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Abstract

The objective of this work is to develop and validate a methodology for the identification of intra-variability based on the Interval
Field concept, with a specific focus on dynamic FE models. The principal idea is to find a solution to an inverse problem, where the
variability on the output side of the model (i.e., the eigenfrequencies) is known from measurement data, but the spatial uncertainty
on the input parameters is unknown. Specifically, focus is placed on the identification of the topology of the non-homogeneous
interval uncertainty, modelled as an interval field. This identification is performed by comparing the gradients of the halfspaces
bounding the uncertain set resulting from the propagation of the interval field and the measurement data set. It is shown that an
accurate identification is feasible following the proposed methodology.
c© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the organizing committee of EURODYN 2017.
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1. Introduction

Continuing advances in computing power and the upswing of high-performance computing (HPC) possibilities
allow for making highly detailed numerical models to approximate the partial differential equations that govern most
physical processes in our everyday live. This allows for making informed design choices, even in very early stages
in a product development cycle. Despite the high resolution of the thus achieved results, the deterministic analysis
may not be sufficient to assess the quality of a design, as depending on the design stage, some physical properties
are unknown or not yet determined. Moreover, even in a final design stage production tolerances, uncertainty in
the loading situation and scatter in material properties induce non-determinism in the response of the design in a
functional situation. Recent approaches in the field of computational engineering aim therefore to incorporate model
parameter uncertainty into numerical models. As such, a realistic assessment of the reliability of the design, including
the uncertainty is attained. Moreover, robustness of the design with respect to these variations can also be ensured.
In this context, two complementary philosophies exist: probabilistic and interval numerical analysis. Both techniques
have their own field of applicability, depending on the amount of information is available to the designer.
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As an alternative to the well-established framework of probabilistic uncertainty representation, interval techniques
such as Interval FE (IFE) or Fuzzy FE (FFE) were introduced. Following these techniques, the non-determinism is
respectively depicted as an interval or fuzzy set and thus propagated through the numerical model. These concepts
eliminate the need for the identification of a full probabilistic data description, which may be very cumbersome.
Moreover, less expensive numerical procedures are necessary for the description of the variability [1–3], which makes
these techniques highly suitable for early design stages. Interval fields were only recently introduced as an extension
to this concept to account for non-homogeneous non-determinism, and can be regarded as a interval counterpart to the
established framework of Random Fields [4]. The description of an interval field is based on the superposition of nb

base vectors ψi, scaled by independent interval scalars αI
i . The base vectors ψi represent a set of uncertainty patterns

and describe the spatial nature of the uncertainty that is modelled by the interval field. The interval scalars αI
i capture

the uncertainty at the input of the model. An interval field is formally expressed as:

γI
F(r) =

nb∑
i=1

ψi(r)αI
i (1)

Application of these powerful interval techniques however requires the identification of their driving parameters.
The authors proposed a generic methodology for this identification in [5–8], including a generic scheme for the reduc-
tion of the corresponding problem dimensionality, based on the computation of the convex hulls over the computed
realisations of the input non-determinism and the set of measurement data. However, the definition and identification
of the base vectors ψi of the interval field as yet remains unclear. This paper therefore applies the inverse distance
weighting interpolation scheme for the identification of a possible set of base vectors (as proposed by the authors
in [9]). Based on this scheme, a generic procedure for the identification of the subset of base vetors that results in
the optimal overlap with the experimental data is presented. The technique is introduced and illustrated based on a
veritual test example using simulated modal data.

2. The interval field finite element method

2.1. Interval finite elements

The interval field FE method comes down to finding the solution set ỹ, when the model parameter uncertainty is
depicted as an interval field γI

F(r) ∈ IRk over the geometrical model domain Ω, with IRk the k-dimensional space
of interval scalars and r ∈ Ω ⊂ Rt. t is the physical dimensionality of the problem at hand (e.g. t = 4 for a time
dependent simulation in three physical dimensions). ỹ usually spans a multidimensional region in Rd. This region is
in general not convex, which makes an exact computation of this set numerically very hard. ỹ is therefore commonly
approximated by the construction of an uncertain realization set ỹs, which is defined as:

ỹs =
{
ys j | ys j = f (γF, j(r));γF, j(r) ∈ γI

F(r)
}

(2)

and is obtained by propagating q deterministic realizations ys j of the interval field γI
F(r). Herein, ys j is a vector con-

taining the d output responses of the deterministic solution of the propagation of the jth input uncertainty realization,
with j ∈ [1, q]:

ys j =
[
ys1, ys2, .., ysd

]
(3)

These q deterministic propagations should represent the solution set ỹ as close as possible and may stem from
sampling techniques such as e.g. uniform Monte Carlo sampling, DOE or Latin Hypercube sampling. In the case of
strict monotonicity of f (), also the transformation method [3] may be used.

