
Security Through Amnesia: A Software-Based Solution to the Cold Boot
Attack on Disk Encryption

Patrick Simmons
University of Illinois at Urbana-Champaign

Abstract
Disk encryption has become an important security mea-
sure for a multitude of clients, including governments,
corporations, activists, security-conscious professionals,
and privacy-conscious individuals. Unfortunately, recent
research has discovered an effective side channel attack
against any disk mounted by a running machine [23].
This attack, known as the cold boot attack, is effective
against any mounted volume using state-of-the-art disk
encryption, is relatively simple to perform for an attacker
with even rudimentary technical knowledge and training,
and is applicable to exactly the scenario against which
disk encryption is primarily supposed to defend: an ad-
versary with physical access. To our knowledge, no ef-
fective software-based countermeasure to this attack sup-
porting multiple encryption keys has yet been articulated
in the literature. Moreover, since no proposed solution
has been implemented in publicly available software, all
general-purpose machines using disk encryption remain
vulnerable. We present Loop-Amnesia, a kernel-based
disk encryption mechanism implementing a novel tech-
nique to eliminate vulnerability to the cold boot attack.
We offer theoretical justification of Loop-Amnesia’s in-
vulnerability to the attack, verify that our implementation
is not vulnerable in practice, and present measurements
showing our impact on I/O accesses to the encrypted disk
is limited to a slowdown of approximately 2x. Loop-
Amnesia is written for x86-64, but our technique is appli-
cable to other register-based architectures. We base our
work on loop-AES, a state-of-the-art open source disk
encryption package for Linux.

1 Introduction

The theft of sensitive data from computers owned by
governments, corporations, and legal and medical pro-
fessionals has escalated to a problem of paramount im-
portance as computers are now used to store, modify, and

safeguard all kinds of sensitive and private information.
Hard drive thefts in the past have put information such
as medical data [5], Social Security and passport num-
bers [19], and the access codes for a financial service
corporation’s private Intranet [3]1 at risk.

Because of the significant potential for harm such
breaches represent, disk encryption, in which an entire
filesystem is stored on nonvolatile storage in encrypted
form, has become a standard and often mandatory se-
curity technique in many environments [9]. Most major
commercial operating systems now offer some form of
kernel-based disk encryption [32] [29] [12], and third-
party tools supporting disk encryption, such as True-
Crypt [2], are freely available for many architectures and
operating systems. This software has proven effective
against determined adversaries wishing to defeat its pro-
tection [14].

However, recent work [23] by Halderman et al. has
uncovered a flaw common to all commercially avail-
able disk encryption packages. These researchers ob-
served that, as long as an encrypted volume is mounted,
a disk encryption package will store the encryption key
in RAM. They further discovered that, contrary to pop-
ular belief, DRAM does not lose its contents for several
minutes after a loss of power. Thus, Halderman et al.
put forth the following attack on all disk encryption: cut
power to the target machine, pull out the RAM, put the
RAM in a new machine2, and boot this machine with an
attack program of their creation which overwrites a min-
imal amount of RAM with its own code and dumps the
original contents of RAM to nonvolatile storage. At this
point, an attacker can search the contents of RAM for the
encryption key or simply try every key-length string of
bits present in the RAM of the original machine as a po-
tential key. This attack, called the “cold-boot attack” by
Halderman et al., is simple to perform, routinely effec-

1In this case, the hard drive appears to have been sold and purchased
legitimately but was not adequately wiped prior to the sale.

2Variants of the attack eliminate the need for a separate machine.

1

tive, and broadly applicable against the existing universe
of disk encryption software packages.

It is difficult to overstate the significance of the cold-
boot attack. The protection afforded by disk encryption
against any adversary with access to the running target
machine is now effectively skewered. Many users for
whom disk encryption previously offered protection are
now at risk of having their data stolen when their ma-
chines are stolen or lost. One may argue that these users
should physically secure their machines, but, as disk en-
cryption is specifically intended to protect against an at-
tacker who has physical access to the disk, that argument
rings hollow.

In this paper, we describe the novel implementation
approach we used in Loop-Amnesia, the first disk en-
cryption software package not vulnerable to the cold-
boot attack. We contribute a method of permanently stor-
ing an encryption key inside CPU registers rather than
in RAM, an approach of capitalizing on this ability to
allow the masking of arbitrarily many encryption keys
from disclosure under a cold-boot attack, an implemen-
tation strategy for the AES encryption algorithm which
ensures that no data related to encryption keys is ever
leaked to RAM, a prototype implementation of our ap-
proach, and performance measurements validating our
technique’s usability in practice.

Section 2 describes the attack model used by our pa-
per. Section 3 provides an overview of AES and the
loop-AES software package we enhanced to thwart the
cold-boot attack. Section 4 describes the design of Loop-
Amnesia. Section 5 describes our implementation. Sec-
tion 6 describes our justification that Loop-Amnesia is
in fact immune to the cold-boot attack and describes our
correctness testing. Section 7 details our performance
benchmarking of Loop-Amnesia. Section 8 details the
limitations of our approach to this problem. Section 9 de-
scribes related work. Section 10 describes future work.
Section 11 concludes the paper.

2 Attack Model

We assume our attacker has full physical access to the
target machine. The attacker is assumed to possess any
commonly available equipment necessary or useful for
performing the cold-boot attack, such as his own com-
puter or other device capable of reading RAM after he
has removed it from the target machine.

In the event our attacker has access to an account on
the target machine, such as with stolen login credentials
or due to the fact that the machine was stolen with a user
logged in, we seek to prevent the attacker from gaining
unauthorized access to the disk volume key or to parts of
the encrypted disk to which the account he is using does

not have access. We assume an attacker will not be able
to gain access to the encryption keys through vulnera-
bilities in the operating system; other work (SVA [13],
SECVisor [35], and HyperSafe [38]) can protect the ker-
nel from exploitation.

