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Despite recent progress thanks to next-generation sequencing technologies, personalised cancer medicine is
still hampered by intra-tumour heterogeneity and drug resistance. As most patients with advanced
metastatic disease face poor survival, there is need to improve early diagnosis. Analysing circulating tumour
DNA (ctDNA) might represent a non-invasive method to detect mutations in patients, facilitating early
detection. In this article, we define reduced gene panels from publicly available datasets as a first step to
assess and optimise the potential of targeted ctDNA scans for early tumour detection. Dividing 4,467
samples into one discovery and two independent validation cohorts, we show that up to 76% of 10 cancer
types harbour at least one mutation in a panel of only 25 genes, with high sensitivity across most tumour
types. Our analyses demonstrate that targeting ‘‘hotspot’’ regions would introduce biases towards in-frame
mutations and would compromise the reproducibility of tumour detection.

C
ancer research and biomedical sciences in general entered a new era with the -omics revolution. New
technologies have permitted the study of cancer genomes together with their organisation and evolution at
a depth never achieved before. The identification of driver genes by next-generation sequencing studies1–4

the understanding of their role in tumorigenesis matched with efforts in drug discovery were anticipated to pave
the way towards targeted therapies. However, personalised medicine still faces several challenges as there is yet no
gold standard to robustly classify genomic aberrations as driver events5,6, many cancer genes display evidence of
context-dependent antagonistic function7 and intra-tumour heterogeneity both fosters drug resistance and
hampers biomarker development8–13.

Accordingly, few biomarkers have been validated and are routinely used. There remains a need for non-
invasive, more generalised methods applicable to early cancer detection as the majority of patients presenting
with distant metastases at diagnosis still have poor overall survival. Improved methods of tumour detection, that
would allow more patients to be treated before metastatic spread and with minimal disease burden, represent a
vital area of research. Recent efforts in biomedical research have therefore focused on the analysis of circulating
tumour cells and circulating tumour DNA (ctDNA)14. Extracting genetic tumour material from peripheral blood,
or ‘‘liquid biopsy’’, is a non-invasive method of high potential for early diagnosis and therapeutic decision
making15–19, which has previously been used to monitor the evolution of resistance to EGFR-targeted therapy
in colorectal cancer (CRC) through acquisition of KRAS mutations20,21.

The potential of ctDNA for early detection is still to be determined, as it is not yet known how often mutations
from the primary tumour can be reliably identified from the analysis of peripheral blood or how this would vary
according to tumour stage. A recent study reported that mutated ctDNA could be detected in mice only a week
after subcutaneous cancer cell injection and that it could be detected in over 50% of mice after 9 weeks using real-
time PCR22, suggesting ctDNA studies are approaching the sensitivity required to detect primary disease prior to
imaging detection. The analysis of a cohort of 84 patients with paired plasma and formalin-fixed paraffin-
embedded primary samples, spanning various cancer types, led to the detection of 62.5% of primary site muta-
tions in ctDNA using the Sequenom MassArray System and OncoCarta panel23. Mouliere et al. investigated 38
CRCs using qPCR, detecting KRAS or BRAF mutations present in the primary tumour in all the paired plasma
samples, including 4 stage II cases24. Interestingly, the frequencies reported in the stage II cases were not found to
be lower than in higher stage cases. Furthermore, a multi-region analysis of 4 serous ovarian cancer cases revealed
that only 18% of validated somatic mutations from the primary sites could be detected above background in the
plasma via deep sequencing25. However, the plasma tended to be enriched for trunk mutations originating early in
the developing pre-cancer clone and at least one trunk mutation could be reliably detected in each case.
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Therefore, the combination of advanced sequencing technologies
with tumour DNA analysis from peripheral blood may hold promise
for early tumour detection. Since mutations present at primary
tumour sites often represent only a small fraction of sequencing reads
at a genomic position in ctDNA, a high sequencing depth is required
for their reliable identification. Here, we investigate panels of limited
genes across samples from various cancer types as a primary analysis
to estimate the sensitivity achievable by cancer detection methods
based on somatic mutations occurring in a targeted fraction of the
genome. We find that up to 76% of all occurrences from 10 tumour
types bear at least one mutation in a panel of only 25 selected genes,
with high sensitivity in most specific tumour types. Our data further
indicate that highly-targeted sequencing of ‘‘hotspot’’ regions would
be more likely to miss out-of-frame mutations, which would hinder
the reproducibility of the results in different cohorts.