2.2. Definition of base vectors

The definition of the base vectors ψi in (1) in order to construct realistic realisations of the interval field γI
F(r),

proves to be a non-trivial task. These base vectors should be able to translate expert knowledge of the analyst on
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the uncertainty at the input of the model. An interval field is formally expressed as:
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approximated by the construction of an uncertain realization set ỹs, which is defined as:
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ys j | ys j = f (γF, j(r));γF, j(r) ∈ γI
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and is obtained by propagating q deterministic realizations ys j of the interval field γI
F(r). Herein, ys j is a vector con-

taining the d output responses of the deterministic solution of the propagation of the jth input uncertainty realization,
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the spatial nature of the uncertainty to a mathematical formulation in an intuitive way, while delivering a realistic
representation of this uncertainty.

Specifically in this paper, ψi is constructed according to an inverse distance weighting (IDW) scheme, as proposed
by the authors in [9]. This scheme controls the complexity of the field realisations by choosing an appropriate number
of control points on predefined locations ri inside the topology Ω of the FE model. At each ri, an independent interval
scalar αI

i determines the local value of the uncertain parameter. The uncertain field realisation is then constructed
by extrapolating these local values towards neighbouring elements according to a weighting scheme inversely pro-
portional to the Euclidean distance. Based on this approach, the number of control points directly affects the spatial
unevenness, which as such can be tuned by the analyst. Formally, the base vectors ψi that constitute the interval field
γI

F(r) are constructed according to:

ψi(r) =
wi(r)∑nb

j=1 wj(r) (4)

with wi(r):

wi(r) =
1

[d(ri, r)]p (5)

The weights wi(r) are calculated as the inverse of d(ri, r) to the power of a strictly positive scalar p ∈ R+. d(ri, r)
is a distance measure between the location ri where the interval scalar is defined and any other location r in the
model. By constructing these base vectors via the Inverse Distance Weighting technique, the locally defined interval
scalars remain perfectly decoupled, whereas the uncertainty in the remainder of the model is a weighted sum of their
influences. Moreover, the identification of the spatial topology of the uncertainty is as such reduced to finding the
correct control points of the base vectors.

3. Identification of interval field uncertainty

The application of the interval field concept for the representation of spatial uncertainty requires the identification
of the uncertainty on model parameters, which is captured by the interval field γI

F(r), which in its turn is a function of
αI ,nb and ψi(r)).Specifically for the identification of interval fields for the representation of spatial uncertainty in an
interval context, a truthfull estimation of the the base vectors ψi(r) is necessary.

In a first step of the identification, the base vectors ψi(r) are identified based on the gradients of the convex hulls
of the uncertain realisation set and the set of measurement data. Herefore, an initial estimate of the corresponding
interval scalars αI

i and field dimensionality is used. Once the correct base vectors are identified, the corresponding
interval uncertainty is quantified using the method that was presented by the authors in [5,6,8]. Section 3.1 presents
the novel methodology for the identification of the base vectors. The method for quantification of the interval scalar
uncertainty is given in section 3.2

3.1. Base vector identification

For the identification of the base vectors ψi(r), the convex hull of the uncertain realisation set Cs and the convex
hull of the measurement data set Cm are represented as a set of hs half-spaces in Rd, following Minkowski-Weyl’s
theorem:

Cs ≡ AsyT − bs ≥ 0 (6)

with As ∈ Rd×hs , bs ∈ Rd defining the set of halfspaces and y ∈ Rd a vector of model responses. Analogous definitions
are used for Cm. The number of halfspaces hs that comprise the convex hull of the uncertain realisation set Cs is purely
based on the elements of the set and their respective topology in Rd. These sets of halfspaces represent the inequalities
that describe boundaries of the corresponding convex hull and are in fact a set of vector-valued functions fs(αI ,ψ(r)),
which depend on the interval field that is defined on the parameters at the input of g(). When considering only the
boundary of Cs, this leads to:

