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Part 1: What is Automated Theorem Proving?

Automated Theorem Proving – Peter Baumgartner – p.3



What is (Automated) Theorem Proving?

An application-oriented subfield of logic in computer science and artificial

intelligence

About algorithms and their implementation on computer for reasoning

with mathematical logic formulas

Considers a variety of logics and reasoning tasks

Applications in logics in computer science

Program verification, dynamic properties of reactive systems, databases

Applications in logic-based artificial intelligence

Mathematical theorem proving, planning, diagnosis, knowledge

representation (description logics), logic programming, constraint solving
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Theorem Proving in Relation to ...

. . . Calculation: Compute function value at given point:

Problem: 22 = ? 32 = ? 42 = ?

“Easy” (often polynomial)

. . . Constraint Solving: Given:

Problem: x2 = a where x ∈ [1 . . . b]

(x variable, a, b parameters)

Instance: a = 16, b = 10

Find values for variables such that problem instance is satisfied

“Difficult” (often exponential, but restriction to finite domains)

First-Order Theorem Proving: Given:

Problem: ∃x (x2 = a ∧ x ∈ [1 . . . b])

Is it satisfiable? unsatisfiable? valid? ; Automated Logical Analysis!

“Very difficult” (often undecidable)
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Logical Analysis Example: N-Queens

The n-queens problem:

Given: An n × n chessboard

Question: Is it possible to place n queens so that no queen attacks any other?

A solution for n = 8

p[1] = 6

p[2] = 3

p[3] = 5

p[4] = 8

p[5] = 1

p[6] = 4

p[7] = 2

p[8] = 7

Use e.g. a constraint solver to find a solution
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Computing Solutions with a Constraint Solver

A Zinc model, ready to be “run”:

int: n = 8;

array [1..n] of var 1..n: p;

constraint

forall (i in 1..n, j in i + 1..n) (

p[i] != p[j]

/\ p[i] + i != p[j] + j

/\ p[i] - i != p[j] - j

);

solve satisfy;

output ["Solution: ", show(p), "\n"];

But, as said, constraint solving is not theorem proving.

What’s the rôle of theorem proving here?

Automated Theorem Proving – Peter Baumgartner – p.7



Logical Analysis Example: N-Queens

p[1] = 6

p[2] = 3

p[3] = 5

p[4] = 8

p[5] = 1

p[6] = 4

p[7] = 2

p[8] = 7

Number of solutions, depending on n:

“unique” is “distinct” modulo reflection/rotation symmetry

For efficiency reasons better avoid searching symmetric solutions
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Logical Analysis Example: N-Queens

p[1] = 6

p[2] = 3

p[3] = 5

p[4] = 8

p[5] = 1

p[6] = 4

p[7] = 2

p[8] = 7

The n-queens has variable symmetry: mapping p[i ] 7→ p[n + 1− i ]

preserves solutions

Therefore, it is justified to add (to the Zinc model) a constraint

p[1] < p[n], for search space pruning

But how can one know, in general, that a problem has symmetries?

Use a theorem prover!
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Part 2: Methods for Automated Theorem Proving
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How to Build a (First-Order) Theorem Prover

1. Fix an input language for formulas

2. Fix a semantics to define what the formulas mean

Will be always “classical” here

3. Determine the desired services from the theorem prover

(The questions we would like the prover be able to answer)

4. Design a calculus for the logic and the services

Calculus: high-level description of the “logical analysis” algorithm

This includes redundancy criteria for formulas and inferences

5. Prove the calculus is correct (sound and complete) wrt. the logic and the

services, if possible

6. Design a proof procedure for the calculus

7. Implement the proof procedure (research topic of its own)

Go through the red issues in the rest of this part 2
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Languages and Services — Propositional SAT

Question
Theorem Prover

No

Formula(s)
Yes

Formula: Propositional logic formula φ

Question: Is φ satisfiable?

(Minimal model? Maximal consistent subsets? )

Theorem Prover: Based on BDD, DPLL, or stochastic local search

Issue: the formula φ can be BIG
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DPLL as a Semantic Tree Method

(1) A ∨ B (2) C ∨ ¬A (3) D ∨ ¬C ∨ ¬A (4) ¬D ∨ ¬B

{} 6|= A ∨ B

{} |= C ∨ ¬A

{} |= D ∨ ¬C ∨ ¬A

{} |= ¬D ∨ ¬B

〈empty tree〉

A Branch stands for an interpretation

Purpose of splitting: satisfy a clause that is currently falsified

Close branch if some clause is plainly falsified by it (⋆)
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DPLL as a Semantic Tree Method

(1) A ∨ B (2) C ∨ ¬A (3) D ∨ ¬C ∨ ¬A (4) ¬D ∨ ¬B

{A} |= A ∨ B

{A} 6|= C ∨ ¬A

{A} |= D ∨ ¬C ∨ ¬A

{A} |= ¬D ∨ ¬B

A ¬A

A Branch stands for an interpretation

Purpose of splitting: satisfy a clause that is currently falsified

Close branch if some clause is plainly falsified by it (⋆)
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DPLL as a Semantic Tree Method

(1) A ∨ B (2) C ∨ ¬A (3) D ∨ ¬C ∨ ¬A (4) ¬D ∨ ¬B

{A,C} |= A ∨ B

{A,C} |= C ∨ ¬A

{A,C} 6|= D ∨ ¬C ∨ ¬A

{A,C} |= ¬D ∨ ¬B⋆

A

C ¬C

¬A

A Branch stands for an interpretation

Purpose of splitting: satisfy a clause that is currently falsified

Close branch if some clause is plainly falsified by it (⋆)
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DPLL as a Semantic Tree Method

(1) A ∨ B (2) C ∨ ¬A (3) D ∨ ¬C ∨ ¬A (4) ¬D ∨ ¬B

{A,C ,D} |= A ∨ B

{A,C ,D} |= C ∨ ¬A

{A,C ,D} |= D ∨ ¬C ∨ ¬A

{A,C ,D} |= ¬D ∨ ¬B

Model {A,C ,D} found.

A

C ¬C

D ¬D

¬A

⋆

⋆

A Branch stands for an interpretation

Purpose of splitting: satisfy a clause that is currently falsified

Close branch if some clause is plainly falsified by it (⋆)
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DPLL as a Semantic Tree Method

(1) A ∨ B (2) C ∨ ¬A (3) D ∨ ¬C ∨ ¬A (4) ¬D ∨ ¬B

{B} |= A ∨ B

{B} |= C ∨ ¬A

{B} |= D ∨ ¬C ∨ ¬A

{B} |= ¬D ∨ ¬B
B

A

C ¬C

D ¬D

¬A

¬B

⋆

⋆ ⋆

Model {B} found.

A Branch stands for an interpretation

Purpose of splitting: satisfy a clause that is currently falsified

Close branch if some clause is plainly falsified by it (⋆)

DPLL is the basis of most efficient SAT solvers today
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DPLL Pseudocode

literal L: a variable A or its negation ¬A

clause: a set of literals, e.g., {A,¬B ,C}, connected by “or”

function DPLL(φ) %% φ is a set of clauses, connected by "and"

while φ contains a unit clause {L}

φ := simplify(φ, L);

if φ = {} then return true;

if {} ∈ φ then return false;

L := choose-literal(φ);

if DPLL(simplify(φ, L)) then return true;

else return DPLL(simplify(φ, ¬L));

function simplify(φ, L)

remove all clauses from φ that contain L;

delete ¬L from all remaining clauses;

return the resulting clause set;
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Lemma Learning in DPLL
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Making DPLL Fast

Key ingredients

Lemma learning

plus (randomized) restarts

Variable selection heuristics (what literal to split on)

Make unit-propagation fast (2-watched literal technique)

N.B: modern SAT solvers don’t do “split”

“left split” literal A is marked as a “decision literal” instead

“right split” literal ¬A can be obtained by unit-propagation into a learned

clause {. . . ,¬A}
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Languages and Services — Description Logics

Question
Theorem Prover

No

Formula(s)
Yes

Formula: Description Logic TBox + ABox (restricted FOL)

TBox: Terminology

ABox: Assertions

Professor ⊓ ∃ supervises . Student ⊑ BusyPerson

p : Professor (p, s) : supervises

Question: Is TBox + ABox satisfiable?