Results
Discovery and validation cohorts. All mutation data were retrieved
from the curated datasets published in26. To focus on mutations that
may be detectable in early stage cancers, the TCGA samples were
divided into a discovery cohort comprising stages I–II samples (early
TCGA) and a validation cohort comprising stages III–IV samples
(late TCGA). In order to avoid possible platform-specific biases that
could arise from using only TCGA samples, mutations in each
dataset from other published works were assembled, when
available, in an independent non-TCGA validation cohort for 7 of
the 10 tumour types. Ten different tumour types were represented by
specific datasets and an additional ‘‘pan-cancer’’ set was created,
regrouping all 10 types which account for 48% of all 2008 reported
tumour occurrences27. Overall, the TCGA discovery cohort consisted
of 1562 samples, the TCGA validation cohort of 2109 samples and
the non-TCGA validation cohort of 796 samples (Table 1). The early
stage TCGA samples of each set, used for discovery, represented 23%
to 76% of all TCGA samples, with the exception of the ovarian set, of
which only 6% were early stage samples.

Candidate genes. We computationally analysed the prevalence of
mutations in the discovery and validation pan-cancer cohorts using
panels of up to 25 genes. The sensitivity of targeted sequencing
methods for early tumour detection was determined by the
percentage of samples in the pan-cancer set bearing at least one
mutation in each gene panel. Samples were weighted according to
the occurrence of each tumour type and the number of samples in
each set. We selected a maximum of 25 genes with elevated mutation
rates as candidates by scoring genes according to the number of
samples bearing a mutation, the number of mutations in each
sample and the gene sizes (Table 2, see methods).

The tumour suppressor TP53 was the best-ranked candidate,
mutated in 30.7% of all discovery samples. Several other genes in
the list are known tumour suppressors and oncogenes (KRAS,
PIK3CA, PTEN, VHL, FBXW7, SMAD4, APC, EGFR) while the
implication of others genes, such as CDH10, DCAF4L2 or PRDM9,
in tumorigenesis has yet to be determined. Weighting genes by size
allowed the exclusion of large genes such as TTN and MUC16
(respectively 107976 and 43524 bp, mutated in 44.0% and 24.3%
of the discovery samples), where mutations are more likely to occur
by chance alone and would be inadequate for targeted sequencing.

Mutational prevalence of candidate genes in discovery and vali-
dation cohorts. The candidate genes were analysed to find, for each
possible number of genes in a combination (1 to 25), which combi-
nation corresponded to the highest achievable sensitivity (Figure 1A,
Supplementary Table 2). Our analysis suggests that 76.1% of our
discovery cohort could be identified by screening for mutations in
only 25 genes, provided accurate detection methods and sufficient
coverage. The sensitivity achievable in the TCGA validation cohort isTa
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comparably high (76.7%), suggesting good reproducibility in higher
stage tumours. The use of different experimental settings and
sequencing techniques might explain the difference observed in the
non-TCGA validation cohort, in which the sensitivity was 65.8%.

Figure 1B illustrates the relationship between achievable sensitiv-
ity and the quantity of DNA to be sequenced. The best combinations
of candidate genes from the pan-cancer discovery cohort were
defined for different thresholds of maximal nucleotide length, from
100 bp to the combined length of all 25 genes (60 kbp) using 100 bp
increments (Supplementary Table 3). Mutations in a panel of five
genes (TP53, KRAS, PIK3CA, PTEN, VHL), whose combined length
is less than 7 kbp, are present in 61.2%, 63.0% and 49.3% of all
cancers in the discovery, TCGA and non-TCGA validation sets
respectively. Both graphs in Figure 1 also highlight that the achiev-
able sensitivity follows a logarithmic-like curve, indicating that the
addition of more candidate genes is unlikely to provide major
improvements.

