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Abstract

The distribution, systematics and ecology of Bactrocera tryoni, the Queensland fruit fly are
reviewed. Bactrocera tryoniis a member of the B. tryoni complex of species, which
currently includes four named species, viz. B. tryoni s.s., B. neohumeralis, B. melas and B.
aquilonis. The species status of B. melas and B. aquilonis are unclear (they may be junior
synonyms of B. tryoni) and their validity, or otherwise, needs to be confirmed as a matter of
urgency. While Queensland fruit fly is regarded as a tropical species, it cannot be assumed
that its distribution will spread further south under climate change scenarios. Increasing
aridity and hot dry summers, as well as more complex, indirect interactions resulting from
elevated CO,, make predicting the future distribution and abundance of B. tryoni difficult.
The ecology of B. tryoni is reviewed with respect to current control approaches (with the
exception of Sterile Insect Technique which is covered in a companion paper). We conclude
that there are major gaps in the knowledge required to implement most non-insecticide
based management approaches. Priority areas for future research include host plant
interactions, protein and cue-lure foraging and use, spatial dynamics, development of new
monitoring tools, investigating the use of natural enemies and better integration of fruit
flies into general horticultural IPM systems.



Introduction

Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) is Australia’s worst horticultural pest
insect, attacking most fruit and many vegetable crops. Its native distribution is considered
to be tropical and subtropical coastal Queensland and northern New South Wales (Gilchrist
et al. 2006), but it is now more widely established in eastern Australia and has invaded some
South Pacific island nations (Drew et al. 1978). Adult flies lay their eggs into fruit and the
larvae, which feed within the fruit, cause direct fruit damage and induce decay and
premature fruit drop. Economic losses, estimated at $28.5mill/annum in 2000 (Sutherst et
al. 2000), result from direct yield losses, direct and indirect management costs and loss or
limit to domestic and international markets. Expenditure on fruit fly activities in Australia
(with the vast majority focused on B. tryoni) was estimated at $128 mill in the years 2003-
2008 (PHA 2008).

The literature on B. tryoni began over 115 years ago (Tryon 1889) and now includes over
450 refereed papers and book chapters, at least 40 research masters and PhD theses, and a
large “grey” literature. The entire literature has never been reviewed, although
components have been included in generic fruit fly reviews (Bateman 1972; Fletcher 1987),
specialist book chapters (e.g. Drew and Romig 2000; Fletcher 1989a; b; Meats 1989a; b) and
as part of modelling exercises (Yonow and Sutherst 1998; Yonow et al. 2004). With a
literature this large it might be assumed that we know all we need to know about this pest,
but as we will make clear in this review, while we have very detailed information about
select aspects of the insect’s biology, much knowledge of the organism’s general biology
and ecology, particularly that pertinent to developing sustainable pest management
options, is largely lacking.

As a major pest species, B. tryoni has been the focus of several major research initiatives
over the last 50 years (work before the 1950s was sparse, although the works of Allman
[(Allman 1938; Allman 1939; Allman 1941; Allman and Friend 1948)] and Jarvis [(Jarvis
1922a; b; ¢; 1923; 1924; 1925a; b; ¢; 1926a; b; 1931)] are notable exceptions). However,
paradoxically, most of this research (at least the published research) has not focused on
issues related to the control of the fly. Rather, major blocks of work have focused on very
specific theoretical, physiological or ecological issues, including: the density
dependence/independence debate; speciation and the timing of mating behaviour as an
isolating mechanism; rapid physiological adaptation following movement of the organism
into a previously unfavourable environment; bacteria as a fruit fly food source; and male
pheromones. While there are some obvious exceptions, including the literature covering
post-harvest disinfestation treatments and a body of more recent work derived from
activities associated with the southern fruit fly free zone and the Sterile Insect Technique
(SIT), most of the available B. tryoni literature cannot be used to directly support pest
management research.

While stating that the majority of research work on B. tryoni is not generally applicable to
pest management, we are not implying that every paper on the fly should address a specific
management issue or practise. Rather, we believe that targeted behavioural, physiological
and ecological research is needed to progress Queensland fruit fly control, a view which has
been well argued for pest systems in general (Walter 2003).



Why is targeted behavioural, physiological and ecological research pertinent to B. tryoni
management and why is it important now? Management of B. tryoni is currently
undergoing a crisis. Two chemicals, dimethoate and fenthion, long used for in-field control
and post-harvest commodity treatment, are expected to have substantially restricted use
following current reviews by the Australian Pesticides and Veterinary Medicines Authority
(PHA 2008). In their absence, in-field management of the fly will need to rely on alternative
control strategies. For B. tryoni, these will include controls which manipulate the fly’s use of
resources. Such resources include protein food sources (manipulated through protein bait
sprays), male parapheromones (manipulated through male annihilation technique), mates
(manipulated through SIT), non-commercial host plants and non-crop habitats (manipulated
through habitat management). To make these alternatives viable replacements for chemical
treatments, or to maintain their use (eg in the case of area freedom), a new period of
intensive research on B. tryoni is beginning (as illustrated by the recent release of the
National Fruit Fly Strategy (PHA 2008)). Our current review, summarising what we know
and what we don’t know about B. tryoni behaviour and ecology with reference to pest
management, is part of this larger process.

This review focuses initially on the species status of B. tryoni and closely related taxa within
the B. tryoni complex. It then presents a summary of the distribution of Queensland fruit
fly, factors limiting that distribution and likely changes in distribution under climate change.
The remainder of the review focuses on major control techniques, identifying what we know
and don’t know about the fly based on the information required for the techniques to be
successfully implemented or improved. In this way we hope not only to cover existing
information, but also identify and justify priority issues for further research. This review
does not touch on post-harvest controls or regulatory controls (e.g. road blocks, Interstate
Certification Assurances, community awareness programmes) and also excludes, because of
space constraints, the very large literature pertinent to the Sterile Insect Technique which is
dealt with in a companion paper.

Bactrocera tryoni complex

Accurate species identification is a central tenant of successful pest management (Paterson
1991; Walter 2003). While this may appear a simple and self-evident statement, defining
the species is not always a straightforward task. Tephritid fruit flies, along with other
groups (e.g. mosquitoes, (Rona et al. 2009; Weitzel et al. 2009), often contain groups of
biologically distinct, but morphologically similar or indistinguishable species (= sibling
species, or species complexes). Sibling species can vary in important biological traits such as
host use, pest status, geographic distribution and seasonal phenology (Barik 2009; Clarke et
al. 2001; Garros et al. 2006). Within the economic fruit flies, the best known species
complexes include the Anastrepha fraterculus complex (Céeres et al. 2009), the Ceratitis
rosa complex (Virgilio et al. 2008 ), the Bactrocera dorsalis complex (Clarke et al. 2005), the
B. tau complex (Jamnongluk et al. 2003) and the B. tryoni complex.

Bactrocera tryoni is recognised by Drew (1989) as belonging to a species complex with three
other species; B. neohumeralis (Hardy) (=lesser Queensland fruit fly), B. aquilonis (May) and
B. melas (Perkins & May). All of these species are sympatric with each other for all or part
of their geographic ranges with the exception of B. aquilonis, which occurs allopatrically
from the others in northwestern Australia (Drew et al. 1978). There is yet to be a



comprehensive systematic analysis of the complex, so the sisterhood relationships of
species within the complex are unknown. It is also not known if the complex is
monophyletic, or if additional species currently not placed within the complex belong there.

Despite its critical importance to management and trade, the species status of flies within
the B. tryoni complex is not well understood. Significant population genetic work has been
done on B. tryoni sensu stricto (Gilchrist et al. 2006; Gilchrist and Ling 2006; Morrow et al.
2000; Shearman et al. 2006; Wang et al. 2003) and there is no evidence of unrecognised,
cryptic species within B. tryoni s.s.. While separation of B. tryoni from B. neohumeralis is
based on variation in mating behaviour, the species status of the two other species in the
complex (B. aquilonis and B. melas) is less clear.

Bactrocera tryoni and B. neohumeralis

Most work within the complex has been done on understanding the relationship between B.
tryoni and B. neohumeralis (An et al. 2002; Bellas and Fletcher 1979; Birch 1961; Gee 1966;
1969; Gibbs 1967; McKechnie 1972; 1975; Neale 1989; Vogt 1970; Wang et al. 2003). The
two species can be separated from each on one clear behavioural difference; B. tryoni
mates at dusk and B. neohumeralis in the middle of the day (Lewontin and Birch 1966; Pike
and Meats 2002). Other traits that have been investigated to discriminate these species,
however, are ambiguous. The one morphological feature once thought to separate the
species, the colour of the humeral calli (it is typically yellow in B. tryoni and brown in B.
neohumeralis) has since proven to be a poor character, showing continuous variation
between the two extremes. While intermediate colour states in the humeral calli have been
inferred as support for field hybridization (Birch 1961; Pike 2004), more recent genetic
analysis (Gilchrist and Ling 2006) confirms the earlier work of Wolda (Wolda 1967a; b) that
variation in the colour of the humeral calli is a genetic trait of the parent and not a reflection
of hybridization. Until recently, genetic tests could not readily discriminate between B.
tryoni and B. neohumeralis (An et al. 2002; Armstrong et al. 1997; Green and Frommer
2001; Morrow et al. 2000), but microsatellite techniques have now proved useful in
discriminating between the species (Gilchrist and Ling 2006; Wang et al. 2003). For a more
comprehensive background on the large literature pertaining to the B. tryoni/B.
neohumeralis pair, see Pike and Meats (2002) and Meats et al. (2003a) (for time of mating);
Pike (2004) and Gilchrist and Ling (2006) (for variation in the humeral calli); and Wang et al.
(2003) and Gilchrist and Ling (2006) for genetic separation.