(Does C subsume D?, Concept hierarchy?)

Theorem Prover: Tableaux algorithms (predominantly)

Issue: Push expressivity of DLs while preserving decidability
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Languages and Services — Satisfiability Modulo Theories (SMT)

Question
Theorem Prover

No

Formula(s)
Yes

Formula: Usually variable-free first-order logic formula φ

Equality
.
=, combination of theories, free symbols

Question: Is φ valid? (satisfiable? entailed by another formula?)

|=N∪L ∀l (c = 5→ car(cons(3 + c , l))
.
= 8)

Theorem Prover: DPLL(T), translation into SAT, first-order provers

Issue: essentially undecidable for non-variable free fragment

P(0) ∧ (∀x P(x)→ P(x + 1)) |=N ∀x P(x)

Design a “good” prover anyways (ongoing research)
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Languages and Services — “Full” First-Order Logic

Question
Theorem Prover

No (sometimes)

Formula(s)
Yes

Formula: First-order logic formula φ (e.g. the three-coloring spec above)

Usually with equality
.
=

Question: Is φ formula valid? (satisfiable?, entailed by another formula?)

Theorem Prover: Superposition (Resolution), Instance-based methods

Issues

Efficient treatment of equality

Decision procedure for sub-languages or useful reductions?

Can do e.g. DL reasoning? Model checking? Logic programming?

Built-in inference rules for arrays, lists, arithmetics (still open research)
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How to Build a (First-Order) Theorem Prover

1. Fix an input language for formulas

2. Fix a semantics to define what the formulas mean

Will be always “classical” here

3. Determine the desired services from the theorem prover

(The questions we would like the prover be able to answer)

4. Design a calculus for the logic and the services

Calculus: high-level description of the “logical analysis” algorithm

This includes redundancy criteria for formulas and inferences

5. Prove the calculus is correct (sound and complete) wrt. the logic and the

services, if possible

6. Design a proof procedure for the calculus

7. Implement the proof procedure (research topic of its own)

Automated Theorem Proving – Peter Baumgartner – p.25



Semantics

“The function f is continuous”, expressed in (first-order) predicate logic:

∀ε(0 < ε→ ∀a∃δ(0 < δ ∧ ∀x(|x − a| < δ → |f (x)− f (a)| < ε)))

Underlying Language

Variables ε, a, δ, x

Function symbols 0, | |, − , f ( )

Terms are well-formed expressions over variables and function symbols

Predicate symbols < , =

Atoms are applications of predicate symbols to terms

Boolean connectives ∧, ∨, →, ¬

Quantifiers ∀, ∃

The function symbols and predicate symbols comprise a signature Σ
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Semantics

“The function f is continuous”, expressed in (first-order) predicate logic:

∀ε(0 < ε→ ∀a∃δ(0 < δ ∧ ∀x(|x − a| < δ → |f (x)− f (a)| < ε)))

“Meaning” of Language Elements – Σ-Algebras

Universe (aka Domain): Set U

Variables 7→ values in U (mapping is called “assignment”)

Function symbols 7→ (total) functions over U

Predicate symbols 7→ relations over U

Boolean connectives 7→ the usual boolean functions

Quantifiers 7→ “for all ... holds”, “there is a ..., such that”

Terms 7→ values in U

Formulas 7→ Boolean (Truth-) values
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Semantics - Σ-Algebra Example

Let ΣPA be the standard signature of Peano Arithmetic

The standard interpretation N for Peano Arithmetic then is:

UN = {0, 1, 2, . . .}

0N = 0

sN : n 7→ n + 1

+N : (n,m) 7→ n +m

∗N : (n,m) 7→ n ∗m

≤N = {(n,m) | n less than or equal to m}

<N = {(n,m) | n less than m}

Note that N is just one out of many possible ΣPA-interpretations
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Semantics - Σ-Algebra Example

Evaluation of terms and formulas

Under the interpretation N and the assignment β : x 7→ 1, y 7→ 3 we obtain

(N,β)(s(x) + s(0)) = 3

(N,β)(x + y
.
= s(y)) = True

(N,β)(∀z z ≤ y) = False

(N,β)(∀x∃y x < y) = True

N(∀x∃y x < y) = True (Short notation when β irrelevant)

Important Basic Notion: Model

If φ is a closed formula, then, instead of I (φ) = True one writes

I |= φ (“I is a model of φ”)

E.g. N |= ∀x∃y x < y

Standard reasoning services can now be expressed semantically
Automated Theorem Proving – Peter Baumgartner – p.29



Services Semantically

E.g. “entailment”:

Axioms over R ∧ continuous(f ) ∧ continuous(g) |= continuous(f + g) ?

Services

Model(I ,φ): I |= φ ? (Is I a model for φ?)

Validity(φ): |= φ ? (I |= φ for every interpretation?)

Satisfiability(φ): φ satisfiable? (I |= φ for some interpretation?)

Entailment(φ,ψ): φ |= ψ ? (does φ entail ψ?, i.e.

for every interpretation I : if I |= φ then I |= ψ?)

Solve(I ,φ): find an assignment β such that I ,β |= φ

Solve(φ): find an interpretation and assignment β such that I ,β |= φ

Additional complication: fix interpretation of some symbols (as in N above)

What if theorem prover’s native service is only “Is φ

unsatisfiable?” ?
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Semantics - Reduction to Unsatisfiability

Suppose we want to prove an entailment φ |= ψ

Equivalently, prove |= φ→ ψ, i.e. that φ→ ψ is valid

Equivalently, prove that ¬(φ→ ψ) is not satisfiable (unsatisfiable)

Equivalently, prove that φ ∧ ¬ψ is unsatisfiable

Basis for (predominant) refutational theorem proving

Dual problem, much harder: to disprove an entailment φ |= ψ find a model of

φ ∧ ¬ψ

One motivation for (finite) model generation procedures
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How to Build a (First-Order) Theorem Prover

1. Fix an input language for formulas

2. Fix a semantics to define what the formulas mean

Will be always “classical” here

3. Determine the desired services from the theorem prover

(The questions we would like the prover be able to answer)

4. Design a calculus for the logic and the services

Calculus: high-level description of the “logical analysis” algorithm

This includes redundancy criteria for formulas and inferences

5. Prove the calculus is correct (sound and complete) wrt. the logic and the

services, if possible

6. Design a proof procedure for the calculus

7. Implement the proof procedure (research topic of its own)
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Calculus - Normal Forms

Most first-order theorem provers take formulas in clause normal form

Why Normal Forms?