4 M. Faes & D. Moens / Procedia Engineering 00 (2017) 000–000

fs(αI ,ψ(r)) = [ f1, f2, ..., fhs ]
T = AsyT − bs = 0 (7)

with ∀ fi, i = 1, ..., hs : Rd �→ 0. These functions are analogously defined for the measurement data set.
The correct base vectors that constitute the interval field that underlies the measured system responses in Cm are

identified by minimising the discrepancy between the gradients of the halfspaces that bound Cm and Cs, given that the
model under consideration is linear and modelled correctly with respect to the system at hand. The latter corresponds
to selecting a correct modelM for the deterministic representation of the response of the physical behaviour of the
model under consideration. The correct set of basevectors ψ∗(r) is selected as:

ψ∗(r) = argmin
(∥∥∥∥∇fs

(
αI ,ψ(r)

) ∣∣∣
αI=αI

0
− ∇fm

∥∥∥∥
2

2

)
(8)

This objective function is specifically constructed, based on the idea that the gradient of the halfspaces contains
information on the dependency of the considered responses, which in its turn is determined by the base vectors of
the interval field. As such, the discrepancy in the gradients of the halfspaces of the convex hulls of respectively the
measurement data set and the uncertain realisation set serves as a measure for the correctness of the base vectors.
In the specific case when the base vectors are constructed using inverse distance weighting, this problem reduces to
finding the correct locations r where the locally defined intervals are defined. As such, the optimisation problem
can be solved using integer-valued optimisation algorithms such as integer genetic algorithms or the hill-climbing
algorithm.

3.2. Identification of interval scalars

Identification of the vector of interval scalars αI is performed by minimizing a cost function δ(αI), which describes
the discrepancy between ỹs and ỹm, as introduced in [8]. δ(αI) is based on the computation of the convex hulls of ỹm
and ỹs, respectively Cm and Cs and corresponding d-dimensional volumesVs of Cs:

δ(αI) =
(
(1 − Vs(αI)

Vm
)2 + (1 − Vo(αI)

Vm
)2 +
∥∥∥cm − cs(αI)

∥∥∥2
2

)
(9)

with cm and cs the geometrical centres of mass of respectively ỹm and ỹs. Vo is the multidimensional volume of the
overlap ỹo between ỹm and ỹs. The interval vector αI,∗, used for the construction of γI

F(r), is finally determined as :

αI,∗ = argmin
(
δ(αI)

)
(10)

4. Illustration of the base vector identification

4.1. Case presentation

An illustration of the developed methodology is showed using a dynamic numerical model of a one-dimensional
cantilever beam, as indicated in figure 1. For illustration purposes, Young’s modulus of the beam is subjected to
uncertainty with a continuous spatial component over the model domain Ω, which is modelled using the interval field
concept. The considered beam has a length of 300 mm and a constant rectangular cross section of 40 mm × 2 mm.
The validation shows how to quantify the interval field uncertainty in such a part based on scattered eigenfrequencies
coming from experimental modal analysis.

The governing second order ordinary differential equation is discretised and solved for the first 10 eigenfrequencies
using a finite element (FE) model containing 10 linear shell elements with 4 nodes. Both in-plane and out-of-plane
bending modes, as well as torsional modes are considered. For benchmarking purposes, measurement data are gener-
ated by sampling a two dimensional a priori defined interval field (later also referred to as goal interval field). Interval
scalars αI

1 = [1.35; 1.45] GPa and αI
2 = [1.55; 1.65] GPa are defined at predefined locations r1 = 1 and r2 = 9 in the

model domain Ω. The 10-dimensional measurement set ỹm is obtained by solving the FE model for the first 10 eigen-
frequencies, based on 500 deterministic realisations of this interval field. In analogy to [8], the measurement set ỹm
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2

2
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In the specific case when the base vectors are constructed using inverse distance weighting, this problem reduces to
finding the correct locations r where the locally defined intervals are defined. As such, the optimisation problem
can be solved using integer-valued optimisation algorithms such as integer genetic algorithms or the hill-climbing
algorithm.