Specific cancer types. Figure 2 displays how each of the specific
tumour types is represented by the candidate genes inferred from
the pan-cancer set. When combining all 25 genes, 70 6 24%, 71 6

28% and 61 6 25% of samples bore detectable mutations in the
discovery, TCGA and non-TCGA validation cohorts respectively.
Over 50% of samples harboured mutations in at least one of the
pan-cancer candidate genes in 21 out of 27 cohorts (78%). Strik-
ingly, recurrent mutations in colorectal and uterine adenocarcino-
mas and lung adeno and squamous cancers appear to be very well
defined by the pan-cancer candidate genes, with a sensitivity above
80% achievable in the discovery cohort and above 90% in the TCGA
validation cohort.

In contrast, thyroid cancer is the cancer type for which the so-
matic-mutation-based cancer detection would be the hardest, with
only 14.9% of the discovery cohort presenting mutations in any of the
pan-cancer candidate genes. The low number of mutations per sam-
ple in thyroid cancer (Table 1), along with the high frequency of RET/
PTC rearrangements in this cancer28, explain the poor predicted

performance of somatic mutation scans in this tumour type. The
low tumour detection in kidney clear cell (ccRCC) echoes the low
proportion of VHL mutations in the dataset (114 out of 324 samples,
including all cohorts), probably due to known technical issues in
sequencing the 1st exon of the gene1. Supporting this contention,
recent studies suggest VHL is expected to be mutated in over 80%
of samples1,29.

To determine the efficiency of having different tumour-specific
gene panels rather than a global pan-cancer panel, the sensitivity that
could be achieved using the pan-cancer candidate genes were com-
pared to the one achievable using the best specific candidate genes
for each tumour type (Figure 3, Supplementary Figure 2 and
Supplementary Tables S4–S23). The strongest divergence was
observed for ccRCC, indicating that the ccRCC driver genes are
rarely contributing to the development of other cancer types. The
median differences in sensitivity achievable using the pan-cancer and
specific candidate genes were 9.8%, 20.2% and 22.9% in each
cohort, thus only enhancing sensitivity in the discovery cohorts.
This suggests that the pan-cancer candidate genes are only margin-
ally sub-optimal compared with the best specific candidate genes in
most tumour types. A gene panel regrouping all 190 specific candi-
date genes across all 10 tumour types would consist of 700,000
nucleotides. 90.5%, 93.2% and 86.6% of all cancers in the discovery,
TCGA and non-TCGA validation cohorts respectively present at
least one mutation in any of these 190 genes, suggesting this gene
panel would only increase the sensitivity by 15 to 20% while sequen-
cing 10 times as many nucleotides, thus increasing the sequencing
cost 10-fold. These observations suggest that, given the recurrence of
many cancer genes across different tumour types, targeting a panel of
genes defined by the analysis of multiple cancer types might achieve a
high overall tumour detection rate whilst still providing high sens-
itivity for most tumour types. Yet, the poor putative detection of
thyroid cancer samples is a reminder that some cancers, in which
distinct mechanisms are involved in tumorigenesis, would still
require specific diagnostic methods.