3 Background

3.1 Aspects of AES Relevant to Loop-
Amnesia

AES, or the Advanced Encryption Standard, is an effi-
cient block cipher algorithm. Originally published as Ri-
jndael [15], the algorithm became the AES standard in
2001. It has proven quite resistant to cryptanalysis [8]
[20] since its standardization.

3.1.1 Rounds

AES encryption proceeds in multiple rounds. In a round-
based encryption process, plaintext is first encoded to ci-
phertext by applying the main body of the encryption al-
gorithm. The resulting ciphertext is then encrypted again
using the same algorithm in a second round of encryp-
tion. This process is repeated a number of times: in the
case of 128-bit AES, our algorithm of concern, the num-
ber of rounds is 10.

3.1.2 Key Schedule

In order to increase the algorithm’s resistance to crypt-
analysis, AES and other block ciphers employ a concept
called a key schedule, in which a different key is used
for each round of encryption. In AES, the original key is
used for the first round, and subsequent rounds use keys
obtained by permuting the contents of the previous round
key. This permutation is reversible. In most AES imple-
mentations, all 10 keys of the key schedule are precom-
puted and stored to RAM for performance purposes.3

Since there are different but related key schedules for en-
cryption and decryption, a total of 20 128-bit quantities
from which the original key can be derived are stored to
RAM when using unmodified loop-AES or a similar disk
encryption package.

3.2 Organization of loop-AES
Loop-AES [30] is a kernel plugin for Linux providing
an encrypted loopback device to the user. An encrypted
loopback device binds to a normal block device, such as a
disk partition or file, and provides a view of its data after
having been decrypted with a key. If data is written to

3For reasons discussed in later sections, this performance optimiza-
tion is foreclosed to Loop-Amnesia.

2

the loopback device, it is encrypted before being stored
on the device to which the loopback device is bound.

The internal structure of loop-AES is both clean and
modular. All encryption, decryption, and key-setting
work is performed by the three methods aes encrypt,
aes decrypt, and aes set key. Key data is stored
inside the aes context structure, which is treated as
opaque by all of loop-AES outside of the three routines
mentioned above. IV computation, CBC chaining, and
other functions necessary to a full disk encryption sys-
tem are handled independently of the implementation of
these functions and, indeed, independently of the cryp-
tographic algorithm used. Loop-Amnesia’s changes to
loop-AES are confined to these three subroutines.

Of particular concern to us is how loop-AES stores
cryptographic keys. Keys are stored only inside the
aforementioned opaque aes context structures; loop-
AES conscientiously deletes them from other locations
in memory after initializing the aes context struc-
tures with aes set key. Because the keys are stored
in memory by aes set key, however, loop-AES, like
other prior disk encryption software, is fully vulnerable
to the cold-boot attack.

4 The Design of Loop-Amnesia

The basic insight of Loop-Amnesia’s design is that, be-
cause of the ubiquity of model-specific registers, or
MSRs, in CPU architectures today, it is possible to store
data inside the CPU, rather than in RAM, thus making
that data unreadable to a perpetrator of the cold-boot at-
tack. The challenging aspect of this approach is find-
ing model-specific registers that can practicably be used
for this task: if an MSR is repurposed as storage space
for an encryption key, it is unavailable for its intended
use. Model-specific registers are used for a diverse vari-
ety of system tasks; some, like the control for the CPU
fan, must not be tampered with lightly lest the safe oper-
ation of the hardware be threatened.

On our target platform, x86-64, we disabled perfor-
mance counting and therefore were able to use the per-
formance counter registers to hold a single 128-bit AES
key.4 To evaluate the generality of our approach, we
examined the CPU system programming manual for a
PowerPC chip [34]. We were also able to find perfor-
mance counter MSRs on PowerPC that would appear
to be repurposable for key storage on that architecture.5

4On Intel [11] processors, we use MSRs 0xC1, 0xC2, 0x309,
and 0x30A. On AMD [16] CPUs, we use MSRs 0xC0010004,
0xC0010005, 0xC0010006, and 0xC0010007.

5However, the manual also states that the performance counters are
readable from user mode, and it does not appear that the instruction
to read them can be disabled by the operating system. Thus, our ap-
proach may not provide security against an attacker with the ability to

Of course, on any platform, disabling and repurposing
the hardware performance counter infrastructure in this
manner has the side effect of foreclosing the use of any
hardware-assisted performance profilers. Since we ex-
pect protection against cold-boot attacks to be most im-
portant for production machines, which do not typically
use hardware-assisted performance profilers, we do not
consider this a serious deficiency of our approach.

Since storing the disk volume key in the MSRs di-
rectly would prevent the mounting of more than one en-
crypted volume simultaneously6, we instead store a ran-
domly generated number in the MSRs, then use this mas-
ter key to encrypt the disk volume key for each mounted
volume. Because we assume an attacker may later have
access to all RAM, we require a random number gener-
ator (RNG) which guarantees that previously output ran-
dom numbers cannot be calculated from its subsequent
internal state.7

5 Implementation

5.1 Constraints
To validate our design, we built a cold-boot immune 128-
bit AES implementation as a drop-in replacement for the
128-bit AES implementation already present in the loop-
AES disk encryption package. In order to satisfy our pri-
mary design criterion of cold-boot immunity, we must
take care in our implementations of aes encrypt and
aes decrypt that no key data is ever stored to RAM.
This places a number of constraints on our implementa-
tion.

First, in order to ensure no register containing key data
could ever be spilled to RAM, we needed a degree of
control over the register allocation process not available
to the programmer in any high-level language, including
C. For this reason, our implementation of Loop-Amnesia
uses x86-64 assembly language exclusively.

Second, though most AES implementations, in or-
der to improve performance, precompute the AES key
schedule and cache it to RAM, our repurposed MSR
space is far too limited to store even one full AES key
schedule. We instead compute the key schedule on-the-
fly during encryption and decryption as discussed in §5.2.

execute arbitrary user-level code on PowerPC unless we found other re-
purposable MSRs. On x86-64, the ability of unprivileged code to read
performance counters is configurable by the operating system, and we
disable this ability.