Despite their very close genetic similarity (Morrow et al. 2000), B. tryoni and B.
neohumeralis have very different pest status. Their recorded host lists are similar (Hancock
et al. 2000), but B. tryoni is the major pest fruit fly for all of eastern Australia, while B.
neohumeralis is, at worst, a pest of the tropics and subtropics (Drew et al. 1978). Why there
is this difference in pest status of two such closely related species is almost entirely
uninvestigated. Gibbs (Gibbs 1965; 1967) carried out comparative studies on the host use
of the two species in Rockhampton and concluded that inter-species competition was not
the answer, while Meats (2006) concluded that an inability to handle cold did not restrict
the southern range of B. neohumeralis. No other direct comparative ecological studies have
been carried out on the two species. Better understanding of why one species of this pair
has become a major, invasive pest, and the other not, offers much for the study of fruit fly
invasion biology.



Bactrocera neohumeralis is the only member of the Queensland fruit fly complex which
naturally occurs outside of Australia, being also regarded as endemic to Papua New Guinea
(Drew 1989). Having a much more restricted host range than Australian populations, and
with essentially non-existent host status, it is possible that the species currently recognised
as B. neohumeralis in Papua New Guinea is an unrecognised additional species within the
complex (Leblanc et al. 2001).

Bactrocera aquilonis

Bactrocera aquilonis, the third member of the B. tryoni complex, was described by May
(1965) based on material collected around Darwin in 1961. While morphologically very
similar to B. tryoni, two subsequent papers (Drew and Lambert 1986; Morrow et al. 2000)
supported the validity of this species, although Wang et al. (2003) found no such support
using microsatellite analysis. The uncertainty of B. aquilonis’ species status became an issue
in the late 1980’s when this previously non-pest species expanded its known host range
from four commercial crops (Drew 1989) to 40 (Smith et al. 1988). As reviewed by Cameron
(2006), the reason for this expanded host range was thought to be one of the following: (i)
pest flies may be an invasion of B. tryoni from the east coast; (ii) they may be B. aquilonis
which has expanded its host range; or (iii) the flies may be hybrids between B. tryoni and B.
aquilonis.

Cameron (2006) and Cameron et al. (in press) have undertaken an extensive analysis of the
B. aquilonis question, using trapping data, morphological data and a very extensive genetic
analysis. Cameron’s data strongly supports the conclusion that B. aquilonis is simply a
western, allopatric population of B. tryoni which has become increasingly pestiferous as
more tropical crops are grown in the north. Cameron also presents evidence that the
conclusions of Morrow et al. (2000), concerning B. aquilonis, are unreliable because of small
sample size, and that the data from Drew and Lambert (1986) are of limited value because a
known out-group was not included in the analysis, thus making it impossible to reliably
estimate what might constitute intra- versus inter-specific variation.

Quoting directly from Chapter 7 of her thesis, Cameron (2006) states:

“The current study [of B. aquilonis/B. tryoni] provides genetic evidence ... that there is a
single species present in the Northern Territory. No differentiation was found across the
region studied, from Gove in the east to the Western Australian border in the west, using
samples from rural, urban and native areas.

When Northern Territory samples were compared with samples from the East coast, there
was very little genetic differentiation between the two groups. The level of differentiation
was greater than that seen between East coast populations but smaller than between
East coast B. tryoni and B. neohumeralis, suggesting that the species previously identified
as B. aquilonis is actually an allopatric population of B tryoni”.

Bactrocera melas
Like B. aquilonis, the species status of the fourth member of the complex, B. melas, is
unclear. Bactrocera melas was described by Perkins and May (1949) from material collected



in southern Queensland, but Drew et al. (1978) subsequently discussed the likelihood that
B. melas was simply a melanic form of B. tryoni. In a subsequent formal revision of the
Australasian fruit flies, Drew (1989) referred to his earlier paper when discussing B. melas,
but took the point no further. Rather, a full description of the species is presented, along
with designations of a lectotype and two paralectotypes, which can only be interpreted by
inference that the species stands as a recognised taxonomic entity. While the absence of
research on B. melas in any studies (except formal taxonomic ones) on the B. tryoni complex
tends to reinforce the point that most Australian entomologists accept this species as a
synonym of B. tryoni, this does not discount the fact it continues to hold the status of a valid
taxonomic species. As such, B. melas remains on Australia’s pest list where it is attracting
increased interest from our international trading partners. The species status of both B.
aquilonis and B. melas need to be confirmed as a matter of urgency to determine if they are
valid species, or are both junior synonyms of B. tryoni. Results either way have important
implications for domestic and international trade.

Geographic distribution

Geographic distribution

Queensland fruit fly is widespread in eastern Australia, as well as being invasive in New
Caledonia, French Polynesia, Pitcairn Islands and Cook Islands (http://www.spc.int/Pacifly/).
Originally considered endemic to patches of tropical and subtropical rainforests extending
along the east coast from Cape York to southern NSW (Meats 1981), the development of
commercial fruit production in Australia has promoted range expansion into more
temperate and drier areas (May 1961a). Bactrocera tryoni were first reported in the Sydney
region in the late 1800s (May 1961a) and now have a permanent range extending inland
into central Queensland and New South Wales as well as in Alice Springs and Darwin
(Osborne et al. 1997), and probably more widely throughout the Northern Territory and
northern Western Australia depending on the species status of B. aquilonis (see discussion
above). Sporadic outbreaks occur in Victoria and South Australia (Maelzer 1990a; b;
Maelzer et al. 2004a; b; May 1963; Meats et al. 2006), and a single outbreak was detected
and successfully eradicated from Perth, Western Australia (Ayling 1989; Fisher 1996).
However, these parts of Australia usually remain free of B. tryoni due to isolation from the
permanent distribution range of the fly by intervening regions with unsuitable conditions
(Meats 1981; Yonow and Sutherst 1998).

Environmental factors influencing distribution

The three factors considered to determine the suitability of a region for B. tryoni survival
and reproduction are temperature, moisture, and availability of suitable larval host fruits
(May 1963; Meats 1981; Yonow and Sutherst 1998). The influence of temperature on the
survival and reproduction of Queensland fruit fly has been extensively studied and is
reviewed elsewhere (Meats 1989a). Tolerance of high temperatures varies with life stage
but is modulated by the pattern of exposure; larvae do not suffer mortality to the same
extent as eggs and pupae under cyclical temperature regimes with daily maxima of 38°C and
40°C (Meats 1984). Tolerance of extreme low temperatures, the minimum temperature
required for mating, and development rate in cool temperatures, determines the southern
extent of the distribution of B. tryoni (Meats 1981; O'Loughlin et al. 1984; Yonow and
Sutherst 1998). Winter survival is poor in areas with an average yearly minimum



temperature lower than 2.6°C (Meats 1976b; 1981). Breeding can occur where daily
maximum temperatures exceed 20°C (Meats and Fay 2000), and areas where temperatures
permit fewer than three generations per year are unlikely to ever have high populations
(Meats 1981). Detailed studies have demonstrated the capacity of B. tryoni to rapidly
acclimate to low temperatures experienced at the southern extent of their range and high
altitude regions (Meats 1976a; b; c; 1987; Meats and Fay 1976; 1977; O'Loughlin et al.
1984). In addition to plasticity in their ability to tolerate cool temperatures, B. tryoni
populations may also exhibit adaptation to their local thermal environment. Populations
along the east coast of Australia are known to exhibit differences in survival and
reproductive capacity over a range of constant temperatures that relate to differences in
local climate conditions (Bateman 1967).

Dry stress is considered a key factor restricting the distribution and abundance of
Queensland fruit fly (Yonow and Sutherst 1998), suggesting that they are susceptible to
water loss and desiccation. It has been noted that B. tryoni populations near Sydney, NSW,
reach their highest numbers in wet years and decline during periods of drought (Bateman
1968). However, with the exception of one unpublished PhD from the early 1960s (Besly
1962), there have been no studies of B. tryoni water relations or its potential impact on their
distribution. Bateman (1968) suggested that the observed relationship between rainfall and
B. tryoni abundance could result from lower female fecundity in dry years. Citing Besly,
Bateman also posited that mortality during conditions of low humidity could result from
increased levels of water loss as a consequence of cuticular damage caused by emergence
through dry soil.