Table 2 | Mutation frequencies of the top 25 pan-cancer candidate genes in each tumour type (percentages of discovery samples)

Gene Breast Colorectal
Head &
Neck

Kidney
clear cell

Lung
Adeno

Lung
Squamous Ovarian Melanoma Thyroid Uterus

Pan-
cancer

Weighted
pan-cancer

TP53 25.2 44.5 47.1 1.6 42.9 68.4 55.6 13.5 0.0 16.1 30.7 38.0
KRAS 0.3 44.1 0.0 0.5 30.0 0.8 0.0 1.1 2.7 21.7 15.2 13.7
PIK3CA 31.3 45.6 11.8 2.7 5.0 9.8 0.0 2.2 0.0 51.1 22.3 20.9
PTEN 2.4 35.7 2.9 2.2 1.7 7.5 0.0 6.7 0.0 57.8 15.0 11.2
VHL 0.0 14.7 0.0 41.1 0.0 0.8 0.0 1.1 0.0 1.1 7.7 4.5
FBXW7 0.3 28.7 5.9 0.5 2.9 6.8 0.0 3.4 0.0 18.3 8.7 8.4
CDH1 5.4 15.4 2.9 0.5 0.8 0.8 0.0 2.2 0.0 3.9 4.7 4.9
CDH10 0.3 9.6 16.2 1.1 17.1 17.3 0.0 14.6 0.0 11.1 8.8 10.1
SMAD4 0.0 28.7 1.5 0.0 3.3 2.3 0.0 0.0 0.0 2.2 6.0 6.3
DCAF4L2 1.0 7.4 5.9 0.0 8.3 4.5 0.0 4.5 0.0 4.4 4.2 4.7
CTNNB1 0.3 19.5 1.5 0.5 3.8 1.5 0.0 3.4 0.0 30.6 8.0 6.0
OR2M3 0.0 5.9 0.0 0.0 5.8 3.8 0.0 10.1 2.7 6.7 3.7 2.9
FAM47A 0.7 4.8 2.9 0.5 9.2 7.5 0.0 14.6 1.4 6.1 4.8 4.4
FAM5C 0.7 8.8 5.9 3.2 11.7 12.0 3.7 21.3 0.0 5.0 7.0 6.8
PIK3R1 0.7 9.6 1.5 0.5 1.3 1.5 0.0 4.5 0.0 38.3 6.9 4.3
ZNF676 0.0 3.3 5.9 0.5 9.2 11.3 0.0 20.2 0.0 3.3 4.8 4.9
APC 0.3 77.6 1.5 0.5 3.3 3.0 0.0 6.7 0.0 13.9 16.5 16.0
KLHL4 0.3 8.1 7.4 0.5 8.3 5.3 0.0 9.0 1.4 7.2 5.0 5.4
WBSCR17 1.4 10.3 0.0 0.5 7.5 3.8 0.0 11.2 0.0 6.1 4.9 4.2
PRDM9 0.3 8.8 4.4 0.5 12.5 6.8 0.0 16.9 4.1 9.4 6.6 6.1
TPTE 0.3 7.0 4.4 0.0 13.3 10.5 0.0 23.6 0.0 8.9 6.8 6.2
PCDH11X 0.7 7.7 5.9 2.2 15.8 15.0 3.7 7.9 2.7 7.2 7.2 7.2
MAGEC1 0.3 7.7 5.9 1.1 9.2 9.8 0.0 15.7 1.4 9.4 6.1 5.8
EGFR 0.3 15.1 4.4 0.5 10.4 2.3 0.0 6.7 0.0 2.2 5.4 5.8
FAM47C 2.0 5.9 2.9 1.1 12.5 3.8 3.7 12.4 0.0 7.2 5.5 5.1
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Highly targeted scan: estimating the potential of hotspot regions.
Recurrent mutations affecting a single nucleotide and resulting in
activation or loss of function, known as ‘‘hotspots’’, often concentrate
in certain regions of cancer genes, such as the DNA-binding domain
of the TP53 protein30. We thus investigated the presence of mutations
in small genomic ‘‘hotspot regions’’, rather than whole genes, by
grouping mutations close to each other into hotspot regions, using
six different nucleotide distance thresholds (10, 20, 50, 100, 200 and
500 nucleotides, see methods). The selection of the best-ranked
hotspot regions, up to a length equal to the combined nucleotide
length of the pan-cancer candidate genes (60 kbp), revealed that
this method could achieve sensitivities up to 94.6%, 81.9% and
67.4% in the discovery, TCGA and non-TCGA validation cohorts,
respectively (Figure 4, Supplementary Tables S24–S29). Targeting
hotspot regions might be capable of detecting a high number of
cancers by sequencing less genetic material: 86.4%, 76.8% and
61.2% of cancers in the discovery and validation cohorts harbour
mutations in 20 kbp of hotspot regions, compared to 69.9%, 68.7%
and 56.0% using the best combination, whose length did not exceed
20 kbp, of the top 25 candidate genes (Figure 1B).

