
MPRI - Lecture 2-36-1 “Proof of Programs” Project 2017-2018

Topological Sorting and Dominators (v2.2)

This project is to be carried out using the Why3 tool, in combination with automated provers (Alt-Ergo
(v2.0), CVC4 (v1.4) and Z3). You may use Coq for discharging particular proof obligations, although the
project can be completed without it. To get started, you need to install the latest version of the Why3 and
automated provers, and to download the skeleton file topo0.mlw, which contains the template that you need
to complete. Both the details of the installation procedure and the skeleton file may be found on the web
page of the course.1

The project must be done individually—team work is not allowed. In order to obtain a grade for the
project, you must send an e-mail to francois.bobot@cea.fr and jean-marie.Madiot@inria.fr, no later
than Friday, February 23th, 2018 at 22:00 UTC+1. This e-mail should be entitled “Project”, be signed
with your name, and have as attachment an archive (zip or tar.gz) storing the following items:

• The source file topo.mlw, completed with your specifications, implementations, and proofs.

• The content of the sub-directory topo generated by Why3. In particular, this directory should contain
session files why3session.xml and why3shapes.gz, and Coq proof scripts, if any.

• A PDF document named report.pdf in which you report on your work. The contents of this report
counts for at least half of your grade for the project.

The report must be written in French or English, and should typically consist of 3 to 6 pages. The
structure should follow the sections and the questions of the present document. For each question, detail
your approach, focusing in particular on the design choices that you made regarding the implementations
and specifications. In particular, loop invariants and assertions that you add should be explained in your
report: what they mean and how they help to complete the proof.

A typical answer to a question or step would be: “For this function, I propose the following implemen-
tation: [give a pseudo-code]. The contract of this function is [give a copy-paste of the contract]. It captures
the fact that [rephrase the contract in natural language]. To proof this code correct, I need to add extra an-
notations [give the loop invariants, etc.] capturing that [rephrase the annotations in english]. This invariant
is initially true because [explain]. It is preserved at each iteration because [explain]. The post-condition
then follows because [explain].”

The reader of your report should be convinced at each step that the contracts are the right ones, and
should be able to understand why your program is correct, e.g. why a loop invariant is initially true, why it
is preserved, and why it suffices to establish the post-condition. It is legitimate to copy-paste parts of your
Why3 code in the report, yet you should only copy the most relevant parts, not all of your code. In case you
are not able to fully complete a definition or a proof, you should carefully describe which parts are missing
and explain the problems that you faced.

In addition, your report should contain a conclusion, providing general feedback about your work: how
easy or how hard was it, what were the major difficulties, was there any unexpected result, and any other
information that you think are important to consider for the evaluation of the work you did.

0 Goal

The goal of this project is to prove two real algorithms on graphs. Algorithm on graph are known to be
difficult. The first algorithm is topological sorting which detect if a graph contains a cycle, otherwise it
returns a bijection between the vertex and the integer that verify the property that if an edge exists from v

1https://francois.bobot.eu/mpri2017/
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to u, the integer associated to v is smaller than the integer associated to u. Such bijection will be called the
topological sorting of the graph.

The second algorithm is the computation of the immediate dominators of all the vertex of a graph given
a topological sorting of the graph and a rootvertex from which every vertex is accessible. A vertex u is
the dominator of a vertex v (̸= root) if all non-empty path from rootto v contains u. The immediate
dominator of v is a dominator of v which is dominated by all the other dominator of v.

The definition of graphs, paths and dominators, and the implementations to prove are given. The work
will consists in:

• Fill the definition of sort and topological_sort

• Prove the function topo, dfs, topo_sort following a step by step guide

• Prove the function idoms with only hints

1 Definitions

The map module is referenced as M and the set module is referenced as S in the following and in the code.
The type for vertex and graph are abstract, = can be used on vertex:

type vertex

type graph

A graph is only defined through the two functions that gives the set of vertex and the set of edges:

function vertices graph: S.set vertex

function edges graph: S.set (vertex , vertex)

axiom edges_use_vertices:

forall g:graph. forall x y:vertex.

S.mem (x,y) (edges g) → (S.mem x (vertices g) ∧ S.mem y (vertices g))

For convenience the set of predecessors and successors are defined:

function preds graph vertex: S.set vertex

function succs graph vertex: S.set vertex

Now you need to fill the definition of sort and topological_sort. The definition of the topo-
logical sort is splitted in two. The predicate sort only specifies the mapping from vertex to integer
type tsort = M.map vertex int and the predicate topological_sort specifies the second mapping
type order = M.map int vertex as the bijection of the first.

The predicate sort (g:graph) (tsort:tsort) specifies that:

• Result in interval: for every vertex v of the graph M.get tsort v is between 0 (included) and the
number of vertex of the graph (excluded).

• Edges are well ordered: For every edges in the graph, the source is associated in tsort to an integer
strictly smaller than the destination

• Injectivity: The mapping tsort associates different values for different vertex.

The predicate order (g:graph) (order:order) (tsort:tsort):

• Bijection: that order and tsort are inverse of one another.

• Good sorting: that sort g tsort is verified.
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• Ordered elements are vertices of the graph: it is indeed a corollary but it is easier to prove it
directly. Precisely it specifies that for every integer between 0 and S.cardinal (vertices g),
M.get order i is a vertices of g

Finally the paths are defined as list of vertex, the predicate path_to g p v indicates that p is a path in
g that arrives in v. Useful functions is elements that return the set of elements contained in a list, ++ which
is the concatenation of list.

2 Tests Definitions

In order to check that your definition of sort and topological_sort are the one we wait, you should try
to prove simple properties of topological order in the module TestDefinition. For example:

• no_empty_path: For any graph, the empty list (Nil) is not a path to any vertex.

• path_for_two_edges: if there are edges v1 → v2 → v3 then Cons v1 (Cons v2 Nil) is a path to
v3 in the graph g.

• pred_smaller: in a topological sort, all predecessors of a vertex are associated to a smaller integer
than this vertex.

• no_direct_cycle1: if a graph has a topological sorting, v1 → v2 → v1 is impossible

• no_direct_cycle2: if a graph has a topological sorting, v1 → v1 is impossible

• path_ordered: if a graph has a topological sorting, if there is a path from v1 to v2, then v1 is
associated to a strictly smaller integer than v2.

• no_cycle: if a graph has a topological sorting, then it has no cycle.

3 Topological sort

3.1 Implementation

The implementation is splited in three function. The function dfs fill if not already done the integer asso-
ciated to a vertex and all its predecessors. The function topo_tsort does the same thing for all the vertex
and so return the mapping from vertex to integer. finally the function topo build the mapping from integer
to vertex from the result of the function topo_tsort.

The predicate inv will be completed gradually during this section.

3.2 Prove termination of the functions

First we are going to prove the termination of the functions.

• Using S.subset and S.mem add requirements and invariant in dfs and topo_tsort in order to state
the relations between v, seen, !p and (vertices g), (preds g v).

• Prove termination of the functions (using function S.cardinal).
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3.3 Prove function topo

Supposing the contract if topo_tsort correct we are going to prove the function topo

Prove precondition of the call H.find tsort !p by adding a simple invariant (‘S.subset‘ can be used).
Could use inline and split for seeing what is not yet proved in the postcondition.
The easiest property of the conjunction to prove is the one that order (tsort v) = v. Add an invariant

derived from the property by remarking that the property is true for the vertexes that are not anymore in !p.
The last two properties of the conjunction quantify on the indices. We don’t yet have any simple way

to reference the set of indices already seen (since we are proving the bijection). So we are going to add a
ghost set of the indices not yet seen (dual of p) named todo. For initializing this ghost reference we define
an auxiliary function that given two integers return the set of all integers between them. It is useful that this
auxiliary function characterize the cardinal of the result.

• Add before the loop the initialization of the todo variable.

• Add in the loop the update of the todo variable.

• Add an invariant that state the relation between the cardinal of !p and the cardinal of !todo.

• Add an invariant that state that if a vertex is in !p its associated indices is in !todo

• Check that the new invariants are proved.

Now we could add invariants derived from the last two properties not proved, using !todo.
The function topo should not be completely proved. You can try to simplify the proof by removing

transformations (splitting, inline) perhaps not needed.

3.4 Prove that the result defines all vertices of g

Prove the second post-condition which specify result.defined by adding two invariants using (S.subset
and S.diff). These invariants give a lower and upper bound on tsort.defined.

In order to prove the preservation of these invariants we need to add properties to dfs.