6Another motivation for supporting multiple simultaneous encryp-
tion keys is to support a mode of loop-AES which uses 64 different
encryption keys to protect against watermark attacks [30]

7In our implementation, we use the Linux kernel random num-
ber generator, which is specifically designed to provide this guarantee.
There has been some cryptanalysis of the Linux RNG with respect to
its ability to provide this guarantee [22], but the implementation is still
considered safe in practice [18].

3

aes_encrypt(context,plaintext_buffer,
 ciphertext_buffer):
- Disable interrupts.
- Read master key from MSRs to registers.
- Read encrypted volume key from memory
 to registers.
- Decrypt volume key without storing
 any temporary data in RAM.
- Read plaintext_buffer from RAM to
 registers.
- Encrypt plaintext using volume key
 without storing any temporary
 data in RAM.
- Write ciphertext to ciphertext_buffer.
- Zero all registers containing key data.
- Enable Interrupts.
- Return

aes_decrypt(context,ciphertext_buffer,
 plaintext_buffer):
- Disable interrupts.
- Read master key from MSRs to registers.
- Read encrypted volume key from memory
 to registers.
- Decrypt volume key without storing any
 temporary data in RAM.
- Read ciphertext_buffer from RAM to
 registers.
- Decrypt ciphertext using volume key
 without storing any temporary
 data in RAM.
- Write plaintext to plaintext_buffer.
- Zero all registers containing key data.
- Enable Interrupts.
- Return

aes_set_key(context,key_bytes):
- if this is the first call to aes_set_key:
 master_key = gen_random_bytes(); msr_store(master_key)
- master_key = msr_load()
- first_round_key = internal_decrypt(master_key,key_bytes)
- context->first_round_key = first_round_key
- last_round_key = lastround(key_bytes)
- last_round_key = internal_decrypt(master_key,last_round_key)
- context->last_round_key = last_round_key

Figure 1: Pseudocode Description of Loop-Amnesia

Finally, as MSRs are per-CPU (or per-core), the need
to copy our master key to all CPUs that may run the
Loop-Amnesia subroutines presents a logistical prob-
lem. Our prototype implementation currently handles
this problem by compiling the Linux kernel in single-
CPU mode, forcing all software to execute on only one
CPU or CPU core. While the prototype implementa-
tion of loop-AES therefore currently limits a machine
to a single core, there is nothing in the design of Loop-
Amnesia requiring this limitation. In a production imple-
mentation of Loop-Amnesia, we would suggest storing
the master key to RAM after its generation, forcing all
CPUs to read it and store it to their MSRs, and subse-
quently scrubbing the key from RAM.

The TPM Alternative

Many of these design constraints could be lifted if hard-
ware support were available. However, the Trusted Pro-
tection Modules [37] present on so many computers to-

day do not provide useful hardware support for our goal.
While it might at first appear that we could secure the
key inside of such a cryptographic coprocessor and use it
to perform all encryption and decryption of the disk, the
current TPM standard only supports the public-key RSA
algorithm, which is inappropriate for disk encryption.

However, even though TPMs are not useful for per-
forming the actual disk encryption, they could be used
as an alternative method of encrypting the disk volume
keys: instead of using an AES key hidden in an MSR
on the main processor for the master key, we could use a
public RSA key generated by the TPM. When we wanted
to perform disk encryption or decryption, we could ask
the TPM to use the corresponding private RSA key to
decrypt the values we stored in RAM, reading the de-
crypted disk volume key directly from the TPM to regis-
ters over the serial bus.

Unfortunately, this is an inferior alternative to our ap-
proach from both security and performance standpoints.

4

From a security standpoint, the disk volume keys would
frequently be transferred unencrypted over a bus from
the TPM to the system CPU. An adversary able to tap
this bus would be able to obtain the disk volume keys.
From a performance standpoint, the master key would
be decrypted by a relatively slower algorithm on a rela-
tively slower processor, and we would in addition incur
the latency of two transmissions over the TPM-CPU bus
for every volume key decryption.8 For these reasons, we
chose not to utilize a TPM for our implementation.

5.2 Implementation Outline
The aes encrypt and aes decrypt functions take
an AES context structure, a buffer containing the plain-
text or ciphertext, and a buffer to which the encrypted
ciphertext or decrypted plaintext must be stored. Each
of these functions must use the master key to decrypt the
volume key stored in the AES context structure, use this
decrypted key to encrypt the plaintext buffer or decrypt
the ciphertext buffer, and must finally write the fully en-
crypted ciphertext or fully decrypted plaintext to the out-
put buffer. Programming these cryptographic routines in
assembly language, on an architecture with 16 registers,
and under the constraint that RAM not be used for work-
ing storage proved, predictably, to be a significant engi-
neering challenge.
aes encrypt and aes decryptwork similarly as

the encryption and decryption operations are nearly sym-
metric. There are 16 registers available for use on x86-
64. Of these, RSP is the stack pointer and must always
point to the stack, so it is not available for our use. We
use RBP to point to the encryption or decryption func-
tion, depending on which operation we wish to perform.
The 16 bytes of partially encrypted plaintext or partially
decrypted ciphertext are moved from EAX, ECX, R10D,
and R11D to EBX, EDX, R14D, and R15D during the per-
formance of a single round of encryption or decryption.
The routine performing a single round of encryption or
decryption uses R8, R13, RDI, and RSI as temporary
registers. The round key is stored in R9 and R12 while
each round is performed. See Figure 2 for an illustration
of Loop-Amnesia’s register usage.

Thus, every general-purpose integer register available
in the x86-64 instruction set is in use during the encryp-
tion and decryption subroutines. Since the 32-bit x86 ar-
chitecture has only 8 integer registers available, adapting
this technique to 32-bit x86 would likely require the use
of the MMX or SSE registers. Adopting the technique
to a RISC architecture with an abundance of general-
purpose registers, however, would be straightforward.

