The numbers of induced subgraphs in strongly regular graphs

Kristína Kováčiková

Joint work with: Martin Mačaj

Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

4th July 2014

Introduction

- In combinatorics, to compute the number of small configurations appearing in some object is often a very useful strategy. (special substructures in 4-cycle systems, in Steiner triple system, etc.)
- We investigate the number of occurrences for all graphs of small order as induced subgraph in *SRG*. In particular, we try to derive new properties of *SRG* only from its parameters.
- Similar concept for *SRG* is t-vertex condition, which explores induced subgraphs with respect to a fixed pair of vertices.

Definition

Strongly regular graph with parameters (n, k, λ, μ) is a k-regular graph on *n* vertices with following properties:

- () Any two adjacent vertices have exactly λ common neighbours.
- 2 Any two non-adjacent vertices have exactly μ common neighbours.

Figure: Petersen graph (SRG(10, 3, 0, 1))

Triangle free SRGs

- λ = 0
- In the cases where μ ∈ {2,4,6} there exist infinitely many feasible parameters for graphs. The number of feasible parameters is finite in all remaining values of μ.

Triangle free SRGs

- λ = 0
- In the cases where μ ∈ {2,4,6} there exist infinitely many feasible parameters for graphs.
 The number of feasible parameters is finite in all remaining values of μ.
- However, there are only seven known examples of such graphs:

n	<i>k</i>	μ	
5	2	1	pentagon
10	3	1	Petersen graph
50	7	1	Hoffman-Singleton graph
16	5	2	Clebsch graph
56	10	2	Sims-Gewirtz graph
77	16	4	Mesner graph
100	22	4	Higman-Sims graph

The family of Moore graphs ($\mu=1$)

• Hoffman and Singleton, 1960

k	n	
2	5	pentagon
3	10	Petersen graph
7	50	Hoffman-Singleton graph
57	3250	?

The family of Moore graphs $(\mu = 1)$

• Hoffman and Singleton, 1960

k	n	
2	5	pentagon
3	10	Petersen graph
7	50	Hoffman-Singleton graph
57	3250	?

• The last parameter is a famous open problem.

Definition

Let Γ be an arbitrary graph.

By P_G we denote the number of occurrences of some fixed graph G as an induced subgraph in Γ .

Definition

Let Γ be an arbitrary graph.

By P_G we denote the number of occurrences of some fixed graph G as an induced subgraph in Γ .

- P_{K1} the number of vertices in Γ
- P_{K2} the number of edges in Γ
- $P_{\overline{K}_2}$ the number of edges in Γ

In the case where $\Gamma = srg(n,k,\lambda,\mu)$

•
$$P_{K_1} = n$$

• $P_{K_2} = \frac{nk}{2}$
• $P_{\overline{K}_2} = {n \choose 2} - P_{K_2}$

In the case where $\Gamma = srg(n,k,\lambda,\mu)$

•
$$P_{K_1} = n$$

• $P_{K_2} = \frac{nk}{2}$
• $P_{\overline{K}_2} = {n \choose 2} - P_{K_2}$
• $P_{C_3} = \frac{\lambda}{3} P(K_2)$
• $P_{K_{1,2}} = \mu P(\overline{K}_2)$
• $P_{K_2 \cup K_1} = (k - \mu) P_{\overline{K}_2}$
• $P_{\overline{K}_3} = {n \choose 3} - P_{C_3} - P_{K_{1,2}} - P_{K_2 \cup K_1}$

In the case where $\Gamma = srg(n,k,\lambda,\mu)$

•
$$P_{K_1} = n$$

• $P_{K_2} = \frac{nk}{2}$
• $P_{\overline{K}_2} = {n \choose 2} - P_{K_2}$
• $P_{C_3} = \frac{\lambda}{2} P(K_2)$

•
$$P_{K_{1,2}} = \mu P(\overline{K}_2)$$

•
$$P_{K_2\cup K_1} = (k-\mu)P_{\overline{K}_2}$$

•
$$P_{\overline{K}_3} = \binom{n}{3} - P_{C_3} - P_{K_{1,2}} - P_{K_2 \cup K_1}$$

 In general SRG, the value P_G of 4-vertex graph G is not necessarily determined only by parameters n, k, λ and μ.

