter allows us to study the termination
behavior of an approximated program, and to use the results to infer termination proper-
ties of an original program. What is gained here is that useful approximations will focus
only on those aspects of the given program that are relevant for the termination behavior.
For instance, on the size of the terms occurring in the program, or on booleans expressing
decreases between the sizes of terms in the head of rules and sizes of corresponding terms
in the body. As such, the notion of an approximation is related to the notion of a norm.
The main relevance of this contribution is that it illustrates how CLP termination is useful
in providing a more elegant treatment of termination analysis. Through various levels of
constraint languages, the termination problem of a lower level language can be modeled
by means of a CLP program at a higher level. Since LP is a specific instance of a CLP
language, this also provides a new and elegant view on LP termination analysis.

Another important contribution is that the outcome of the analysis is a constraint, such
that all constraint atoms satisfying this constraint terminate under the considered selection
rule. This is similar, but more general, to the flexibility obtained in inferring termination
for all queries that are bounded with respect to a level mapping (see Section 4.1).

TERMINATION OF LOGIC PROGRAMS 255

5.3. Comparability of the Diferent Techniques

More work is also needed on evaluating and comparing the power of different automated
techniques. How do we identify the class of programs for which the termination conditions
of a certain technique are sufficient? In current work, these classes are usually indicated by
means of some examples. Whether better classifications are feasible is unclear.

The problem is related to the undecidability issue. Providing decidable sufficient condi-
tions necessarily involves some ad hoc decisions based on heuristics. Often, however, even
these heuristics are not made explicit by the authors. They are hidden in some restrictions
related to technicalities of the approach. The impact of such restrictions on the applicability
may be unclear, while they definitely obscure the relation to other approaches, imposing
different restrictions.

Another reason why comparison is difficult is that most techniques propose their own
specialized method for global program analysis. The disadvantage is that issues related
to the structure and the design of the global analysis are mixed with issues related to the
specific application: termination analysis. On the other hand, specialized analysis is often
more efficient. Still, we believe that the use of generic frameworks for global analysis
of Logic Programs, e.g., based on abstract interpretation, would allow us to significantly
improve the comparability of techniques. Such frameworks are widely available (see, e.g.,

[461X

We wish to thank K. Apt, E. Bevers, R. Bol, A. Bossi, D. Boulanger, M. Brnynooghe, N. Cocco, B. Demoen,
P. Devienne, M. Fabris, C. Hogger, S. Hiilldobler, A. Marien, B. Martens, F. Mesnard, D. Pedreschi, A.
Pettorossi, L. Pliimer, K. Rao, and K. Verschaetse for interesting discussions on the topic. Also thanks to E.
Bevers, M. Bruynooghe, M. Leuschel, and B. Martens for proofreading drafts of the paper, to K. Verschaetse
for allowing us to adapt a few paragraphs from his Ph.D., and to C. Hogger for inspiring the title. Finally,
we wish to thank anonymous referees for valuable comments. At this point, we justify the title by presenting
an extensive survey on: Termination of Logic Programs: the Never-Ending Story (see tirst page).

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

Afrati, F., Papadimitriou, C., Papageorgiou, G., Roussou, A. R., Sagiv, Y., and Ullman, J.
D., On the Convergence of Query Evaluation, Journal of Computer and System Sciences
38(2):341-359 (1989).
Aguzzi, G., and Modigliani, U., Proving Termination of Logic Programs by Transforming
them into Equivalent Term Rewrite Systems, in: Proceedings of Foundations of Sofhvare
Technology And Theoretical Computer Science, 1993.
Aho, A., Hopcroft, J., and Ullman, J., The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.
Apt, K. R., Marchiori, E., and Palamidessi, C., A Theory of First-Order Built-In’s of
Prolog, in: Proceedings of Algebraic and Logic Programming 92, 1992.
Apt, K. R., and Pellegrini, A., Why the Occur-Check is not a Problem, in: M. Bruynooghe
and M. Wirsing (eds.), PLILP92, Leuven, Belgium, 1992, pp. 69-86, Springer-Verlag,
LNCS 63 1.
Apt, K. R., Logic Programming, in: J. van Leeuwen (ed.), Handbook of Theoretical
Computer Science, Vol. B, Elsevier Science Publishers, 1990.
Apt, K. R., and Bezem, M., Acyclic Programs, New Generation Computing 9:335-363
(1991).
Apt, K. R., Bol, R. N., and Klop, J. W., On the Safe Termination of Prolog Programs, in:
Proceedings ICLP’89, Lisbon, June 1989, pp. 353-368, MIT Press.