However, hotspot regions reveal a strong difference in sensitivity
between the discovery and the validation cohorts: the percentage of
cancers in the discovery cohort with detectable mutations is pre-
dicted to be on average 11.0% higher than in the TCGA validation
cohort and 25.5% higher than in the non-TCGA validation cohort
(Supplementary Tables S24–S29). Such differences are much higher
than when using whole-gene panels. Furthermore, the analysis of
mutation types in the entire sequence of mutated genes compared
to the fraction covered by hotspot regions revealed that hotspot
regions are enriched for in-frame mutations in the validation cohorts

(p , 0.001 in 10 out of 12 cases, Fisher’s exact test, Supplementary
Figure 3). The contrary is observed in the discovery cohort, in which
the mutations detectable by targeted sequencing of hotspot regions
are depleted of in-frame mutations (p , 0.001 in all 6 cases). This
indicates that highly-targeted methods, such as focusing on hotspot
regions, are more likely to miss frameshift and truncating mutations
occurring far from the point-mutation-rich active sites of many can-
cer genes, which would alter the reproducibility of tumour detection
in different cohorts.

Single nucleotide variants. To investigate the sensitivity that could
be achieved at single nucleotide resolution, we examined the
recurrence of Single Nucleotide Variants (SNVs) in the pan-cancer
dataset (Supplementary Table S30). Our analysis shows that screen-
ing for 1,000 unique single base pair substitutions could achieve
sensitivities ranging between 41% and 73% of all occurrences from
10 tumour types (Figure 5). The 100 best ranked SNVs are estimated
to be present in 44.6%, 35.9% and 28.2% of occurrences in the
discovery and, TCGA and non-TCGA validation cohorts respective-
ly. The high divergence in sensitivity between cohorts suggests that,
as with hotspot regions, the sensitivity achievable through SNV
screening would be highly dependent on the set used for discovery,
which would hamper reproducibility. Yet, these results highlight the
high potential of targeted SNV screen for early cancer detection.
Especially high sensitivities are reported for colorectal and uterine
cancers (Supplementary Figure 4), due to the prevalence of SNVs in
the KRAS oncogene and overall higher mutational loads. Further-
more, the 1,000 SNV panel spans a high number of genes (765) and
the sensitivity in the thyroid cancer samples is higher than with the
25 pan-cancer candidate gene panel.

Discussion
As the perspectives of personalised medicine are hindered by the
heterogeneity found in individual tumours and the parallel evolution
of subclones, the analysis of circulating tumour DNA represents an
opportunity for major improvements in early diagnosis and tumour
monitoring methods. Our analyses show that targeted screening
methods have the potential to detect most cancers whilst limiting
the amount of genomic DNA to be sequenced. We find that an
estimated sensitivity of 65–77% could be achieved across 10 cancer
types by sequencing only 25 genes, accounting for less than 60,000
nucleotide pairs. This represents approximately 0.002% and 0.2% of
the human genome and exome respectively, indicating that targeted
methods could provide a highly cost-efficient sequencing approach
for cancer detection. We estimate that even greater sensitivity could
be achieved through the sequencing of 190 genes, consisting of
700 kbp and representing 2.3% of the exome, which could increase
sensitivity to 87–93%. In addition, a high sensitivity could be
achieved in lung and colorectal cancers, suggesting great potential
for early detection of these highly prevalent tumours. Coupled with
the decreasing cost of next-generation sequencing techniques, the
results presented here are encouraging in view of the increasing
research-based use of peripheral blood circulating markers for cancer
evolution analysis. However, sequencing errors can still be produced
by current methods and thorough validation of mutation data is
needed for more reliable sensitivity estimates.

