
CMSC 330: Organization of
Programming Languages

Introduction

Instructors: Mike Hicks, Dave Levin

CMSC 330 - Spring 2013 1

CMSC 330 - Spring 2013

Course Goal

Learn how programming languages work

!   Broaden your language horizons
•  Different programming languages
•  Different language features and tradeoffs

  Useful programming patterns

!   Study how languages are described / specified
•  Mathematical formalisms

!   Study how languages are implemented
•  What really happens when I write x.foo(…)?

2

CMSC 330 - Spring 2013

All Languages Are (Kind of) Equivalent

!   A language is Turing complete if it can compute
any function computable by a Turing Machine

!   Essentially all general-purpose programming
languages are Turing complete
•  I.e., any program can be written in any programming

language

!   Therefore this course is useless?!
•  Learn only 1 programming language, always use it

3

CMSC 330 - Spring 2013

Why Study Programming Languages?

!   To help you to choose between languages
•  Programming is a human activity

  Features of a language make it easier or harder to program
for a specific application

•  Using the right programming language for a problem
may make programming
  Easier, faster, less error-prone

4

CMSC 330 - Spring 2013

Why Study Programming Languages?

!   To make you better at learning new languages
•  A language not only allows you to express an idea, it

also shapes how you think when conceiving it
  There are some fundamental computational paradigms

underlying language designs that take getting used to

•  You may need to learn a new (or old) language
  Paradigms and fads change quickly in CS

  Also, may need to support or extend legacy systems

5

CMSC 330 - Spring 2013

Why Study Programming Languages?

!   To make you better at learning new languages
•  You may need to add code to a legacy system

  E.g., FORTRAN (1954), COBOL (1959), …

•  You may need to write code in a new language
  Your boss says, “From now on, all software will be written in

{C++/Java/C#/Python…}”

•  You may think Java is the ultimate language
  But if you are still programming or managing programmers in

20 years, they probably won’t be programming in Java!

6

CMSC 330 - Spring 2013

Why Study Programming Languages?

!   To make you better at using languages you
already know
•  Many “design patterns” in Java are functional

programming techniques
•  Understanding what a language is good for will help

you know when it is appropriate to use
•  The deeper your understanding of a language, the

better you will be at using it appropriately

7

CMSC 330 - Spring 2013

Course Subgoals

!   Learn some fundamental programming-
language concepts
•  Regular expressions
•  Automata theory
•  Context free grammars
•  Parallelism & synchronization

!   Improve programming skills
•  Practice learning new programming languages
•  Learn how to program in a new style

8

Syllabus

!   Scripting languages (Ruby)
!   Regular expressions and finite automata
!   Context-free grammars
!   Functional programming (OCaml)
!   Formal semantics
!   Concurrency
!   Logic programming (Datalog)
!   Environments, scoping, and binding
!   Comparing language styles; other topics

9 CMSC 330 - Spring 2013

CMSC 330 - Spring 2013

Calendar / Course Overview
!   Tests

•  5 quizzes, 2 midterms, final exam
!   Projects

•  Project 1 – Ruby
•  Project 2 – Ruby
•  Project 3 – OCaml
•  Project 4 – OCaml / Multithreading
•  Project 5 – Datalog

!   Meet your professor!
•  1% of your grade determined by coming to chat with your

professor during office hours or at a mutually agreed-upon
time

•  Conversation need not be long, or technical … but we
would like to get to know you!

10

Project Grading

!   Projects will be graded using the CS submit
server

!   You may develop your programs on your own
machine, but it is your responsibility to ensure
that they run correctly on the linuxlab cluster
(linuxlab.cs.umd.edu)!

!   Software versions
•  Ruby 1.8.6
•  Ocaml 3.12.1

11 CMSC 330 - Spring 2013

CMSC 330 - Spring 2013

Rules and Reminders

!   Use lecture notes as your text
•  Supplement with readings, Internet
•  You will be responsible for everything in the notes,

even if it is directly covered in class!
!   Keep ahead of your work

•  Get help as soon as you need it
  Office hours, Piazza (email as a last resort)

!   Don’t disturb other students in class
•  Keep cell phones quiet
•  Use laptops only for school work

12

Academic Integrity

!   All written work (including projects) must be
done on your own
•  Do not copy code from other students
•  Do not copy code from the web
•  We’re using Moss; cheaters will be caught

!   Work together on high-level project questions
•  Do not look at/describe another student’s code
•  If unsure, ask an instructor!