9.

10.

Apt, K. R., and Marchiori, E., Reasoning About Prolog Programs: From Modes Through
Types to Assertions, Technical Report CS-R9358, CWI, Aug. 1993.
Apt, K. R., Marchiori, E., and Palamidessi, C., A Theory of First-Order Built-In’s of Pro-
log, in: H. Kirchner and G. Levi (eds.), Algebraic and Logic Programming, Proceedings
of the Third International Conference, Berlin, 1992, pp. 69-83, Springer-Verlag, LNCS
632.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Apt, K. R., and Pedreschi, D., Studies in Pure Prolog: Termination, in: Proceedings Esprit
Symposium on Computational Logic, Brussels, November 1990, pp. 150-176, Springer-
Verlag.
Apt, K. R., and Pedreschi, D., Proving Termination of General Prolog Programs, in Pro-
ceedings International Conference on Theoretical Aspects of Computer Science, Sendai,
Japan, 1991.
Apt, K. R., and Pedreschi, D., Modular Termination Proofs for Logic and Pure Prolog
Programs, Technical Report 6193, Dipartimento di Informatica, Universita di Pisa, 1993.
Balbiani, P., The Finiteness of Logic Programming Derivations, in: H. Kirchner and
G. Levi (eds.), Algebraic and Logic Programming, Proceedings of the Third International
Conference, Berlin, 1992, pp. 403419, Springer-Verlag, LNCS 632.
Bancilhon, E, and Ramakrishnan, R., An Amateur’s Introduction to Recursive Query
Processing Strategies, in: Proceedings SIGMOD86, 1986.
Barbuti, R., Codisch, M., Giacobazzi, R., and Maher, M., Oracle Sematics for Prolog, in:
Proc. Third Algebraic and Logic Programming International Conference, pp. 100-l 14,
Springer-Verlag, LNCS 632. To appear in Journal of Logic Programming.
Barbuti, R., Giacobazzi, R., and Levi, G., A General Framework for Semantics-Based
Bottom-Up Abstract Interpretation of Logic Programs, ACM Transactions on Program-
ming Languages and Systems 15(1):133-181 (1991).
Baudinet, M., Proving Termination Properties of Prolog Programs: A Semantic Approach,
Journal of Logic Programming 14: l-29 (1992).
Bezem, M., Characterizing Termination of Logic Programs with Level Mappings, Journal
of Logic Programming 15(1 & 2):79-98 (1992).
Bibel, W., Holldobler, S., and Wiirtz, J., Cycle Unification, in: D. Kapur (ed.), CADE,
1992, pp. 94-l 08, Springer, LNCS 607.
Bol, R. N., Towards More Efficient Loop Checks, in: Proceedings NACLP’90, 1990, pp.
465479.
Bol, R. N., Loop Checking in Logic Programming, Ph.D. thesis, University of Amsterdam,

Oct. 1991.

27.

28.

29.

Bol, R. N., Loop Checking in Partial Deduction, Journal of Logic Programming 16(1 &
2):2546 (1993).
Bol, R. N., Apt, K. R., and Klop, J. W., An Analysis of Loop Checking Mechanisms for
Logic Programs, Theoretical Computer Science 86(1):35-79 (Aug. 1991).
Boolos G., and Sambin, G., Provability: The Emergence of a Mathematical Modality,

Studia Logica l-23 (1991).
Bossi, A., Cocco, N., and Fabris, M., Norms on Terms and Their Use in Proving Universal
Termination of a Logic Program, Technical Report 4/29, CNR, Department of Mathemat-
ics, University of Padova, Mar. 1991. To appear in Theoretical Computer Science.
Bossi, A., Cocco, N., and Fabris, M., Proving Termination of Logic Programs by Exploit-
ingTerm Properties, in: Proc. CCPSD-TAPSOFT’91, 1991, pp. 153-180, Springer-Verlag,
LNCS 494.
Bossi, A., Cocco, N., and Fabris, M., Typed Norms, in: B. Krieg-Brueckner (ed.), Proc.
ESOP’92, 1992, pp. 73-92, Springer-Verlag, LNCS 582.
Boulanger, D., and Bruynooghe, M., Deriving Fold/Unfold Transformations of Logic
Programs Using Extended Oldt-Based Abstract Interpretation, Journal of Symbolic Com-
putation (1993).

30. Brodsky, A., and Sagiv, Y., Inference of Monotonicity Constraints in Datalog PrOgrFiIIIS,

D. DE SCHREYE AND S. DECORTE

TERMINATION OF LOGIC PROGRAMS 257

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

in: Eighth ACM Symposium on Principles of Database Systems, 1989, pp. 190-199.
Brodsky, A., and Sagiv, Y., On Termination of Datalog Programs, in: First International

Conference on Deductive and Object Oriented Databases, Kyoto, Japan, 1989, pp. 95-
112.
Brodsky A., and Sagiv, Y., Inference of Inequality Constraints in Logic Programs, in:
Proceedings of the 10th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, Denver, CO, 1991, pp. 227-240.
Bronsard, F., Lakshman, T. K., and Reddy, U. S., A Framework of Directionality for
Proving Termination of Logic Programs. in: K. Apt (ed.), Proc. JZCSLP ‘92, 1992, pp.
321-335, MIT Press.
Brough, D. R., and Walker, A., Some Practical Properties of Logic Programming Inter-
preters, in: Proceedings FGCS’84, 1984, pp. 149-156.
Bruynooghe, M., A Practical Framework for the Abstract Interpretation of Logic Programs,
Journal Logic Programming 10(2):91-124 (1991).
Bruynooghe, M., De Schreye, D., and Martens, B., A General Criterion for Avoiding Infi-
nite Unfolding During Partial Deduction of Logic Programs, New Generation Computing
11(1):47-79 (1992).
Cartwright, R., Recursive Programs as Definitions in First Order Logic, SIAM J. Comput.

13(2):374-408 (1984).
Cartwright, R., and MC Carthy, J., First Order Programming Logic, in: Sixth ACM
Symposium on Principles of Programming Languages, San Antonio, TX, 1979, pp. 68-
80.
Cartwright, R., and MC Carthy, J., Recursive Programs as Functions in a First Order
Theory, in: Proceedings of the 1978 International Conference on Mathematical Studies

of Information Processing, Kyoto, Japan, 1979.
Cavedon, L., Continuity, Consistency, and Completeness Properties for Logic Programs,
in: Proceedings ICLP’89, June 1989, pp. 57 l-584.
Chan, D., Constructive Negation Based on the Completed Database, in: R. A. Kowalski
and K. A. Bowen (eds.), Proceedings of the Fifth International Conference andSymposium
on Logic Programming, Seattle, WA, 1988, pp. 111-125, ALP, IEEE, MIT Press.
Clark, K. L., and Tamlund, S.-A., A First Order Theory of Data and Programs, in:
B. Gilchrist (ed.), Information Processing 77, Proceedings of the IFIP Congress 77,
Toronto, 1977, pp. 939-944.
Colmerauer, A., An Introduction to PROLOGIII, Communications of the ACM 30(7):69-
96 (1990).
Colussi, L., and Marchiori, E., Proving Correctness of Logic Programs Using Axiomatic
Semantics, in: K. Furukawa (ed.), Proceedings ICLP91, 1991, pp. 629-642, MIT Press.
Cook, J., and Gallagher, J., A Transformation System for Definite Programs Based on
Termination Analysis, Technical Report CSTR-92-32, Univ. of Bristol, Nov. 1992.
Cousot, P., and Cousot, R., Abstract Interpretation and Application to Logic Programming,
JournalofLogic Programming 13(2 & 3):103-180 (1992).
Cousot, P., and Halbwachs, N., Automatic Discovery of Linear Restraints Among Vari-
ables of a Program, in: Proceedings 5th ACM Symposium on Principles of Programming
Languages, 1978, pp. 84-96.
Covington, M., Eliminating Unwanted Loops in Prolog, Sigpian Notices 20(1):20-26

(Jan. 1985).
Covington, M., A Further Note on Looping in Prolog, Sigplan Notices 20(8):28-3 1 (Aug.
1985).
Dauchet, M., Simulation of Turing Machines by a Left-Linear Rewrite Rule, in: Pro-
ceedings of the 3rd International Conference on Rewriting Techniques and Applications,
Chapel Hill, NC, 1989.
De Schreye, D., Bruynooghe, M., and Verschaetse, K., On the Existence of Nonterminat-
ing Queries for a Restricted Class of Prolog-Clauses, Artificial Intelligence 41~237-248

258 D. DE SCHREYE AND S. DECORTE

(1989).
52.

53.

De Schreye, D., Verschaetse, K., and Bruynooghe, M., A Practical Technique for Detecting
Nonterminating Queries for a Restricted Class of Horn Clauses, Using Directed, Weighted
Graphs, in: Proceedings ICLP’90, Jerusalem, June 1990, pp. 649-663, MIT Press.
De Schreye, D., Verschaetse, K., and Bruynooghe, M., A Framework for Analysing the
Termination of Definite Logic Programs with Respect to Call Patterns, in: Proc. FGCS’92,

International Conference on Fifth Generation Computer Systems, ICOT Tokyo, 1992, pp.
481-488. ICGT.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Decorte, S., De Schreye, D., and Fabris, M., Automatic Inference of Norms: A Missing
Link in Automatic Termination Analysis, in: D. Miller (ed.), Proceedings ZLPS’93,

Vancouver, Canada, 1993, pp. 42w36.
Dembinski, P., and Maluszynski, J., AND-Parallelism with Intelligent Backtracking for
Annotated Logic Programs. in: Proceedings of the International Symposium on Logic

Programming, Boston, 1985, pp. 29-38.
Dershowitz, N., Termination of Rewriting, Symbolic Computation 3(1 & 2):69-l 16

(1987).

Devienne, P., Weighted Graphs: A Tool for Studying the Halting Problem and Time
Complexity in Term Rewriting Systems and Logic Programming, Theoretical Computer

Science 75(1 & 2): 157-215 (1990).
Devienne, P., and Lebbgue, P., Weighted Gaphs, A Tool for Logic Programming, in: I I th

Colloquium on Trees in Algebra and Programming, Nice, 1986, pp. 100-l 11
Devienne, P, Lebbgue, P., and Dauchet, M., Weighted Systems of Equations, Technical
Report IT 188, Laboratoire d’Informatique Fondamentalle de Lille, France, May 1990.
Devienne, P., Lebegue, P., and Routier, J. C., Halting Problem of One Binary Horn Clause
Is Undecidable, in: Proceedings of STACS’93, Wilrzburg, 1993, Springer-Verlag.
Deville, Y., Logic Programming: Systematic Program Development, Addison-Wesley,
1990.

64.

65.

66.

67.

68.

69.

70.
71.

72.

73.

Drabent, W., and Maluszynski, J., Inductive Assertion Method for Logic Programs, The-

oretical Computer Science 59: 133-155 (1988).
Falaschi, M., Levi, G., Martelli, M., and Palamidessi, C., Declarative Modeling of the
Operational Behaviour of Logic Languages. Theoretical Computer Science 69(3):289-3 18
(1989).

Floyd, R. W., Assigning Meanings to Programs, in: Proceedings Symp. in Applied Math.,

vol. 19, Providence, RI, 1967, pp. 19-32, Amer. Math. Sot.
Franchez, N., Grumberg, O., Katz, S., and Pnueli, A., Proving Termination of Prolog
Programs, in: R. Parikh (ed.), Logics of Programs, Springer-Verlag, 1985, pp. 89-105,
Garey, M., and Tarjan, R., A Linear-Time Algorithm for Finding All Feedback Vertices,
in: Information Processing Letters 7:274-276 (1978).

Groger, G., and Pllimer, L., Handling of Mutual Recursion in Automatic Termination
Proofs for Logic Programs, in: K. Apt (ed.), Proceedings of the Joint Znternational

Conference and Symposium on Logic Programming, MIT Press, 1992, pp. 336350.
Hanks, S., and McDermott, D., Nonmonotonic Logic and Temporal Projection, Arttficial

Intelligence 33:379-412 (1987).
Hanschke, P., and Wiirtz, J., Satisfiability of the Smallest Binary Program, in: Information

Processing Letters 45(9):237-241 (Apr. 1993).
Hogger, C. J., Essentials of Logic Programming, Oxford University Press, 1990.
Kapur, D., and Zhang, H., An Overview of Rewrite Rule Laboratory (RRL), in: Proceed-

ings of Rewrite Techniques and Applications Conference, vol. LNCS 355, Springer-Verlag,

1989, pp. 559-563.
Karr, M., Affine Relationships Among Variables of a Program, Acta Informatica 6: 133-

151 (1976).

Kifer, M., Ramakrishnan, R., and Silberschatz, A., An Axiomatic Approach to Deciding
Query Safety in Deductive Databases. in: Proceedings ACM Symposium on Management

TERMINATION OF LOGIC PROGRAMS 259

74.

75.

76.