Although several millions of mutations have been reported in
thousands of sequenced tumours26, it is becoming obvious that there
are only few ‘‘mountains’’ in the mutational landscapes of tumours,
with possibly as little as 140 genes significantly contributing to
tumour development31. This provides a strong advantage for early
pan-cancer detection by targeted sequencing. As branched evolution
has been reported to occur in tumour development8,11, panels of
genomic regions for ctDNA screens for early detection should also
be based on events likely to be involved in the early initiation of
tumorigenesis (clonally dominant, trunk events) rather than somatic

Figure 1 | Computationally estimated sensitivity of targeted sequencing
screen for the detection of worldwide cancer occurrences. (A) Percentage

of tumours in each cohort that have at least one mutation in a gene

included in panels defined by combining the best 1 to 25 candidate genes.

(B) Percentage of tumours in each cohort that have at least one mutation in

a gene included in the best panel defined for a maximum length varying

from 100 to 60,000 nucleotides.
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events acquired later in tumour development (heterogeneous, bran-
ched events)13. Furthermore, previous studies were able to identify
KRAS mutations in the blood of patients with colorectal cancers
months before disease progression was detected by imaging20,21, sug-
gesting that peripheral blood-based techniques are sensitive enough
to detect relatively small clonal populations.

There are still many hurdles prior to clinical application of tar-
geted ctDNA analysis and the sensitivity of early diagnostic methods
achievable in the clinic will greatly depend on the reliable detection of
somatic mutations in ctDNA. The most important tasks will there-
fore be to assess how reliably tumour initiating somatic mutations
which are present in primary tumour sites can be detected in ctDNA
and to improve the current limitations to detection of ctDNA in
patients. Deep sequencing appears to be a promising technique
and can detect mutations above background25 but further improve-
ments are required to reduce error rates. Novel technologies based on
redundant sequencing such as Tam-Seq16, Safe-SeqS32 or smMIP33

can detect mutations with allele frequencies as low as 0.02% to
0.001% and already report up to 97% sensitivity for mutations with
allele frequencies above 1%. Yet, the relationship between sensitivity,
sequencing depth and tumour stage is unknown. Comparative

studies with mutations detected in healthy controls will be essential
in order to assess the specificity of plasma-based tools. Since driver
genes are often mutated in many different tumour types is likely to
complicate the identification of the original tumour site and addi-
tional methods, such as imaging, would be needed to bridge the gap
between non-specific detection and adequate therapy.

Another unknown is the extent to which cancers and pre-cancers
shed tumour DNA in the peripheral blood and if this is likely to differ
according to tumour types. Additional studies are therefore needed
to assess the potential of ctDNA-based analysis in each disease and
determine the quantity of blood that would be necessary for reliable
tests. In the case of cancers driven by somatic aberrations other than
mutations, ctDNA scans could as well be tailored to detect gene
fusions, promoter methylation or copy number changes, thus
improving the potential for tumour detection. Our study further
demonstrates that not all tumour types are equally well suited for
somatic mutation-based scans, with colorectal cancer showing high
estimated detection rates with good reproducibility whereas poor
results are observed in thyroid cancers.

