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THE EARLY HISTORY OF PARTIAL DIFFERENTIAL EQUATIONS 
AND OF PARTIAL DIFFERENTIATION AND INTEGRATION 

By FLORIAN CAJORI, University of California 

The general events associated with the evolution of the fundamental con- 
cepts of fluxions and the calculus are so very absorbing, that the history of the 
very specialized topic of partial differential equations and of partial diff erentia- 
tion and integration has not received adequate attention for the early period 
preceding Leonhard Euler's momentous contributions to this subject. The 
pre-Eulerian history of the partial processes of the calculus is difficult to trace, 
for the reason that there existed at that time no recognized symbolism nor 
technical phraseology which would distinguish the partial processes from the 
ordinary ones. In consequence, historians have disagreed as to the interpreta- 
tion of certain passages in early writers. As we shall see, meanings have been 
read into passages which the writers themselves perhaps never entertained. 
In connection with fluxions certain erroneous a priori conceptions of their 
theory were entertained by some historians which would have been corrected, 
had these historians taken the precaution of proceeding more empirically and 
checking their pre-conceived ideas by reference to the actual facts. 

Partial Processes in the writings of Leibniz and his immediate followers 

Partial differentiation and partial integration occur even in ordinary proc- 
esses of the calculus where partial differential equations do not occur. The 
simplest example of partial differentiation is seen in differentiating the product 
xy, where one variable is for the moment assumed to be constant, then the 
other. Leibniz used partial processes, but did not explicitly employ partial 
differential equations. He actually used special symbols, in a letter' to de 
l'Hospital in 1694, when he wrote "bm" for the partial derivative dm/Ox, and 
"zm" for dm/dy; De l'Hospital used- "sm" in his reply of March 2, 1695. As 
stated in his letter, Leibniz considers the integration of bdx+cdy, where b and 
c involve x and y, and seeks an equation m = 0 where m also involves x and y. 
Differentiating m=0 yields him bmdx+Vmdy=O. We have here a total dif- 
ferential equation. It follows, he says, that b: c-=bm: t9m or bam = cbm. In the 
analysis which follows this statement, Leibniz says that this last equation is 
to be satisfied identically. It is clear that in deriving the above total differential 
equation Leibniz differentiates partially, taking first x as an independent vari- 
able, then y as an independent variable. That the identity which follows was 
recognized by him as a partial differential equation is not clear. Such recog- 
nition would demand in case of an identity an abstract view point hardly 

I Leibnizens Mathematische Schrif ten, vol. II, Berlin (1850), pp. 261, 270. 
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460 HISTORY OF PARTIAL DIFFERENTIAL EQUATIONS [Nov., 

attributable to writers in the prelude period of the history of partial differential 
equation s. 

A recent writer claims that Leibniz did use partial differential equations: 
"Auf partielle Differentialgleichungen kommt Leibniz durch ein geometrisches 
Problem."' Reference is made to Leibniz's article2 of 1694 in which he finds 
the envelope of the circles x2+y2+b2 =2bx+ab. Differentiating with reference 
to b as a variable parameter, