
Interactive Proofs and the Hardness of Approximating

Cliques

URIEL FEIGE

The Weizmannlnstitute, Rehovot, Israel

SHAFI GOLDWASSER

Massachusetts Institute of Technology, Cambridge, Massachusetts

LASZLO LOVASZ

Yale University, New Haven, Connecticut

SHMUEL SAFRA

Tel-A viv UniversiV, Tel-Aviv, Israel

AND

MARIO SZEGEDY

AT& T Bell Laboratories, Murray Hill, New Jersey

Abstract. The contribution of this paper is two-fold. First, a connection is established between
approximating the size of the largest clique in a graph and multi-prover interactive proofs. Second, an
efficient multi-prover interactive proof for NP languages is constructed, where the verifier uses very
few random bits and communication bits. Last, the connection between cliques and eftlcient
multi-prover interactive proofs, is shown to yield hardness results on the complexity of approximating
the size of the largest clique in a graph.

Of independent interest is our proof of correctness for the multilinearity test of functions.

Categories and Subject Descriptors F. 1.3 [Cosnputationby Abstract Devices]: Complexity Clasaea--

reducibili~ and completeness, relations among complexity classes; F.2.2 [Anafysis of Algorithms and

Part of this work was done while U. Feige, S. Goldwasser, L. Lovasz, and S. Safra were visiting
Princeton University.

Authors’ addresses: U. Feige, Department of Applied Math and Computer Science, the Weizmann
Institute, Rehovot 76100, Israet S. Goldwaaaer, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, 545 Technology Square, Cambridge, MA 02139; L.
Lovasz, Department of Computer Science, Yale University, New Haven, CT 06517; S. Safra,
Department of Computer Science, Tel-Aviv University, Tel-Aviv, Israel; M. Szegedy, AT&T Bell
Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
andlor a fee.
01996 ACM 0004-541 1/96/0300-0268 $03.50

JournaloftheACM, Vol.43,No.2,March1996,pp.268-292.

Interactive Proofs and the Hardness of Approximating Cliques 269

Problem Complexity]: Nonnumerical Algorithms and Problems; G,2.2 [Dkcrete Mathematics]:
Graph Theory

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Hardness of approximation, independent set in a graph,
multilinearity testing, np-completeness, probabilistically checkable proofs

1. Introduction

A clique in a graph is a subset of the vertices, any two of which are connected by
an edge. Computing the size of the largest clique in a graph G, denoted w(G), is
one of the first problems shown NP-complete in Karp’s well known paper on
NP-completeness [Karp 1972]. In this paper, we consider the problem of
approximating o(G) within a given factor. We say that function ~(x) approximates
(from below) g(x) within a factor h(x) iff 1 s g(x)~(x) s h(x).

The best upper bound known, is that w(G) can be approximated within a factor
of n/log2 n [Boppana and Halld6rsson 1990] in polynomial time. It is natural to
ask by how much this upper bound can be improved, and whether there is some
factor within which approximating o(G) is hard.

Proving that problem L. is NP-complete is usually taken as evidence as to the
hardness of L. Since the best known decision procedure for NP runs in
exponential time, showing that if L E P, then NP C DTIME(T(n)) for some
subexponential function T, may also be regarded as evidence that L is hard. The
smaller T is, the stronger the evidence.

We prove two results of this type which in a sense trade the quality of
approximation versus the complexity of T. First, if there exists a polynomial time
algorithm which approximates o(G) within any constant factor, then NP c
DTlh4E(n’’””g ‘“’‘)). Secondly, if for some c >0, there exist a P (quasi-polynomial
time, = U~>@TZME(nlOd “) algorithm that approximates o(G) within a factor
210g’

‘”, then NP c ~. Note that if NP c ~ then NEXPTIME = EXPTIME,
The first result starts with a stronger assumption—the existence of a constant

factor approximation, and gets as close to P = NP as we were able to prove. The
second result gives evidence that even within a large factor no approximation
procedure for clique exists, discouraging attempts to extract even such little
information about w(G) in reasonable time.

The most interesting part of our work are the techniques used. We present a
new connection between the complexity of approximation problems and probabi-
listic proofs. In particular, we show a connection between the complexity of
approximating the size of the maximum clique in a graph and multi-prover
interactive proofs.

An overview of our method is as follows: We show how to reduce an instance
of a multi-prover interactive protocol for language L on input x, into a graph GX,
whose size is exponential in the number of random bits r used by the verifier in
the multi-prover interactive protocol, and in the number of answer bits c the
verifier received from the prover. The size of the maximum clique in GX
corresponds exactly to the maximum acceptance probability of the input x by the
verifier. Suppose now that one can construct a multi-prover interactive proof
with a gap of factor g between the acceptance probability of the input x in case x
G L and x @ L. It follows that if one can approximate the size of maximum clique

270 U. FEIGE ET AL.

in graph GX in time polynomial in size of the graph, with factor better than g,
then one can decide membership in language L in time polynomial in size of the
graph. Finally, on the assumption that deciding membership in L is a hard
problem, we may conclude that approximating the size of maximum cliques
within g is a hard problem.

This approach starts to yield interesting results when the size of the graph G. is
quasi-polynomially related to the size of x. To this end, our first effort is to show
multi-prover interactive proofs for NP in which the verifier is efficient in his
usage of randomness and in the number of answer bits received. More generally,
we show given L G lVTIME(T(n)), a multi prover interactive proof for L which is
efficient (O(log T(n) “log log T(n)) in its use of randomness and answer bits. Let
us elaborate.

1.1. TECHNIQUES FROM INTERACTIVE PROOFS. We give a new characterization
of NP in the domain of interactive proofs. We show that any language L E NP is
accepted by a multi-prover protocol (using the probabilistic oracle machine
formulation of [Fortnow et al. 1988]) in which the number of random bits used
by the verifier and answer bits sent by the oracle is small-o(log n . log log n).

To do so, we consider the theorem of Babai et al. [1991b] showing that
NEXPTIME has multi-prover interactive proofs. (This theorem implies that
approximating the acceptance probability of multi-prover interactive proof sys-
tems on a given input is NEXPTIME-hard.) First, we notice that this theorem
can be scaled down to any non-deterministic time class NTL1-LE(T(n)) c NEXP-
TIME, yielding a multi-prover protocol for any L E NTA14E(T(n)) with poly-
logarithmic (in T(n)) number of random bits and communication bits. We then
improve this bound by giving a new protocol for L in which the number of answer
bits and random bits is O(log T(n) “log log T(n)), while the running time of the
verifier is DTZME(T(n)”fl)). (e.g., for L G NP the number of answer bits and
random bits is O(log n “log log n), and the verifier runs in polynomial time.)

Remark. The result that NP is recognizable by a verifier who uses O((log n~)
randomness and answer size (which is sufficient to obtain the result that o(G) is
hard to approximate within a factor of 210gl-< n for any e >0, unless NP c ~),
was obtained by Feige et al. [1990] independently from Babai et al. [1991a] who
also scaled down the protocol of Babai et al. [1991b] to the NP level. In their
work, they bound the total running time of the verifier by poly(logarithmic) time
rather than the particular parameters of randomness and answer size. To achieve
verifier running time that is sublinear they also need to assume that the input is
provided to the verifier in an error corrected form. Their motivation for scaling
down the protocol of Babai et al. [1991b] is not related to issues of hardness of
approximation, and they attempt to optimize parameters that are different from
the parameters that we optimize. The result that NP is recognizable by a verifier
who uses O(log n log log n) randomness and answer size, was developed
concurrently with the work of Babai et al. [1991a]. Indeed, some of the
techniques used in latter versions of both works are similar.

Our work shows an interesting relation between work on interactive proof
systems and long standing open problems in computational complexity theory.
For earlier examples, see Goldreich et al. [1991], Boppana et al. [1987], Feige
and Shamir [1992], Condon and Lipton [1989], and Condon [1991].

Interactive Proofs and the Hardness of Approximating Cliques 271

1.2. THE MULTI-LINEARITYTEST. An important ingredient in the protocol of
Babai et al. [1991b] is a rnuhihrzearity test, which is a procedure of sampling a
multivariate function on a small fraction of its domain, and using this random
sample in order to decide whether the function is linear in each of its variables
(over almost all of its domain). In the multilinearity test of Babai et al. [1991b],
the number of points that are sampled is polynomial in the number of variables.
In order to design efficient multi-prover interactive proofs (leading to stronger
hardness of approximation results for o(G)), it is important to have multilinear-
ity tests in which the number of points sampled is as small as possible. We design
a more efficient multilinearity test that uses a sample that is only linear in the
number of variables. The analysis of our multilinearity test is simpler than the
analysis presented in Babai et al. [1991b]. Moreover, our analysis is tight (up to
low order additive terms) in the special case that the multivariate function differs
on at most half its points from a true multilineal function. Obtaining a tight
analysis for the case that the multivariate function differs from any true
multilineal function on more than half of its points remains a challenging open
question.

1.3. PREVIOUS RESULTS ON APPROXIMATION. The classification of computa-
tional problems as either tractable, that is, in P, or intractable, that is, NP-hard,
has been quite a successful enterprise for the last twenty years. However, there
was a distinct lack of techniques for classifying approximation problems. For
many NP-hard optimization problems, there was neither a good approximation
algorithm known, nor was there any NP-hardness type of evidence that the
problem is hard to approximate. Approximating w(G) is a prime example of this
situation. As a less extreme example, consider the chromatic number problem
(computing the minimum number of colors required to color the nodes of a
graph so there is no monochromatic edge). It was known that approximating the
chromatic number within an n(log log n)2/log3 n factor is in polynomial time
[Wigderson 1983; Berger and Rompel 1990; Halld6rsson 1990], while approxi-
mating the chromatic number within any factor smaller than 2 is NP-hard [Carey
and Johnson 1979]. Approximating the chromatic number within any factor
between 2 and n/log3n was not known to be in P or to be NP-complete. Another
example is the vertex cover problem (the minimum subset of vertices that contains
at least one of any two adjacent vertices). The minimum size vertex cover can be
approximated within a factor of 2 – Q(log log n/log n) [Bar-Yehuda and Even
1983; Monien and Speckenmeyer 1985] in polynomial time. No NP-hardness
results was known for approximating vertex cover.

Papadimitriou and Yannakakis [1991] initiated a classification of NP optimiza-
tion problems based on their logical characterization. They define the class MAX
NP, and use its logical characterization to infer that all problems in this class can
be approximated. They define the class MAX SNP and show approximation
problems that are complete for this class under a reduction that presenes
constant approximation. Some examples of complete problems in this class are
independent set in bounded degree graphs and satisfying the maximum number
of clauses in a Boolean(CNF) formula. Panconesi and Ranjan [1990] extend the
approach of Papadimitriou and Yannakakis [1991] and define the class MAX II ~.
The complete problems for MAX 111 cannot be approximated unless P = NP.
Consequently, Panconesi and Ranjan [1990] define subclasses of MAX II, for

272 U. FEIGE ET AL.

which the approximability of the complete problems was open. Approximating
o.I(G) (or MAX CLIQUE, in Panconesi’s and RanJan’s [1990] terminology) is in
RMAX(2), which is the lowest class that Panconesi and RanJan [1990] define.
Our results imply that if F approximation algorithms exist for any of the
approximation classes that Panconesi and Ranjan [1990] define, or for any of the
RMAX(2)-hard approximation problems, then NP C ~.

Berman and Schnitger [1992] show that approximating o(G) within factor n’ is
hard for MAX SNP under randomized reductions. Namely, if clique has n’
approximation for arbitrarily small 6, then all problems in this class have
polynomial time constant approximation schemes within factors arbitrarily close
to 1. Alon and Boppana [1987] show that there is no polynomial time monofone
circuit that approximates the size of the maximum clique in an n-node graph up
to a factor of n/logo(l) n.

1.4. SUBSEQUENT WORK ON APPROXIMATION. When our work first appeared,
we raised two major open problems [Feige et al. 1991]:

(1) Can the methods be extended to prove that if the clique function can be
approximated to within factor ~, then P = NP? Say, even for ~ = 2? Using a
similar proof outline to the one we use here to answer this question in the
affirmative, would entail showing an O(log n) bound on the number of coins
and answer bits that the verifier receives, whereas we show an O(log n log log
n) bound.

(2) Our methods are well suited to attack the clique approximation problem.
Can similar methods be used to derive hardness results for approximating
other NP-hard functions?

The announcement of the results of this paper in Feige et al. [1991] was
followed by a sequence of rapid and exciting developments in which tremendous
progress was made regarding the relation between interactive proofs (in their
various forms) and hardness of approximation problems.

Both of the open problems we posed received affirmative answers.
The first of these questions was solved by Arora and Safra [1992]. To describe

their results we adopt their notation, which has become standard by now. Let
PCP(r(n), c(n)) denote the class of languages that have probabdistically checkable
proofs in which the verifier uses O(r(n)) random bits, receives O(c(n)) answer
bits, and the error (the probability of accepting a false “proof’ of an incorrect
statement) is at most 1/2. Using this terminology, the results in the current paper
show that NP c PCP(log n log log n, log n log log n), and that if it is easy to
approximate w(G) within some constant factor then PCP(r, a) E DTL?LE(2’+”),
and thus if NP G PCP(log n, log n), then it is NP-hard to approximate o(G)
within any constant factor. Arora and Safra [1992] have shown that in fact, NP c
PCP(log n, -). They concluded that o(G) cannot be approximated within a

factor of 2°(V-), unless P = NP.
Arora et al. [1992] improved upon the work of Arora and Safra [1992] and

showed that NP G PCP(log n, 1). This implied that it is NP-hard to approximate
o(G) within a factor of n’, for some ~ >0. More importantly, the quantitative
improvement in the number of answer bits received by the verifier, led also to a
result that MAX-3 SAT cannot be approximated within a factor of 1 + ●, for
some ● > 0. Since MAX-3 SAT is in MAX-SNP, the theory of MAX-SNP

Interactive Proofs and the Hardness of Approximating Cliques 273

completeness (as developed in Papadimitriou and Yannakakis [1991] and subse-
quent works) automatically resulted in similar hardness of approximation results
for a large number of other optimization problems. One such optimization
problem is that of vertex cover, mentioned in Section 1.3.

Both our reduction from PCP protocols to clique, and the reduction to
MAX-3 SAT by Arora et al. [1992], treat the PCP characterization of NP as a
blackbox. Lund and Yannakakis [1994] looked more carefully at the structure of
the protocols that give this characterization. Using this structure, they derived
sophisticated reductions that showed that it is NP-hard to approximate the
chromatic number within a factor of n’ for some ● > 0 (compare with Section
1.3),and that set cover cannot be approximated within a factor of (log n)/4 unless
P = NP. (Approximating set cover within a factor of in n is in P.)

For further references, see the survey paper of Johnson [1992], and the
bibliographical list in Feige and Goldwasser [1994].

1.5. ROADMAP. The paper is organized as follows: In Section 2, we introduce

some notation and the model of multi-prover interactive proofs. In Section 3, we
show the connection between multi-prover proofs and approximating the clique
problem. In Section 4, we improve the efficiency of the proof system of Babai et
a}. [1991] and scale it down to complexity classes lower than NEXPTIME.

2. Multi-Prover Protocols

The model of multi-prover interactive proofs was introduced by Ben-Or et al.
[1988]. It is defined as follows:

Let PI, Pz be infinitely powerful machines and V be a probabilistic polynomial-
time Turing machine, all of which share the same read-only input tape. The
verifier V shares communication tapes with each Pi, but provers PI and P2 have
no common tapes except the input tape. (F’l does not see the conversation
between V and Pz, and Pz does not see the conversation between V and Pi).

Formally. each P, is a function from the input and the conversation with the
verifier it has seen so far to a new message. Similarly, V is a function from the
input, a random string, and the conversation with both provers it has seen so far
to a new message. V is a polynomial time computable function.

At the end of the conversation, V outputs accept (or reject) based on the input
x, the random string r, and the entire conversation it has had with both provers.
We then say that multi-prover interactive proof (V, PI, Pz)(x, r) accepts (or
rejects).

Definition 2.1. A language L is accepted by a multi-prover interactive proof if

(1) (Vx E L) (3 P,, PJ such that
Pr,[(V, PI, Pz)(x, r) accepts] = 1

(2) (Vx @ L) (VP,, PJ
Pr,[(V, P], P2)(x, r) accepts] < ~.

We let MIP denote the class of languages accepted by some multiprover
interactive proof.

A useful alternative formulation of MIP was suggested by Fortnow et al. [1988]
as follows:

274 U. FEIGE ET AL.

Let M be a probabilistic polynomial time Turing machine with access to a
memoryless oracle O (O is a function from the query sent by M to an answer to
M, that is, O gives the same answer on the same query, regardless of the history
of communication between M and O). M is a polynomial-time function from an
input x, a random string r, and the history of communication with oracle O, to
M’s next query to the oracle. We denote by M(x, r, h) the query sent by M on
input x, random string r and communication history h with the oracle. We write
that MO(x, r) accepts if machine M communicating with oracle O on input x and
random string r accepts x.

We define the class of languages that can be accepted by these machines as
follows:

Definition 2.2. A language L is accepted by a probabilistic oracle-machine M
iff

(1) For every x G L, there is an oracle O such that Pr,[MO(x, r) accepts] = 1.