8Performance problems due to bus latency and TPM processor
speed would plague even a hypothetical TPM implementation support-
ing AES or another symmetric encryption algorithm.

aes set key is the routine to initialize an AES con-
text structure with a given key. Our implementation gen-
erates the master key, if necessary, and initializes the
AES context structure in RAM with the first and last
round keys, first encrypting each with the master key.

6 Verification of Cold-Boot Immunity

6.1 Justification
A system will be immune to a cold-boot attack if, when
the system is running normally (i.e., not including di-
rectly after the input of a key to the system), no key data
is ever stored to RAM. From the perspective of the x86-
64 assembler programmer, key data could only be stored
to RAM due to one of the following occurrences:

1. An explicit store, including a stack push instruction.

2. A taken interrupt causing registers with key data to
be stored to the interrupt stack.

A review of the code in aes encrypt and
aes decrypt easily shows that no register containing
part of any master key, volume key, or round key is ever
stored to RAM. Moreover, interrupts are disabled before
the master key is read out of the MSRs and only enabled
after registers containing key data have all been zeroed,
so it is theoretically impossible for Loop-Amnesia to be
vulnerable to the cold-boot attack given its structure.9

While perhaps not strictly necessary for immunity to
the cold-boot attack, it is also not desirable that partially
encrypted ciphertext (such as after one round of encryp-
tion) be stored to RAM as an attacker may be able to use
cryptanalysis against such a degenerate version of AES
to recover the volume key. Loop-Amnesia only stores
fully encrypted ciphertext or fully decrypted plaintext to
RAM, thwarting such an attack.

6.2 Correctness Testing
We performed correctness testing on an AMD Athlon64
X2 Dual Core Processor 3800+10. For convenience, we
used the Linux /dev/mem device to inspect the physical
RAM of this machine, rather than actually replicating
the cold-boot attack ourselves. Using this methodology,
we were able to extract the secret key from loop-AES.
When using Loop-Amnesia, we found neither the master
key nor volume key present in RAM. We did, however,
find data equivalent to the volume key encrypted with the
master key present in RAM, as we expected.

9Non-maskable interrupts, or NMIs, cannot be disabled by soft-
ware, and it is therefore theoretically possible for key data to leak to
RAM if NMIs must be considered. We further discuss the problem of
non-maskable interrupts in §8.3.

10using only one core, for the reasons mentioned in §5

5

RAX RBX RCX RDX R
B
P

R
D
I

R
S
I

R
S
P

R
8

R9 R10 R11 R
1
2

R
1
3

R14 R15

ksc4 C0 K0/
K1

C0 K0/
K1

R T T R J J C0 C0 J J K0/
K1

K0/
K1

backup_key C0 K1 C0 K1 R J J R J K1 C0 C0 K
1

J K1 K1

fwd_rnd C0/J K1/
C1

C0/J K1/
C1

R T T R T K1 C0/
J

C0/
J

K
1

T K1/
C1

K1/
C1

restore_key K1 C1 K1 C1 R J J R J J K1 K1 J J C1 C1

ksc4 K1/
K2

C1 K1/
K2

C1 R T T R J J K1/
K2

K1/
K2

J J C1 C1

backup_key K2 C1 K2 C1 R J J R J K2 K2 K2 K
2

J C1 C1

fwd_rnd K2/
C2

C1/J K2/
C2

C1/J R T T R T K2 K2/
C2

K2/
C2

K
2

T C1/J C1/J

C#: ciphertext round #
K#: # round key
R: reserved
T: temporary usage
J: junk data

ksc4: generate next encryption round key from current
backup_key: copy entire 128-bit key into 2 64-bit registers

(n.b.: code uses 32-bit registers elsewhere
 to take advantage of superscalar archs)

fwd_rnd: performs one round of encryption
restore_key: copy 128-bit key to 4 32-bit regs (from 2 64-bit)

Figure 2: Register Usage of Loop-Amnesia (2 rounds of 10 shown)

7 Performance

7.1 Benchmarking

We compare Loop-Amnesia against three other disk en-
cryption methods. Our results are shown in Figure
3. “Xornesia” refers to a modified version of Loop-
Amnesia which encrypts the disk volume keys in RAM
by XORing them with the master key instead of perform-
ing full AES. Xornesia continues to use full AES when
using the disk volume keys to do encryption and decryp-
tion of user data. We use Xornesia to isolate the over-
head caused by repeated calculation of the key sched-
ule, which is still present in Xornesia, from the overhead
caused by the need to repeatedly decrypt the disk volume
keys, which is not. “AES” refers to the loop-AES 128-bit
AES implementation, with which we are fully compati-
ble. We use this to measure the overhead of our Loop-
Amnesia implementation relative to state-of-the-art disk
encryption software using an optimized implementation

of the same algorithm. “Naked” refers to a simple loop-
back mount with no encryption whatsoever. We use this
as our baseline in order to eliminate from consideration
the overhead of a loopback device.

The benchmarks are small, disk-intensive shell op-
erations. dd writes a 900MB file consisting entirely
of zeroes to disk. xz untars the Linux kernel from an
xz-format archive. The “find” benchmark searches the
Linux kernel source tree for instances of a particular
word. “noatime” is the same as “find” but done on a
filesystem mounted with an option to disable the record-
ing of the time of last access. “Cold” benchmarks are
done with the disk cache cleared; “warm” benchmarks
are done after the disk cache has been primed by per-
forming the same benchmark immediately before the
test. We do not report numbers for warm xz as the CPU
component of decompression made this test a poor mea-
sure of disk performance. We formatted the encrypted
loopback device with the ext2 filesystem for all tests and

6

Cold dd
Warm dd

Cold xz
Cold find

Warm find
Cold noatime

Warm noatime

0

10

20

30

40

50

60

70

80

90

Amnesia Xornesia AES Naked

se
co

n
d

s

Figure 3: Loop-Amnesia Performance

used a single-core laptop with an Intel Celeron 540 at
1.8GHz with 1GB of RAM for benchmarking. The disk,
a Hitachi HTS54258 (5400 RPM), experimentally per-
forms reads at 725MB/s from the disk cache (on CPU)
and at 44MB/s from the disk buffer (on disk micro-
controller). Our results show that, on average, Loop-
Amnesia introduces a slowdown of approximately 2.04x
relative to Loop-AES and 2.23x relative to an unen-
crypted disk.