Distribution under climate change

Atmospheric CO, has increased rapidly from 280 ppm to current levels of 380 ppm since the
late 18th century, and is expected to rise to above 550 ppm by 2050. This rise in
atmospheric CO, concentrations, as well as other greenhouse gases including methane and
nitrous oxide, has been linked to rapid increases in global temperature (Pachauri and
Reisinger 2007). Observed climate anomalies during the 20t century and the predicted
influence of greenhouse gas emission scenarios on the Australian climate are published
(CSIRO and BoM 2007) and have recently been reviewed (Garneau 2008). In summary,
under current climate change scenarios and without mitigation, temperature is predicted to
increase between 0.4-1.8°C above 1990 levels by 2030. Median annual average rainfall is
expected to decline across Australia. While average rainfall may not change in some areas,
there is an expected increase in the intensity of rainfall events and an increase in the
number of days without rainfall.

The consequences of a changing climate for the distribution of Queensland fruit fly have
been modeled by Sutherst et al. (2000) using CLIMEX. The model produced an ecoclimatic
index for the suitability of regions in Australia for B. tryoni survival, development and
reproduction given a mean temperature increase of 0.5°C, 1°C and 2°C. These simulations
clearly indicated that increased average temperature will result in the southerly spread of B.
tryoni, primarily as a consequence of longer seasons, increased development rate and,
consequently, an increase in the number of generations per year. The model also indicated
a marked decline in the suitability of areas in northern and central Queensland as
temperatures increase, which reflects temperature regimes exceeding the thermal



tolerance maximum of B. tryoni. This predicted phenomenon is supported by recent
evidence from a range of tropical insects (Deutsch et al. 2008).

The simulations of Sutherst et al. (2000) incorporate the effect of increasing temperatures
on evaporation and humidity, while also assuming a top-up of weekly rainfall with irrigation
to equate to 25mm per week. However, uncertainty about the effects of climate change on
rainfall patterns presents challenges to the accurate prediction of the distribution of B.
tryoni under climate change conditions. This is further complicated by the relative paucity
of data on desiccation resistance and water balance of Queensland fruit fly and the
demonstrated capacity for B. tryoni to adapt to local environmental conditions (Bateman
1967).

Indirect effects of elevated atmospheric CO,

Elevated atmospheric CO; has a “fertilization effect” on plant growth through higher rates of
photosynthesis that leads to increased production of above- and below-ground biomass.
Growth effects of elevated CO, may be dramatic in urban and horticultural systems where
soil water and nutrients are not limiting (Idso and Kimball 1997). For example, biomass
production of cherry (Centritto et al. 1999), sour orange (Kimball et al. 2007), Valencia
orange (Downton et al. 1987), peach (Centritto et al. 2002) and tomato (Islam et al. 1996) is
substantially increased by elevated CO,. Further, elevated CO, leads to production of more
and larger fruit (Downton et al. 1987; Islam et al. 1996; Jablonski et al. 2002; Reinert et al.
1997), sometimes associated with elevated sugar concentration and quantitative changes in
acid content (Idso et al. 2002; Islam et al. 1996). Importantly, higher nutrient availability in
urban and horticultural settings means that tissue carbon to nitrogen ratios may be
preserved at elevated CO, (Kimball et al. 2007).

The quantitative and qualitative changes in fruit produced by plants grown at elevated CO,
may have important implications for frugivorous insects. Bactrocera tryoni spends its larval
phase developing in fruit, but all previous studies on the consequences of climate change
for insect-plant interactions have focused on chewing and sucking insect larvae (Coviella and
Trumble 1999; Stiling and Cornelissen 2007). There has so far been no research on the
consequences of elevated CO, on the development, longevity and reproduction of
frugivorous insects. This is an important oversight in relation to tephritid flies in view of the
unambiguous demonstration that larval host environment has a significant influence on
larval, pupal and adult quality (Dukas et al. 2001; Kaspi et al. 2002; Nestel et al. 2004)

Ecology Relevant to Control Techniques

Lure and kill techniques / trapping

Introduction

Lure and kill techniques operate on the principle of using a lure to attract a pest organism to
a point (the source of the lure) where it can be killed (El-Sayed et al. 2009). For insects the
killing device is generally an insecticide mixed, or placed adjacent to, the lure, but
alternatives include liquid traps where the pest enters and drowns, or sticky traps which
hold the insect until it dies. The lure itself can be a semiochemical (including pheromones,
kairomones and food-based volatiles), non-volatile food attractants, colour attractants and
host mimics, or a combination of these. Lure and kill approaches used at low densities can



be effective monitoring tools, or if applied at high densities can be effective controls (De
Souza et al. 1992; Petacchi et al. 2003; Suckling 2000).

There has been a long history of using lures against B. tryoni, for both monitoring and
control. The first experimental (cf. survey or taxonomic) paper on fruit fly in Australia dealt
with attractants and repellents for “fruit fly” (B. tryoni is not mentioned by name) (Benson
and Voller 1899). While Benson and Voller were unsuccessful in finding a lure®, lures
remained a focal point for early fruit fly workers (Caldwell and May 1943; Gurney 1925;
Jarvis 1923; 1925b; 1931; Perkins and Hines 1933) and were recommended as control
options (Jarvis 1926b), although with limited initial success (Jarvis 1925b). Since those early
investigations, lure and kill techniques have become a standard part of the monitoring and
pest management toolkit for B. tryoni. Two lure and kill approaches, male annihilation
technique (MAT) and protein-bait spray (PBS), are particularly important and are likely to
become more so as dimethoate and fenthion use is restricted. This section reviews the
science under-pinning lure and kill approaches for B. tryoni and, while focusing on MAT and
PBS, also discusses the potential for female chemical and physical lures.

Protein Bait Spray and Bacteria

Both male and female B. tryoni need protein in order to sexually mature (Meats and
Leighton 2004; Perez-Staples et al. 2008; Perez-Staples et al. 2007). In nature, B. tryoni is
presumed to get the majority of its protein through feeding on leaf surface bacteria
(Courtice and Drew 1984; Drew and Lloyd 1987; 1989; 1991; Lloyd 1991; Lloyd et al. 1986).
The presence of unidentified bacteria in the diet of B. tryoni has been shown to enhance
survival, sexual maturity and egg maturation (Drew et al. 1983), while leaf surface bacteria
may provide adult B. tryoni with at least one primary source of food (Vijaysegaran et al.
1997; Vijaysegaran et al. 2002). In contrast, however, Meats et al. (2009) found no
nutritional benefit to B. tryoni of a diet including live cultures of nitrogen-fixing bacteria.

There is evidence that bacteria are spread by the flies, but it is not clear if this is part of a
coevolved system (Drew and Lloyd 1987; Prokopy et al. 1991), or happens incidentally as
part of routine foraging (Raghu et al. 2002). A study conducted by Fitt and O’Brien (1985)
aimed to identify any symbiotic association. Bacterial isolates were collected from egg,
pupal and adult stages from both wild and laboratory colonies of B. tryoni, but there was no
consistency in bacterial genera present. In a morphological study examining the
ultrastructure of B. tryoni’s digestive system, no evidence of intracellular symbionts was
observed (Murphy 1990; Murphy et al. 1994). Whilst the wide host range of the B. tryoni
may account for some of this lack of consistency, available data do suggest that no single
bacterial species is involved in a primary symbiotic relationship with the fly, and exploitation
of any symbiosis is unlikely to assist management of this pest.

With respect to more general lure and kill techniques, however, information on the fly’s
protein needs and foraging behaviour is relevant because artificial protein sources

! They were successful in finding repellents, one of which was reported as: "A mixture made as
follows:- Boil 2 Ib. of sulphur and 1 Ib. of 98 per cent. caustic soda in 2 gallons of water till the sulphur
is dissolved, and a mixture known as sulphide of soda is formed. Add 6 Ib. of whale-oil soap, 80 per
cent.; and boil for half an hour, adding boiling water to make 5 gallons of mixture; then add 40 fl. oz. of
black leaf tobacco extract. Next add water to make 40 gallons, and it is ready to use."



(generally in the form of a protein hydrolysate) are attractive to foraging flies. When mixed
with an insecticide, protein can be applied as strip or spot sprays to lure and kill adult flies of
both sexes (Bateman 1972; Bateman and Arretz 1973; McQuate 2009). For Queensland
fruit fly most information on protein bait spray application is contained in final project
reports (Lloyd et al. 2000; Lloyd et al. 2003), with few formal publications on the use of the
technique in the field (Hargreaves et al. 1986; Jones and Skepper 1965; Lloyd et al. in press;
Smith and Nannan 1988).