Provided efficient ctDNA scan solutions can be achieved, the next
step would be the development of algorithms to establish the most

Figure 2 | Computationally estimated sensitivity of targeted sequencing screen for the detection of specific tumour types using pan-cancer candidate
genes. Percentage of tumours for each tumour type in each cohort that have at least one mutation in a gene included in panels defined by combining the

best 1 to 25 pan-cancer candidate genes.
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favourable gene/loci panels. Here, we used simple algorithms
coupled with empirical thresholds to extract a limited number of
candidate genes, suggesting that high sensitivity could be achieved
in most tumour types by sequencing 40 to 500 times less genetic
material, which might reduce sequencing cost by a similar factor.
Improved computational methods could increase the search space
and find more efficient combinations of genes or genomic loci. Our
findings also suggest that targeting highly mutated ‘‘hotspot’’ regions
would limit the number of base pairs to be sequenced but would be
more likely to miss loss of function mutations occurring in tumour
suppressor genes. Approaches focusing on SNVs would potentially
suffer from the same limitations. Our analysis however demonstrates
that 28% to 44% of occurrences of the 10 studied tumour types
present at least one SNV from a panel of 100 and that 41% to 73%
sensitivity could be achieved using a panel of 1,000 SNVs. More
generally, there is a need for new bioinformatic tools to be developed
that can facilitate clinical applicability, and these should be developed
with a focus on finding optimal solutions to the sequencing cost to
tumour detection ratio problem.

The results we present here suggest that targeting a small number
of genomic loci could allow the early detection of a high number of
cancers across multiple tumour types. This stresses the importance of
leading tumour-type-specific studies, using paired primary and
plasma samples, aimed at defining the sequencing depth required
to reliably identify the mutations present in ancestral clones at dif-
ferent tumour stages. We suggest that the development of innovative
bioinformatic methods could help design cost-efficient gene panels
that would allow the detection of a large number of tumours whilst
optimising both the length and number of DNA sequences to be
screened.

Methods
Datasets. Mutation data were obtained from the curated datasets provided in the
supplementary data of Alexandrov et al.26, regrouping large-scale sequencing studies
from multiple sources for different tumour types (ftp.sanger.ac.uk/pub/cancer/
AlexandrovEtAl/, ‘‘raw’’ files). To comply with the TCGA publication guidelines,
only sets corresponding to stage I–IV solid tumour types with no restrictions of use
after August 2013 from TCGA were included in the analysis (Breast: BRCA;
Colorectal: COAD,READ; Kidney clear cell: KIRC; Head & Neck: HNSC; Lung
adenocarcinoma: LUAD; Lung squamous: LUSC; Ovarian: OV; Melanoma: SKCM;
Thyroid: THCA; Uterus: UCEC). Clinical data were downloaded from the TCGA
website. Mutations were annotated using ANNOVAR34 and hg19 genome
annotations; those corresponding to known entries in dbSNP 13235 were removed in
order to eliminate likely germ-line SNPs, and only non-synonymous mutations were
considered. Each set was split three ways: a discovery cohort consisting of early stage
(I–II) TCGA samples, a validation cohort consisting of late stage (III–IV) TCGA
samples and a second independent validation cohort consisting of non-TCGA
samples of any stage (when available). The decision to use early stage samples as the
discovery cohort was driven by the necessity to identify mutations that can be used to
detect tumours at an early stage, assuming that mutations present at an early stage will
also be present at a later stage in the absence of treatment. An all-inclusive set, labelled
‘‘pan-cancer’’ set, was created by regrouping all samples of all 10 tumour types and
was similarly split.

Each cohort from each set was represented as a 2D mutation matrix M of genes per
sample, consisting of 0 (no mutation of a given gene in a given sample) and 1
(mutation) values. In the case of the pan-cancer set, samples were further weighted by
multiplying by the occurrence of each cancer type, as given by the GLOBOCAN 2008
study27 (Supplementary Table 1), and dividing the number of samples of each type in
the set to account for overall worldwide cancer occurrences.