We also ran a simple unit test pitting Loop-Amnesia,
Xornesia, and Loop-AES against each other, graphed in
Figure 4. Since this is a CPU test, not a test of perfor-
mance in practice, this provides a measure of the the-
oretical worst potential overhead Loop-Amnesia could
cause, which would occur if disk accesses were free and
performance of an encrypted filesystem was therefore
bound entirely by CPU speed. The times given are for
10 million encryption and decryption operations. The
theoretical worst-case slowdown of Loop-Amnesia rela-

tive to Loop-AES was found to be 3.77x.

7.2 Analysis

While we would have preferred Loop-Amnesia to have
less of a performance impact, we believe that this over-
head is acceptable given the unique benefit we provide. It
is also worth noting that, while we designed these bench-
marks to stress the disk subsystem, disk access speed
does not play a major role in overall performance for
many computing applications. The author has been us-
ing Loop-Amnesia for several months on both the laptop
used for conducting the benchmarks and on another ma-
chine and has not noticed an appreciable decline in per-
formance on either machine for interactive desktop use.11

Our overhead comes from two sources. First, we must
perform two cryptographic operations for each single
cryptographic operation we are called on to perform by

11The machines did not previously use any form of disk encryption.

7

Amnesia Xornesia AES
0

1

2

3

4

5

6

7

8

9

10
se
co
n
d
s

Figure 4: Amnesia, Xornesia, and AES CPU time

the loop-AES framework. Specifically, we must decrypt
the device key with the master key, then use this de-
crypted key to perform the cryptographic operation orig-
inally requested (either encryption or decryption of a 16-
byte block of data). Xornesia stores device keys XORed
with the secret key rather than performing AES to en-
crypt the device keys, therefore cutting out the overhead
of two cryptographic operations for every single act of
encryption or decryption. Our second source of over-
head is the necessity of generating round keys on-the-fly;
loop-AES pregenerates these and keeps them within the
AES context structure.

Though Xornesia has significantly lower overhead, we
do not recommend the use of Xornesia instead of our
original algorithm as doing so would weaken our security
guarantee. An adversary able to choose the device key
for an encrypted loopback device on the system would be
able to derive the master key by performing the cold-boot
attack and examining the encrypted device key.12 From
this, the attacker could discover the keys for encrypted
loopback devices he did not configure. We felt that our
method of defeating the cold boot attack should thwart

12It may also be possible to find the secret key by performing crypt-
analysis on the first and last round keys in RAM, but we could negate
this vulnerability by storing only the last round key in RAM and com-
puting the first round key from the last whenever encryption is required.
This would still be faster than performing full AES.

even an attacker with user-level access to the machine.

8 Limitations

In this section, we discuss some limitations and potential
vulnerabilities of both our approach and of the current
implementation of Loop-Amnesia.

8.1 Architecture Dependence

Our approach is inherently architecture-dependent and
limited to encryption systems with a kernel-mode imple-
mentation. An assembly-language implementation must
be completed for every combination of CPU architecture
and encryption algorithm needing support.

However, we nevertheless feel our approach is appli-
cable to a wide variety of use cases. Encryption algo-
rithms are small, self-contained pieces of code which
only need be written once. Our implementation already
supports a secure and widely used algorithm for the most
common desktop and server CPU architecture. We ex-
pect that vendors will have the resources to adapt their
existing encryption algorithm implementations – which,
as in the case of loop-AES, may have already been imple-
mented in assembly langauge for performance purposes
– to use the Loop-Amnesia method for countering cold-
boot attacks if there is even moderate institutional de-
mand.

8.2 Functionality Limitations

As the CPU registers, including the MSRs, are cleared
when a computer is suspended to RAM, we cannot sup-
port suspension to RAM. It would be possible for an im-
plementation of our technique to copy the master key
to RAM before allowing the computer to suspend, but
this would be ill-advised: in such an implementation, the
contents of the master key would be at risk of discovery
by a cold-boot attack if the attacker gained access to the
suspended computer.

8.3 Potential Effectiveness Issues

Espionage An attacker able to install a keystroke log-
ger or otherwise tamper with the victim computer may
be able to deduce the key through espionage. While we
do not protect against a keystroke logger, the use of two-
factor authentication, supported by loop-AES and Loop-
Amnesia, could reduce its effectiveness, and a trusted
path [37] execution framework could be used to prevent
an attacker from tampering with unencrypted binaries
used to mount the encrypted disk.

8

Key Information in Userspace According to the de-
veloper of loop-AES, the userspace portions of the cryp-
tographic system of which Loop-Amnesia is a part will
overwrite userspace key material with zeroes after trans-
mitting it to the kernel [31]. However, since key material
is transmitted through a UNIX pipe, it may still be avail-
able in the buffer unless the pipe is zeroed by the kernel
after use; this is currently not done.

Cached Data Large amounts of decrypted data may be
cached to RAM by the operating system, and our ap-
proach does not protect this data against a cold boot at-
tack. However, it is possible for a user to manually clear
the Linux disk cache by writing to a special file [4]. Pe-
riodically writing to this file from userspace, therefore,
could mitigate the effectiveness of this attack at the ex-
pense of performance if the Linux kernel clears pages
when they are freed (instead of when they are allocated).
We have not checked whether the Linux kernel does in
fact clear freed pages, but it would be simple to modify
the operating system to do so.