3.2. Identification of interval scalars

Identification of the vector of interval scalars αI is performed by minimizing a cost function δ(αI), which describes
the discrepancy between ỹs and ỹm, as introduced in [8]. δ(αI) is based on the computation of the convex hulls of ỹm
and ỹs, respectively Cm and Cs and corresponding d-dimensional volumesVs of Cs:

δ(αI) =
(
(1 − Vs(αI)

Vm
)2 + (1 − Vo(αI)

Vm
)2 +
∥∥∥cm − cs(αI)

∥∥∥2
2

)
(9)

with cm and cs the geometrical centres of mass of respectively ỹm and ỹs. Vo is the multidimensional volume of the
overlap ỹo between ỹm and ỹs. The interval vector αI,∗, used for the construction of γI

F(r), is finally determined as :

αI,∗ = argmin
(
δ(αI)

)
(10)

4. Illustration of the base vector identification

4.1. Case presentation

An illustration of the developed methodology is showed using a dynamic numerical model of a one-dimensional
cantilever beam, as indicated in figure 1. For illustration purposes, Young’s modulus of the beam is subjected to
uncertainty with a continuous spatial component over the model domain Ω, which is modelled using the interval field
concept. The considered beam has a length of 300 mm and a constant rectangular cross section of 40 mm × 2 mm.
The validation shows how to quantify the interval field uncertainty in such a part based on scattered eigenfrequencies
coming from experimental modal analysis.

The governing second order ordinary differential equation is discretised and solved for the first 10 eigenfrequencies
using a finite element (FE) model containing 10 linear shell elements with 4 nodes. Both in-plane and out-of-plane
bending modes, as well as torsional modes are considered. For benchmarking purposes, measurement data are gener-
ated by sampling a two dimensional a priori defined interval field (later also referred to as goal interval field). Interval
scalars αI

1 = [1.35; 1.45] GPa and αI
2 = [1.55; 1.65] GPa are defined at predefined locations r1 = 1 and r2 = 9 in the

model domain Ω. The 10-dimensional measurement set ỹm is obtained by solving the FE model for the first 10 eigen-
frequencies, based on 500 deterministic realisations of this interval field. In analogy to [8], the measurement set ỹm
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Fig. 1: Left: Illustration of the Finite-Element model of the cantilever beam on which the methodology is validated. r indicates the positive
direction along the beam, the numbers in the finite elements indicate the element numbers. Right: Geometrical properties of the cantilever beam.

is built using the 5th and 6th eigenfrequency of the model. The uncertain realisation set ỹs is constructed analogously.
As an initial estimate, the base vectors are constructed with r1 = 4 and r2 = 5, with the corresponding interval scalars
αI

1 = [1.0; 2.0] GPa and αI
2 = [1.2; 2.2] GPa. Using the presented methodology, the entire interval field is identified.

4.2. Results

The result of the interval field identification (i.e. base vectors and interval scalar) is shown in figure 2. Figure 3
also shows a two-dimensional cross-section of the ten-dimensional convex hulls of the uncertain realisation set before
and after identification, as well as the measurement data set. From this figure, the performance of the combined
methodology in both identifying the base vectors and interval scalars is clear. In fact, a close to exact identification of
the constituting interval field is obtained, as can be noted by the fact that the updated interval field and goal interval
field are perfectly coincident.

The first step of the identification consists of matching the base vectors, illustrated in the bottom plot of figure 2,
by solving the minimsation problem introduced in eq. (8). Specifically, an integer implementation of the hill-climbing
algorithm was used. For this specific case, the optimisation found the correct base vectors in only 4 iterations, needing
36 deterministic calls to the NASTRAN solver. The corresponding interval field γI

F(r) with correct base vectors, but
incorrect interval scalars is also shown in figure 2. The result of propagating this interval field is also shown in figure
3. Note how the gradients of the convex hull of the initial estimate are corrected with respect to the measurement
data set. The second step of the identification consists of quantifying the corresponding interval uncertainty. This is
done by solving the optimisation problem, as introduced in eq. (9) by means of a sequential quadratic programming
algorithm, as explained in [8], which converged after 25 iterations.

Fig. 2: Top: extreme realisations of the initial estimate on the interval field, the identified interval field and the interval field that was used for the
construction of the measurement data (the goal interval field) for case 1. Bottom: the initially estimated base vectors, the identified (updated) base
vectors and the base vectors that were used for the construction of the measurement data (goal base vectors).
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Fig. 3: Two-dimensional cross-section of the ten-dimensional convex hulls of the uncertain realisation set before and after identification, as well as
the measurement data set. Note that also the gradients of the convex hulls are changed due to the identification of the correct base vectors.