1) Shrikhande graph -> $P_{K_4} = 0$

2)
$$L_2(4) \rightarrow P_{K_4} = 8$$

Proposition (Hestenes, Higman (1970))

Let Γ be some tfSRG. The value T_G is uniquely determined by parameters of Γ for any graph G on at most 4 vertices.

Proposition (Hestenes, Higman (1970))

Let Γ be some tfSRG. The value T_G is uniquely determined by parameters of Γ for any graph G on at most 4 vertices.

Proposition

The number of occurrences of C5 in any tfSRG is determined uniquely by n, k and μ

$$P_{C_5} = \frac{k}{10}(\mu + k\mu + k^2 - k)(k-1)(k-\mu)$$

Our method

• It is possible to compute the value of P_G for any graph G on 3 vertices using P_{K_2} , $P_{\overline{K}_2}$ and parameters of SRG.

<u>Our method</u>

- It is possible to compute the value of P_G for any graph G on 3 vertices using P_{K_2} , $P_{\overline{K_2}}$ and parameters of SRG.
- We generalized this idea and invented a method for computing the values P_G for all graphs on t vertices in SRG(n, k, λ, μ). It uses just numbers of occurrences of graphs of order t - 1 in a given SRG and combinatorial properties following from its parameters.
- We also developed an algorithm which based on this idea. Its output is a description of values P_G as the functions of n, k, λ and μ .

<u>Results</u>

Proposition

Let Γ be any $SRG(n, k, 0, \mu)$.

- The value of P_G for any graph G on at most 5 vertices in Γ depends only on parameters n, k and μ .
- Let G be a graph on 6 vertices. The value of P_G depends on n, k, μ and P_{K_{3,3}}.
- If G is a graph on 7 vertices, then P_G depends on n, k, μ and the values of $P_{K_{3,3}}$ and $P_{K_{3,4}}$.

Examples

•
$$P_{G_1} = \frac{1}{8\mu^2}(\mu + k\mu + k^2 - k)k(k-1)(k^4 + 16\mu^4 + 10k^2\mu - 14k\mu^2 - 2k^3 + \mu^3 + 11\mu^2 + k^2 - 32\mu^3k - 8k^3\mu + 24k^2\mu^2 - 4k\mu - 4\mu) - 9P_{K_{3,3}}$$

•
$$P_{G_2} = \frac{1}{4\mu} (\mu + k\mu + k^2 - k)k(k-1)(\mu-1)(k^2 - 3k\mu + 2\mu^2)$$

Results for the missing Moore graph

Proposition

Let Γ be SRG(3250, 57, 0, 1).

- The value P_G of any graph G on at most 9 vertices in Γ is determined uniquely.
- If G is a graph of order 10, P_G is determined uniquely by the number of occurrences of Petersen graph as induced subgraph in Γ.

- We bounded the number of induced Petersen graphs in *SRG*(3250, 57, 0, 1). The lower bound is still 0.
- There is 595 graphs on 10 vertices, which number of occurrences in SRG(3250, 57, 0, 1) is a constant. $(P_{C_{10}} = 11457284326488000)$

Automorphism group of $\Gamma = SRG(3250, 57, 0, 1)$

- (Aschbacher 1971) Γ is not a rank three graph.
- (Higman) Γ cannot be vertex transitive.
- (Makhnev, Paduchikh 2001) Restriction on Aut(Γ) for the case where Γ has an involutive automorphism.
- (Makhnev, Paduchikh 2008), (Mačaj, Širáň 2009) Restrictions on Aut(Γ) for general case.

Automorphism group of $\Gamma = SRG(3250, 57, 0, 1)$

- (Aschbacher 1971) Γ is not a rank three graph.
- (Higman) Γ cannot be vertex transitive.
- (Makhnev, Paduchikh 2001) Restriction on Aut(Γ) for the case where Γ has an involutive automorphism.
- (Makhnev, Paduchikh 2008), (Mačaj, Širáň 2009) Restrictions on Aut(Γ) for general case.
- We restricted possibilities for automorphisms of order 7 using P_{C_7} in Γ .

Thank you for attention ©