Reduction of logical concepts (operators, quantifiers)

Reduction of syntactical structure (nesting of subformulas)

Can be exploited for efficient data structures and control

Translation into Clause Normal Form

Theorem Prover

Clausal
normal
Clause

form
normal
Skolem

form
normalFormula
Prenex

form

Prop: the given formula and its clause normal form are equi-satisfiable
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Prenex Normal Form

Prenex formulas have the form

Q1x1 . . .Qnxn F ,

where F is quantifier-free and Qi ∈ {∀, ∃}

Computing prenex normal form by the rewrite relation ⇒P :

(F ↔ G ) ⇒P (F → G ) ∧ (G → F )

¬QxF ⇒P Qx¬F (¬Q)

(QxF ρ G ) ⇒P Qy(F [y/x ] ρ G ), y fresh, ρ ∈ {∧,∨}

(QxF → G ) ⇒P Qy(F [y/x ]→ G ), y fresh

(F ρ QxG ) ⇒P Qy(F ρ G [y/x ]), y fresh, ρ ∈ {∧,∨,→}

Here Q denotes the quantifier dual to Q, i.e., ∀ = ∃ and ∃ = ∀.
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In the Example

∀ε(0 < ε→ ∀a∃δ(0 < δ ∧ ∀x(|x − a| < δ → |f (x)− f (a)| < ε)))

⇒P

∀ε∀a(0 < ε→ ∃δ(0 < δ ∧ ∀x(|x − a| < δ → |f (x)− f (a)| < ε)))

⇒P

∀ε∀a∃δ(0 < ε→ 0 < δ ∧ ∀x(|x − a| < δ → |f (x)− f (a)| < ε))

⇒P

∀ε∀a∃δ(0 < ε→ ∀x(0 < δ ∧ |x − a| < δ → |f (x)− f (a)| < ε))

⇒P

∀ε∀a∃δ∀x(0 < ε→ (0 < δ ∧ (|x − a| < δ → |f (x)− f (a)| < ε)))
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Skolem Normal Form

Theorem Prover

Clausal
normal
Clause

form
normal
Skolem

form
normalFormula
Prenex

form

Intuition: replacement of ∃y by a concrete choice function computing y from

all the arguments y depends on.

Transformation ⇒S

∀x1, . . . , xn∃y F ⇒S ∀x1, . . . , xn F [f (x1, . . . , xn)/y ]

where f /n is a new function symbol (Skolem function).

In the Example

∀ε∀a∃δ∀x(0 < ε→ 0 < δ ∧ (|x − a| < δ → |f (x)− f (a)| < ε))

⇒S

∀ε∀a∀x(0 < ε→ 0 < d(ε, a) ∧ (|x − a| < d(ε, a)→ |f (x)− f (a)| < ε))
Automated Theorem Proving – Peter Baumgartner – p.36



Clausal Normal Form (Conjunctive Normal Form)

Rules to convert the matrix of the formula in Skolem normal form into a

conjunction of disjunctions:

(F ↔ G ) ⇒K (F → G ) ∧ (G → F )

(F → G ) ⇒K (¬F ∨ G )

¬(F ∨ G ) ⇒K (¬F ∧ ¬G )

¬(F ∧ G ) ⇒K (¬F ∨ ¬G )

¬¬F ⇒K F

(F ∧ G ) ∨ H ⇒K (F ∨ H) ∧ (G ∨ H)

(F ∧ ⊤) ⇒K F

(F ∧ ⊥) ⇒K ⊥

(F ∨ ⊤) ⇒K ⊤

(F ∨ ⊥) ⇒K F

They are to be applied modulo associativity and commutativity of ∧ and ∨

Automated Theorem Proving – Peter Baumgartner – p.37



In the Example

∀ε∀a∀x(0 < ε→ 0 < d(ε, a) ∧ (|x − a| < d(ε, a)→ |f (x)− f (a)| < ε))

⇒K

0 < d(ε, a) ∨ ¬ (0 < ε)

¬ (|x − a| < d(ε, a)) ∨ |f (x)− f (a)| < ε ∨ ¬ (0 < ε)

Note: The universal quantifiers for the variables ε, a and x , as well as the

conjunction symbol ∧ between the clauses are not written, for convenience
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The Complete Picture

F
∗
⇒P Q1y1 . . .Qnyn G (G quantifier-free)

∗
⇒S ∀x1, . . . , xm H (m ≤ n, H quantifier-free)

∗
⇒K ∀x1, . . . , xm

︸ ︷︷ ︸

leave out

k∧

i=1

ni∨

j=1

Lij

︸ ︷︷ ︸

clauses Ci
︸ ︷︷ ︸

F ′

N = {C1, . . . ,Ck} is called the clausal (normal) form (CNF) of F

Note: the variables in the clauses are implicitly universally quantified

Instead of showing that F is unsatisfiable, the proof problem from now

is to show that N is unsatisfiable

Can do better than “searching through all interpretations”

Theorem: N is satisfiable iff it has a Herbrand model
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Herbrand Interpretations

A Herbrand interpretation (over a given signature Σ) is a Σ-algebra A such

that

The universe is the set TΣ of ground terms over Σ

(a ground term is a term without any variables ):

UA = TΣ

Every function symbol from Σ is “mapped to itself”:

fA : (s1, . . . , sn) 7→ f (s1, . . . , sn), where f is n-ary function symbol in Σ

Example

ΣPres = ({0/0, s/1,+/2}, {</2,≤/2})

UA = {0, s(0), s(s(0)), . . . , 0 + 0, s(0) + 0, . . . , s(0 + 0), s(s(0) + 0), . . .}

0 7→ 0, s(0) 7→ s(0), s(s(0)) 7→ s(s(0)), . . . , 0 + 0 7→ 0 + 0, . . .
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Herbrand Interpretations

Only interpretations pA of predicate symbols p ∈ Σ is undetermined in a

Herbrand interpretation

pA represented as the set of ground atoms

{p(s1, . . . , sn) | (s1, . . . , sn) ∈ pA where p ∈ Σ is n-ary predicate symbol}

Whole interpretation represented as
⋃

p∈Σ pA

Example

ΣPres = ({0/0, s/1,+/2}, {</2,≤/2}) (from above)

N as Herbrand interpretation over ΣPres

I = { 0 ≤ 0, 0 ≤ s(0), 0 ≤ s(s(0)), . . . ,

0 + 0 ≤ 0, 0 + 0 ≤ s(0), . . . ,

. . . , (s(0) + 0) + s(0) ≤ s(0) + (s(0) + s(0)), . . . }

Automated Theorem Proving – Peter Baumgartner – p.41



Herbrand’s Theorem

Proposition

A Skolem normal form ∀φ is unsatisfiable iff it has no Herbrand model

Theorem (Skolem-Herbrand-Theorem)

∀φ has no Herbrand model iff some finite set of ground instances

{φγ1, . . . ,φγn} is unsatisfiable

Applied to clause logic:

Theorem (Skolem-Herbrand-Theorem)

A set N of Σ-clauses is unsatisfiable iff some finite set of ground instances of

clauses from N is unsatisfiable

Leads immediately to theorem prover “Gilmore’s Method”
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Gilmore’s Method - Based on Herbrand’s Theorem

5

Outer LoopProof found

Grounding

Propositional
Method

ContinueSTOP:

¬P(f (a), a)

∧ ∀z ¬P(z, a)

Given Formula

P(f (a), a)
¬P(a, a)

P(f (x), x)
¬P(z, a)

Clause Form

P(f (a), a)
¬P(a, a)

∀x ∃y P(y , x)
Preprocessing:

Outer loop:

Inner loop: Sat?
No Yes
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Calculi for First-Order Logic Theorem Proving

Gilmore’s method reduces proof search in first-order logic to

propositional logic unsatisfiability problems

Main problem is the unguided generation of (very many) ground clauses

All modern calculi address this problem in one way or another, e.g.

Guidance: Instance-Based Methods are similar to Gilmore’s method

but generate ground instances in a guided way

Avoidance: Resolution calculi need not generate the ground

instances at all

Resolution inferences operate directly on clauses, not on their ground

instances

Next: propositional Resolution, lifting, first-order Resolution
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The Propositional Resolution Calculus Res

Modern versions of the first-order version of the resolution calculus [Robinson

1965] are (still) the most important calculi for FOTP today.

Propositional resolution inference rule:

C ∨ A ¬A ∨ D

C ∨ D

Terminology: C ∨ D: resolvent; A: resolved atom

Propositional (positive) factorisation inference rule:

C ∨ A ∨ A

C ∨ A

These are schematic inference rules:

C and D – propositional clauses

A – propositional atom

“∨” is considered associative and commutative
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Sample Proof

1. ¬A ∨ ¬A ∨ B (given)

2. A ∨ B (given)

3. ¬C ∨ ¬B (given)

4. C (given)

5. ¬A ∨ B ∨ B (Res. 2. into 1.)