• the upper bound is always verified (can be added to the predicate inv)

• that tsort.defined only grows

• finally that v is defined after the run of dfs

3.5 Prove that the result is in the interval

We are going to prove the first property of predicate sort. For that we need first to add the property that the
order of addition to tsort is postfix. We express that by adding as precondition, post-condition and loop
invariant of dfs that all the vertex in seen are not defined in tsort.

Now it is possible to add a derived version of the first property in inv in order to prove that the result is
in the interval.

3.6 Prove the injectivity

We could add a derived version of the third property in inv in order to prove the injectivity of the result. You
need to strengthen the property just added in inv in order to show that the value associated to the defined
elements is smaller than the current number of defined elements.
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3.7 Prove that the edges are well ordered

In order to prove the second property, the main one, we need to specify precisely which vertex are defined.
We need to add the specification for proving that at the end of the loop in dfs all the vertices of preds g v

are defined. We also need to add the specification that the origin of an edge is always defined if the
destination is defined.

Now we can add a derived version of the second property in inv in order to prove it.

3.8 Prove that Cycle_found is raised only if it exists a cycle

The exception is raised when the current vertex is already in the callstack, ie in the set seen. Since the
callstack represent a path in the graph, that indeed correspond to finding a cycle.

So in order to prove the existence of a cycle we need the requirement that there exists a path from v to
any vertices of seen. As usual if the provers are not able to handle the existential well we can use a ghost
parameter seen_path of type M.map vertex path in order to replace the existential, and explicitly tell what
is the new witness for the precondition of the recursive call to dfs.

The computation of the witnesses should be done by implementing a ghost function that takes the graph,
the set seen, the old seen_path, the old current vertex v and the new vertex u and returns the new witness.
The function need to suppose that (u,v) is an edges of g and that seen_path is a witness for the path from
v to vertexes of seen.

For the first call to dfs in topo_tsort you could use Const.const Nil.
Once this requirement proved we can replace raises { Cycle_found → true } by

raises { Cycle_found → cycle_in g } in all functions.

4 Proof of idoms

This part of the project is not guided, the important point is not so much that it is fully proved at the end,
but more what you tried to solve it.

The goal is to compute the immediate dominators of each vertex of the graph. The functions require
that the argument root is the root of the graph (there is a path from root to all the other vertex). A vertex
u is the dominator of a vertex v ( ̸= root) if all non-empty path from rootto v contains u. The immediate
dominator of v is a dominator of v which is dominated by all the other dominator of v.

Here some hints:

• The root vertex is special, so it is handled in the inner loop by raising an exception. It makes the
specification simpler.

• Instead of adding many assertions that are only used to prove one assertion you could use by. A by B

is equivalent to A when no splitting is done, otherwise with some splitting Why3 tries to prove B and
B => A.

• It is better to use the specific equality on sets S.(==) s1 s2 than s1 = s2 for provers because it can
be used as trigger pattern. The axioms of extensionality convert between the two.

• The derived predicate for domine (called for example partial_domine) should only look at paths that
contains some vertex given as arguments.

• The hardest part is the inner function find_common. you could keep it for the end. The main argument
is that since n2 < n1 and all partial dominators of v different from the vertex of n2 domine the vertex
of n2 then the vertex of n1 can’t be a partial dominators of v.

• A lemma that cut a path path_to g (Cons start (p1 ++ (Cons x p2))) stop into two path_to

is useful.

5



• Other lemmas could be needed.

• The proof have been mainly done using Alt-ergo (v2.0), occasionally CVC4 (v1.4).

5 Conclusion

If things are not clear you should not hesitate to mail a question to francois.bobot@cea.fr and
jean-marie.Madiot@inria.fr. All the questions and answers will be shared in a faq on the website. I
hope you will enjoy the challenge!

6 Annex

In order to fix the version of the source code to start with:

theory Graph

use export int.Int

use set.Fset as S

use map.Map as M

(* the graph is defined by a set of vertices and a set of edges *)

type vertex

type graph

function vertices graph: S.set vertex

function edges graph: S.set (vertex , vertex)

axiom edges_use_vertices:

forall g:graph. forall x y:vertex.

S.mem (x,y) (edges g) → (S.mem x (vertices g) ∧ S.mem y (vertices g))

(** direct predecessors *)

function preds graph vertex: S.set vertex

axiom preds_def: forall g:graph. forall v:vertex. forall u:vertex.