(2) For every x @ L and for all oracles O, Pr,[MO(x, r) accepts] ~ ~.

This differs from the standard interactive protocol model in that the oracle is
memoryless and thus might as well be f~ed ahead of time, while in an interactive
proof that prover may let his future answers depend on previous questions.

Intuitively, one may think of this oracle as representing an exponential size
bounded proof that the input x is in the language L. The machine M has to verify
with high probability that the proof is correct, using only the capability of
choosing randomly a “small” set of places to look at in the proof.

THEOREM 2.3 [FORTNOW ET AL. 1988]. L is accepted by a probabilistic
oracle-machine iff L is accepted by a multi-prover interactive protocol.

IMPORTANT NoTE. From now on we will use the probabilistic oracle-machine
formulation of MIP in order to prove our results.

THEOREM 2.4 [BABAI ET AL. 1991]. MIP = NEXPTIME.

This is a striking phenomenon; that for any language that has an exponentially
long proof of membership, there exists an alternative proof of membership that
can be verified with high probability by a random polynomial-time machine.

There are three complexity measures that we define for a probabilistic
oracle-machine M on input x, 1x1= n: the number of random coins M tosses, the
number of bits sent by the oracle to M, and the running time of M on x.

Definition 2.5. Given a probabilistic oracle-machine M, let r~n) be the
maximum (taken over all inputs x of length n and all oracles O) number of
random bits M uses on input x, and c~(n) be the maximum (taken over all inputs
x of length n and all oracles O) number of answer bits sent by the oracle to hf.
We will drop the subscript M when it is obvious from the context.

Remark on notation. Arora and Safra [1992] introduced the notation
PCP(r(n), c(n)) for the set of languages L accepted by probabilistic oracle
machine M with r-~n) s O(r(n)) and c~n) s O(c(n)).

In the Babai et al. [1991] protocol to recognize L E NEXPTIME, the
probabilistic oracle machine M that accepts L runs in polynomial time and uses a

Interactive Proofs and the Hardness of Approximating Cliques 275

polynomial number of random and communication bits with the appropriate
oracle. Thus, M uses resources that are poly-logarithmic in the running time of a
nondeterministic Turing machine that recognizes L.

In this paper, we scale down and improve the efficiency of the Babai et al.
[1991] protocol as follows:

THEOREM 2.6. Any language L E NP is accepted by a probabilistic oracle-

machine M such that r~(n) + c~n) s log(n) “log log(n), and M’s running time is
DTZME(nO(l)). (i.e. NP c PCP(log n log log n, log n log log n)).

We prove this Theorem in Section 4.

Remarks

(1) For a given error probability, the bound one obtains on the answer bits plus
random bits used by the probabilistic oracle machine, is better than the
bound one would obtain on the answer bits plus random bits used by a
verifier in the corresponding multi-prover interactive proof.

(2) Although we scale down the number of random bits and answer bits, we do
not scale down the running time of M, which remains polynomial. Indeed, a
significant scaling down of this measure is not possible, since M needs linear
time just to read the input string. Luckily, such further scaling is not
necessary for our purpose.

(3) The following “scaled up” version is an easy corollary of Theorem 2.6:

Any language L G NTIME(T(n)) (for T(n) a n) is accepted by a
probabilistic oracle-machine M such that r~(n) + c~n) s log(T(n)) “log
log(T(n)), and M’s running time is DTIME(T(n)o(l)).

3. Multi-Prover Protocols and Approximating Clique

THEOREM 3.1

(1) If approximating w(G) within any constant factor is in P, then NP c DTIME
(no(lo.%%’ n)).

(2) If, for some 6>0, approximating CO(G) within a factor 2*W’-”n is in P, then NP

c ~, where P = U~ DTIME(2*0d).

PROOF. We first show that if approximating CO(G) within a factor of 2 is in P

then NP ~ llTJA4~(no(@ @n)). We will then show how the approximation factor
can be amplified, yielding both parts of the theorem,

Let B be an algorithm which approximates o(G) to within a factor of 2 and let
T~(l G I) be its running time. Let L be an NP language. Let M be a probabilistic
oracle machine which accepts L, r(n) = r~n), c(n) = c~n), and T~(n) be M’s
running time on inputs x of length n. Using the machine M, we reduce the
question of membership of x in L to approximating o(G) in a graph in the
following two steps procedure:

(1) Construct a graph G,, IG=I 5 2’(”)+’(”) such that if x E L, then U(GX) =
2’(”) and if x @ L, then O(GX) < 2fi”)/2.

(2) Run the approximation procedure B on GX. If the answer for the approxi-
mated ti(GZ) is greater than 2~”1/2 then accept x, else reject x.

276 U. FEIGE ET AL.

We now show how to construct, given M and input x, a graph GXthat satisfies
condition (1) of the theorem.

We need to introduce the notion of accepting transcripts and consistent
transcripts for this purpose.

Informally, in the following definition we will let qi denote queries, ai denote
oracle answers, and a transcript to be a possible complete history of M’s view.

Definition 3.2. A string t = (r, ql, al, q,, al) is a transcript of a
probabilistic oracle-machine M on input x, if lrl = r(n), (la ~I + . . . + [all) s
c(n) and for every i, qi = M(x, r, (ql, al, . . . , qi-1, ai-l)). A transcript is an
accepting transcript, if M on input x, random string r and history of communica-
tion (ql, al, . . . , qI, al) accepts x.

Definition 3.3. We say that two transcripts t = (r, ql, a 1, qf, al) and ~ =
(?, @l, ti~, . . . ~Qi, 6 i) are consistent if for every i, j, if qi = 4j, then ai = ~j.

We are now ready to define the graph GX, whose maximum clique size reflects
membership of x in L.

Definition 3.4. LetM be a probabilistic oracle machine that accepts L. For an
input x, define the graph GX as follows. The nodes of GX are all accepting
transcripts of M on x. Two nodes in GX are connected by an edge iff they are
consistent.

Our notation of a transcript contains redundant information, since M’s queries
can be computed efficiently from the input x, its random bits, and the oracle’s
answers. We can compress a transcript by discarding M’s queries, or expand a
compressed transcript by running M’s algorithm. In order to construct the set of
nodes of GX, we enumerate all the compressed transcripts (this takes time
2’(”)+’(”)), and then run M on each transcript to expand it and check that it is
accepting. Observe that 2ti”)+c(”) is an upper bound on the number of nodes of
G..

LEMMA 3.5. maxo Prr[I@(x, r) accepts] “2tin) = w(GJ

PROOF. We first show that m% Prr[i@(x, r) accepts] “2’(”) s OJ(GX). Let O
be an oracle for which Pr,[i@(x, r) accepts] is maximal, and denote this last
probability by p. Consider the p o2X”) transcripts for which W(X, r) accepts.
Since these transcripts all correspond to the same oracle O, they are pairwise
consistent. Hence, they constitute a clique of size p. 2fin) in G..

We now show that m% Pr,[l@’(x, r) accepts] “ 2“(”) > U(GX). Consider a
clique of maximum size in GX, and let k denote its size. The transcripts
corresponding to any hvo nodes in the clique are consistent. Hence, for any
query of M that appears in a transcript representing a node in the clique, the
same response appears in all transcripts of the clique that contain the query.
Thus, we can define a partial function, O’, from M’s queries that occur in the
clique to the oracle’s responses. We extent this partial function to an oracle O, by
assigning arbitrary responses to queries that do not appear in transcripts that
correspond to nodes of the clique. Each of the k nodes of the clique is consistent
with O. A clique in GX cannot contain two transcripts with the same random
string, since this would force the transcripts to be inconsistent. Finally, each of

Interactive Proofs and the Hardness of Approximating Cliques 277

the transcripts in the graph, and hence in the clique, is accepting. Hence, @
accepts for at least k random strings. •l

Clearly, if x G L, then W(GX)= fin) and if x @ 1,, then W(GX)< 27(”)/2, and
thus the condition in item (1) of the theorem holds.

The entire two-step procedure mns in time T~(24n)+’[”)) + (2(’(”) + ‘(”)) oT~n).
By Theorem 2.6, our statement regarding the hardness of approximating w(G)
within a factor of 2 is proved, since the running time of the two step procedure is

010 ‘“g ‘). Note that, since the running time is dominated bybounded by n (g
2°(tin) + “(”)), the result will hold even if we allow TM to be bounded by 2°(ti”) + ‘(”)).