6. ¬A ∨ B (Fact. 5.)

7. B ∨ B (Res. 2. into 6.)

8. B (Fact. 7.)

9. ¬C (Res. 8. into 3.)

10. ⊥ (Res. 4. into 9.)
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Soundness of Propositional Resolution

Proposition

Propositional resolution is sound

Proof:

Let I ∈ Σ-Alg. To be shown:

1. for resolution: I |= C ∨ A, I |= D ∨ ¬A ⇒ I |= C ∨ D

2. for factorization: I |= C ∨ A ∨ A ⇒ I |= C ∨ A

Ad (i): Assume premises are valid in I . Two cases need to be considered:

(a) A is valid in I , or (b) ¬A is valid in I .

a) I |= A⇒ I |= D ⇒ I |= C ∨ D

b) I |= ¬A⇒ I |= C ⇒ I |= C ∨ D

Ad (ii): even simpler
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Completeness of Propositional Resolution

Theorem:

Propositional Resolution is refutationally complete

That is, if a propositional clause set is unsatisfiable, then Resolution will

derive the empty clause ⊥ eventually

More precisely: If a clause set is unsatisfiable and closed under the

application of the Resolution and Factorization inference rules, then it

contains the empty clause ⊥

Perhaps easiest proof: semantic tree proof technique (see blackboard)

This result can be considerably strengthened, some strengthenings come

for free from the proof

Propositional resolution is not suitable for first-order clause sets
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Lifting Propositional Resolution to First-Order Resolution

Propositional resolution

Clauses Ground instances

P(f (x), y) {P(f (a), a), . . . ,P(f (f (a)), f (f (a))), . . .}

¬P(z , z) {¬P(a), . . . ,¬P(f (f (a)), f (f (a))), . . .}

Only common instances of P(f (x), y) and P(z , z) give rise to inference:

P(f (f (a)), f (f (a))) ¬P(f (f (a)), f (f (a)))

⊥

Unification

All common instances of P(f (x), y) and P(z , z) are instances of P(f (x), f (x))

P(f (x), f (x)) is computed deterministically by unification

First-order resolution
P(f (x), y) ¬P(z , z)

⊥

Justified by existence of P(f (x), f (x))

Can represent infinitely many propositional resolution inferences
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Substitutions and Unifiers

A substitution σ is a mapping from variables to terms which is the

identity almost everywhere

Example: σ = [y 7→ f (x), z 7→ f (x)]

A substitution can be applied to a term or atom t, written as tσ

Example, where σ is from above: P(f (x), y)σ = P(f (x), f (x))

A substitution γ is a unifier of s and t iff sγ = tγ

Example: γ = [x 7→ a, y 7→ f (a), z 7→ f (a)] is a unifier of P(f (x), y) and

P(z , z)

A unifier σ of s is most general iff for every unifier γ of s and t there is

a substitution δ such that γ = σ ◦ δ; notation: σ = mgu(s, t)

Example: σ = [y 7→ f (x), z 7→ f (x)] = mgu(P(f (x), y),P(z , z))

There are (linear) algorithms to compute mgu’s or return “fail”
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Resolution for First-Order Clauses

C ∨ A D ∨ ¬B

(C ∨ D)σ
if σ = mgu(A,B) [resolution]

C ∨ A ∨ B

(C ∨ A)σ
if σ = mgu(A,B) [factorization]

In both cases, A and B have to be renamed apart (made variable disjoint).

Example

Q(z) ∨ P(z , z) ¬P(x , y)

Q(x)
where σ = [z 7→ x , y 7→ x ] [resolution]

Q(z) ∨ P(z , a) ∨ P(a, y)

Q(a) ∨ P(a, a)
where σ = [z 7→ a, y 7→ a] [factorization]
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Completeness of First-Order Resolution

Theorem: Resolution is refutationally complete

That is, if a clause set is unsatisfiable, then Resolution will derive the

empty clause ⊥ eventually

More precisely: If a clause set is unsatisfiable and closed under the

application of the Resolution and Factorization inference rules, then it

contains the empty clause ⊥

Perhaps easiest proof: Herbrand Theorem + completeness of

propositional resolution + Lifting Theorem (see blackboard)

Lifting Theorem: the conclusion of any propositional inference on

ground instances of first-order clauses can be obtained by instantiating

the conclusion of a first-order inference on the first-order clauses

Closure can be achieved by the “Given Clause Loop”
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The “Given Clause Loop”

As used in the Otter theorem prover:

Lists of clauses maintained by the algorithm: usable and sos.

Initialize sos with the input clauses, usable empty.

Algorithm (straight from the Otter manual):

While (sos is not empty and no refutation has been found)

1. Let given_clause be the ‘lightest’ clause in sos;

2. Move given_clause from sos to usable;

3. Infer and process new clauses using the inference rules in

effect; each new clause must have the given_clause as

one of its parents and members of usable as its other

parents; new clauses that pass the retention tests

are appended to sos;

End of while loop.

Fairness: define clause weight e.g. as “depth + length” of clause.
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The “Given Clause Loop” - Graphically
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Calculi for First-Order Logic Theorem Proving

Recall:

Gilmore’s method reduces proof search in first-order logic to

propositional logic unsatisfiability problems

Main problem is the unguided generation of (very many) ground clauses

All modern calculi address this problem in one way or another, e.g.

Guidance: Instance-Based Methods are similar to Gilmore’s method

but generate ground instances in a guided way

Avoidance: Resolution calculi need not generate the ground

instances at all

Resolution inferences operate directly on clauses, not on their ground

instances

There are alternatives to resolution
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Families of First-Order Logic Calculi

Consider a transitivity clause P(x , z)← P(x , y) ∧ P(y , z).

Resolution:

P(x , z ′)← P(x , y) ∧ P(y , z) ∧ P(z , z ′)

[Bachmair &

Ganzinger, Handbook

AR 2001], [Fermüller

et. al., Handbook AR

2001]

P(x , z ′′)← P(x , y) ∧ P(y , z) ∧ P(z , z ′) ∧ P(z ′, z ′′)

Does not terminate for function-free clause sets

Complicated to extract model

Very good on other classes, Equality

Rigid Variable Approaches:

P(x ′, z ′)← P(x ′, y ′) ∧ P(y ′, z ′)

P(x ′′, z ′′)← P(x ′′, y ′′) ∧ P(y ′′, z ′′)
Tableaux and Connection

Methods

Unpredictable number of variants, weak redundancy test

Difficult to avoid unnecessary (!) backtracking

Difficult to extract model
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Families of First-Order Logic Calculi

Consider a transitivity clause P(x , z)← P(x , y) ∧ P(y , z).

Instance Based Methods:

P(x , z)← P(x , y) ∧ P(y , z)

P(a, z)← P(a, y) ∧ P(y , b)

FDPLL, Model Evolution,

Inst-Gen, Disconnection Tableaux,

Overview paper on my web page

Weak redundancy criterion (no subsumption)

Need to keep clause instances (memory problem)

Clauses do not become longer (cf. Resolution)

May delete variant clauses (cf. Rigid Variable Approach)

Next: FDPLL as an example of a simple instance-based method
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Instance-Based Method – FDPLL

Lifted data structures:

Propositional
Reasoning

First-Order
Reasoning

Clauses ¬A ∨ B ∨ C ¬P(x , x) ∨ P(x , a) ∨ Q(x , x)

Trees

⋆

B

A ¬A

¬B

C ¬C Q(x , y)

¬P(x , y)

¬P(x , a) P(x , a)

¬Q(x , y)
⋆

P(x , y)

First-Order Semantic Trees
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First-Order Semantic Trees

Q(x , y)

¬P(x , y)

¬P(x , a) P(x , a)

¬Q(x , y)
⋆

P(x , y)

Issues:

One-branch-at-a-time approach desired

How are variables treated?