5. Conclusions

In order to represent spatial uncertainty in the physical model parameters, constituting the input of a Finite Element
(FE) model, the interval field concept proves to deliver accurate results with limited data. The use of this concept
however, requires the identification of its driving parameters: nb, ψi(r) and αI . A methodology for this identification,
based on the computation of the convex hull over the uncertain realisation set and a set of measurement data, was
proposed by the authors in previous work [5,6,8].

This paper introduces an extension to this identification methodology by allowing for the joint identification of the
base vectors of the interval field and the interval scalars that constitute the interval field. Specifically, this is obtained
by incorporating information on the gradients of the halfspaces that denote the limits of both the uncertain realisation
set and measurement data set. The performance of the technique is illustrated using a simple academic example, and
it is shown that an accurate identification of the base interval field is obtained.

Future work will include an extension of the methodlogy to higher dimensional spaces, both in terms of interval
fields at the input and output of the model. Also, validational tests using real-live measurement data are planned.
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Fig. 1: Left: Illustration of the Finite-Element model of the cantilever beam on which the methodology is validated. r indicates the positive
direction along the beam, the numbers in the finite elements indicate the element numbers. Right: Geometrical properties of the cantilever beam.

is built using the 5th and 6th eigenfrequency of the model. The uncertain realisation set ỹs is constructed analogously.
As an initial estimate, the base vectors are constructed with r1 = 4 and r2 = 5, with the corresponding interval scalars
αI

1 = [1.0; 2.0] GPa and αI
2 = [1.2; 2.2] GPa. Using the presented methodology, the entire interval field is identified.

4.2. Results

The result of the interval field identification (i.e. base vectors and interval scalar) is shown in figure 2. Figure 3
also shows a two-dimensional cross-section of the ten-dimensional convex hulls of the uncertain realisation set before
and after identification, as well as the measurement data set. From this figure, the performance of the combined
methodology in both identifying the base vectors and interval scalars is clear. In fact, a close to exact identification of
the constituting interval field is obtained, as can be noted by the fact that the updated interval field and goal interval
field are perfectly coincident.

The first step of the identification consists of matching the base vectors, illustrated in the bottom plot of figure 2,
by solving the minimsation problem introduced in eq. (8). Specifically, an integer implementation of the hill-climbing
algorithm was used. For this specific case, the optimisation found the correct base vectors in only 4 iterations, needing
36 deterministic calls to the NASTRAN solver. The corresponding interval field γI

F(r) with correct base vectors, but
incorrect interval scalars is also shown in figure 2. The result of propagating this interval field is also shown in figure
3. Note how the gradients of the convex hull of the initial estimate are corrected with respect to the measurement
data set. The second step of the identification consists of quantifying the corresponding interval uncertainty. This is
done by solving the optimisation problem, as introduced in eq. (9) by means of a sequential quadratic programming
algorithm, as explained in [8], which converged after 25 iterations.

Fig. 2: Top: extreme realisations of the initial estimate on the interval field, the identified interval field and the interval field that was used for the
construction of the measurement data (the goal interval field) for case 1. Bottom: the initially estimated base vectors, the identified (updated) base
vectors and the base vectors that were used for the construction of the measurement data (goal base vectors).
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Fig. 3: Two-dimensional cross-section of the ten-dimensional convex hulls of the uncertain realisation set before and after identification, as well as
the measurement data set. Note that also the gradients of the convex hulls are changed due to the identification of the correct base vectors.

5. Conclusions

In order to represent spatial uncertainty in the physical model parameters, constituting the input of a Finite Element
(FE) model, the interval field concept proves to deliver accurate results with limited data. The use of this concept
however, requires the identification of its driving parameters: nb, ψi(r) and αI . A methodology for this identification,
based on the computation of the convex hull over the uncertain realisation set and a set of measurement data, was
proposed by the authors in previous work [5,6,8].

This paper introduces an extension to this identification methodology by allowing for the joint identification of the
base vectors of the interval field and the interval scalars that constitute the interval field. Specifically, this is obtained
by incorporating information on the gradients of the halfspaces that denote the limits of both the uncertain realisation
set and measurement data set. The performance of the technique is illustrated using a simple academic example, and
it is shown that an accurate identification of the base interval field is obtained.

Future work will include an extension of the methodlogy to higher dimensional spaces, both in terms of interval
fields at the input and output of the model. Also, validational tests using real-live measurement data are planned.
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