The numbers of induced subgraphs in strongly regular graphs

Kristína Kováčiková

Joint work with: Martin Mačaj
Faculty of Mathematics, Physics and Informatics
Comenius University in Bratislava

$$
\text { 4th July } 2014
$$

Introduction

- In combinatorics, to compute the number of small configurations appearing in some object is often a very useful strategy. (special substructures in 4-cycle systems, in Steiner triple system, etc.)
- We investigate the number of occurrences for all graphs of small order as induced subgraph in SRG. In particular, we try to derive new properties of $S R G$ only from its parameters.
- Similar concept for $S R G$ is t-vertex condition, which explores induced subgraphs with respect to a fixed pair of vertices.

Definition

Strongly regular graph with parameters (n, k, λ, μ) is a k-regular graph on n vertices with following properties:
(1) Any two adjacent vertices have exactly λ common neighbours.
(2) Any two non-adjacent vertices have exactly μ common neighbours.

Figure: Petersen graph $(\operatorname{SRG}(10,3,0,1))$

Triangle free SRGs

- $\lambda=0$
- In the cases where $\mu \in\{2,4,6\}$ there exist infinitely many feasible parameters for graphs.
The number of feasible parameters is finite in all remaining values of μ.

Triangle free SRGs

- $\lambda=0$
- In the cases where $\mu \in\{2,4,6\}$ there exist infinitely many feasible parameters for graphs.
The number of feasible parameters is finite in all remaining values of μ.
- However, there are only seven known examples of such graphs:

n	k	μ	
5	2	1	pentagon
10	3	1	Petersen graph
50	7	1	Hoffman-Singleton graph
16	5	2	Clebsch graph
56	10	2	Sims-Gewirtz graph
77	16	4	Mesner graph
100	22	4	Higman-Sims graph

The family of Moore graphs $(\mu=1)$

- Hoffman and Singleton, 1960

k	n	
2	5	pentagon
3	10	Petersen graph
7	50	Hoffman-Singleton graph
57	3250	$?$

The family of Moore graphs $(\mu=1)$

- Hoffman and Singleton, 1960

k	n	
2	5	pentagon
3	10	Petersen graph
7	50	Hoffman-Singleton graph
57	3250	$?$

- The last parameter is a famous open problem.

Definition

Let Γ be an arbitrary graph.
By P_{G} we denote the number of occurrences of some fixed graph G as an induced subgraph in Γ.

Definition

Let Γ be an arbitrary graph.
By P_{G} we denote the number of occurrences of some fixed graph G as an induced subgraph in Γ.

- $P_{K_{1}}$ - the number of vertices in Γ
- $P_{K_{2}}$ - the number of edges in Γ
- $P_{\bar{K}_{2}}$ - the number of edges in Γ

In the case where $\Gamma=\operatorname{srg}(n, k, \lambda, \mu)$

- $P_{K_{1}}=n$
- $P_{K_{2}}=\frac{n k}{2}$
- $P_{\bar{K}_{2}}=\binom{n}{2}-P_{K_{2}}$

In the case where $\Gamma=\operatorname{srg}(n, k, \lambda, \mu)$

- $P_{K_{1}}=n$
- $P_{K_{2}}=\frac{n k}{2}$
- $P_{\bar{K}_{2}}=\binom{n}{2}-P_{K_{2}}$
- $P_{C_{3}}=\frac{\lambda}{3} P\left(K_{2}\right)$
- $P_{K_{1,2}}=\mu P\left(\bar{K}_{2}\right)$
- $P_{K_{2} \cup K_{1}}=(k-\mu) P_{\bar{K}_{2}}$
- $P_{\bar{K}_{3}}=\binom{n}{3}-P_{C_{3}}-P_{K_{1,2}}-P_{K_{2} \cup K_{1}}$

In the case where $\Gamma=\operatorname{srg}(n, k, \lambda, \mu)$

- $P_{K_{1}}=n$
- $P_{K_{2}}=\frac{n k}{2}$
- $P_{\bar{K}_{2}}=\binom{n}{2}-P_{K_{2}}$
- $P_{C_{3}}=\frac{\lambda}{3} P\left(K_{2}\right)$
- $P_{K_{1,2}}=\mu P\left(\bar{K}_{2}\right)$
- $P_{K_{2} \cup K_{1}}=(k-\mu) P_{\bar{K}_{2}}$
- $P_{\bar{K}_{3}}=\binom{n}{3}-P_{C_{3}}-P_{K_{1,2}}-P_{K_{2} \cup K_{1}}$
- In general $S R G$, the value P_{G} of 4-vertex graph G is not necessarily determined only by parameters n, k, λ and μ.
$\operatorname{SRG}(16,6,2,2)$

1) Shrikhande graph -> $P_{K_{4}}=0$

$\operatorname{SRG}(16,6,2,2)$

2) $L_{2}(4)->P_{K_{4}}=8$

Known results

Proposition (Hestenes, Higman (1970))

Let Γ be some tfSRG. The value T_{G} is uniquely determined by parameters of Γ for any graph G on at most 4 vertices.