In order to amplify the factor of approximation, we construct the graph G; that
corresponds to the protocol M’. M’ simply runs t? iterations of M on input x, and
accepts x if M accepts x on all t’ iterations. The ratio between the value of maxo
Pr,[M’”(x, r)] when x E L and when x @ L is a factor of 2e. To prove the first
part of the theorem, let (be an arbitrary constant, and observe that c(n) and r(n)
increase only by a factor of /, To prove the second part of the theorem, let / =
(r(n) + c(n))’ - Y,. Note that by this choice of (, the number of random and
answer bits used by M’ is still poly-logarithmic in n. The ratio between the size of
the maximum clique in G; when x G L and when x @ L is a factor of 2*0g’-’lG;l,
where lGjl is the size of G;. ❑

As an immediate corollary, we get:

COR~LLARY 3.6. lfi for some ● >0, approximating o(G) within a factor 210g]”
n is in P, then:

(l) NPc Np=P

(2) NEXPTIME = EXPTIME

3.1. GRAPH PRODUCTS AND PROBABILISTIC ORACLE MACHINES. An alterna-
tive proof of the second part of Theorem 3.1 is to take the graph GX = (~ E)
which corresponds to running the protocol once and define the following graph
product (see [Garey and Johnson 1979]): G: = (V’, E’), where V’ = V X V and

((%, v2), (v’1,v’2)) ~ E’ iff (vl, vi) E E and (U2, vi) E E. It is easy to see that
ti(G~) = W(GX)2, and part (2) of the theorem follows naturally from part (1). It
is interesting to note that G~ is exactly the graph G ~ resulting from repeating M’s
protocol i times. As taking graph products is a well-known technique for
amplifying graph properties (such as clique or chromatic number), the analogy
with amplifying the probability of success of a protocol may be of further value.

3.2. A COMPARISON BETWEEN GRAPHS AND ORACLES. We represented possi-
ble executions of probabilistic oracle machines as graphs, where oracle like
behavior translates into rules of how to place edges in the graph. The rule we
used was that two nodes are connected if identical questions have identical
answers. However, more generally, we would like two nodes to be connected by
an edge if and only if the joint answers represented by these nodes are consistent
with the assumption that the input x should be accepted. This more general rule
may reduce the size of the maximum clique in the case that x @ L to a value
smaller than the one implied by the error probability of the corresponding proof

system. It would be interesting to see if this observation can be used to obtain
better bounds on clique approximation, or in other future work.

278 U. FEIGE ET AL.

4. Eficient Multi-prover Protocolr for NP

In this section, we consider a scaled down analogue of the theorem of Babai et
al. [1991b] showing that NEXPTZME = MIP. For any NP language L, we
construct a probabilistic oracle machine M which accepts L. Our protocol has the
same general structure as that of Babai et al. [1991b], but some features are
modified so as to improve its efficiency. These include the use of arithmetic over
finite fields instead of over the integers ,1 the use of pseudo-random sampling,
and a tighter analysis of the multilinearity test.

We now proceed to describe the ingredients of our protocol.

4.1. ARITHMETIZATION. We follow ideas developed in Lund et al. [1992],
Shamir [1992], and Babai et al. [1991b].

If suffices to show a procedure for deciding the NP-complete language 3-SAT.
Let f be a given 3CNF formula of length n. Let m be the smallest integer
satisfying 2* a n. Let c denote a clause number and 3 denote a variable name.
(To prepare for the later multilineal representation we represent the variable
names as strings in {O, 1}m).

For (j = 1, 2, 3) and for clause c, let Xj,C: {O, l}m ~ {O, 1} be an indicator
function satis~ing:

I if 3 is the jth variable of c,
xj,c(~)= : otherwise.

As an example, assume that m = 3, and that the first variable of the fourth
clause is X5 (represented in binary as 101). Then xl,d(3) is the function VI(1 –
~) ~, which evaluates to 1 if VI = 1, ~ = O, V3 = 1, and evaluates to O,
otherwise. Note that XI,4 is linear in each of its variables, and this is the general
rule for each of the Xj,c.

For j and c as before, let sj,Cbe a shorthand notation satisfying:

A

The

[

1 if the jth variable of c is positive,
~j,c = * if complemented.

truth assignment A is a function from variable names to Boolean values

A: {O, 1}~ ~ {O, 1}.

following expression over any field 9 (CC standing for clause check)

evaluates to O iff A satisfies clause c of J
In order to verify that A is a satisfying assignment, one needs to check that for

all c, CC(A, c) = O. An oracle machine can do this by requesting the complete
description of A from the oracle. However, this uses a polynomial number of

] A similar change is also suggested in Babai et al. [1991ru 1991 b].

Interactive Proofs and the Hardness of Approximating Cliques 279

answer bits. We develop a different procedure which requires only O(log n log
log n) answer bits.

Let3=vl,v~. We extend the arithmetization in such a way that vi will
take arbitrary values from a field W. This requires to extend the domain of the
functions A and x,,= from {O, 1}m to %m.

Definition 4,1.1. Let $J be any field. Given a function fi {O, 1}m - %, the
multilineal extension off over %, denoted ~: $m ~ W, is such that:

(I)vj= y,,..., Ym, where Yi E {0, 1}: ~(~) = f(~)

(2) f can be expressed as a multinominal of degree 1 in all variables y ~, y~.

The procedure of constructing the multilineal extension of a multi-variate
Boolean function f is well known, and we present it for completeness. Represent
f in Disjunctive Normal Form. Arithmetize by replacing any or by addition,
replacing any and by multiplication, and replacin any occurrence of a negated

fvariable yi by the expression (1 – yi). To obtain , simply let all variables range
over %.

M can easily compute multilineal arithmetic expressions for each X,,C, and can
easily determine each sj,C. The oracle can hold the muhilinear representation of
A. Each CC(A, c) is a multinominal of degree 6 in each of the variables vi. Since
A-fdoes not know the value of A on each 3 G {O, 1}’”, M cannot check that the
value of each CC(A, c) is O. However, we can use the procedure of Babai et al.
[1991b] for this purpose. It has two major components:

(1) M verifies that the extended A that the oracle holds is (almost) multilineal,
and thus the extended CC is a multinominal of constant degree,

(2) Assuming that CC is a multinominal of constant degree, A4verifies, with high
probability, that for all c, CC(A, c) = O. Using a protocol similar to the
one introduced by Lund et al. [1992]. In this part, the oracle provides M with
the value of the multilineal extension of A on a small number of arguments
which M chooses.

We show how to do Part (1) in Subsection 4.3, and Part (2) in Subsection 4.2.

4.2. VERIFYING SIMULTANEOUSLY THAT ALL CLAUSES EVALUATE TO ZERO.

We now show how to verify with high probability that for all c, CC(A, c) = O.
Clearly, this would imply that A satisfies ~ All arithmetic in this and the next
section is done over the finite field %, where 3 is some “large enough” finite
field (19 I > 100m suffices).

We first show how to verify that the arithmetic expression of a single clause
evaluates to O. We then show how all clauses can be tested simultaneously.

4.2.1. The Sum-Check Protocol. Given a multinominal q of constant degree d
(in each of its variables) and a constant c, we want to check that

(*)

This can be done inefficiently by evaluating Q on the 2“’ different points ~ E
{O, l}m. However, Lund et al. [1992] developed a procedure for checking (*)
which requires the evaluation of q only on a single random point ~ which belongs
to the extended field Sm. Lund et al. [1992] (and Shamir [1992]) used this

280 U. FEIGE ET AL.

protocol because the number of terms in the summation was too large for the
performing a direct computation. In contrast, we use the protocol because M
does not have an explicit expression for q (M does not know A), and the amount
of communication required to obtain such an expression is prohibitingly large. In
Babai et al. [1991b], this protocol was used for both the above reasons.

We describe an adaptation of the protocol of Lund et al. [1992] to our
purpose. Since q is a multinominal of degree d, the function

9(Y1) = 2 Q(?)

Y2,ym f= {0,1}

is a polynomial of degree d.
To prove (*), the oracle sends M a polynomial g’ of degree d, and claims that

g’ = g. If (*) is false, then there are two possibilities:

(1) g’(0) + g’(1) # c (which M can determine easily),

(2) g’ # g, and since both g and g‘ are polynomials of degree d, they agree on at
most d values. To check this condition, M picks at random a k G 2$ and
checks whether

g’(k) = 2 P(j).
Y2,Ym ● {0,1), Yl=k

Note, that if g‘ # g, then with probability at least 1 – d/lFl (taken over the
choices of k),

g’(k) # g(k) = E v(j).
Y2,...,Yrn~{0,1Yl=~=~

Note also, that this condition is of the same form as (*), except for having only
m – 1 variables and will be checked recursively.

M continues this procedure for m – 1 more rounds. In round i, M picks a
random value for yi– ~, sends to the oracle the values of all variables instantiated
so far (which are yl . . . yi-l), and requests a d degree polynomial in the variable
Yi to test the polynomial that results from the previous instantiations. When all
variables are finally instantiated, M checks that for j that was formed, ~(j)
indeed achieves the value claimed. For IFI > red/e, the probability of falsely
accepting is bounded by the sum over m rounds of possible error probability
d/lFl in every round, which is at most .E.Note that, the number of random bits
used by M and answer bits received by M is O(m log 19 I) = O(m log m) for
constant d and ~. An important observation is that the test requires that M
checks the value of q only at one single point when ~ is fully instantiated.