(a) Universal, as in Resolution?, (b) Rigid, as in Tableaux? (c)

Schema!

How to extract an interpretation from a branch?

When is a branch closed?

How to construct such trees (calculus)?
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Extracting an Interpretation from a Branch

Branch B:

P(x , y)

Interpretation [[B]] = {...}:

A branch literal specifies the truth values for all its ground instances,

unless there is a more specific literal specifying opposite truth values.
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Extracting an Interpretation from a Branch

P(a, a)

P(a, b)

P(b, a)

P(b, b)

P(x , y)

Interpretation [[B]] = {...}:Branch B:

A branch literal specifies the truth values for all its ground instances,

unless there is a more specific literal specifying opposite truth values.
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Extracting an Interpretation from a Branch

Branch B:

P(a, a)

P(a, b)

P(b, a)

P(b, b)

P(x , y)

¬P(a, y)

Interpretation [[B]] = {...}:

A branch literal specifies the truth values for all its ground instances,

unless there is a more specific literal specifying opposite truth values.
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Extracting an Interpretation from a Branch

¬P(a, a)

¬P(a, b)

P(b, a)

P(b, b)

P(x , y)

¬P(a, y)

Interpretation [[B]] = {...}:Branch B:

A branch literal specifies the truth values for all its ground instances,

unless there is a more specific literal specifying opposite truth values.
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Extracting an Interpretation from a Branch

Branch B:

¬P(a, a)

¬P(a, b)

P(b, a)

P(b, b)

P(x , y)

¬P(a, y)

¬P(b, b)

Interpretation [[B]] = {...}:

A branch literal specifies the truth values for all its ground instances,

unless there is a more specific literal specifying opposite truth values.
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Extracting an Interpretation from a Branch

¬P(a, b)

P(b, a)

¬P(b, b)

P(x , y)

¬P(a, y)

¬P(b, b)

Interpretation [[B]] = {...}:Branch B:

¬P(a, a)

A branch literal specifies the truth values for all its ground instances,

unless there is a more specific literal specifying opposite truth values.
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Extracting an Interpretation from a Branch

Branch B:

¬P(a, a)

¬P(a, b)

P(b, a)

¬P(b, b)

P(x , y)

¬P(a, y)

¬P(b, b)

P(a, b)

Interpretation [[B]] = {...}:

A branch literal specifies the truth values for all its ground instances,

unless there is a more specific literal specifying opposite truth values.
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Extracting an Interpretation from a Branch

¬P(a, a)

P(a, b)

P(b, a)

¬P(b, b)

P(x , y)

¬P(a, y)

¬P(b, b)

P(a, b)

Interpretation [[B]] = {...}:Branch B:

A branch literal specifies the truth values for all its ground instances,

unless there is a more specific literal specifying opposite truth values.
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Extracting an Interpretation from a Branch

Branch B: Interpretation [[B]] = {. . .}:

{

}

, ,

,

P(x , y)

P(a, b)

P(a, b)

¬P(a, y)

¬P(b, b)

¬P(a, a) P(b, a)

¬P(b, b)

A branch literal specifies the truth values for all its ground instances,

unless there is a more specific literal specifying opposite truth values.

The order of literals does not matter.
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Calculus: Branch Closure

Purpose: Determine if branch elementary contradicts an input clause.

2First-Order case: 5

¬Q(x , y)

¬P(x , a)

¬P(x , y)P(x , y)

Q(x , y) P(x , y) ∨ Q(x , x)

P(x , a)

⋆
closed by

1. 4Replace all variables in tree by a constant $. Gives propositional tree

2. 5Compute matcher γ to propositionally close branch

3. 5Mark branch as closed (⋆)
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FDPLL Calculus

Input: a clause set S

Output: “unsatisfiable” or “satisfiable” (if terminates)

Note: Strategy much like in inner loop of propositional DPLL:

branch B unsatisfiable
and split B

with L and ¬L

satisfiable

Select literal L

L

⋆⋆

No

[[B]]
?

|= S

Yes
⋆ ⋆

Closed?

STOP:

STOP:

No

Select open

Yes¬L

Next: Testing [[B]] |= S and splitting
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Calculus: The Splitting Rule

Purpose: Satisfy a clause that is currently “false”

5

¬P(a, b) P(x , y) ∨ ¬P(y , x)

¬P(a, y ′)

P(y ′′, x′′)

{¬P(a, c),P(c, a), . . .} P(a, c) ∨ ¬P(c, a)6|=P(y , a)¬P(y , a)

1. 3Compute simultaneous most general unifier σ

2. 4Select from clause instance a literal not on branch

3. 5Split with this literal

This split was really necessary!

Proposition: If [[B]] 6|= S, then split is applicable to some clause from S
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Calculus: The Splitting Rule – Another Example

Purpose: Satisfy a clause that is currently “false”
3

P(a, y) ∨ ¬P(a, a)

σ = {x/a, . . .}

P(y ′′, x′′)

¬P(a, y ′)

¬P(a, b) P(x , y) ∨ ¬P(a, x)

1. 3Compute MGU σ of clause against branch literals

2. 4If clause contains “true” literal, then split is not applicable

Non-applicability is a redundancy test

Proposition: If for no clause split is applicable, [[B]] |= S holds
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Calculus: Summary / Properties

Summary

DPLL data structure lifted to first-order logic level

Two simple inference rules, controlled by unification

Computes with interpretations/models

Semantical redundancy criterion

Properties

Soundness and completeness (with fair strategy).

Extension: More efficient reasoning with unit clauses (e.g. ∀x P(x , a))

Proof convergence (avoids backtracking the semantics trees)

Decides function-free clause logic (Bernays-Schönfinkel class)

Covers e.g. Basic modal logic, Description logic, DataLog

Returns model in satisfiable case

Can be combined with Resolution, equality inference rules
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Model Generation

Scenario: no “theorem” to prove, or disprove a “theorem”

A model provides further information then

Why compute models?

Planning: Can be formalised as propositional satisfiability problem.

[Kautz& Selman, AAAI96; Dimopolous et al, ECP97]

Diagnosis: Minimal models of abnormal literals (circumscription). [Reiter, AI87]

Databases: View materialisation, View Updates, Integrity Constraints.

Nonmonotonic reasoning: Various semantics (GCWA, Well-founded, Perfect,

Stable,. . . ), all based on minimal models. [Inoue et al, CADE 92]

Software Verification: Counterexamples to conjectured theorems.

Theorem proving: Counterexamples to conjectured theorems.

Finite models of quasigroups, (MGTP/G). [Fujita et al, IJCAI 93]
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Model Generation

Why compute models (cont’d)?

Natural Language Processing:

Maintain models I1, . . . , In as different readings of discourses:

Ii |= BG -Knowledge ∪ Discourse so far

Consistency checks (“Mia’s husband loves Sally. She is not married.”)

BG -Knowledge ∪ Discourse so far 6|= ¬New utterance

iff BG -Knowledge ∪ Discourse so far ∪ New utterance is satisfiable

Informativity checks (“Mia’s husband loves Sally. She is married.”)

BG -Knowledge ∪ Discourse so far 6|= New utterance

iff BG -Knowledge ∪ Discourse so far ∪ ¬New utterance is satisfiable

Automated Theorem Proving – Peter Baumgartner – p.67



Example - Group Theory

The following axioms specify a group

∀x , y , z : (x ∗ y) ∗ z = x ∗ (y ∗ z) (associativity)

∀x : e ∗ x = x (left− identity)

∀x : i(x) ∗ x = e (left− inverse)

Does

∀x , y : x ∗ y = y ∗ x (commutat.)

follow?