Candidate genes selection. In each set, only genes with non-synonymous mutations
in at least 4% of samples were analysed (4% of all weighted occurrences for the pan-
cancer set, see ‘‘Datasets’’ section above). Each matrix column, corresponding to a
sample, was divided by the total number of mutations in this sample to give less
importance to genes recurrently mutated in samples with high mutational burdens. A
score S was attributed to each gene g such that Sg 5 sum(M[g,])/Lg, where M[g,] are
the values for gene g in each column (sample) of M and Ls the length of g. Gene lengths
were defined as the nucleotide length of the longest protein coding sequence retrieved

Figure 3 | Differences between pan-cancer and specific candidate gene panels in computationally estimated sensitivity of targeted sequencing screen
for tumour detection. Coloured dots illustrate the difference between the sensitivity estimated using pan-cancer candidate genes and the sensitivity

estimated using specific genes for each tumour type. Boxplots illustrate the distributions of differences in each cohort, thick black lines highlight the

median, boxes delimit quartiles and whiskers indicate 95% confidence intervals.
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for each gene and the number of exons in a gene was determined as the highest
number of exons in a single transcript of the maximum length. Both gene length and
number of exons were retrieved from Ensembl (GRCh37.p11). For each dataset, a list
of at most 25 candidate genes was defined using the genes with the highest Sg score.

Only 14 and 11 genes were selected in the BRCA and THCA discovery sets
respectively, given the limited number of recurrently mutated genes in these cancer
types. All possible combinations of candidate genes were analysed to find the highest
sensitivity, as given by the highest proportion of samples bearing a mutation in at least

Figure 4 | Sensitivity and number of sequences to be sequenced in a highly targeted approach. Percentage of tumours in each cohort that have at least

one mutation in any of the best-ranked hotspot regions for a maximum length of 100 up to 60,000 nucleotides. Coloured lines correspond to different

nucleotide distances used to define hotspot region lists.

Figure 5 | Computationally estimated sensitivity of targeted SNV sequencing screen for the detection of worldwide cancer occurrences. Percentage of

tumours in each cohort that have at least one mutation in panels defined by iteratively combining the best 1,000 single nucleotide variants.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 3309 | DOI: 10.1038/srep03309 7



one of the considered genes. In the case of the pan-cancer set, samples were weighted
to reflect the worldwide occurrence of each tumour type.

Hotspot regions. Hotspot regions were defined by iteratively grouping mutations
from the pan-cancer set in the discovery cohort that were at most d nucleotides away
from one another. The possible threshold values of the distance d were 10, 20, 50, 100,
200 and 500 nucleotides (Supplementary Figure 1). Hotspot regions whose mutations
could be detected in less than 5 samples were removed and a 2D mutation matrix Mn
of hotspot region per sample was created for each value of d. Similarly to the
previously described Sg score, a score Sc was computed for each hotspot region h such
that Sh 5 sum(Mn[h,])/Lh using the region length Lh instead of the gene length and
the hotspot regions were then sorted by Sh score. As with the pan-cancer candidate
genes, samples were weighted to account for overall worldwide cancer occurrences.
Different hotspot regions can represent different sections of a single gene and
investigating all combinatorial possibilities would be very demanding
computationally. Instead, for each threshold t corresponding to a length between
100 bp and 60 kbp (100 bp increments), a list of hotspot regions was created by
iteratively adding regions until the length of the list reached t. All mutations in all
genes at least partially mapping to the top 1,000 hotspot regions of each list
constituted the background for in-frame mutation enrichment analyses; only the
mutations exclusively comprised in the top 1,000 regions were considered as
detectable, all others were considered as not detectable. A two-tailed Fisher’s exact test
was used to assess the enrichment of in-frame mutations in the mutations detectable
by hotspot region sequencing.

Single nucleotide variants. Single nucleotide variants (SNVs) were defined as the
unique 1 base pair substitutions occurring in the pan-cancer discovery cohort. This
means that mutations of the same nucleotide at a certain genomic location (reference)
to more than one different nucleotide (variant) will be considered as different SNVs.
Those occurring more than once were summarized in a 2D matrix Ms of SNVs per
sample. Similarly to whole genes and hotspot regions, samples were weighted by type
to represent worldwide occurrences and by number of mutations. Each SNV s was
given a score Ss given by Ss 5 sum(Ms[s,]). SNVs were sorted per Ss score and the best
1,000 were analyzed by iterative addition into a list, as for hotspot regions.
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