The above protocol can be used then to check that a single clause CC(A, c) =
O (i.e., 2Y ● ~~,~jmp(j) = CC(A, c) = ~z,,fi,,+ E {0,1}’”’ ~~=1 Xj,c(;j) “ (Sj,c –

A (Zj)) where y = 313233). Observe that the last step of the sum-check protocol
requires M to compute fl~=1 Xj,c(~j) “ (~j,. – A (tij)), where 31, Z2, and 33 have
been instantiated, but M cannot compute this on its own as M does not have a
description of the function A. Instead, M requests the values of A(?q), A(32) and
A(33) from the oracle and uses values received for the computation of II;. ~

Xj,c(‘j) “ (Sj,c – A (;j)). We remark that the reliability of the sum-check test

Interactive Proofs and the Hardness of Approximating Cliques 281

does not change too much even if a small constant fraction of the values of A is
incorrect.

4.2.2. Constructing a Single Expression from Many Clauses. The sum-check
protocol can be used to test the value of a single expression. However, in our
case, M wants to test the value of a polynomial number of expressions. Checking
each one of them separately requires too much communication. Thus, we
describe a way of checking them simultaneously. This is done by constructing one
single expression E(A) whose value simultaneously reflects the values of all the
2m expressions CC(A, c). This single expression is still of degree 6 in each of its
variables and so the sum-check protocol can be used to check its value.

A naive attempt is to construct E(A) as Z= CC(A, c). If for each clause c,
CC(A, c) evaluates to O, we know that also E(A) would evaluate to O.
Unfortunately, if there exists some c such that CC(,4, c) # O over ~, it still may
be true that E(A) = O over q.

In a more sophisticated approach, M chooses independently and uniformly
weights w, G ‘3 for each clause c, sends all w=values to the oracle, and requests
the oracle to convince it that E(A) = 2= CC(A, c) “ w= = O over W. If WC,

CC(A, c) = O, then also E(A) = O. If 3C such that CC(A, C) # O, then probWc
(E(A) = O) = l/l@l. This randomized reduction would be good enough for our
purpose, if not for one problem: M uses polynomially many random bits in
generating the independent WC, defeating our attempt to keep the number of
random bits small (O(log n log log n)).

We now describe a solution that assigns the weights pseudo-randomly, and
uses only m log \W[truly random bits.

LEMMA 4.2.2.1, For O s i s m – 1, let Ci denote the ith bit of the bina~

representation of c, where c is the index of a clause. Let R = (ro, rl, . . . , r~ –,),
where each ri is an element chosen independently at random from Y. Consider the
family of expressions:

E,(A)= ~ CC(A, C) o fl r,
cG{o,l}m {i[c, =l)

over all possible choices of R.

(1) If Vc: CC(A, c) = O, then VR: E~(A) = O.

(2) If 3c: CC(A, c) # O, then with probability at least 1 - m/[!3[(over the
choices of R): E~(A) + O.

PROOF. View the 2m expressions CC(A, c), c C {O, 1}m as the coefficients
of an m-variable multilineal function over % where the variables are ro, . . . ,
r~ -,. Then, the expression E~(A) corresponds to evaluating this multilineal
function on a point R G 9“. It is well known that unless all coefficients are O, a
multilineal function is nonzero on at least a (1 – l/l’i%l)m-fraction of its points
(easy proof by induction on m). The proof of the lemma follows. ❑

Remark. Alternative constructions are described in a former conference
proceeding version of our paper, as well as in Babai et al. [1991a; 1991b]. The
construction above can be modified so that it uses only O(m) random bits, by
choosing k = @(log m), and viewing the 2m expressions CC(A, c) as the
coefficients of an m/k-variable function of degree 2k over %. Observe that in

282 U. FEIGE ET AL.

effect we use a linear error detecting code of large Hamming distance over the
alphabet ~. The message (sequence of values of the individual expressions) of
length 2M is encoded by a code word of length 21R1,and the verifier checks
whether a random character from this code word is zero. Other codes can be
used instead of our construction.

Let us summarize the procedure for verifying simultaneously that for all
clauses c, CC(A, c) = O. Machine M chooses at random R G *m, and applies
the check-sum procedure to expression ER(A). The check-sum procedure can be
applied as expression E&f) (for fixed R and summing over c) is a multinominal of
degree 6 in each variable with 3m variables 313233 in 9, and at the final stage of
the checksum procedure applied to E~(A), machine M queries the oracle for the
value of the extended A at the three independently distributed locations chosen
during the checksum protocol.

4.3. THE MULTILINEARITV TEST. As part of the proof system for NEXP-
TIME, Babai et al. [1991b] propose a procedure for testing that a function is
multilineal. For a function fi %m ~ 3, this test succeeds always when ~ is
multilineal and fails with high probability if ~ is not close to a multilineal
function (as defined below). Unfortunately, the test of Babai et al. [1991b] is not
efficient enough for our purpose.

In order to prove Theorem 2.6, we devise a new multi-linearity test that
requires only O(rn log I!YI) random and answer bits. We do this by first
simplifying the analysis of the test in Babai et al. [1991b] and obtaining tighter
bounds, and second using pseudo-random (rather than random) sampling for
choosing the points off to be queried in the test. The structure of the resulting
test is quite similar to the multi-linearity test of Babai et al. [1991b].

Remark. The test presented below is similar to the test that appeared in a
preliminary version of this paper [Feige et al. 1991], but the analysis of this test is
improved. In another (unpublished) version of this paper, we proposed a test
with a somewhat different structure, with the same complexity O(m log I%/).
Generalizations of this other test and simplification of its analysis are presented
in Freidl et al. [1994].

4.3.1. Developing the Mathematical Background. First, we introduce some
notation; the distance between two functions jl, fz: 9* - %,

that is, the fraction of ?Fm on which fl and f2 disagree. Let ML be the set of
multilineal functions defined on V. We define the minimal distance between a
function j? @m + ~ and a muhilinear function

A~.(f) = min A(f,f’).
f’GML

We call a set of IWI points {yl, . . ., YIWI}C $m an aligned line in direction i if
they differ only in the ith coordinate. A set of three distinct points a, b, and c of
an aligned line is called a triple in direction i.

Interactive Proofs and the Hardness of Approximating Cliques 283

It is easy to see that a function is multilineal if and only if it is linear over all
possible triples.

Definition 4.3.1.1. Let F %m + 9 be an arbitrary function. We say that a

triple {a, b, c } (in direction i) is ~-linear iff there exists a function g which is
linear in the ith variable and which satisfies g(a) = f(a), g(b) = f(b), and g(c) =
f(c).

Let T = m(l~t) \%lm-l denote the number of all triples. For X 3M ~ 9
define

~(~) = /{non f-linear triples}l

T

Our test checks random triples for f-linearity. The following theorem estab-
lishes the necessary connection between ~-linearity of triples and muhilinearity of
~ It shows that if a function f is “far enough” from multilineal (i.e., any
multilineal function disagrees with f on a constant fraction of the points in W“),
then a substantial fraction (Q(l/m)) of the triples are not f-linear. We remark
that there is interplay between various constants (specifying IS?F[,A~~(f), and
T(f)) in the statement of the theorem and in its proof, and our choice of
particular values is somewhat arbitrary.

THEOREM 4.3,1.2. Let [q\ > 20m, and let fi Wm -+ % be an arbitra~ jimction,
such that A~~(f) z 1/10. Then T(f) > l/10m.

PROOF. We first give a high level overview of our proof. It is composed of two
main parts.

The first part (Lemma 4.3.1.3 and Corollary 4.3.1.2.1) deals with the case that
there exists a multilineal function L such that A~~ 5 9/10, or actually more
generally an L that agrees with f on a constant fraction of %m. For this case we
show that fl(l/m) of the triples are such that: at least one of their points falls in
the region where L and f agree, and at least one of their points falls in the region
where L and f disagree (so called two colored points). We then show that the vast
majority of two colored triples are not f-linear. We remark that for the special
case that AML(f) s 1/2, the bounds that we obtain are best possible (up to low
order terms).