JTAG Many processors implement a standardized de-
bugging infrastructure called the Joint Test Action
Group, or JTAG. By sending signals to a CPU over
JTAG, a hardware developer is able to test the CPU’s
functioning. JTAG is commonly used in verifying that
a particular CPU is not defective before releasing it for
purchase. Because it is possible to use JTAG to dump
the internal registers of a CPU, an attacker able to ac-
cess the JTAG debug port may be able to read the Loop-
Amnesia master key from the CPU’s MSRs. Fortunately,
it is rare for the JTAG debug port to be wired out for
x86 processors [7]. In the rare case that a JTAG port
is available on an x86 machine, we would recommend
that a user concerned about this remove or destroy the
JTAG port and/or blow the JTAG security fuse. Either of
these actions would disable an attacker’s ability to access
JTAG [24].

Non-Maskable Interrupts We take care to disable
interrupts before reading the master key into general-
purpose registers and to reenable them only after the key
has once again been erased from all general-purpose reg-
isters. However, some interrupts, called non-maskable
interrupts (NMIs), cannot be disabled. These interrupts
are usually caused only by hardware faults. Since the
general-purpose registers are stored to RAM when an in-
terrupt is taken, an attacker able to introduce a hardware
fault during the brief time periods when key material is
in the general-purpose registers would be able to read
the master key. We consider such an attack unlikely to
prove practical, primarily due to its complexity and de-

pendence on extreme luck in timing. However, if this at-
tack does prove to be a concern, modifying the operating
system’s interrupt handler to scrub the general-purpose
registers from RAM after receiving a non-maskable in-
terrupt would be sufficient to protect against it. This
would have no deleterious side effects as the hardware
will have faulted, so the CPU will never resume normal
execution.13

9 Related Work

9.1 Lest We Remember: Cold-Boot At-
tacks on Encryption Keys

Halderman et al. discussed some forms of mitigation
in [23], including deleting keys from memory when an
encrypted drive is unmounted14, obfuscation techniques,
and hardware modifications such as intrusion-detection
sensors and epoxy-encased RAM. Halderman et al. ad-
mit that they do not present a full solution applicable to
general-purpose hardware.

While special-purpose hardware modifications may be
effective, such hardware adds cost and may not be avail-
able to many users of disk encryption; a solution for com-
modity hardware is required. As the cold-boot attacker
is given a copy of all RAM, including the program text
used to perform encryption and decryption, we doubt that
obfuscation would prove effective.

9.2 AESSE

A paper at Eurosec 2010 [26] discussed a potential solu-
tion to the cold boot attack, in which a single encryption
key was stored in the MMX registers of the CPU and
MMX register access was disabled for user-level code.
Encryption can then be performed by using MMX or
SSE instructions in kernel mode to perform AES encryp-
tion or decryption. The method proposed causes an al-
gorithmic performance slowdown of approximately 6x.
In addition to having worse performance characteristics
than Loop-Amnesia, AESSE also does not support mul-
tiple disk encryption keys, since only one encryption key
schedule may be stored inside the MMX registers. Dis-
abling access to the MMX registers also causes com-
patibility problems with userland software that requires
MMX and performance slowdowns for userland software
that would make use of MMX if available but cannot be-
cause of AESSE.

13Our prototype implementation does not modify the OS interrupt
handlers.

14this is already done in loop-AES according to [31]

9

9.3 Braving the Cold Black Hat Talk

A talk [25] at Black Hat in 2008 discussed various meth-
ods of mitigating the effects of the cold boot attack. Most
of these mitigation strategies are discussed elsewhere;
however, one contribution of this talk is a suggestion that
motherboard temperature sensors be used to detect at-
tempts to cool RAM and take protective measures, such
as scrubbing the keys.

This talk also proposed a potential solution to the cold
boot attack. The researchers suggested that the key could
be stored in RAM only as the product of the hash of
a large block of bits. The hope is that at least one of
these bits will flip during the performance of the cold
boot attack, preventing its success. This strategy, if im-
plemented, would likely suffer from severe performance
problems as a large hash would need to be calculated ev-
ery time an encryption key needed to be accessed. The
talk also discussed “caching” the encryption key inside
the MMX registers, but it was unclear from the talk how
such a caching system would operate.

9.4 Frozen Cache

Jürgen Pabel has posted a website [28], dormant since
early 2009, detailing his plans to provide a software-
based solution to the cold-boot attack. His approach is
to memory-map the L1 cache of the CPU and use this
space to store the AES key schedule. Because this ap-
proach would prevent the CPU cache from serving its
normal role, every memory access on the machine would
result in a cache miss. Disabling the CPU cache in this
manner results in a slowdown of perhaps 200x [1] felt
by all software, not just software accessing files on the
encrypted disk. Because our solution avoids the nega-
tive system performance side effects of Pabel’s design,
we believe it to be more practical.

9.5 Linux-Crypto Mailing List Brain-
storming

Shortly after Halderman et al. published their attack, a
mailing list discussion on Linux-Crypto discussed possi-
ble mitigation strategies. The general approach of keep-
ing key information in CPU registers was brought up
[39], but the ideas given were too vague to suggest how
this might specifically be accomplished and do not ap-
pear to have been pursued further.

9.6 Leakage-Resistant Algorithms

There has been considerable work [6] [17] [27] [36] in
designing cryptosystems resilient to partial key leakage

due to side channel attacks. Most of this work has fo-
cused on the design of new ciphers with properties miti-
gating the impact of partial key leakage.

Unfortunately, we do not believe that protecting
against partial key leakage is a sufficient defense against
the cold boot attack. According to Halderman et al., it
is possible to perform the cold-boot attack in such a way
that over 99.9% of memory remains uncorrupted an en-
tire minute after power is cut. Any countermeasure to the
cold-boot attack must account for its potential to fully
leak any encryption keys stored to RAM.