S.mem (u,v) (edges g) ↔ S.mem u (preds g v)

(** direct successors *)

function succs graph vertex: S.set vertex

axiom succs_def: forall g:graph. forall v:vertex. forall u:vertex.

S.mem (u,v) (edges g) ↔ S.mem v (succs g u)

type tsort = M.map vertex int

predicate sort (g: graph) (tsort:tsort) =

(* Result in interval [0;S.cardinal (vertices g)[ *)

true

∧
(* Edges are well ordered *)

true
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∧
(* Injectivity *)

true

type order = M.map int vertex

predicate topological_sort (g: graph) (order: order) (tsort: tsort) =

(* order and tsort are in bijection *)

(* ... order (tsort v) = v *)

true ∧
(* ... tsort (order v) = v *)

true ∧
(* tsort is a good sorting *)

sort g tsort ∧
(* corollary hard to prove: ordered elements are vertices of the graph *)

true

lemma topological_sort_corrolaries:

forall g. forall order. forall tsort.

topological_sort g order tsort →
(* no backward edges *)

(forall i, j: int.

0 ≤ i ≤ j < S.cardinal (vertices g) →
¬ (S.mem (M.get order j, M.get order i) (edges g)))

end

theory Path

use import Graph

use import list.List

use import list.Length

use set.Fset as S

type path = list vertex

predicate path_to (g : graph) (p : path) (to_: vertex) =

match p with

| Nil → false

| Cons a l →
match l with

| Nil → S.mem (a,to_) (edges g)

| Cons b _ → S.mem (a,b) (edges g) ∧ path_to g l to_

end

end

predicate cycle_in (g: graph) =

exists p. exists v. path_to g (Cons v p) v

end
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module TestDefinition

use import Graph

use import Path

use import list.List

lemma pred_smaller:

true

lemma no_direct_cycle1:

true

lemma no_direct_cycle2:

true

let rec lemma path_ordered (g:graph) (tsort:tsort) (p:path) (v1 v2:vertex)

requires { true }

requires { true }

ensures { true }

variant { p }

=

()

lemma no_cycle: true

end

module Hashtbl

use import map.Map

use import set.Fset as S

type key

type t α model { mutable contents: map key α;
mutable defined: set key;

}

function ([]) (h: t α) (k: key) : α = Map.([]) h.contents k

val create () : t α ensures { result.defined = S.empty }

val clear (h: t α) : unit writes {h} ensures { h.defined = S.empty }

val add (h: t α) (k: key) (v: α) : unit writes {h}

ensures { h.contents = (old h.contents[k<-v]) }

ensures { h.defined = S.add k (old h.defined) }

val mem (h: t α) (k: key) : bool

ensures { result = (S.mem k h.defined) }
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val find (h: t α) (k: key) : α
requires { S.mem k h.defined }

ensures { result = h[k] }

val remove (h: t α) (k: key) : unit writes {h}

ensures { h.defined = S.remove k (old h.defined) }

val size (h: t α) : int

ensures { result = S.cardinal h.defined }

end

(** Topological sorting by depth-first search using preds *)

module Topo

use import ref.Ref

use import Graph

use import Path

use import list.List

use import list.Length

use set.Fset as S

use map.Map as M

clone import Hashtbl as H with type key = vertex

use map.Const

type marked = (S.set vertex)

exception Cycle_found

predicate inv (g:graph) (m:H.t int) =

true

let rec dfs (g:graph) (v:vertex)

(seen:marked) (tsort:H.t int)

: unit

requires { inv g tsort }

requires { true }

requires { true }

requires { true }

requires { true }

diverges

ensures { true }

ensures { true }

ensures { true }

ensures { inv g tsort }

ensures { true }

raises { Cycle_found → true }

=

’Init:

if S.mem v seen then raise Cycle_found;

if ¬ (H.mem tsort v) then begin
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’Init_loop:

begin

let p = ref (preds g v) in

let seen’ = S.add v seen in

while ¬ (S.is_empty !p) do

invariant { inv g tsort }

invariant { true }

invariant { true }

invariant { true }

invariant { true }

let u = S.choose !p in

dfs g u seen’ tsort;

p := S.remove u !p

done;

end;