The extensive literature on B. tryoni - bacteria interactions adds only a little to the science
underpinning protein bait spray technology. Bateman and Morton (1981) showed that
ammonia was the volatile attracting flies to protein, but this was considered unlikely by
Drew and Fay (1988), who found that volatiles produced by bacteria breeding within the
protein, rather than ammonia, were the likely source of attraction to flies. Within this
framework they then discussed the possibility that flies were most responsive to protein
when sprayed on fruiting host plants because such plants already had high bacterial loads,
which “inoculated” the protein and made it more attractive. The findings of Drew and Fay
support a second paper by Morton and Bateman (1981), which clarifies their first paper by
recognising that ammonia on its own is not highly attractive to flies, but is when exposed in
a synergistic fashion with various amino acids and other components of protein hydrolysate.
A valuable contribution of this latter paper is the recording that most volatile chemicals
from commercial protein hydrolysates are of very high molecular weight and hence very low
volatility. This may be another, or alternative, reason why protein bait sprays are most
effective when sprayed on a fruiting host plant, i.e. flies already on a fruit host plant for
other purposes may detect the protein volatiles from short distances away, but may have
little ability to detect the protein volatiles when in other locations. If targeting gravid
females then this is particularly likely to be the case, as protein-fed, gravid females are less
active in protein foraging than immature, protein-hungry females (Prokopy et al. 1991).

As a likely core tool of B. tryoni area-wide management (AWM), there are very significant
gaps in biological knowledge underpinning the use of protein-bait technology. With
examples from international studies, these include: identifying the most attractive protein
mixtures (Barry et al. 2006; Yee 2007); identifying how the physiology of the fly (e.g. prior
feeding history, reproductive status, sterile/non-sterile) influences attractiveness and
effectiveness of baits (Barry et al. 2003; Yee 2006 ; Yee and Chapman 2005 ); determining
where flies forage for baits and how this might be used in management (e.g. with respect to
border applications) (McQuate and Vargas 2007 ; Prokopy et al. 2004); and determining how
protein bait sprays interact with other components of AWM (Lloyd et al. in press; Pinero et
al. 2009; Stark et al. 2004; Vargas et al. 2002). Additional to these areas which focus
predominantly on the biology of the fly, the mode of actions and integration of new
generation insecticides (e.g. spinosad, fipronil) into protein-bait technology for B. tryoni are
also areas needing urgent research.

Male Annihilation Technique (MAT)

Cue-lure

Males of B. tryoni respond to cue-lure (Drew 1989), making B. tryoni one of approximately
60% of Bactrocera species in which the males respond strongly and positively to either cue-
lure (4-(4-acetoxyphenyl)-2-butanone) or methyl eugenol (4-allyl-1,2-dimethoxybenzene)
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(Drew 1974). While methyl-eugenol occurs widely in nature, cue-lure does not, although it
is chemically related to naturally occuring compounds (i.e. raspberry ketone) (Metcalf
1990). The possible processes associated with the evolution of fruit fly response to lures are
reviewed by Raghu (2004). When mixed with an appropriate insecticide, cue-lure is an
extremely effective lure and kill tool for monitoring and managing B. tryoni (Bateman and
Arretz 1973; Dominiak et al. 2003a; Monro and Richardson 1969). Raspberry ketone is the
hydroxy equivalent of cue-lure (i.e. 4-(p-hydroxyphenyl) butan-2-one) and was discovered as
attractive to B. tryoni by Willison in 1959 (Bateman et al. 1966a): it subsequently became
known in the B. tryoni literature as Willison’s lure. The discovery that Bactrocera species are
attracted to these chemicals is considered to have occurred independently with the
discovery of Willison’s lure and cue-lure in 1960 (Beroza et al. 1960). Monro and Richardson
(1969) subsequently confirmed cue-lure to be more attractive to B. tryoni. There are no
publications testing the attractiveness of the formate form of cue-lure, “Melolure™”, against
B. tryoni, although this form of cue-lure is 1.5-2 times more attractive to B. cucurbitae than
is traditional cue-lure(Casana Giner et al. 2003).

Very little work has been done on the functional role (if any) of cue-lure for B. tryoni. For
other Bactrocera species the male lures can enhance male mating competitiveness, act as
mate rendezvous sites, and afford protection from predators (see a review by Raghu 2004).
Only some of these issues have been researched for B. tryoni. Male B. tryoni forage most
strongly for cue-lure in the morning (Weldon et al. 2008), but peaks of foraging activity may
depend on local ambient temperature (Brieze-Stegeman et al. 1978). Foraging is related to
sexual maturity, with sexually mature males being most responsive (Weldon et al. 2008).
Attraction to cue-lure by B. tryoni is through up-wind anemotaxis (Meats and Hartland
1999), while the presence of cue-lure in the local environment increases B. tryoni flight
activity (Dalby-Ball and Meats 2000b). In a closed rainforest environment, trap catches of B.
tryoni in cue-lure baited traps increased with increasing height (from 0.1 to 12m), but in the
open canopy environments of a eucalypt forest and citrus orchard no effect was evident in
the height ranges of 0.1-12m and 0.1-3.6m, respectively (Hooper and Drew 1979). As for
other Bactrocera species, female B. tryoni are traditionally regarded as being non-lure
responsive (Drew 1987a; Hill 1986), but this view is changing slightly as more data are
gathered. Sexually mature, but virgin B. tryoni have been demonstrated to respond to cue-
lure in field cages (Weldon et al. 2008), leading the authors of that study to suggest that
cue-lure is associated with the mating system, as has been suggested or confirmed for other
cue-lure and ME responsive species (Raghu 2004). Drew (1987a) also reported that sexually
immature females of B. tryoni were responsive to cue-lure and he considered 2-butanone to
be the chemically active component of cue-lure with respect to possible mating activities.

MAT

While widely used, there is little literature available on the use of cue-lure, mixed with an
insecticide, as a control technology for B. tryoni. Bateman and colleagues have carried out
the only published work in this field and demonstrated that traps baited with Willison’s lure
(Bateman et al. 1966a) and cue-lure (Bateman et al. 1966b) could adequately suppress B.
tryoni populations in isolated towns, although the impact was better early in the season, if
used in conjunction with a protein bait, and applied over more than one year. Bateman and
Arretz (1973) also applied cue-lure blocking, along with protein bait sprays, in the successful
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eradication of B. tryoni from Easter Island, but the relative effectiveness of the different
control approaches was not reported.

While commercially available MAT devices are now available for Q-fly population
suppression, there is a substantial shortfall in fundamental knowledge if the technique is to
be routinely incorporated into on-farm or area-wide management systems. No formal
studies have been undertaken on the linear distance of attraction of cue-lure to B. tryoni,
but some sampling efficiency estimates are available. Fletcher (1974b), using mark-
recapture data and traps placed either 80m apart in a grid, or 400m apart in line, states that
“pairs of cuelure traps spaced 0.4km apart along a trap line in sclerophyll bushland caught
approximately 8% of the males per week in the surrounding area of 0.16 km?’. Similarly,
Monro and Richardson (1969) report that “Funnel traps baited with cue lure and malathion
and spaced 0.4 km apart in a square grid pattern caught 4.1 % of newly emergent flies and 9
% of mature flies (2-3 weeks old) released in the centre of the grid.” There is no inherent
justification in these papers why 400m was chosen as a distance for analysis but, what is
valuable about these papers, is that the capture rate for mature flies (8 and 9%) is
remarkably similar and at least provides an experimental basis for the trapping efficiency for
a cue-lure grid of 400m. Meats (Meats 1998a; b) collates data from a number of different
trapping programmes and, applying several modelling approaches, concludes that a 1000m
trapping grid is significantly less effective (approximately 1/6™) than a 400m grid, although
this is highly dependent on the size of the fly population and the source of the flies with
respect to individual traps within the grid. A critical, un-researched issue is that of variation
in trap efficiency. While it is documented that different numbers of flies can be caught in
different areas of a local environment (see section below on foraging), it is not clear how
much of this variation may be due to variation in trap efficiency (i.e. the same number of
flies are present, but traps vary in their ability to catch flies) and how much is due to
differences in absolute population numbers (i.e. lower trap catches are because there are
fewer flies in the area, and vice versa). Cue-lure traps are strongly influenced by weather
conditions (MacFarlane et al. 1987; Monro and Richardson 1969) and this influences their
efficiency.