!   Work together on practice exam questions

13 CMSC 330 - Spring 2013

Changing Language Goals

!   1950s-60s – Compile programs to execute
efficiently
•  Language features based on hardware concepts

  Integers, reals, goto statements

•  Programmers cheap; machines expensive
  Computation was the primary constrained resource
  Programs had to be efficient because machines weren’t

•  Note: this still happens today, just not as pervasively

14 CMSC 330 - Spring 2013

Changing Language Goals

!   Today
•  Language features based on design concepts

  Encapsulation, records, inheritance, functionality, assertions

•  Processing power and memory very cheap;
programmers expensive
  Scripting languages are slow(er), but run on fast machines
  They’ve become very popular because they ease the

programming process

•  The constrained resource changes frequently
  Communication, effort, power, privacy, …
  Future systems and developers will have to be nimble

15 CMSC 330 - Spring 2013

Language Attributes to Consider

!   Syntax
•  What a program looks like

!   Semantics
•  What a program means (mathematically)

!   Implementation
•  How a program executes (on a real machine)

16 CMSC 330 - Spring 2013

Imperative Languages

!   Also called procedural or von Neumann
!   Building blocks are procedures and statements

•  Programs that write to memory are the norm
int x = 0;
while (x < y) x = x + 1;

•  FORTRAN (1954)
•  Pascal (1970)
•  C (1971)

17 CMSC 330 - Spring 2013

Functional Languages

!   Also called applicative languages
!   No or few writes to memory

•  Functions are higher-order
let rec map f = function [] -> []
 | x::l -> (f x)::(map f l)

•  LISP (1958)
•  ML (1973)
•  Scheme (1975)
•  Haskell (1987)
•  OCaml (1987)

18 CMSC 330 - Spring 2013

Logic-Programming Languages

!   Also called rule-based or constraint-based
!   Program consists of a set of rules

•  “A :- B” – If B holds, then A holds (“B implies A”)
  append([], L2, L2).
  append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

•  PROLOG (1970)
•  Datalog (1977)
•  Various expert systems

19 CMSC 330 - Spring 2013

Object-Oriented Languages

!   Programs are built from objects
•  Objects combine functions and data

  Often into “classes” which can inherit
•  “Base” may be either imperative or functional

class C { int x; int getX() {return x;} … }
class D extends C { … }

•  Smalltalk (1969)
•  C++ (1986)
•  OCaml (1987)
•  Ruby (1993)
•  Java (1995)

20 CMSC 330 - Spring 2013

Concurrent/parallel languages

!   Traditional languages had one thread of control
•  Processor executes one instruction at a time

!   Newer languages support many threads
•  Thread execution conceptually independent
•  Means to create and communicate among threads

!   Concurrency may help/harm
•  Readability, performance, expressiveness

!   Many examples
•  Erlang, Cilk, Java, Conc. Haskell, Fortress, UPC
•  C/C++, Ruby, OCaml, Python, …

CMSC 330 - Spring 2011 21

Scripting Languages
!   Rapid prototyping languages for common tasks

•  Traditionally: text processing and system interaction
!   “Scripting” is a broad genre of languages

•  “Base” may be imperative, functional, OO…
!   Increasing use due to higher-layer abstractions

•  Not just for text processing anymore

•  sh (1971)
•  perl (1987)
•  Python (1991)
•  Ruby (1993)

22 CMSC 330 - Spring 2013

#!/usr/bin/ruby
while line = gets do

csvs = line.split /,/
 if(csvs[0] == “330”) then
...

Other Languages
!   There are lots of other languages w/ various features

•  COBOL (1959) – Business applications
  Imperative, rich file structure

•  BASIC (1964) – MS Visual Basic
  Originally designed for simplicity (as the name implies)
  Now it is object-oriented and event-driven, widely used for UIs

•  Logo (1968) – Introduction to programming
•  Forth (1969) – Mac Open Firmware

  Extremely simple stack-based language for PDP-8
•  Ada (1979) – The DoD language

  Real-time
•  Postscript (1982) – Printers- Based on Forth

23 CMSC 330 - Spring 2013

Ruby

!   An imperative, object-oriented scripting
language
•  Created in 1993 by Yukihiro Matsumoto (Matz)
•  “Ruby is designed to make programmers happy”
•  Core of Ruby on Rails web programming framework

(a key to its popularity)
•  Similar in flavor to many other scripting languages
•  Much cleaner than perl
•  Full object-orientation (even primitives are objects!)

24 CMSC 330 - Spring 2013

A Small Ruby Example
def greet(s)
 3.times { print “Hello, ” }
 print “#{s}!\n”
end

% irb # you’ll usually use “ruby” instead
irb(main):001:0> require "intro.rb"
=> true
irb(main):002:0> greet("world")
Hello, Hello, Hello, world!
=> nil

intro.rb:

25 CMSC 330 - Spring 2013

OCaml

!   A mostly-functional language
•  Has objects, but won’t discuss (much)
•  Developed in 1987 at INRIA in France
•  Dialect of ML (1973)

!   Natural support for pattern matching
•  Generalizes switch/if-then-else – very elegant

!   Has full featured module system
•  Much richer than interfaces in Java or headers in C

!   Includes type inference
•  Ensures compile-time type safety, no annotations

26 CMSC 330 - Spring 2013

A Small OCaml Example

let greet s =
 List.iter (fun x -> print_string s)
 [“hello”; s; "!\n”]