H.add tsort v (H.size tsort)

end

let topo_tsort (g:graph): H.t int

raises { Cycle_found → true }

ensures { sort g result.contents }

ensures { S.(==) result.defined (vertices g) }

diverges

=

’Init:

let tsort = H.create () in

let p = ref (vertices g) in

while ¬ (S.is_empty !p) do

invariant { inv g tsort }

invariant { true }

invariant { true }

invariant { true }

let u = S.choose !p in

dfs g u (S.empty) tsort;

p := S.remove u !p

done;

tsort

use import array.Array

type topo = {

order: array vertex;

tsort: H.t int

}

let topo (g:graph): topo

raises { Cycle_found → true }

requires { ¬ (S.is_empty (vertices g)) }

ensures { topological_sort g result.order.elts result.tsort.contents }
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ensures { S.(==) result.tsort.defined (vertices g) }

ensures { result.order.length = S.cardinal (vertices g) }

diverges

=

let tsort = topo_tsort g in

let order = Array.make (S.cardinal (vertices g)) (S.choose (vertices g)) in

let p = ref (vertices g) in

while ¬ (S.is_empty !p) do

invariant { true }

invariant { true }

invariant { true }

invariant { true }

invariant { true }

invariant { true }

let u = S.choose !p in

order[H.find tsort u] <- u;

p := S.remove u !p;

done;

{order = order; tsort = tsort}

end

theory Dominator

use import Graph

use import list.List

use import list.Length

use import list.Elements

use set.Fset as S

use import Path

predicate domine (g:graph) (root x y:vertex) =

y ̸= root ∧
forall p. path_to g (Cons root p) y → S.mem x (S.add root (elements p))

(** immediate dominator *)

predicate idomine (g:graph) (root x y:vertex) =

domine g root x y ∧ (forall x’. x’ ̸= x → domine g root x’ y → domine g root x’ x)

end

module Dominators

use import ref.Ref

use import Graph

use import Path

use import Dominator

use import list.List

use import list.Length

use import list.Elements

use import list.Append

use set.Fset as S
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use map.Map as M

use map.Const

use import array.Array

use import Topo

predicate not_disjoint (s1 s2: S.set vertex) =

¬ (S.is_empty (S.inter s1 s2))

lemma not_disjoint_mem:

forall s1 s2: S.set vertex. not_disjoint s1 s2 ↔ (exists x. S.mem x s1 ∧ S.mem x s2)

lemma not_disjoint_singleton:

forall s1: S.set vertex. forall x: vertex. not_disjoint s1 (S.singleton x) ↔ S.mem x s1

exception Root

let idoms g (root:vertex) (topo:Topo.topo) (ghost exi_path : M.map vertex path)

: array int

requires { S.mem root (vertices g) }

requires { S.is_empty (preds g root) }

requires { forall v. v ̸= root → S.mem v (vertices g) → path_to g (Cons root (M.get exi_path v)) v }

requires { topological_sort g topo.Topo.order.elts topo.Topo.tsort.Topo.H.contents }

requires { S.(==) topo.Topo.tsort.Topo.H.defined (vertices g) }

requires { topo.Topo.order.length = S.cardinal (vertices g) }

ensures { forall i. 0 < i < S.cardinal (vertices g) →
idomine g root (topo.Topo.order[result[i]]) (topo.Topo.order[i]) }

ensures { result[0] = 0 }

diverges

=

let a = Array.make (S.cardinal (vertices g)) (-1) in

a[0] <- 0;

for nv=1 to (S.cardinal (vertices g) - 1) do

’Start_body:

let v = topo.Topo.order[nv] in

let rec find_common n1 n2

raises { Root → idomine g root root v }

diverges

=

if n1 = n2 then n1

else

let n1, n2 = if n2 < n1 then (n1,n2) else (n2,n1) in

if a[n1] = 0 then raise Root

else find_common a[n1] n2

in

try

let p = ref (preds g v) in

assert { ¬ (S.is_empty !p) };

let u = S.choose !p in

(if u = root then raise Root);
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let nu = Topo.H.find topo.Topo.tsort u in

let idom_v = ref nu in

p := S.remove u !p;

while ¬ (S.is_empty !p) do

let u = S.choose !p in

(if u = root then raise Root);

let nu = Topo.H.find topo.Topo.tsort u in

idom_v := find_common !idom_v nu;

p := S.remove u !p;

done;

a[nv] <- !idom_v;

with Root →
a[nv] <- 0;

end

done;

a

end
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