Female Lures

Sexually mature and mated female B. tryoni do not respond to cue-lure (Drew 1987) and
there are no effective lures for female B. tryoni currently available (although this is an area
of active research). Caldwell and May (1943) developed a liquid lure, based on orange and
ammonia, which attracted both female and male B. tryoni and this was used extensively by
May in later work (May 1958; 1961a; b; 1963; May and Caldwell 1944): the lure is commonly
known as May’s orange-ammonia lure. Unfortunately, while valuable in select experimental
situations, the lure is weakly attractive and has a short life-span, and traps using the lure
need to be cleared at least weekly (preferably sooner) as flies rapidly decay. Liquid protein
used in traps has similar problems, as well as attracting non-target species, although current
research overseas is targeting more specific protein attractants (Heath et al. 2009).
Dominiak (2006) reviews the use of liquid protein traps, and to a lesser extent liquid
ammonia based lures, for B. tryoni monitoring. No researchers have yet published on the
potential for fruit-based, chemical attractants for female B. tryoni, an approach that is being
pursued internationally for other pest tephritids (Gonzalez et al. 2006; Malo et al. 2005;
Rasgado et al. 2009b).
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Colour traps & fruit mimics

For the tephritids, fruit mimics offer a potentially useful lure and kill approach for
monitoring and population reduction (Economopoulos 1989; Katsoyannos 1989). Perhaps
the best known example of this is for apple maggot fly, Rhagoletis pomonella (Walsh),
where fruit-mimicking red spheres, often combined with artificial, plant-derived
semiochemicals, are used commercially for pest management (Duan and Prokopy 1992;
Duan and Prokopy 1993; 1995; Reynolds and Prokopy 1997). Fruit mimics have also been
developed or researched for other pest tephritids, including Neoceratitis cyanescens
(Brévault and Quilici 2007) and Ceratitis capitata (Katsoyannos and Hendrichs 1995).

The potential for fruit mimics to be used in B. tryoni monitoring or control has received
scant attention. The fly does show distinct colour preferences, but these vary depending on
the way they are offered, with contrast, grain size and silhouette all influencing response
(Meats 1983b). When exposed on flat sticky traps, colours most closely associated with the
wavelength of green foliage colour (550nm) (daylight fluorescent (DF) Saturn Yellow, and
then Lime, Blaze Orange and Emerald) were most attractive to B. tryoni and caught more
males than females (Hill and Hooper 1984). The same study found that the shape of the flat
surface also influenced capture, with circular and square traps capturing more flies than
triangular, rectangular and diamond shaped traps. Further, Hill and Hooper reported that
B. tryoni response to colour was quite different if exposed on a sphere: more flies were
caught on black spheres than yellow or green spheres. Drew et al. (2003), working
exclusively with spheres, reported both sexes of B. tryoni as most responsive to blue or
white spheres over red, orange, yellow, green, or black spheres. Weldon and Meats (2007)
found no difference in the effectiveness of yellow versus black spheres. Sphere size was
also found important by Drew et al. (2003), with 50mm diameter spheres proving more
attractive than clusters of 15mm diameter spheres. Further, colours became more
attractive to flies when the ultraviolet reflectance level was enhanced, which Drew et al.
interpreted as mimicking the effects of an ultraviolet-reflecting waxy bloom found on some
native B. tryoni hosts.

The addition of fruit odours to fruit mimicking coloured spheres has been trialled only once
for B. tryoni (Dalby-Ball and Meats 2000b). The results are ambiguous with respect to
development of fruit mimics, however, because the focus of the study was on B. tryoni flight
activity, not development of attractants. The data showed increased alighting of flies on
fruit mimics when a chemical odour was associated with the mimic. Weldon and Meats
(2007) added protein autolysate to hollow black or yellow sticky spheres, but their study
was concerned with the protein attraction, not the sphere per se. Semiochemicals
associated with B. tryoni host location and oviposition are covered later in this review, but in
general are poorly studied. Hill and Hooper (1984) found that when cue-lure was added to
flat sticky traps, the lure response dominated over colour influences. Based on research
done on other flies, fruit mimics offer potential as, at least, a monitoring device for B. tryoni
which may be independent of male cue-lure traps. As a research field, however, nearly
everything remains to be done.

Area-wide Management and Areas of Low Pest Prevalence
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Area-wide Management (AWM) involves the suppression of a pest population over an entire
agricultural district (including its towns). In addition to knowing the biology of the fly within
an orchard or commercial crop, and direct pest management tools, it also requires
knowledge of how a pest moves within a district and between districts, what hosts support
the pest outside of commercial cropping systems, and when and where the fly occurs when
not in those cropping system. Hendrichs et al. (2007) provide an excellent recent review of
the concept of AWM in entomology, while Jessup et al. (2007) discuss the generalities of
AWM of fruit flies in Australia and Lloyd et al (in press) detail a specific case of B. tryoni
AWM in the Central Burnett district of SE Queensland. The knowledge required to operate
an effective AWM program is very similar to that required to establish a Fruit Fly Free Zone
or an Area of Low Pest Prevalence for fruit fly (ALPP-FF) (as defined by ISPM No. 30 (IPPC
2008)). In addition to certain technical requirements, biological elements that need to be
considered when establishing an ALPP-FF include: “the number of [fly] generations per year,
host range, temperature thresholds, behaviour, reproduction and dispersion capacity... host
diversity and abundance, host preference and host sequence” (IPPC 2008).

It is anticipated that ALPP-FFs will become more common in Australia, especially as the
currently fruit fly free areas become increasingly difficult to maintain due to operational and
economic constraints. In this section we cover those areas of the ecology of B. tryoni
pertinent to both ALPP-FF and AWM.

Habitat use

“Habitat” is a fundamental concept in ecology, however, it is recognized that the term is
used in at least two ways. Habitat can be used in a generic sense to describe the type of
environment in which we might go to look for something, eg “this bird lives in a rainforest
habitat”. Alternatively, habitat may be used much more specifically to describe the
environmental requirements of individuals within a species, eg “the habitat requirements of
species X are...” (Hengeveld and Walter 1999; Mitchell and Powell 2003; Walter 2003;
Walter and Hengeveld 2000).

In the generic use of the term habitat, B. tryoni is traditionally considered an endemic insect
of the tropical and subtropical east coast rainforests, where many of its native hosts are
found (Drew 1989). While this may have been the case, B. tryoni is now rare in rainforests
compared to other habitat types. In a study in the Cooloola coastal forest of south-east
Queensland, B. tryoni was, on average, more than twice as abundant in peripheral sites than
in the rainforest (Zalucki et al. 1984). In a simultaneous sampling of rainforest, eucalypt
forest and suburbia, Raghu et al. (2000) and Ero (2009) found the fly to be rare in rainforest,
but highly abundant in suburban sites. That B. tryoni is highly abundant in urban areas has
been documented or suspected by other authors because of large numbers of host plants
and high local humidity (Dominiak et al. 2006; Fletcher 1974b; Mavi and Dominiak 2001;
Mavi and Dominiak 1999), but its rarity in its supposedly endemic forest habitat is less
commonly noted.

At the landscape level, B. tryoni is known to be collected more frequently around water
courses than in less sheltered or open areas (Courtice and Drew 1984; Fletcher 1974a;
MacFarlane et al. 1987) and it has been postulated that watercourses direct movement of
flies across the landscape (Fletcher 1989b), but the evidence for this is circumstantial. Fly
foraging in the landscape may be linked to tree shapes or silhouettes as there is some
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evidence they will actively orientate to tree silhouettes (Meats 1983b) and this may partially
explain why they are found less in open areas. At the microhabitat level, only Worsley et al.
(2008) have attempted to correlate trap catch levels with local site attributes. While their
data set is too small to provide firm outputs, their GIS based approach should be pursued
using larger datasets.

The habitat specific requirements of B. tryoni include water, food (especially proteins and
sugars), shelter, mates and oviposition sites (Bateman 1972; Fletcher 1987). Little is known
about how B. tryoni forages in the environment for these resources and how this translates
to local dispersion patterns of the fly. Using B. tryoni largely as his model system, Drew
(Courtice and Drew 1984; Drew 1987a; Drew et al. 1983; Drew and Lloyd 1987; 1989; 1991;
Drew and Romig 2000; Drew and Yuval 2000; Prokopy et al. 1991) has argued strongly that
the larval host plant is the “centre of activity” for fruit flies, with all activities (maturation,
feeding, mating, oviposition and larval development) occurring there. While oviposition
must occur at the larval host plant, the evidence for other behaviors being entirely
restricted to the host plant is largely circumstantial and may reflect inadequate sampling
elsewhere. Even if most behaviours are restricted to the host plant, how flies disperse
between plants, choose between one plant and another, and behave when no host plants
are fruiting, are still critical questions for AWM and ALPP-FF. These issues are developed
further below.

Dispersal & Movement

Dispersal distance

Dispersal is considered an important characteristic of B. tryoni, with both immigration and
emigration playing a role in local population dynamics (Bateman and Sonleitner 1967;
Fletcher 1973; Sonleitner and Bateman 1963). High rates of dispersion in this species are
considered an evolved behaviour associated with finding suitable hosts in rainforest
(Fletcher 1974a). Using mark/release/recapture techniques considerable effort has been
made into determining how far B. tryoni can disperse. Dispersal distance has implications
for the setting of quarantine restrictions. While a single B. tryoni was recorded at 94km from
a release point by MacFarlane et al. (1987), this is considered highly unusual (Dominiak et al.
2003b), with most reported dispersal being over much shorter distances of only a few
hundred meters to a few kilometres (Bateman 1977; Bateman and Sonleitner 1967;
Dominiak et al. 2003b; Fletcher 1973; 1974a; MacFarlane et al. 1987; Meats et al. 2006;
Weldon and Meats 2007; Weldon 2005; Weldon and Meats 2009). Modelled analysis of B.
tryoni trap data similarly reflects relatively low dispersal distances, but also reinforces the
problems of detecting low populations of flies (Meats 1998b; 2007; Meats and Edgerton
2008; Meats et al. 2006; Meats et al. 2003b).