77.

78.
79.

80.

81.

82.

83.

84.

85.

86.

87.
88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

ofData, Chicago, 1988, pp. 154-163.
Kowalski, R. A., Algorithm = Logic + Control, Communications of the ACM 221424-431

(1979).
Krishnamurtby, R., Ramakrishnan, R., and Shmueli, O., A Framework for Testing Safety
and Effective Computability of Extended Datalog. in: Proceedings 7th ACM Symposium
on Principles of Database Systems, Austin, TX, 1988, pp. 52-60.
Lescanne, P., Computer Experiments With the Reve Term Rewriting Systems Generator,
in: Proceedings 10th ACM Symp. on Principles of Programming Languages POPL’83,
1983.
Lewis, H., and Goldfarb, W. D., The Decision Problem for Formulas with a Small Number
of Atomic Subformulas, Journal of Symbolic Logic 38(3):471-480 (1973).
Lloyd, J. W., Foundations of Logic Programming, Springer-Verlag, 1987.
Lloyd, J. W., and Shepherdson, J. C., Partial Evaluation in Logic Programming, Journal
of Logic Programming 1 l(3 & 4):217-242 (Oct./Nov. 1991).
Manna, Z., and Ness, S., On the Termination of Markov Algorithms, in: Proceedings 3rd
Hawaii Int. Conf on Syst. Sci., Honolulu, HI, 1970.
Marchiori, E., Proving Run-Time Properties of General Programs w.r.t. Constructive
Negation, Technical Report CS-R9245, CWI, Amsterdam, Nov. 1992.
Martens, B., and De Schreye, D., Advanced Techniques in Finite Unfolding, Technical
Report CW180, K.U. Leuven, Belgium, Oct. 1993.
Mellish, C. S., Some Global Optimizations for a Prolog Compiler, Journal of Logic
Programming 2(1) (Apr. 1985).
Mesnard, F., Etude de la Terminaison des Programmes Logiques avec Constraintes aux
Moyens d’Approximations, Ph.D. thesis, Paris VI, 1993.
Mesnard, F., and Ganascia, J., CLP(Q) for Proving Interargument Relations, in: A. Pet-
torossi (ed.), Proceedings META’92, Uppsala, Sweden, June 1992, pp. 309-320, Springer-
Verlag.
Naish, L., Automating Control for Logic Programs, Journal ofLogic Programming 2(3)
(Oct. 1985).
Naish, L., Negation and Control in Prolog, LNAI 238, Springer-Verlag, 1986.
Naish, L., Coroutining and the Construction of Terminating Logic Programs, Technical
Report 92/5, University of Melbourne, Australia, 1992.
Nilsson, N. J., Principles of artijcial intelligence, Los Altos, CA, Morgan Kaufmann,
1980.
Plilmer, L., Termination Proofs for Logic Programs, number 446 in LNAI, Springer-
Verlag, 1990.
Pliimer, L., Termination Proofs for Logic Programs Based on Predicate Inequalities, in:
Proceedings ZCLP’90, Jerusalem, June 1990, pp. 634-648, MIT Press.
Pliimer, L., Automatic Termination Proofs for Prolog Programs Operating on Nonground
Terms, in: Proceedings ILPS’91, San Diego, October 1991, pp. 503-517, MIT Press.
Pliimer, L., Automatic Verification of GHC-Programs: Termination, in: Proceedings
FGCS’92, Tokyo, 1992.
Poole, D., and Goebel, R., On Eliminating Loops in Prolog, Sigplan Notices 20(8):38-40
(Aug. 1985).
Ramakrishnan, R., Bancilhon, F., and Silberschatz, A., Safety of Recursive Horn Clauses
with Infinite Relations, in: Proceedings 6th Symposium on Principles ofDatabase Systems,
ACM Press, 1987, pp. 328-339.
Krishna Rao, M. R. K., Kapur, D., and Shyamasundar, R. K., A Transformational Method-
ology for Proving Termination of Logic Programs, in: Proceedings CSL’91, LNCS 626,
Springer, 1991.
Krishna Rao, M. R. K., Kapur, D., and Shyamasundar, R. K., Proving Termination of
GHC Programs, in: proceedings ICLP93, Boedapest, 1993, pp. 720-736.
Krishna Rao, M. R. K., Pandya, P. K., and Shyamasundar, R. K., Verification Tools in

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

D. DE SCHREYE AND S. DECORTE

the Development of Provably Correct Compilers, in: Proceedings 5th Symp. on Formal
Methods Europe, FME’93, 1993.