9.7 TCG Platform Reset Attack Mitigation
Specification

The Trusted Computing Group has published a standard
[21] which purports to mitigate the vulnerability of com-
pliant systems to the cold-boot attack. This specification
states that a compliant BIOS must zero out all RAM be-
fore giving control to the operating system. While this
prevents the attack from being performed using only the
victim’s computer15, the attacker can still easily perform
the attack by moving the RAM from the victim’s ma-
chine to a machine under his own control, then booting
using a BIOS not following the TCG specification. Thus,
the TCG specification cannot be considered a sufficient
countermeasure.

9.8 Forenscope: A Framework for Live
Forensics

The RAM of a computer may contain sensitive mate-
rial other than the encryption keys to the hard disk. The
Forenscope rootkit [10] takes advantage of the cold-boot
attack to gain access to active network sessions as well;
the session keys’ presence in memory could allow an at-
tacker to masquerade as the victim to any website, SSH
server, or other remote system to which the user was con-
nected at the time of the attack.

Loop-Amnesia will protect against a Forenscope-
using attacker’s gaining access to the encrypted disk: the
attack tool uses the exact same strategy as Halderman et
al. to attempt recovery of the key. Unfortunately, SSH
and SSL session keys will likely remain in RAM, so
an attacker with Forenscope could still conceivably keep
the victim’s network connections alive, sniff the session
keys, and masquerade as the victim to connected ma-
chines. See §10 for a discussion on how Loop-Amnesia
may be extended to assist in preventing Forenscope at-
tacks.

15A BIOS password would also necessitate the use of a separate ma-
chine.

10

10 Future Work

A ripe area for future research is the applicability of our
approach to algorithms outside of the AES cipher fam-
ily. Some algorithms, such as Blowfish [33], use key-
dependent S-boxes; proving whether these S-boxes can
be safely stored to RAM would require careful analysis.
We believe that our approach should work well for all
algorithms without key-dependent S-boxes and with key
schedules that are computationally inexpensive to com-
pute, but its effectiveness outside this class of ciphers re-
mains to be analyzed.

The ability of Loop-Amnesia to assist in neutraliz-
ing Forenscope’s other attack capabilities also merits ex-
amination. For instance, an operating system attempt-
ing to harden itself against Forenscope could use Loop-
Amnesia to encrypt various pieces of data inside the ker-
nel TCP stack. As the master key will have been erased
by the reboot preceding Forenscope’s installation, Foren-
scope will have no way of recovering the network con-
nections. By the time the attacker has had time to down-
load and analyze the SSH/SSL session keys from RAM,
any active TCP sessions will likely have expired.

Finally, our work exposes a limitation in current sys-
tem programming languages: the inability to insist to a
compiler that particular values never be spilled to RAM.
While we recognize that our needs are uncommon and do
not by themselves merit the redesign of system program-
ming languages, we speculate that programming lan-
guage designers may one day wish to allow users more
control over the register allocation process for perfor-
mance reasons. We would encourage the designers of
such languages or language extensions to include func-
tionality allowing the user to express the needs we faced
when implementing Loop-Amnesia. User control over
the register allocation process may provide useful bene-
fits for both security and performance.

11 Conclusion

In this paper, we present the first practical solution to the
cold-boot attack applicable to general-purpose hardware.
For a performance cost likely to be very moderate un-
der most workloads, our solution provides protection for
general-purpose hardware against a significant practical
attack affecting all previous state-of-the-art disk encryp-
tion systems. We present a design strategy applicable to
all operating system-based disk encryption systems and a
usable open-source implementation which validates our
design. After the publication of this paper, we intend to
work with the Linux kernel community to integrate our
approach, and possibly code, into the standard Linux ker-
nel distribution.

12 Acknowledgements

We thank Andrew Lenharth of the University of Texas
at Austin for his invaluable inspiration and advice in the
early stages of this work. We also thank Jari Ruusu for
providing loop-AES to the free and open source soft-
ware community: being able to use such well-designed
software as the base for our implementation signifi-
cantly aided us in evaluating the concepts behind Loop-
Amnesia.

References

[1] Cachegrind: a cache-miss profiler. http:
//wwwcdf.pd.infn.it/valgrind/
cg main.html.

[2] Truecrypt: Free open-source on-the-fly encryption.
http://www.truecrypt.org/.

[3] Hard drive secrets sold cheaply. http:
//news.bbc.co.uk/2/hi/technology/
3788395.stm, June 2004.

[4] drop caches. http://www.linuxinsight.
com/proc sys vm drop caches.html,
May 2006.

[5] Privacy at risk after burglary at doctor’s office.
http://www.cbc.ca/health/story/
2011/01/21/nb-privacy-warning.
html, January 2011.

[6] Adi Akavia, Shafi Goldwasser, and Vinod Vaikun-
tanathan. Simultaneous hardcore bits and cryptog-
raphy against memory attacks. In Theory of Cryp-
tography Conference, pages 474–495, 2009.

[7] Mike Anderson. Using a JTAG in linux driver
debugging. In CE Embedded Linux Confer-
ence, 2008. http://elinux.org/images/
4/4e/CELF JTAG Anderson.ppt.

[8] Alex Biryukov and Dmitry Khovratovich. Related-
key cryptanalysis of the full AES-192 and AES-
256. Cryptology ePrint Archive, Report 2009/317,
2009. http://eprint.iacr.org/.

[9] Bob Brown. How to roll out full disk en-
cryption on your pcs and laptops. http:
//www.networkworld.com/news/2010/
081610-encryption.html, August 2010.

[10] E. Chan, S. Venkataraman, F. David, A. Chaugule,
and R. Campbell. Forenscope: A framework for
live forensics. In Annual Computer Security Appli-
cations Conference, November 2010.

11

[11] Intel Corporation. IA-32 architectural MSRs.
Intel 64 and IA-32 Architectures Software De-
veloper’s Manual, 3B:681–722, January 2011.
http://www.intel.com/Assets/PDF/
manual/253669.pdf.