Role of wind

Fletcher (1974a) and Dominak et al. (2003b) found no relation between prevailing wind and
recaptures of marked flies, while in contrast MacFarlane et al. (1987) found that strong
south westerly winds preceded long-distance recoveries in areas north-east of the release
point. MacFarlane et al., however, also detected long distance travel in the absence of
strong winds, indicating multiple means of such dispersal. Male B. tryoni have a greater
tendency to move upwind than do either mated or virgin females (Pike and Meats 2003)
and so it is possible that the sexes separate somewhat after emergence.

15



Host availability

Availability of hosts influences the flight distance and long distance flights are more likely if
there is low fruit abundance in the surrounding area (Fletcher 1974a). Dispersive flights, in
which B. tryoni travels between habitats, are likely to depend on the timing of local fruit
availability. However, the relationship between timing of fruit availability and movement is
not clearly defined. It has been reported that flies from distant habitats enter a fruit rich
locality (e.g. an orchard) sometime after fruit is first available and the length of time the flies
remain at the site is principally determined by the amount of fruit suitable for oviposition
(Fletcher 1973; 1974a). On the other hand, mature adult flies may move away from a
previously suitable habitat under conditions of lower fruit availability, low temperatures and
dryness, or if they are seeking over-wintering sites (e.g. eucalypt forest) (Fletcher 1973;
1974a; Sonleitner and Bateman 1963). When undertaking pre-winter dispersal, male B.
tryoni are more likely to leave previously occupied habitats than females and this may be
because the females are attracted by local fruit trees which are going to have ripe fruit
available in the coming spring (Fletcher 1979). Irrespective of the immediate suitability of a
location for breeding, post-teneral flies move away from their emergence sites (Fletcher
1973). However, Fletcher notes that these post-teneral flies re-enter breeding localities
when they are sexually mature if fruits are available and the weather favorable. Regular
dispersal from breeding sites is one reason why there appears to be very little or no genetic
structuring of B. tryoni in its endemic tropical range (Cameron et al. in press; Gilchrist et al.
2006; Yu et al. 2001; Yu et al. 2000), while in inland southern regions, where the fly is
incursive, fly populations are best considered as meta-populations with reinvasion from
source populations and regular local extinction (Gilchrist et al. 2006).

Host Use

Adult fecundity

Adults adjust the number of eggs they lay depending on the ovariole status, fruit size,
environmental conditions and time of day (Fletcher 1987). Bactrocera tryoni has two
ovaries, each with between 35-45 ovarioles (Anderson and Lyford 1965; Fitt 1990a), making
it a more prolific egg producer than many other tephritids (Fitt 1990b; Fletcher 1987). Egg
production per female per day is variable, with upper limits ranging from 80 (Yonow et al.
2004) to 100-120 (maximum 160) (A. Jessup pers comm..) eggs per female per day.
Oviposition rate is likely to be influenced by host plant and environmental factors,
particularly temperature (Yonow and Sutherst 1998). The eggs of B. tryoni are smaller than
those of the closely related B. jarvisi and it lays them in smaller batch numbers, giving it a
competitive advantage in locating and exploiting patches of fruit under field conditions (Fitt
1990a). Cool winter temperatures trigger resorption of the contents of developing follicles
(Fletcher 1975; 1986; Meats and Khoo 1976), thereby reducing the potential number of eggs
available for oviposition.

Oviposition behaviour

The specific actions of B. tryoni oviposition behaviour were described in detail by Pritchard
(1969), who described the movements of the head and ovipositor of the mature female on
the surface of both natural and artificial fruits. The process, which occurs in the daytime,
involves the adult female dabbing its labella on the fruit surface and piercing the fruit cuticle
with the ovipositor once a suitable oviposition site has been detected. Eggs are laid in
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batches through an oviposition tube, the ovipositor is then withdrawn and the process
repeated at another suitable site. On selecting an oviposition site, gravid females also
exhibit aggressive protective behaviour and drive away other females, in turn reducing
population pressure. In contrast, Prokopy et al. (1999) reported facilitation in oviposition
behaviour of gravid female B. tryoni. They reported that if a female arrives at an oviposition
site and another female is in the act of oviposition, the new female is more likely to also
begin ovipositing than in the absence of another ovipositing female.

Host range

Bactrocera tryoni has a very broad host range of both commercial and wild fruit and
vegetables (Hancock et al. 2000), making it one of the most polyphagous of all the
tephritids. The fly has been recorded on 117 hosts, including commercial crops such as
citrus, nuts, stone and pome fruit, tomato, banana and coffee (Hancock et al. 2000; May
1953; 1957; 1960); the relative suitability of these hosts has rarely been compared in a
systematic way. Bateman (1991) lists fruits in different levels of preference for fruit flies, but
the scientific quantification behind this listing is unavailable. Drew (1976) and Drew et al.
(1978) report that pineapple and strawberry are the only two commercial fruit crops of any
significance which are not hosts, however, it is now recognised that strawberry is a host
(PIRSA 2006). Jessup and McCarthy (1993) reported that although cucurbits had previously
not been a known host of B. tryoni (O'Loughlin 1975), females could oviposit and larvae
subsequently develop under laboratory conditions in those plants. Grapes have also been
previously listed as a poor host for B. tryoni, yet in the laboratory table grapes can support
the insect though to the adult stage (Jessup et al. 1998) and recent outbreaks in the Hunter
Valley of New South Wales have seen high levels of damage to wine grapes (Loch 2008).
Bactrocera tryoni has also been recorded on 60 wild hosts from 25 plant families (Drew
1989; White and Elson-Harris 1992). Bactrocera tryoni may have a broader host range than
is currently known and this requires further investigation, along with a comparative analysis
of the relative susceptibility of its hosts and associated fruit traits.

Although B. tryoni has a diverse host range, most fundamental studies on the insect’s host-
plant interactions have focused on a relatively small group of economically important fruit
crops and, even within this group, very little research has compared varietal differences to
determine relative susceptibility to the pest and assist with potential breeding programs for
resistance. Within host plant species, variation in susceptibility is likely to be quite broad,
but very few studies have examined this. In a laboratory study comparing B. tryoni
oviposition preference to three tomato cultivars, host plant variety influenced peak
oviposition period, ovipositional preference and offspring performance and this may have
been due to both chemical and physical properties of the host (Balagawi et al. 2005).

Host location

Adult female tephritids possess olfactory, gustatory, hygro-, thermal-, photo-, mechano-
and chemo-receptors (Rice 1989), although the structure and specific function of these
receptors is poorly defined for B. tryoni. From studies using artificial fruit, olfactory and
visual stimuli are known to attract B. tryoni to fruit prior to oviposition (Fowler 1977).
Studies to identify the chemical attractants involved for specific host fruit are relatively
limited and have primarily focused on single volatile components of selected fruit hosts,
despite the fact that fruit commonly produce complex volatile mixtures that may include

17



over 150 compounds (Lalel et al. 2003). Ethylene is a common hormonal constituent in
ripening fruit. As 2-chloroethanol stimulates the effect of ethylene in ripening fruit, the
influence of 2-chloroethanol on B. tryoni was examined in laboratory studies (Fletcher and
Watson 1974). Ethylene was found to attract gravid females to fruit and to stimulate their
oviposition response in apples at low concentrations (< or equal to 1% concentration) and to
deter oviposition at higher concentrations. Isoamyl acetate and guava fruit pulp have also
been shown to attract adult females (Dalby-Ball and Meats 2000b). Further characterisation
of the complex mixture of headspace volatiles of host fruit for B. tryoni, using either
conventional coupled electro-antennagram/gas chromatography (EAG/GC) or new
generation ‘electronic nose’ (Lebrun et al. 2008), may enable the identification of
compounds which either attract or deter gravid females from the host.

Fruit abundance is also important in location of suitable hosts. Using potted orange trees,
Dalby-Ball and Meats (2000a) showed that by increasing the abundance of trees in a given
area wild female flies visited more trees and increased their duration on each plant. No
studies of this type have been conducted in the presence of a mosaic of multiple host
species, or with hosts other than citrus or pome fruit.

Host selection

Olfactory, tactile and visual characteristics of fruit, including chemical, nutritional and
physical properties, as well as size, colour and shape, influence oviposition site selection by
female B. tryoni (Bateman 1972; Fletcher 1973; 1974b; 1987; Katsoyannos 1989; Prokopy
1968). Most tephritid fruit flies oviposit in ripe or overripe fruit and B. tryoni is thought to be
no exception. Bactrocera tryoni will rarely oviposit into unripe fruit, although this
assumption is based on testing of only a limited host range (Eisemann and Rice 1985). Direct
observation, however, suggests that B. tryoni will oviposit into unripe fruit in the field, a
behaviour perhaps dependent on fruit type, pest pressure and existing fruit damage (H. Fay
pers comm.; O. Reynolds, pers comm.; A. Jessup pers comm.). Other Bactrocera species,
such as B. dorsalis, can oviposit into unripe fruit (Rattanapun et al. 2009) and this ability
needs to be investigated more rigorously for B. tryoni. Acceptance of a particular host plant
fruit as an oviposition site may also depend on prior experience of the gravid adult female.
Prokopy and Fletcher (1987) provided evidence that prior exposure to one fruit type (pear)
led to a greater propensity for B. tryoni to oviposit in that fruit compared to other fruit types
(tomato and grape).