Rosenblueth, D., Chart Parsers as Proof Procedures for Fixed-Mode Logic Programs,
in: Proceedings of the International Conference on Fifth Generation Computer Systems,
ICOT, Japan, 1992, pp. 1125-l 132, Association for Computing Machinery.
Sagiv, Y., A Termination Test for Logic Programs, in: Proceedings ILPS’91, San Diego,
CA, 1991, pp. 5 18-532, MIT Press.

Sagiv, Y., and Vardi, M. Y., Safety of Datalog Queries over Infinite Databases, in: Pro-
ceedings ACMSIGACT-SIGART-SIGMOD Symposium on Principles of Database Systems,
Philadelphia, PA, 1989, pp. 160-171, Academic Press.
Sahlin, D., The Mixtus Approach to Automatic Partial Evaluation of Full Prolog, in:
S. Debray and M. Hermenegildo (eds.), Proceedings NACLP’90, 1990, pp. 377-398.
Shyamasundar, R. K., Krishna Rao, M. R. K., and Kapur, D., Rewriting Concepts in the
Study of Termination of Logic Programs, in: Proc. ALPUK’92, London, Apr. 1992.
Smith, D. E., Genesereth, M. R., and Ginsberg, M. L., Controlling Recursive Inference,
Arttficial Intelligence 30:343-389 (1986).

Sohn, K., and Van Gelder, A., Termination Detection in Logic Programs Using Argument
Sizes, in: Proceedings 10th Symposium on Principles of Database Systems, ACM Press,
May 1991, pp. 216-226.
Tamaki, H., and Sato, T., OLD Resolution with Tabulation, in: Proceedings ICLP’86,

Lecture Notes in Computer Science 225, Springer Verlag, 1986, pp. 84-98.
Ullman, J. D., and Van Gelder, A., Efficient Tests for Top-Down Termination of Logical
Rules, Journal ACM 35(2):345-373 (Apr. 1988).
Van Gelder, A., Efficient Loop Detection in Prolog Using the Tortoise-and-Hare Tech-
nique, Journal of Logic Programming 4:23-31 (1987).
Van Gelder, A., Deriving Constraints Among Argument Sizes in Logic Programs, in:
Proc. PODS91, ACM Press, April 1990, pp. 47-60.
Vasak, T., and Potter, J., Characterisation of Terminating Logic Programs, in: Proceedings
1986 Symposium on Logic Programming, Salt Lake City, UT, 1986, pp. 140-147.
Verschaetse, K., Static Termination Analysis for Definite Horn Clause Programs, Ph.D.
thesis, Dept. Computer Science, K.U.Leuven, 1992.
Verschaetse, K., and De Schreye, D., Deriving Termination Proofs for Logic Programs,
Using Abstract Procedures, in: Proc. ICLP’91, Paris, June 1991, pp. 301-315, MIT Press.
Verschaetse, K., and De Schreye, D., Derivation of Linear Size Relations by Abstract Inter-
pretation, in: M. Bruynooghe and M. Wirsing (eds.), Proceedings PLILP’92, 4th Interna-
tional Symposium on Programming Language Implementation and Logic Programming,
LNCS 63 1, Springer-Verlag, 1992, pp. 296-310.
Verschaetse, K., Decorte, S., and De Schreye, D., Automatic Termination Analysis, in:
Proc. LOPSTR’92, LNCS, Springer-Verlag, 1993.
Vieille, L., Recursive Query Processing: The Power of Logic, Theoretical Computer

Science 69(1): l-53 (1989).
Wang, B., and Shyamasundar, R. K., Towards a Characterization of Termination of Logic
Programs, in: Proc. PLILP’90, number 456 in LNCS, Linkiiping, Sweden, Aug. 1990,
pp. 204-22 1, Springer-Verlag.
Wang, B., and Shyamasundar, R. K., Methodology for Proving the Termination of Logic
Programs, in: Proceedings STACS’91, number 480 in LNCS, Hamburg, Germany, 199 1,

pp. 214-227.
Wang, B., and Shyamasundar, R. K., Proving Termination of Logic Programs, in:
R. Narasimhan (ed.), Perspective in Theoretical Computer Science, Commemorative Vol-

ume, World Scientific Publishers, 1989, pp. 380-397.
Wiirtz, J., Unifying Cycles, in: B. Neumann (ed.), ECAI, 1992, pp. 60-64.