The second part of the proof (Lemma 4.3.1.2.2) deals with the case that
AML(f) > 9/1 O. We need to show that Q(lhn) of the triples are not f-linear, a
simple thing to show if f were random. But can it be the case that f is composed
of many segments of different multilineal functions, none of which covers a
constant fraction of f, such that most aligned lines agree with at least one of
these multilineal functions? Lemma 4.3.1.2.3 shows that this is not possible. This
is shown by induction on the dimension as follows. Let’s look at direction xl. If
most aligned lines in the xl direction are (approximately) f-linear, and most
hyperplanes perpendicular to the xl direction are (approximately) f-multilineal,
then we can find a single multilineal function that agrees with f on a constant
fraction of ~m. Hence, if f is “far” from multilineal, then either many aligned
lines in direction xl are “far” from linear, in which case a random triple in
direction xl would not be linear, or many hyperplanes perpendicular to direction

284 U. FEIGE ET AL.

xi are “far” from multilinear, in which case we can proceed by induction on these
hyperplanes (having only m - 1 dimensions).

The rest of this section is devoted to a detailed proof of Theorem 4.3.1.2.
(Readers that are satisfied with the high-level overview of the proof may go
directly to Section 4.3.2.)

LEMMA 4.3.1.3. Let f: 9” + 9 be an arbitrary function. Then

3(I - AML(~))AML(~) 3
T(f) 1 --

m PI *

PROOF. Let L be a multilinear function such that A(f, t) = A,& f). Let G
be the indicator function of f - L (i.e., G is 0 where f agrees with L and 1
otherwise). We say that a triple {a, b, c} is one colored if G(a) = G(b) = G(c)
and two colored otherwise. In order to prove Lemma 4.3.1.3, we show that the
number of two colored triples is “large” (at least a fraction of 3(1 -

kw.(f))h(f V m of all triples), whereas only a “small” number of two
colored triples are f-linear (at most a fraction of 3/)FI of all triples).

4.3.1.1. LOWER BOUNDING THE NUMBER OF TWO-COLORED TRIPLES. The
event % that a triple is two-colored is the disjoint union of the following three
mutually exclusive events: ‘%,: G(a) = 0 and G(b) = 1; %,: G(b) = 0 and G(c) =
1; 8,: G(c) = 0 and G(a) = 1. By symmetry, Prob(%) = 3Prob(%,). Thus, it
suffices to bound the value of Prob(%,).

The points a and b are each chosen at random with uniform probability from
the set 9”. Had they been chosen independently, then Prob(%,) would have been

exactly (1 - bdf N4df). H owever, a and b are not independent, as they
are chosen to agree on all their coordinates but one. To quantify the effect of
this dependency, we present a two-stage processes for choosing a and b, which is
equivalent to the actual process used.

(1) Select two points p, q independently at random from 9”‘.

(2) Select an indexj at random, between 1 and m. Let a and b both agree withp
on their first i - 1 coordinates, both agree with q on their last m - i
coordinates, and for the jth coordinate, point a agrees withp, whereas point
b agrees with q.

Clearly, if G(p) = 0 and G(q) = 1, then there exists a choice ofj such that c&i
holds. It follows that

Pr(%,) 2
(1 - h(f)b.a(f)

m

4.3.1.2. UPPER BOUNDING THE NUMBER OF f-LINEAR TWO-COLORED TRIPLES.
Two-colored triples can be of two types: (1) exactly one of the points in the triple
is colored 1; (2) exactly one of the points in the triple is colored 0.

Type (1) means that on two points of the triple, f and L agree, and on one
point they disagree. As L is a multilinear function and thus in particular linear in
the ith direction, and two different linear functions agree on at most one point of
a triple (otherwise, they will be the same function), it follows that type (1) triple
cannot be f-linear.

Interactive Proofs and the Hardness of Approximating Cliques 285

Thus, it suffices to upper bound the number of f-linear type (2) triples. In
order to do this, we again use the fact than any two different linear functions
agree on at most one point. Consider an arbitrary triple {a, b, c} that is two
colored and f-linear. Without loss of generality, assume that G(a) = G(b) = 1
and G(c) = 0, and that g is the unique linear function in the ith direction such
that f(a) = g(a) and f(b) = g(b) (and f(c) = g(c), by our assumption that {a, 6,
c) is f-linear). Then, for any c’ # c which satisfies G(c’) = 0, the triple {a, b,
c’) cannot bef-linear. This is argued as follows: suppose to the contrary that the
triple {a, b, c’} was f-linear. Then f(c’) = g(c’). It follows that g agrees with L
on two points (c and c’), and hence must agree everywhere, contradicting the
assumption that G(a) = 1. By how much have we restricted the number of
f-linear triples? There are only (IsIP 2) possible choices of a and b with G(a) =
G(b) = 1 along any aligned line which contains a point c satisfying G(c) = 0,
whereas there are (‘9’) triples along any aligned line. It follows that of all the
triples, only a fraction of at most 3/191 can be two colored and f-linear.

Combining the lower bound and the upper bound, the proof of Lemma 4.3.1.3
follows. 0

By substituting the appropriate values in Lemma 4.3.1.3, we get the following
corollary:

COROLLARY 4.3.1.2.1. Let (91 2 2Om, and let f: 4G” --, 3 be an arbitrary
funcfion, l/10 5 AML(f) 5 9/10. Then r(f) > 1/9m.

We are now ready to address the case that AML(f) is large (i.e., in particular,
larger than 9/10).

LEMMA 4.3.1.2.2. Let)9) L 20m and let fi W” --, 9 be an arbitrary function
sarisfLing AML(f) > 9/10. Then 7(f) > (1 - l/lBI)‘“-” 1/9m.

PROOF. The proof is by induction on m. For the base case of the induction (m
= l), we need to prove that AM=(f) > 9/10 implies that 7(f) > l/9. Assume
to the contrary that T(f) 5 l/9. Hence the probability that a random triple is
f-linear is at least 8/9. An averaging argument shows that there exist a pair of
points a, b E 9, such that at least S/9 of the remaining points are co-linear with
a and b. Thus, AML(f) < l/9, contradicting the assumption that A,& f) >
9/10.

For the induction step, we prove the statement for m by fixing the first
coordinate, and using the induction hypothesis on the other m - 1 coordinates.
Actually, since the statement of Lemma 4.3.1.2.2 does not make a strong enough
induction hypothesis, we will also rely on Corollary 4.3.1.2.1 to make the
induction step go through.

When fixing the value of the first coordinate xi to a E SF we get a subspace
Ypl=,. Let us denote by f, the restriction off to ST,+.

Let T, be the set of all triples along the xi coordinate for which one point is in
Sy,,O (hence the other two points are not in Sy=J, and let Tb c T, be the set of
those, that are not f-linear. Let 7, = [T~\/lT,J.

We proceed to (1) show that for at most one value of a both* S,(f,) < l/10
and T, < l/3; and (2) for all other values b of x1, bound from below the number

‘That is, only with low probability, most aligned lines in direction X, are (approximately) f-
multilinear, and most hyperplanes perpendicular to x, are (approximately) f-multilinear.

286 U. FEIGE ET AL.

of triples that are not f-linear. We use these facts to show that the induction step
goes through.

LEMMA 4.3.1.2.3. If along the first coordinate, there are two distinct values a, b
E 9 that satisfi

0) 4,.c(fa) < l/lo,
(2) h.(fd < l/lo,

(3) Ta < l/3,

(4) 76 < l/3,

then AML(f) < 9/10.

PROOF. Let L,, Lb be multilinear functions on $,,=, and gX,+ respectively
such that A(f,, L,) < l/10, A(fb, Lb) < l/10. Let

Lb19 . f * ,
x1 - a

x,) = L.(x*, . . .) x,) + - b _ # (JL(x2, * * * , x,) - LAx2, . . . , x,))

be the unique multilinear extention of L, and Lb on SF”. We prove that A(f, L)
< 9/10.

Consider two random points r = (rl, r2, . . . , r,,,) and r’ = (r;, r,, . . . , r,,,) in
Y”, such that both r and r’ lie along the same aligned line in the direction of x1.
We will show that Pr[f(r) = L(r)] > l/10. Note that if r E 9,,=, U SxlEb,
then by conditions (1) and (2) above, r agrees with L with probability at least
9/10. Hence, it remains to consider the case that rl @ {a, b).

Let P = (a, r2, . . . , r,) and rb = (6, r2, . . . , r,,,) denote the points (on the
line joining r and r’) which belong to %X,=(I and %X,=b respectively. For simplicity,
we assume that r’, e {a, b}, without significantly affecting our analysis. By
condition (3) above, the probability that the triple {Ip, r, r’} is f-linear is at least
2/3. By condition (4) above, the probability that the triple {r’, r, r’} is f-linear is
at least 2/3. When both the above triples are f-linear, and when the events f@(P)
= L,(f) and fb(rb) = L,(rb) also hold (each occurring with probability at least
9/10), then f(r) = L(r). Hence, Pr[f(r) = L(r)] 2 1 - l/3 - l/3 - l/10 - l/10
> l/10. cl

We are now ready to obtain a count of the number of triples that are not
f-linear. Since Lemma 4.3.1.2.2 assumes that AML(f) > 9/10, it follows from
Lemma 4.3.1.2.3 that for at most one point a E 9, both A,+,,.(fa) < l/10 and T,,
< l/3 hold. For any other b E 9, we distinguish between three possibilities (in
what follows, recall that T specifies the number of all triples, and observe that (m
- l)T/mlSl is the number of triples that have a particular fixed value b along
their first coordinate):

Case 1. l/10 5 AML(fb) 5 900. There are at least

(m - l)T 1

rnl?Fl * 9(m - 1)

non-f-linear triples in fb by Corollary 4.3.1.2.1.