Fruit physical properties
Little information has been published on the physical properties of fruit skin and how this
may effect the detection and successful penetration of a suitable oviposition site. Early
studies involved mechanical puncturing of apple fruit which resulted in rapid oviposition
(Allman 1939). The puncture lesion may allow release of volatiles which aid location, but
what volatiles are involved and how this may vary with fruit type or variety has received
very little attention. Stange (1999) found that releases of CO, from blemished fruit
stimulated oviposition. Eisemann and Rice (1989), in controlled laboratory studies using an
artificial ‘fruit’ layer in the form of Parafilm, determined that the female’s ovipositor sensilla
are stimulated to oviposit by either a thick (2 mm) surface layer, or a thinner surface layer (<
0.5 mm) with underlying moisture. In real systems, however, there is a paucity of data on
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the impact of fruit pericarp thickness and texture on B. tryoni’s host use for oviposition
across its wide host range.

Bactrocera tryoni prefer to oviposit in fruit that is soft enough to allow oviposition
punctures, or in existing lesions in the fruit skin (Allman, 1939; Pritchard 1969). That
pericarp toughness is important is suggested in a study where cherry tomatoes, with a
tougher pericarp, were not used for oviposition in contrast to larger tomato fruit varieties
with relatively thin pericarps (Balagawi et al. 2005). Modifying the physical properties of
fruit could potentially be used in breeding programmes for the development of fruit fly
resistant cultivars. Another potential management option which could also be exploited is
use of spray applications which deter females from ovipositing. Studies using mineral oil
applications on tomatoes, for example, have shown a marked reduction in oviposition
probing (Liu et al. 2002; Nguyen et al. 2007).

Fruit chemical properties
Chemotactile cues are reported to be involved in the oviposition process, yet again
surprisingly little data exist on the chemicals that trigger B. tryoni oviposition. Pritchard
(1969), using a range of fruit juices, showed that greater numbers of eggs were oviposited in
cucumber juice, which is a very poor host, compared to apple juice which is considered a
more suitable host. Studies conducted to determine chemical cues that may influence host
plant location and oviposition response in B. tryoni cover a diverse range of compounds
including 2-chloroethanol (Fletcher and Watson 1974), fructose (Eisemann and Rice 1985),
2-butanone, n-butryic acid, carbon sequesquiterpene, a-farnesene (Eisemann and Rice
1992) and carbon dioxide (Stange 1999). Oviposition stimulants such as fructose have been
shown to be effective at between 4-50mM concentration in stimulating oviposition into an
artificial membrane, whilst the presence of calcium chloride appears to deter oviposition
(Eisemann and Rice 1985).

The antennal response to volatile cues is important in host plant location. Although the
morphology of antennal sensilla of adult B. tryoni has been described (Giannakakis and
Fletcher 1985; Hull 1998; Hull and Cribb 1997) specific chemoreceptor functions have not
yet been fully characterised. Using an electroantennogram, olfactory neuron receptor types
have been identified in gravid females that respond to methyl butyrate, 2-butanone,
farnescene, carbon dioxide, ethanol, n-butyric acid, and ammonia (Hull and Cribb 2001a; b).

Most chemoecology studies conducted to date have focused on specific fruit hosts or single
volatiles under laboratory conditions and do not consider the host plant nutritional status,
variety, or whether a complex mix of attractants are involved. Studies on volatile and
chemical composition of a broader range of host plants, and their varieties under different
environmental and management conditions, could potentially enable identification of the
fundamental volatile and gustatory cues involved in both host plant selection and
oviposition response by gravid females. Such information may be a key to development of
resistant crops or new attractants and is being actively research overseas (Malo et al. 2005;
Rasgado et al. 2009a).

Oviposition deterrence
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While there are limited published trials on B. tryoni host plant preference, one conducted by
Fitt (1986) indicates that some fruit may have deterrent characteristics. When comparing B.
tryoni oviposition preference on seven fruit types, females avoided oviposition in Solanum
mauritianum, despite it being recorded as a suitable host for larval survival, suggesting that
this fruit is protected by an oviposition deterrent. Further comparative studies on other
host plant types may give further insights into possible deterrent traits.

Bactrocera tryoni prefer to oviposit in fruit in which larvae are not already present (Fitt
1984). Although not assessed, Fitt hypothesised the discriminatory ability of the female may
be due to chemical changes in the fruit as a result of larval presence, causing a short-range
olfactory response. ldentification of such volatile compounds could potentially lead to the
development of oviposition inhibitory chemicals. The presence of other fruit fly species and
the potential for competition between species for oviposition sites in the same habitat has
rarely been considered. Gibbs (1967) compared B. neohumeralis with B. tryoni and found
that even though the two share the same preference for some host plants, competition for
oviposition sites appeared unimportant in deterring one species or the other from using a
host. This type of study, however, would need to be conducted under a range of population
pressures and with different species interactions to draw firm conclusions.

Larval Development

Following oviposition, the larvae can spend up to four weeks feeding and developing in fruit.
The external and internal morphology of B. tryoni immature stages have been well
characterised (Anderson 1962; 1963a; b; 1964a; b; Elson-Harris 1988; Exley 1955). Larval
development rate and success varies between fruit species and is affected by fruit maturity,
but this has only been tested on a limited range of host fruits. Eggs deposited in apples
exhibit reduce hatch and delayed larval maturity and development (Allman 1939; Bateman
1968). In a study comparing six apple varieties at different states of fruit maturity, late
season varieties showed greater larval mortality (Bower 1977). Larval mortality and
development rates also depend on temperature (Bateman 1968; Meats 1983a; 1984; 1987;
Meats and Fitt 1987; O'Loughlin 1964; O'Loughlin et al. 1984), larval density, fruit suitability
and maturity, but less so on moisture as larvae are located in stable moist environments
(Meats 1989b). In one study, Bower (1977) found that larval mortality was significantly
lower in picked fruit over unpicked fruit, but this work has never been pursued, despite its
obvious implications for host status testing. The quality of the larval environment not only
impacts on the larvae, but in other tephritids has been shown to directly impact on the
emergent adult flies (Dukas et al. 2001; Kaspi et al. 2002; Nestel et al. 2004). This has not
been studied in B. tryoni and warrants investigation.

Natural enemies

Natural enemies have rarely been used in the active management of B. tryoni and very little
is known about them. The best-known natural enemies of Bactrocera species are opiine
braconids (Hymenoptera: Braconidae: Opiinae). Opiines have been used extensively as
classical biological control agents (Sime et al. 2008), but more recently they have also been
used in augmentative and inundative releases (Montoya et al. 2000), sometimes in
conjunction with other techniques such as SIT (Rendon et al. 2006). It is considered that
their use in conjunction with other techniques is the most promising way forward for fruit
fly parasitoids (Gurr and Kvedaras in press).
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Parasitoids

Despite having a native fruit fly parasitoid fauna in Australia (Carmichael et al. 2005), a fact
recognised by the earliest fruit fly workers (French 1910; Gurney 1910; Tryon 1892), exotic
opiines were liberated into Australia for B. tryoni control during the 1930s (Allman 1939;
Gurney 1936) and then again in the 1950s (Snowball 1966; Snowball and Lukins 1964;
Snowball et al. 1962a; Snowball et al. 1962b). A comprehensive review of classical biological
control releases targeted against B. tryoni is provided by Waterhouse and Sands (2001).
With the exception of post-release work carried out by Snowball (Snowball 1966; Snowball
and Lukins 1964), there has been no comprehensive published data on the influence of
braconid parasitism, either native or introduced, on B. tryoni populations. Snowball (1966)
concluded that while Fopius arisanus (Sonan) (introduced as Opius oophilus Fullaway) was
well established after liberation, it was exerting no noticeable control on B. tryoni. He made
similar conclusions for other native and introduced parasitoids, as did Bateman (1968) when
summarising the Wilton orchard study. If judged by the subsequent lack of published
research, this lack of support appears to have put a damper on fruit fly parasitoid research
in Australia for nearly 40 years. Snowball’s interpretations of his own data do, when
relooking at the figures, seem a little surprising, as parasitism of some samples were as high
as 78%, although most were much lower at 20% or less. Lloyd et al (in press) record 7.4%
pupal parasitism of B. tryoni in backyard fruit in the Central Burnett, which supports
Snowball’s and Bateman’s conclusions. Nevertheless, B. tryoni parasitism rates of greater
than 50% have been recorded by other authors, including French (1910), Gurney (1910) and
Gibbs (1967). Eight opiine braconids, either native, or exotic and permanently established,
are now known from B. tryoni in Australia. These are: Diachasmimorpha kraussii (Fullaway),
D. longicaudata (Ashmead), D. tryoni (Cameron), Fopius arisanus, F. schlingeri Wharton,
Opius froggatti (Fullaway), Psytallia fijiensis (Fullaway) and Utetes perkinsi (Fullaway)
(Carmichael et al. 2005).