[12] Microsoft Corporation. Bitlocker drive encryp-
tion technical overview. Microsoft Technet,
2010. http://technet.microsoft.com/
en-us/library/cc732774\%28WS.10\
%29.aspx.

[13] John Criswell, Andrew Lenharth, Dinakar Dhurjati,
and Vikram Adve. Secure virtual architecture: a
safe execution environment for commodity operat-
ing systems. In Proceedings of Twenty-First ACM
SIGOPS Symposium on Operating Systems Princi-
ples, SOSP ’07, pages 351–366, New York, NY,
USA, 2007. ACM.

[14] John Curran. Encrypted laptop poses
5th amendment dilemma. USA To-
day, February 2008. http://www.
usatoday.com/tech/news/techpolicy/
2008-02-07-encrypted-laptop-child-porn
N.htm.

[15] Joan Daemen and Vincent Rijmen. The Design of
Rijndael. Springer-Verlag New York, Inc., Secau-
cus, NJ, USA, 2002.

[16] Advanced Micro Devices. MSRs of the
AMD64 architecture. AMD64 Architec-
ture Programmer’s Manual, 2:469–472, June
2010. http://support.amd.com/us/
Processor TechDocs/24593.pdf.

[17] Stefan Dziembowski and Krzysztof Pietrzak.
Leakage-resilient cryptography. In FOCS, pages
293–302, 2008.

[18] Jake Edge. Holes in the linux random number
generator? Linux Weekly News, 2006. http:
//lwn.net/Articles/184925/.

[19] David W. Foley. http://doj.nh.gov/
consumer/pdf/wackenhut.pdf, December
2010.

[20] Henri Gilbert and Thomas Peyrin. Super-sbox
cryptanalysis: Improved attacks for aes-like per-
mutations. Cryptology ePrint Archive, Report
2009/531, 2009. http://eprint.iacr.
org/.

[21] Trusted Computing Group. TCG plat-
form reset attack mitigation specification.
http://www.trustedcomputinggroup.

org/resources/pc client work group
platform reset attack mitigation
specification version 10/, 2008.

[22] Zvi Gutterman, Tzachy Reinman, and Benny
Pinkas. Analysis of the linux random number gen-
erator. In IEEE Symposium on Security and Pri-
vacy, 2006.

[23] J. Alex Halderman, Seth D. Schoen, Na-
dia Heninger, William Clarkson, William Paul,
Joseph A. Calandrino, Ariel J. Feldman, Jacob Ap-
pelbaum, and Edward W. Felten. Lest we remem-
ber: Cold boot attacks on encryption keys. In
Paul C. van Oorschot, editor, USENIX Security
Symposium, pages 45–60. USENIX Association,
2008.

[24] Zack Albus Markus Koesler, Franz Graf. Pro-
gramming a flash-based msp430 using a JTAG
interface. http://www.softbaugh.com/
downloads/slaa149.pdf, December 2002.

[25] Patrick McGregor, Tim Hollebeek, Alex Volynkin,
and Matthew White. Braving the cold: New meth-
ods for preventing cold boot attacks on encryption
keys, 2008.

[26] Tilo Müller, Andreas Dewald, and Felix C. Freiling.
Aesse: a cold-boot resistant implementation of aes.
In Proceedings of the Third European Workshop
on System Security, EUROSEC ’10, pages 42–47,
New York, NY, USA, 2010. ACM.

[27] Moni Naor and Gil Segev. Public-key cryptosys-
tems resilient to key leakage. In Proceedings of the
29th Annual International Cryptology Conference
on Advances in Cryptology, pages 18–35, Berlin,
Heidelberg, 2009. Springer-Verlag.

[28] Jürgen Pabel. http://frozencache.
blogspot.com, 2009.

[29] OpenSolaris Project. ZFS on-disk encryption
support. http://hub.opensolaris.
org/bin/view/Project+zfs-crypto/
WebHome.

[30] Jari Ruusu. http://loop-aes.
sourceforge.net/.

[31] Jari Ruusu. http://mail.nl.linux.org/
linux-crypto/2008-06/msg00002.
html, June 2008.

[32] Christophe Sauot. dm-crypt: A device-mapper
crypto target. http://www.saout.de/
misc/dm-crypt/.

12

[33] Bruce Schneier. Description of a new variable-
length key, 64-bit block cipher (blowfish). In Fast
Software Encryption, Cambridge Security Work-
shop, pages 191–204, London, UK, 1994. Springer-
Verlag.

[34] Freescale Semiconductor. Performance monitor
counter registers. MPC750 RISC Processor Family
User’s Manual, pages 378–382, December 2001.
http://www.freescale.com/files/
32bit/doc/ref manual/MPC750UM.pdf.

[35] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian
Perrig. SecVisor: a tiny hypervisor to provide life-
time kernel code integrity for commodity OSes.
SIGOPS Oper. Syst. Rev., 41:335–350, October
2007.

[36] Francois-Xavier Standaert, Olivier Pereira, Yu Yu,
Jean-Jacques Quisquater, Moti Yung, and Elisabeth
Oswald. Leakage resilient cryptography in prac-
tice. In David Basin, Ueli Maurer, Ahmad-Reza
Sadeghi, and David Naccache, editors, Towards
Hardware-Intrinsic Security, Information Security
and Cryptography, pages 99–134. Springer Berlin
Heidelberg, 2010.

[37] Allan Tomlinson. Introduction to the TPM.
http://courses.cs.vt.edu/cs5204/
fall10-kafura-BB/Papers/TPM/
Intro-TPM-2.pdf.

[38] Zhi Wang and Xuxian Jiang. Hypersafe: A
lightweight approach to provide lifetime hypervi-
sor control-flow integrity. In IEEE Symposium on
Security and Privacy, pages 380–395, 2010.

[39] Richard Zidlicky. http://www.spinics.
net/lists/crypto/msg04668.html,
2008.

13