Case 2. A,& fb) > 9/10. There are at least

Interactive Proofs and the Hardness of Approximating Cliques 287

(m - l)T m-2 1

mW

(1 -’ 1

9 9(m - 1)

non-f-linear triples in fb by the induction hypothesis.

Case 3. TV 5 l/3. There are at least

triples that pass through sx,+ in direction x1 and are not f-linear. Amortizing
over all possible choices of b with TV L l/3, we may lose an additional factor of 3
because a triple might count in three different Tbs. Hence, the amortized
contribution of b to the number of non-f-linear triples is T/3m)9).

Dividing the bounds in each of the above three possibilities by T, and summing
over the 141 - 1 possible values of b, we obtain:

1 1 1

7(f) 2 (I~;(

(m-l) (m-l)

- lhin [x ___ - 9(m _ 1) ; 4~1 (l-lm-2 1 9 9(m - .- 1 1)’ 3m(9\

1 (m-1) 1

z l-m 9m i i-
cl

In order to complete the proof of Theorem 4.3.1.2 we simplify the bound
obtained in Lemma 4.3.1.5, using the assumption that I?FF(2 20m.

T(f) > (1 - l/lsFJ)(“-‘) ; > A. 0

An interesting open question arises from our analysis of the multilinearity test:
We show (Lemma 4.3.1.3) that if a function is relatively close to multilinear
(AML(f) = l/2), then a fair fraction of the triples (about 3/4m) are not f-linear.
However, for functions that are further from multilinear (AML(f) > 9/10), we
could show only a smaller fraction of the triples (around 1/9m) that are not
f-linear (Lemma 4.3.1.2.2). Can our analysis be significantly improved in the
latter case, or does this degradation reflect a true property of multivariate
functions? (A more careful choice of the parameters in our analysis somewhat
improves the bound on I for the case A,,,J f) > 9/10. However, this
improvement is insignificant with respect to the goals of this paper, and with
respect to the open question stated above.)

4.3.2. The Test Itself. We devise a multilinearity test with the following
properties:

(1) If f is multilinear, the test always accepts.

(2) If AML(f) 2 0.1, the test rejects with probability at least l/2.

Since we may assume that IFI 1 20m, Theorem 4.3.1.2 naturally suggests the
following test:

288 U. FEIGE ET AL.

MULTILINEARITY TEST (random sampling version)

(1) Randomly choose 1Om triples. Ask the oracle for the value off on each point
of every triple.

(2) Accept iff all triples are f-linear.

The above test is wasteful in the number of random bits that the verifier uses.
Generating each of the O(m) test triples requires O(m log IFI) random bits,
whereas each of the O(m) replies of the oracle requires only log ($1 bits. Thus
instead of generating each of the sample triples independently, we want an easy
to compute sampling procedure which uses only O(m log IFI) random bits, generates
O(m) sample triples, and “hits” a non-f-linear triple with probability at least l/2.

Problems of this type can be handled by the method of two-pain: sampling
[Chor and Goldreich 19891. The basic idea behind two point sampling techniques
is that pairwise independent sample points (or sample triples, in our case) share
many of the properties of mutually independent sample points especially with
respect to hitting sets of small density with constant probability, but require
much less random bits to generate. One possible implementation is as follows.

Identify the set of sample points (all triples) 3 with a field X. Consider the
family

where ga,b is defined as the function ax + b computed over the field ‘SC.
Pick any set X G X such that]K] = 20m. The set system {K,,b]a, b E Xc) is

defined by 4.b = U, E K s,,! (x) for a, b E X. The desired properties of this
system follow from the followmg properties of the hash functions:

(1) (Uniformity) For any pair x, y E X the probability for a randomly chosen
hash function g,,, that g&x) = y is exactly l/]XJ.

(2) (Pairwise Independence) For any xi # x2 E 5% and for any y,, y, E X the
probability that for a randomly chosen hash function go,b the equations

&,b(X1) = y1 and ga,btXd = y2 hoId is WI*.
Consider a subset H c Kc, and denote (H(I(X(byp. (In our case, H corresponds

to the set of triples that are not f-linear, andp 2 l/lOm, by Theorem 4.3.1.2.) For
x E X let V, be the indicator function of the event that a random g,,, mapsx into
H. E(V,) = p, because of the uniformity property. Consider

The probability that a random Ka,b intersects with H is exactly Pr(V > 0). We
have E(V) = 2Opm and g(v) = 2Op(l - p)m (because of the pairwise
independence of the variables V.). From the Chebyshev inequality:

a2(v) 1 -p 1

For other suggested implementations of two-point sampling, the reader is
referred to Chor and Goldreich [1989].

We are now ready to present our efficient multilinearity test.

Interactive Proofs and the Hardness of Approximating Cliques 289

PAIR-WISE INDEPENDENT MULTILINEARITY TEST (pair-wise indepen-
dent sampling version)

(1) Randomly choose two initialization points for the two point sampling
procedure. Deterministically generate 20m pair-wise independent sample
triples. Ask the oracle for the value off on each point of every sample triple.

(2) Accept iff all of the sample triples are f-linear.

LEMMA 4.3.2.1. Let (5%) 2 20m and let fi 9” + 9 be an arbitrary function.

(1) If f is multilinear, the pair-wise independent multilinearity test always accepts.

(2) If AML(f) h 0.1, the pair-wise independent multi-linearity test rejects with
probability at least l/2.

The proof follows from Theorem 4.3.1.2, and properties of pair-wise independent
sampling as discussed above.

4.4. PUTTING THE PIECES TOGETHER. We are now ready to prove Theorem
2.6.

PROOF. Let f be a 3CNF formula of length n. Set m as the smallest integer
satisfying 2” 2 n. Let 8 be the smallest finite field of order (81 > 1OOm. (We
remark that since 191 is relatively small--O(log n), it can be found in determin-
istic polynomial time.) All computations in the following protocol are made over
4.

(1) Arithmetize f and obtain multilinear representations as described in Section
4.1. In particular, let the (truthful) oracle hold the multilinear representation
of a satisfying assignment A.

(2) Perform on A the multilinearity test (pair-wise independent sampling ver-
sion) as described in Section 4.3.2. That is, query the oracle for the value of
the extended A on points in the triples selected by the multilinearity test. If
all tested triples are f-linear, continue. Else, reject.

(3) Select a random R and construct the expression E,(A), as described in
Section 4.2.2. Prefix this R to any message sent in Step (4) of the protocol.
(In Step (4) the oracle has to know which expression M has in mind.)

(4) Perform the sum-check protocol (as described in Section 4.2.1) on the
expression E,(A). Reject if at any stage the oracle’s replies violate the
consistency check described as possibility 1 in Section 4.2.1. As described in
the sum-check protocol, this step entails querys to the oracle for degree-6
polynomials corresponding to various expressions.

(5) When Step (4) ends, M is left with three random arguments for the
multilinear extension of A. One by one, request the values of A on these
arguments from the oracle. Plug these values in their respective locations in
the instantiated E,(A), and compute its value. Accept iff this value agrees
with the value computed from the last polynomial sent by the oracle.

It is easy to see that if f is satisfiable, then M accepts the proof of the truthful
oracle. If f is not satisfiable, then for any oracle, we distinguish between two
cases. Denote by g the function obtained by enumerating all the oracle’s answers
when M requests values of the multilinear extention of A (these questions
correspond to Steps (2) and (5) in the protocol).

290 U. FEIGE ET AL.

(1) A,,.,,(g) 2 l/10. In this case, by Lemma 4.3.2.1, Step 2 rejects with probability
at least l/2 (by Theorem 8, and the discussion in Section 4.3.2).

(2) AML(g) < l/10. We show that Steps (3)-(5) reject with probability at least
l/2. Assume, to the contrary, that oracle 0 is using function g, and the
probability that @ accepts Steps (3)-(5) above is at least l/2. Let h be the
multilinear function that satisfies A(g, h) c l/10. We construct a new
oracle 0’ that uses function h, in its responses in Steps (2) and (5), and
otherwise in Step (4) answers in a manner identical to 0. Namely, on any
query of M that does not request explicitly the value of the multilinear
extention of A at a point, the answer of 0’ is identical to the answer of 0,
but in order to answer queries on the value of the multilinear extension of A
at a point, 0’ use the multilinear function h, rather than the function g that
0 uses.