No, it does not
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Example - Group Theory

Counterexample: a group with finite domain of size 6, where the elements 2

and 3 are not commutative: Domain: {1, 2, 3, 4, 5, 6}

e : 1

i :
1 2 3 4 5 6

1 2 3 5 4 6

∗ :

1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 1 4 3 6 5

3 3 5 1 6 2 4

4 4 6 2 5 1 3

5 5 3 6 1 4 2

6 6 4 5 2 3 1
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Finite Model Finders - Idea

Assume a fixed domain size n.

Use a tool to decide if there exists a model with domain size n for a given

problem.

Do this starting with n = 1 with increasing n until a model is found.

Note: domain of size n will consist of {1, . . . , n}.
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1. Approach: SEM-style

Tools: SEM, Finder, Mace4

Specialized constraint solvers.

For a given domain generate all ground instances of the clause.

Example: For domain size 2 and clause p(a, g(x)) the instances are

p(a, g(1)) and p(a, g(2)).
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1. Approach: SEM-style

Set up multiplication tables for all symbols with the whole domain as cell

values.

Example: For domain size 2 and function symbol g with arity 1 the cells

are g(1) = {1, 2} and g(2) = {1, 2}.

Try to restrict each cell to exactly 1 value.

The clauses are the constraints guiding the search and propagation.

Example: if the cell of a contains {1}, the clause a = b forces the cell of b

to be {1} as well.
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2. Approach: Mace-style

Tools: Mace2, Paradox

For given domain size n transform first-order clause set into equisatisfiable

propositional clause set.

Original problem has a model of domain size n iff the transformed

problem is satisfiable.

Run SAT solver on transformed problem and translate model back.
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Paradox - Example

Domain: {1, 2}

Clauses: {p(a) ∨ f (x) = a}

Flattened: p(y) ∨ f (x) = y ∨ a 6= y

Instances: p(1) ∨ f (1) = 1 ∨ a 6= 1

p(2) ∨ f (1) = 1 ∨ a 6= 2

p(1) ∨ f (2) = 1 ∨ a 6= 1

p(2) ∨ f (2) = 1 ∨ a 6= 2

Totality: a = 1 ∨ a = 2

f (1) = 1 ∨ f (1) = 2

f (2) = 1 ∨ f (2) = 2

Functionality: a 6= 1 ∨ a 6= 2

f (1) 6= 1 ∨ f (1) 6= 2

f (2) 6= 1 ∨ f (2) 6= 2

A model is obtained by setting the blue literals true
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Part 3: Theory Reasoning
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Theory Reasoning

Let T be a first-order theory of signature Σ

Let L be a class of Σ-formulas

The T -validity Problem

Given φ in L, is it the case that T |= φ ? More accurately:

Given φ in L, is it the case that T |= ∀ φ ?

Examples

“0/0, s/1, +/2, = /2, ≤ /2′′ |= ∃y .y > x

The theory of equality E |= φ (φ arbitrary formula)

“An equational theory” |= ∃ s1 = t1 ∧ · · · ∧ sn = tn

(E-Unification problem)

“Some group theory” |= s = t (Word problem)

The T -validity problem is decidably only for restricted L and T
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Approaches to Theory Reasoning

Theory-Reasoning in Automated First-Order Theorem Proving

Semi-decide the T -validity problem, T |= φ ?

φ arbitrary first-order formula, T universal theory

Generality is strength and weakness at the same time

Really successful only for specific instance:

T = equality, inference rules like paramodulation

Satisfiability Modulo Theories (SMT)

Decide the T -validity problem, T |= φ ?

Usual restriction: φ is quantifier-free, i.e. all variables implicitly

universally quantified

Applications in particular to formal verification

Trivial example:

“arrays+integers” |= m ≥ 0 ∧ a[i ] ≥ 0 ∧ a′[i ] = a[i ] +m→ a′[i ] ≥ 0
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Checking Satisfiability Modulo Theories

Given: A quantifier-free formula φ (implicitly existentially quantified)

Task: Decide whether φ is T-satisfiable

(T -validity via “T |= ∀ φ” iff “∃ ¬φ is not T -satisfiable”)

Approach: eager translation into SAT

Encode problem into a T -equisatisfiable propositional formula

Feed formula to a SAT-solver

Example: T = equality (Ackermann encoding)

Approach: lazy translation into SAT

Couple a SAT solver with a given decision procedure for T-satisfiability

of ground literals

For instance if T is “equality” then the Nelson-Oppen congruence

closure method can be used

If T is “linear arithmetic”, a quantifier elimination method (see below)
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Lazy Translation into SAT
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Lazy Translation into SAT
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Lazy Translation into SAT
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Lazy Translation into SAT
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Lazy Translation into SAT
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Lazy Translation into SAT
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Lazy Translation into SAT
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Lazy Translation into SAT: Summary

Abstract T -atoms as propositional variables

SAT solver computes a model, i.e. satisfying boolean assignment for

propositional abstraction (or fails)

Solution from SAT solver may not be a T -model. If so,

Refine (strengthen) propositional formula by incorporating reason for

false solution

Start again with computing a model
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Optimizations

Theory Consequences

The theory solver may return consequences (typically literals) to guide

the SAT solver

Online SAT solving

The SAT solver continues its search after accepting additional clauses

(rather than restarting from scratch)

Preprocessing atoms

Atoms are rewritten into normal form, using theory-specific atoms (e.g.

associativity, commutativity)

Several layers of decision procedures

“Cheaper” ones are applied first
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Combining Theories
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Nelson-Oppen Combination Method
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Nelson-Oppen Combination Method
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Nelson-Oppen Combination Method
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Nelson-Oppen Combination Method
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Nelson-Oppen Combination Method
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Nelson-Oppen Combination Method
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Nelson-Oppen Combination Method
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Nelson-Oppen Combination Method
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Nelson-Oppen Combination Method
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Nelson-Oppen Combination Method
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Linear Arithmetic Decision Problems

(Slides by Michael Norrish)

If the language is rich enough (has multiplication, has quantifiers),

deciding the validity of arbitrary mathmatical formulas (over Z or N) is

impossible.

With a more impoverished language, a theory may be decidable.

Historically, this research was part of the attempt to determine the limits

of decidability.

In the present, techniques similar to these are used to solve real-world

problems, in a huge variety of systems.
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Linear Arithmetic Formulas

formula ::= formula ∧ formula | formula ∨ formula |

¬formula | ∃var. formula | ∀var. formula |

term relop term

term ::= numeral | term + term | − term |

numeral ∗ term | var

relop ::= < | ≤ | = | ≥ | >

var ::= x | y | z . . .

numeral ::= 0 | 1 | 2 . . .

numeral ∗ term isn’t really multiplication; it’s short-hand for

term + term + · · ·+ term.
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Decision Procedures

The aim is to produce an algorithm for determining whether or not a

Presburger formula is valid with respect to the standard interpretation in

arithmetic.

Such an algorithm is a decision procedure if it is sure to correctly say

“true” or “false” for all closed formulas.

Will discuss algorithms for determining truth of formulas of Presburger

arithmetic:

Fourier-Motzkin variable elimination (FMVE), when variables are

from R (or Q)

Omega Test when variables are from Z (or N)

Cooper’s algorithm for Z (or N)
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Quantifier Elimination

All the methods we’ll look at are quantifier elimination procedures.

If a formula with no free variables has no quantifiers, then it is easy to

determine its truth value, e.g., 10 > 11 ∨ 3 + 4 < 5× 3− 6.

Quantifier elimination works by taking input P with n quantifiers and

turning it into equvalent formula P ′ with m quantifiers, and where m < n.

So, eventually

P ↔ P ′ ↔ ...↔ Q

and Q has no quantifiers.