Known results

Proposition (Hestenes, Higman (1970))

Let Γ be some tfSRG. The value T_{G} is uniquely determined by parameters of Γ for any graph G on at most 4 vertices.

Proposition

The number of occurrences of C_{5} in any tfSRG is determined uniquely by n, k and μ

$$
P_{C_{5}}=\frac{k}{10}\left(\mu+k \mu+k^{2}-k\right)(k-1)(k-\mu)
$$

Our method

- It is possible to compute the value of P_{G} for any graph G on 3 vertices using $P_{K_{2}}, P_{\bar{K}_{2}}$ and parameters of $S R G$.
- It is possible to compute the value of P_{G} for any graph G on 3 vertices using $P_{K_{2}}, P_{\bar{K}_{2}}$ and parameters of $S R G$.
- We generalized this idea and invented a method for computing the values P_{G} for all graphs on t vertices in $\operatorname{SRG}(n, k, \lambda, \mu)$. It uses just numbers of occurrences of graphs of order $t-1$ in a given $S R G$ and combinatorial properties following from its parameters.
- We also developed an algorithm which based on this idea. Its output is a description of values P_{G} as the functions of n, k, λ and μ.

Results

Proposition

Let Γ be any $\operatorname{SRG}(n, k, 0, \mu)$.

- The value of P_{G} for any graph G on at most 5 vertices in Γ depends only on parameters n, k and μ.
- Let G be a graph on 6 vertices. The value of P_{G} depends on n, k, μ and $P_{K_{3,3}}$.
- If G is a graph on 7 vertices, then P_{G} depends on n, k, μ and the values of $P_{K_{3,3}}$ and $P_{K_{3,4}}$.

Examples

- $P_{G_{1}}=\frac{1}{8 \mu^{2}}\left(\mu+k \mu+k^{2}-k\right) k(k-1)\left(k^{4}+16 \mu^{4}\right.$
$+10 k^{2} \mu-14 k \mu^{2}-2 k^{3}+\mu^{3}+11 \mu^{2}+k^{2}-32 \mu^{3} k$
$\left.-8 k^{3} \mu+24 k^{2} \mu^{2}-4 k \mu-4 \mu\right)-9 P_{K_{3,3}}$
- $P_{G_{2}}=\frac{1}{4 \mu}\left(\mu+k \mu+k^{2}-k\right) k(k-1)(\mu-1)\left(k^{2}-3 k \mu+2 \mu^{2}\right)$

Results for the missing Moore graph

Proposition

Let Γ be $\operatorname{SRG}(3250,57,0,1)$.

- The value P_{G} of any graph G on at most 9 vertices in Γ is determined uniquely.
- If G is a graph of order $10, P_{G}$ is determined uniquely by the number of occurrences of Petersen graph as induced subgraph in Γ.

Applications

- We bounded the number of induced Petersen graphs in $\operatorname{SRG}(3250,57,0,1)$. The lower bound is still 0 .
- There is 595 graphs on 10 vertices, which number of occurrences in $\operatorname{SRG}(3250,57,0,1)$ is a constant. ($P_{C_{10}}=11457284326488000$)

Automorphism group of $\Gamma=\operatorname{SRG}(3250,57,0,1)$

- (Aschbacher 1971) Γ is not a rank three graph.
- (Higman) Г cannot be vertex transitive.
- (Makhnev, Paduchikh 2001) Restriction on $\operatorname{Aut}(\Gamma)$ for the case where Γ has an involutive automorphism.
- (Makhnev, Paduchikh 2008), (Mačaj, Širáň 2009) Restrictions on $\operatorname{Aut}(\Gamma)$ for general case.

Automorphism group of $\Gamma=\operatorname{SRG}(3250,57,0,1)$

- (Aschbacher 1971) Γ is not a rank three graph.
- (Higman) 「 cannot be vertex transitive.
- (Makhnev, Paduchikh 2001) Restriction on $\operatorname{Aut}(\Gamma)$ for the case where Γ has an involutive automorphism.
- (Makhnev, Paduchikh 2008), (Mačaj, Širáň 2009) Restrictions on $\operatorname{Aut}(\Gamma)$ for general case.
- We restricted possibilities for automorphisms of order 7 using $P_{C_{7}}$ in Γ.

Thank you for attention