$ ocaml
 Objective Caml version 3.12.1

#use "intro.ml";;
val greet : string -> unit = <fun>
greet "world";;
Hello, world!
- : unit = ()

intro.ml:

27 CMSC 330 - Spring 2013

Attributes of a Good Language

•  Cost of use
•  Program execution (run time), program translation,

program creation, and program maintenance

•  Portability of programs
•  Develop on one computer system, run on another

•  Programming environment
•  External support for the language
•  Libraries, documentation, community, IDEs, …

28 CMSC 330 - Spring 2013

Attributes of a Good Language

•  Clarity, simplicity, and unity
•  Provides both a framework for thinking about algorithms

and a means of expressing those algorithms

•  Orthogonality
•  Every combination of features is meaningful
•  Features work independently

•  Naturalness for the application
•  Program structure reflects the logical structure of

algorithm

29 CMSC 330 - Spring 2013

Attributes of a Good Language

•  Support for abstraction
•  Hide details where you don’t need them
•  Program data reflects the problem you’re solving

•  Security & safety
•  Should be very difficult to write unsafe programs

•  Ease of program verification

•  Does a program correctly perform its required
function?

30 CMSC 330 - Spring 2013

Program Execution

!   Suppose we have a program P written in a
high-level language (i.e., not machine code)

!   There are two main ways to run P
1.  Compilation
2.  Interpretation

31 CMSC 330 - Spring 2013

Compilation

!   Source program translated (“compiled”) to
another language
•  Traditionally: directly executable machine code
•  Generating code from a higher level “interface” is

also common (e.g., JSON, RPC IDL)

def greet(s)
 print("Hello, ”)
 print(s)
 print("!\n”)
end

11230452
23230456
01200312
…

“world” “Hello, world!”

32 CMSC 330 - Spring 2013

Interpretation

!   Interpreter executes each instruction in source
program one step at a time
•  No separate executable

def greet(s)
 print("Hello, ”)
 print(s)
 print("!\n”)
end

“world”

“Hello, world!”

33 CMSC 330 - Spring 2013

Architecture of Compilers, Interpreters

34

Front End

Intermediate
Representation

Back End

Parser Static
Analyzer Source

Compiler / Interpreter

CMSC 330 - Spring 2013

Front Ends and Back Ends
!   Front ends handle syntactic analysis

•  Parser converts source code into intermediate format
(“parse tree”) reflecting program structure

•  Static analyzer checks parse tree for errors (e.g.
types), may also modify it

•  What goes into static analyzer is language-
dependent!

!   Back ends handle “semantics”
•  Compiler: back end (“code generator”) translates

intermediate representation into “object language”
•  Interpreter: back end executes intermediate

representation directly

35 CMSC 330 - Spring 2013

Compiler or Intepreter?

!   gcc
•  Compiler – C code translated to object code, executed

directly on hardware (as a separate step)
!   javac

•  Compiler – Java source code translated to Java byte
code

!   java
•  Interpreter – Java byte code executed by virtual machine

!   sh/csh/tcsh/bash
•  Interpreter – commands executed by shell program

36 CMSC 330 - Spring 2013

Compilers vs. Interpreters
!   Compilers

•  Generated code more efficient
•  “Heavy”

!   Interpreters
•  Great for debugging
•  Slow

!   In practice
•  “General-purpose” programming languages (e.g. C,

Java) are often compiled, although debuggers
provide interpreter support

•  Scripting languages and other special-purpose
languages are interpreted, even if general purpose

37 CMSC 330 - Spring 2013

Formal (Mathematical) Semantics

!   What do my programs mean?

!   Both OCaml functions implement “the factorial
function.” How do I know this? Can I prove it?
•  Key ingredient: a mathematical way of specifying

what programs do, i.e., their semantics
•  Doing so depends on the semantics of the language

let rec fact n =
 if n = 0 then 1
 else n * (fact n-1)

let fact n =
 let rec aux i j =
 if i = 0 then j
 else aux (i-1) (j*i) in
 aux n 1

38 CMSC 330 - Spring 2013

Semantic styles

!   Textual language definitions are often
incomplete and ambiguous

!   A formal semantics is basically a mathematical
definition of what programs do. Two flavors:
•  Denotational semantics (compiler/translator)

  Meaning defined in terms of another language (incl. math)
  If we know what C means, then we can define Ruby by

translation to C

•  Operational semantics (interpreter)
  Meaning defined as rules that simulate program execution
  Show what Ruby programs do directly, using an abstract

“machine,” more high-level than real hardware
39 CMSC 330 - Spring 2013

Summary

!   Many types of programming languages
•  Imperative, functional, logical, OO, scripting, …

!   Many programming language attributes
•  Clear, natural, low cost, verifiable, …

!   Programming language implementation
•  Compiled, interpreted

!   Programming language semantics
•  Proving your program operates correctly

40 CMSC 330 - Spring 2013