Q will be trivially true or false, and that’s the decision
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Normalisation

Methods require input formulas to be normalised (e.g., collect

coefficients, use only < and ≤)

Methods eliminate innermost existential quantifiers. Universal quantifiers

are normalised with

(∀x . P(x))↔ ¬(∃x . ¬P(x))

In FMVE, the sub-formula under the innermost existential quantifier must

be a conjunction of relations.

This means the inner formula must be converted to disjunctive normal

form (DNF):

(c11 ∧ c12 ∧ · · · ∧ c1n1) ∨ · · · ∨ (cm1 ∧ cm2 ∧ · · · ∧ cmnm)
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Disjunctive Normal Form

Transform with equivalences

p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r)

(p ∨ q) ∧ r ↔ (p ∧ r) ∨ (q ∧ r)

Possibly exponential cost.

Must have also moved negations inwards, achieving Negation Normal Form,

using

¬(p ∧ q) ↔ ¬p ∨ ¬q

¬(p ∨ q) ↔ ¬p ∧ ¬q

¬¬p ↔ p
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Normalisation (cont.)

The formula under ∃ is in DNF.

Next, the ∃ must be moved inwards

First over disjuncts, using

(∃x .P ∨ Q)↔ (∃x . P) ∨ (∃x . Q)

Must then ensure every conjunct under the quantifier mentions the bound

variable.

Use

(∃x . P(x) ∧ Q)↔ (∃x . P(x)) ∧ Q

For example

(∃x . 3 < x ∧ x + 2y ≤ 6 ∧ y < 0) −→

(∃x . 3 < x ∧ x + 2y ≤ 6) ∧ y < 0
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Linear Real Number Arithmetic – Fourier-Motzkin theorems

The following simple facts are the basis for a very simple-minded quantifier

elimination procedure.

Over R (or Q), with a, b > 0:

(∃x . c ≤ ax ∧ bx ≤ d) ↔ bc ≤ ad

(∃x . c < ax ∧ bx ≤ d) ↔ bc < ad

(∃x . c ≤ ax ∧ bx < d) ↔ bc < ad

(∃x . c < ax ∧ bx < d) ↔ bc < ad

In all four, the right hand side is implied by the left because of transitivity

(e.g., x < y ∧ y ≤ z ⇒ x < z).
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Fourier-Motzkin theorems (cont.)

In the other direction:

bc < ad ⇒ (∃x . c < ax ∧ bx ≤ d)

take x to be d
b
: c < a( d

b
), and b( d

b
) ≤ d .

For

bc < ad ⇒ (∃x . c < ax ∧ bx < d)

take x to be bc+ad
2ab :

c < a

(
bc + ad

2ab

)

↔ 2bc < bc + ad ↔ bc < ad

(and similarly for the other bound)
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Extending to a full procedure

So far: a quantifier elimination procedure for formulas where quantifiers

only ever have scope over 1 upper bound, and 1 lower bound.

The method needs to extend to cover cases with multiple constraints.

No lower bound, many upper bounds:

(∃x . b1x < d1 ∧ b2x < d2 · · · ∧ bnx < dn)

Verdict: True! (take min( di
bi
)− 1 as witness for x)

No upper bound, many lower bounds: obviously analogous.
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Combining many constraints—I

Example:

(∃x . c ≤ ax ∧ b1x ≤ d1 ∧ b2x ≤ d2)↔ b1c ≤ ad1 ∧ b2c ≤ ad2

From left to right, result just depends on transitivity.

From right to left, take x to be min( d1
b1
, d2
b2
).

In general, with many constraints, combine all possible lower-upper bound

pairs.

(Proof that this is possible is by induction on number of constraints.)
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Combining many constraints—II

The core elimination formula is

∃x . (
∧

h ch ≤ ahx) ∧ (
∧

i ci < aix) ∧ (
∧

j bjx ≤ dj) ∧ (
∧

k bkx < dk)

↔

(
∧

h,j bjch ≤ ahdj) ∧ (
∧

h,k bkch < ahdk) ∧

(
∧

i ,j bjci < aidj) ∧ (
∧

i ,k bkci < aidk)

With n constraints initially, evenly divided between upper and lower bounds,

this formula generates n2

4 new constraints.

Automated Theorem Proving – Peter Baumgartner – p.110



FMVE example

∀x . 20 + x ≤ 0 ⇒ ∃y . 3y + x ≤ 10 ∧ 20 ≤ y − x

(re-arrange)

↔ ∀x . 20 + x ≤ 0 ⇒ ∃y . 20 + x ≤ y ∧ 3y ≤ 10− x

(eliminate y)

↔ ∀x . 20 + x ≤ 0 ⇒ 60 + 3x ≤ 10− x

(re-arrange)

↔ ∀x . 20 + x ≤ 0 ⇒ 4x + 50 ≤ 0

(normalise universal)

↔ ¬∃x . 20 + x ≤ 0 ∧ 0 < 4x + 50

(re-arrange)

↔ ¬∃x . − 50 < 4x ∧ x ≤ −20

(eliminate x)

↔ ¬(−50 < −80) ↔ ⊤
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Efficiency

As before, when eliminating an existential over n constraints we may

introduce n2

4 new constraints.

With k quantifiers to eliminate, we might end with

n2
k

4k

constraints.

If dealing with alternating quantifiers, repeated conversions to DNF may

really hurt.
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Expressivity

Unique existence:

(∃!x . P(x))↔ (∃x . P(x) ∧ ∀y . P(y)⇒ (y = x))

Conditional expressions:

if formula1 then formula2 else formula3 is the same as

(formula1 ∧ formula2) ∨ (¬formula1 ∧ formula3)

if-then-else expressions over term, can be moved up and out to be

over formulas:

(if x < y then x else y) < z

↔

if x < y then x < z else y < z

Minimum, maximum, absolute value. . .
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Constraint satisfaction, optimisation

It’s possible to make the algorithm return witnesses to purely existential

problems.

E.g.,

∃x y . 3x + 4y = 18 ∧ 5x − y ≤ 7

might return {(x , 2), (y , 3)} (or {(x , 2
3 ), (y , 4)}, or . . . ).

Can also maximise (minimise) z in system ∃~x z . P(~x , z):

First check ∃~x z . P(~x , z)

If it has a solution, check

∃z . (∃~x . P(~x , z)) ∧ (∀~x z ′. P(~x , z ′) ⇒ z ′ ≤ z)

If there is a maximum solution for z , this will find it

Note alternation of quantifiers!
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Integer Decision Procedures – Expressivity—I

Can’t do primality

prime(x)↔ ¬∃y z . x = yz ∧ 1 < y < x

because of restriction on multiplication

Can do divisibility by specific numerals:

2|e ↔ ∃x . 2x = e

and so (for example):

∀x . 0 < x < 30 ⇒ ¬(2|x ∧ 3|x ∧ 5|x)
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Expressivity over Integers—II

Can do integer division and modulus, as long as divisor is constant

Use one of the following results (similar for division)

P(x mod d) ↔

∃q r . (x = qd + r) ∧ (0 ≤ r < d ∨ d < r ≤ 0) ∧ P(r)

P(x mod d) ↔

∀q r . (x = qd + r) ∧ (0 ≤ r < d ∨ d < r ≤ 0)⇒ P(r)

Any formula involving modulus or integer division by a constant can be

translated to one without.

When d is known, one of the disjuncts will immediately simplify away to

false.
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Expressivity over Integers—III

Any procedure for Z trivially extends to be one for N (or any mixture of N

and Z) too: add extra constraints stating that variables are ≥ 0

Ignore non-Presburger sub-terms by trying to prove more general goals.

For example,

∀x y . xy > 6⇒ 2xy > 13

becomes

∀z . z > 6⇒ 2z > 13
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One Nice Thing About the Integers

The relations < and ≤ are inter-convertible:

x ≤ y ↔ x < y + 1

x < y ↔ x + 1 ≤ y

Decision procedures can normalise one relation into the other.
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Fourier-Motzkin for Integers?