The oracle is queried on exactly three point of the multilinear extention of
A at Step (5), and each of these points is chosen uniformly at random. Since
A(g, h) < l/10, the probability that 0’ is asked for the value of a point on
which g and h disagree is at most 3/10. Hence the probability that M”’ accepts
Steps (3)-(5) is at least l/2 - 3/10 = 2/10.

Now we compute an upper bound on the probability that @’ accepts Steps
(3)-(5). We first condition over the random choice of R. For f that is not
satisfiable, the probability that E,(h) is identically 0 is at most m/(%1 < l/100
(by Lemma 4.2.2.1). In this case we may assume that @’ accepts. For the
case that E,(h) is not identically 0, we use the fact that h is multilinear,
implying that ER(g) is of degree 6. By the analysis of the sum-check protocol,
the probability that @’ accepts Steps (4) and (5) is at most 6.3m/($(<
18/100. Hence, the probability that @’ accepts Steps (3)-(5) is at most l/100
+ 18/100 < 2/10 which is in contradiction to the hypothesis that @ accepts
with probability at least l/2.

The total number of random bits that the verifier uses is (ignoring low order
terms): 6m log [SF1 for Step (2), m log ISI for Step (3) and 3m log 19) for Step (4),
totaling 1Om log m + o(m log m). The total number of bits that the oracle sends is:
60m log 191 in Step 2, 7m log 191 in Step (4), and 3191 in Step (5), totaling 67m log
m + o(m log m). As m % log n + 1, this completes our proof of Theorem 2.6. q

ACKNOWLEDGMENTS. We thank L&z16 Babai, Avrim Blum, Oded Goldreich,
Mike Sipser, and Avi Wigderson for many discussions on this work and its
presentation. We thank Sasha Shen for clarifying observations on multilinearity
tests.

REFERENCES

ALON, N., AND BOPPANA, R. 1987. The monotone circuit complexity of Boolean functions.
Combinatotica 7, l-22.

ARORA, S., LUND, C., MOTWANI, R., SUDAN, M., AND SZEGEDY, M. 1992. Proof verification and
hardness of approximation problems. In Proceedings of the 33rd IEEE Symposium on Foundations of
Computer Science. IEEE, New York, pp. 14-23.

ARORA, S., AND SAFRA, S. 1992. Probabilistic checking of proofs: a new characterization of NP. In
Proceedings of the 33rd IEEE Symposium on Foundations of Computer Science. IEEE, New York,
pp. 2-13.

Interactive Proofs and the Hardness of Approximating Cliques 291

BABAI, L., FORTNOW, L., LEVIN, L., AND SZEGEDY, M. 1991. Checking computations in polyloga-
rithmic time. In Proceedings of the 23rd ACM Symposium on Theory of Computing (New Orleans,
La., May 6-8). ACM, New York, pp. 21-31.

BABAI, L., FORTNOW, L., AND LUND, C. 1991. Non-deterministic exponential time has two-prover
interactive protocols. Compur. Cornplexiry I, 3-40.

BAR-YEHUDA, R., AND EVEN, S. 1983. A 2 - (log log n/2 log n) performance ratio for the
weighted vertex cover problem. Tech. Rep. 260, Technion, Haifa, Israel.

BEN-OR, M., GOLDWASSER, S., K~LIAN, J., AND WIGDERSON, A. 1988. Multi prover interactive
proofs: How to remove intractability. In Proceedings of the 20th ACM Symposium on 77teov of
Compufing (Chicago, III., May 2-4) ACM, New York, pp. 113-131.

BERGER, B.. AND ROMPEL, J. 1990. A better performance guarantee for approximate graph
coloring. Afgorithmico 5, (4), 459-466.

BERMAN, P., AND SCHNITGER, G. 1992. On the complexity of approximating the independent set
problem. Inf Compur. 96, 71-94.

BOPPANA, R. B., AND HALD~RSSON, M. M. 1990. Approximating maximum independent sets by
excluding subgraphs. In Proceedings of 2nd Scandinavian Workshop on Algorithm Theory. Springer-
Verlag Lecture Notes in Computer Science, vol. 447. Springer-Verlag, New York, 13-25.

BOPPANA, R. B., HASTAD, J., AND ZACHOS, S. 1987. Does co-NP have short interactive proofs. In
lnf Process. Lett. 25, 127-132.

CHOR, B., AND GOLDREICH, 0. 1989. On the power of two-point based sampling. 1. Complexiry 5,
96-106.

CONDON, A. 1991. The complexity of the max word problem. In J’roceedings of 8rh STACS. pp.
456-465.

CONDON, A., AND LIPTON, R. 1989. On the complexity of space bounded interactive proofs. In
Proceedings of the 30rh IEEE Symposium on Founaizrions of Compurer Science. IEEE, New York,
pp. 462-467.

FEIGE, U., AND GOLDWASSER, S. (EDs). 1994. The Weizmann Workshop on Probabilistic Proof
Systems. Tech. Rep. CS94-17. Weizmann Institute, Rehovot, Israel.

FEIGE, U., GOLDWASSER, S., L~VASZ, L., AND SAFRA, S. 1990. On the Complexity of Approximat-
ing the Maximum Size of a Clique. Unpublished preliminary report, circulated and dated Nov. 30,
1990.

FEIGE, U.. GOLDWASSER, S., L~VASZ, L., SAFRA, S., AND SZEGEDI, M. 1991. Approximating clique
is almost NP-complete. In Proceedings of the 32nd IEEE Symposium on Foundations of Computer
Science. IEEE, New York, pp. 2-12.

FEIGE, U., AND SHAMIR, A. 1992. Multi-oracle interactive protocols with space bounded verifiers.
1. Compur. Sysr. Sci. 44, 259-271.

FORTNOW, L., ROMPEL, J., AND SIPSER, M. 1988. On the power of multi-prover interactive
protocols. In Proceedings of the 3rd STRUCTURES. pp. 156-161.

FRIEDL, K., HATSAGI, Z., AND SHEN, A. 1994. Low degree tests. In Proceedings of the 5th
ACM-SIAM Symposium on Discrete Algotirhms. ACM, New York, pp. 57-64.

GAREY, M., AND JOHNSON, D. 1976. The complexity of near-optimal graph coloring. 1. ACM 23, 1
(Jan.), 43-49.

GAREY, M. R., AND JOHNSON, D. S. 1979. Computers and Inrracrobiliry: A Guide ro the Theory of

NP-Completeness. W. H. Freeman.
GoLDREtcH, O., MICALI, S., AND WIGDERSON, A. 1991. Proofs that yield nothing but their validity

and a methodology for cryptographic protocol design. L ACM 38, 3 (July) 691-729.
HALD~RSSON, M. M. 1990. A still better performance guarantee for approximate graph coloring.

Tech. Rep. 90-44. Department of Computer Science, Rutgers University, Rutgers, N.J.
JOHNSON, D. 1992. The NP-completeness column: an ongoing guide. /. Afgorithms 13, 502-524.
KARP. R. M. 1992. Reducibility among combinatorial problems. In Complexity of Computer Com-

purarions, Raymond E. Miller and James W. Thatcher, eds. Plenum Press, New York, pp. 85-103.
LINIAL, N., AND VAZIRANI, U. 1989. Graph products and chromatic numbers. In Proceedings of the

30th IEEE Symposium on Foundations of Computer Science. IEEE, New York, pp. 124-128.
LUND, C.. FORTNOW, L., KARLOFF, H., AND NISAN, N. 1992. Algebraic methods for interactive

proof systems. L ACM 39, 4 (Oct.), 859-868.
LUND, C., AND YANNAKAKIS, M. 1994. On the hardness of approximating minimization problems.

J. ACM 41, 5 (Sept.), 960-981.

292 U. FEIGE ET AL..

MONIEN, B., AND SPECKENMEYER, E. 1985. Ramsey numbers and an approximation algorithm for
the vertex cover problem. Acra In: 22, 115-123.

PANCONESX, A., AND RANJAN, D. 1990. Quantifiers and approximation. In hceedings of the 22nd
ACM Symposium on Theory of Computing (Baltimore, Md., May 14-16). ACM, New York, PA
446-456.

PAPADIMITRIOU, C., AND YANNAKAKIS, M. 1991. Optimization, approximation and complexity
classes. J. Comput. Syst. Sci. 43, 425-440.

SHAMIR, A. 1992. IP=PSPACE. J. ACM 39,3 (Oct.), 869-877.
WIGDERSON, A. 1983. Improving the performance guarantee for approximate graph coloring. /.

ACM 30, 4 (Oct.), 729-735.

RECEIVED APRIL 1992; REVISED MAY 1995; ACCEPTED AUGUST 1995

Journal of the ACM. Vol. 43. No. 2. March 19%