Only in the last decade has there been renewed interest in the fruit fly parasitoids. State
Department researchers have cultured wasps and some small experimental inundative
releases have been made (A. Jessup pers comm.; E. Hamacek pers comm.). Australian
parasitoids have also been exported and data accumulated as part of offshore biological
control programs (particularly for D. krausii and D. tryoni), while a small number of
postgraduate research programs have also been completed (Carmichael 2009; Ero 2009;
Quimio 2000; Rungrojwanich 1994). This research shows that while species such as the
native D. krausii and the introduced F. arisanus can be successfully reared and will parasitise
B. tryoni, this does not automatically make them suitable for all pre-harvest control uses.
For example, after studying the host location mechanisms of D. krausii, Ero (2009)
concluded that inundative releases of this parasitoid would only be suitable for use in
“mopping-up” fruit fly populations after commercial harvest had finished, and probably only
in selected crops. This was because the wasp orientated only to infested fruit of some fruit
species (for example tomato but not zucchini), and appeared in an orchard only after adult
fruit flies were present. The wasp did not orient to uninfested fruit, it did not routinely
orientate to adult flies, and it did not orientate equally to all fruit types offered, even when
infested by the same maggot species. As such inundative releases of the wasp could not be
used successfully as a routine treatment to prevent damage as the wasps are likely to
depart the area before damage occurred. In contrast, however, the wasp could be used as
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part of an integrated, area-wide suppression program, so long as it oriented to the
dominant crop types in the target region. Similar research with F. arisanus has highlighted
that host utilisation strategies are not straightforward in that species either (Quimio and
Walter 2001). In addition to basic host location and utilisation data, biological data for the
majority of Australian fruit fly parasitoids is almost entirely lacking (but see Rungrojwanich
& Walter 200043, b; and off-shore work by Messing & Ramadan 1999; Duan & Messing 1997,
20003, b; and others). At a population level, with the exception of limited work reported by
Snowball (references above), we also have no detailed knowledge of the current distribution
of Australian fruit fly parasitoids, or their changing spatial and temporal abundance within
their distributions.

Other natural enemies

Parasitoids are not the only natural enemies of B. tryoni. Drew (1987b) has argued strongly
that in natural systems vertebrate frugivores play a large role in the reduction of fruit fly
numbers, a theory which was directly tested and subsequently supported by Wilson (2008).
While Drew’s original work was on fruit flies other than B. tryoni, and in rainforest
ecosystems, the role of vertebrate frugivores in controlling B. tryoni in non-crop plants and
feral crop plants deserves further research. Calls to remove feral crop plants in a cropping
district as part of area-wide management may be premature if 90% or more of the fruit (and
hence any resident maggots) are consumed by birds or small mammals. Additional to
vertebrate predation, Bateman (1968) refers to 10% B. tryoni pupal mortality being caused
by ants in the Wilton orchard, but no experimental data are provided to support this claim.
Ants are known to be important prepupal/pupal mortality agents in other fruit fly systems
(Aluja et al. 2005; Bigler et al. 1986; Urbaneja et al. 2006) and more research needs to be
conducted on them in Australia, including their potential use as deterrents or mortality
agents of adult flies (Peng and Christian 2006; Van Mele et al. 2009).

Two other groups of natural enemies are also reported from B. tryoni, these being a strepsid
parasite, Dipterophagus daci Drew & Allwood (Strepsiptera: Dipterophagidae) (Drew and
Allwood 1985), and a mortality causing cytoplasmic inclusion virus (Moussa 1978). What
impact, if any, these organisms have on B. tryoni individuals in nature is unknown.

Conclusions

Queensland fruit fly management has, over the last several decades, been in the enviable
position of having a number of highly effective control strategies. In the southern states the
large area-free zone has provided market access opportunities for growers in the zone, as
well as providing significant additional support for growers in the adjoining buffer regions,
where suppression programs occur. In endemic areas where fly pressures are higher, very
effective pesticides for pre-harvest management and post-harvest treatment have also
meant that Queensland fruit fly has been highly manageable. This situation is, however,
changing dramatically and rapidly. The operational and logistic issues associated with
maintaining area freedom means that it is likely that some fruit fly free zones will disappear
in the near future, to be replaced by areas of low pest prevalence. In addition, the
anticipated loss of dimethoate as a post-harvest treatment for fruit with edible peel will
dramatically affect growers in all regions, particularly in tropical and subtropical
horticultural production areas.
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With the loss of area freedom and easily applied chemicals, significantly more effort will
need to be applied to developing true integrated pest management approaches for this
insect. While the well known Central Burnett citrus example (Lloyd et al. in press; Lloyd et
al. 2007; Lloyd et al. 2000) demonstrates that flies can be managed using an integrated
approach, the flip side of this example is that it was built upon nearly a decade’s work in one
tightly defined production area for a commodity of relatively low host status. The issue thus
becomes how practical is it to develop similar management packages for all fruit fly affected
production areas and the answer is, with our current state of knowledge, very challenging.

Australian horticultural producers are currently facing a crisis very similar to that faced by
Australian cotton growers in the mid-1980s. At that time the cotton industry was similarly
faced with dominant key pests (i.e. Helicoverpa spp) which were highly mobile, highly
polyphagous on both crop and native plants, endemic and widely distributed (Zalucki et al.
1986); substantial restrictions on insecticide usage had to be substantially curtailed
(because of resistance management and environmental issues); and production areas
ranging from tropical to temperate - all situations which are highly analogous to the current
Queensland fruit fly problem.

The cotton industry made substantial progress toward to solving its insect pest problems
through a coordinated research program that included the states, CSIRO and the universities
and focused not just on issues of direct pest management, but also developed in-depth
understanding of Helicoverpa spp biology, host-plant interactions, ecology outside the
cropping system, etc (Zalucki 1991). This allowed the development of fundamental
knowledge that could then be applied across different cropping regions and crops, plus
more sophisticated control approaches: B. tryoni researchers need to do the same.

What do fruit fly pest managers have to work from? There are positives. The availability of
spinosad-based protein bait sprays and parapheromones provides organic, as well as
conventional growers with control options for B. tryoni which are not available for many
other pests. Having these options, even with the loss of cover sprays, is fortuitous and
provides a sound base from which to develop more effective fruit fly management. The use
of attractants such as protein and parapheromones for delivering chemosterilants,
biopesticides or translocatable pesticides is an area that is now being considered for other
tephritids (Navarro-Llopis et al. 2004; Navarro-Llopis et al. 2007) and, if applied to B. tryoni,
potentially deliver results similar to those achieved through SIT (even if slower) and
overcome the cost of rearing flies and quality/competitiveness issues.

Based on where B. tryoni management is likely to go (i.e. greater reliance on areas of low
pest prevalence, systems approaches and the use of lure and kill management techniques),
and our current level of knowledge as presented in this review, we recommend the
following areas as priority for research.

e The systematics of the B. tryoni complex needs to be resolved as a matter of
urgency. Both trade and research are heavily impacted by uncertainty as to the
biological status of different taxonomic species.

e Understanding spatial and temporal foraging patterns for resources (including
protein, cue-lure, mates and oviposition sites). Outcomes will allow better targeting
of protein bait spray, MAT and SIT.
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e Detailed studies of host plant interactions, including host use ranking, varietal
differences, ripening effects and sequential host use in the field. Outcomes allow
better quantification of crop risk at different population levels, opens up potential
for resistance breeding, allows better quantification of field population dynamics.

e Greater emphasis placed on understanding the role of non-crop hosts in regional
population dynamics: essential for area-wide management programs.

e Development of a workable monitoring system which is not also used as a control
device, so that monitoring is not confounded with control (as currently exists for
cue-lure which is used both as a monitoring and management tool.

e Significantly greater effort put into developing food- and fruit-odour based baits
tailored for B. tryoni.

e Refined assessment of the role of natural enemies and their potential to be used as
part of area wide management.

e Critical appraisal of the impact of new generation insecticides on B. tryoni,
particularly where those chemicals which are being used for the control of other
horticultural pests in IPM systems and the investigation of other innovative
techniques which manipulate flies resources (e.g. chemosterilization).

e Resolution of the genuine flight distance of fruit flies. This will immediately impact
on quarantine distances. Given the geometric expansion of areas to be treated
unnecessarily by each kilometre of quarantine radius, this is a fundamental matter to
resolve, for trade, quarantine, the minimisation of pesticides in the environment and
for SIT.
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