Central theorem is false:

(∃x : Z. 3 ≤ 2x ≤ 3) 6↔ 6 ≤ 6

But one direction still works (thanks to transitivity):

(∃x . c ≤ ax ∧ bx ≤ d) ⇒ bc ≤ ad

We can compute consequences of existentially quantified formulas
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Fourier-Motzkin for Integers?

Have

(∃x . c ≤ ax ∧ bx ≤ d) ⇒ bc ≤ ad

Thus an incomplete procedure for universal formulas over Z:

1. Compute negation: (∀x . P(x))↔ ¬(∃x . ¬P(x))

2. Compute consequences:

if (∃x . ¬P(x))⇒ ⊥ then (∃x . ¬P(x))↔ ⊥

and

(∀x . P(x))↔ ⊤

(Repeat for all quantified variables.)

This is Phase 1 of the Omega Test (when there are no alternating quantifiers)
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Omega Phase 1—Example

∀x y : Z. 0 < x ∧ y < x ⇒ y + 1 < 2x

(normalise)

↔ ¬∃x y . 1 ≤ x ∧ y + 1 ≤ x ∧ 2x ≤ y + 1

∃x y . 1 ≤ x ∧ y + 1 ≤ x ∧ 2x ≤ y + 1

(eliminate y)

⇒ ∃x . 1 ≤ x ∧ 2x ≤ x

(normalise)

⇒ ∃x . 1 ≤ x ∧ x ≤ 0

(eliminate x)

⇒ 1 ≤ 0 (↔ ⊥)
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Omega Phase 1 and the Interactive Theorem-Provers

The Omega Test’s Phase 1 is used by systems like Coq, HOL4, HOL Light

and Isabelle to decide arithmetic problems.

Against:

it’s incomplete

it’s inefficient

conversion to DNF

quadratic increase in numbers of constraints

For:

it’s easy to implement

it’s easy to adapt the procedures to create proofs that can be checked by

other tools

FMVE can be extended to a complete method (see literature)
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Cooper’s Algorithm

A non-Fourier-Motzkin alternative:

Cooper’s algorithm is a decision procedure for (integer) Presburger

arithmetic.

It is also a quantifier elimination procedure, which also works from the

inside out, eliminating existentials.

Its big advantage is that it doesn’t need to normalise input formulas to

DNF.

Description is of simplest possible implementation: many tweaks are possible.
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Cooper’s Algorithm: outline

To eliminate the quantifier in ∃x . P(x):

1. Normalise so that only operators are <, and divisibility (c |e), and

negations only occur around divisibility leaves.

2. Compute least common multiple of all coefficients of x , and multiply all

leaves through by appropriate numbers so that every leaf features x

multiplied by the same number c .

3. Now apply (∃x . P(cx))↔ (∃x . P(x) ∧ c |x).
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Cooper’s Algorithm: normalisation

∀x y : Z. 0 < y ∧ x < y ⇒ x + 1 < 2y

(normalise)

↔ ¬∃x y . 0 < y ∧ x < y ∧ 2y < x + 2

(transform y to 2y everywhere)

↔ ¬∃x y . 0 < 2y ∧ 2x < 2y ∧ 2y < x + 2

(give y unit coefficient)

↔ ¬∃x y . 0 < y ∧ 2x < y ∧ y < x + 2 ∧ 2 | y
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Cooper’s Algorithm: two cases

How might ∃x . P(x) be true?

Either:

there is a least x making P true; or

there is no least x : however small you go, there will be a smaller x that

still makes P true

Construct two formulas corresponding to both cases.
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Cooper’s Algorithm: infinitely many small solutions

The case when the values of x satisfying P “go all the way down”.

Look at the leaf formulas in P , and think about their values when x has been

made arbitrarily small:

x < e: if x goes as small as we like, this will be true

e < x : if x goes small, this will be false

c |x + e: unchanged

This constructs P−∞, a formula where x only occurs in divisibility leaves.

Say δ is the l.c.m. of the constants involved in divisibility leaves. Need just

test P−∞ on 1 . . . δ.
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Cooper’s Algorithm: P−∞ example

For

∃y . 0 < y ∧ 2x < y ∧ y < x + 2 ∧ 2 | y

0 < y will become false as y gets small

2x < y also becomes false as y gets small

y < x + 2 will be true as y gets small

2 | y doesn’t change (it tests if y is even or not)

So in this case, P−∞(y)↔ (⊥ ∧⊥ ∧⊤ ∧ 2 | y)↔ ⊥.

Automated Theorem Proving – Peter Baumgartner – p.128



Cooper’s Algorithm: least solution

The case when there is a least x satisfying P .

For there to be a least x satisfying P , it must be the case that one of the

leaves e < x is true, and that if x was any smaller the formula would become

false.

Let B = {e : e < x is a leaf of P}

Need just consider P(b + j), where b ∈ B and j ∈ 1 . . . δ.

Final elimination formula is:

(∃x . P(x))↔
∨

j=1..δ

P−∞(j) ∨
∨

j=1..δ

∨

b∈B

P(b + j)
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Cooper’s Algorithm: example continued

For

∃y . 0 < y ∧ 2x < y ∧ y < x + 2 ∧ 2 | y

least solutions, if they exist, will be at y = 1, y = 2, y = 2x + 1, or

y = 2x + 2.

The divisibility constraint eliminates two of these.

Original formula is equivalent to:

(2x < 2 ∧ 0 < x) ∨ (0 < 2x + 2 ∧ x < 0)

(Which is unsatisfiable for x .)
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Conclusion – Quantifier Elimination

This just scratches the surface of a very big area.

Fourier-Motzkin methods are very simple techniques for solving problems

in R, Q, Z, and N.

The correctness of the Omega Test and of Cooper’s algorithm are

alternative proofs of Presburger’s 1929 result that Presburger arithmetic

is decidable.

Many other methods exist (particularly for purely existential problems,

which is the field of linear programming).

Though most interesting maths remains undecidable, these methods are

extremely useful in practical situations.
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Conclusions

Talked about the role of first-order theorem proving

Talked about some standard techniques (Normal forms of formulas, Resolution

calculus, unification, Instance-based method, Model computation)

Talked about DPLL and Satisfiability Modulo Theories (SMT)

Further Topics

Redundancy elimination, efficient equality reasoning, adding arithmetics to

first-order theorem provers

FOTP methods as decision procedures in special cases

E.g. reducing planning problems and temporal logic model checking problems to

function-free clause logic and using an instance-based method as a decision

procedure

Implementation techniques

Competition CASC and TPTP problem library

Instance-based methods (a lot to do here, cf. my home page)

Attractive because of complementary features to more established methods
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Further Reading

Wikipedia article on Automated Theorem Proving

en.wikipedia.org/wiki/Automated_theorem_proving

Wikipedia article on Boolean Satisfiability Problem (propositional logic)

en.wikipedia.org/wiki/Boolean_satisfiability_problem

Wikipedia article on Satisfiability Modulo Theories (SMT)

en.wikipedia.org/wiki/Satisfiability_Modulo_Theories

A good, recent textbook with an emphasis on theory reasoning

(arithmetic, arrays) for software verification:

Aaron Bradley and Zohar Manna, The Calculus of Computation,

Springer, 2007

Another good one, on what the title says, comes with OCaml code:

Handbook of Practical Logic and Automated Reasoning,

Cambridge University Press, 2009
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Implemented Systems

The TPTP (Thousands of Problems for Theorem Provers) is a library of

test problems for automated theorem proving

www.tptp.org

The automated theorem prover SPASS is an implementation of the

“modern” version of resolution with equality, the superposition calculus,

and comes with a comprehensive set of examples and documentation. A

good choice to start with.

www.spass-prover.org

users.rsise.anu.edu.au/˜baumgart/systems/
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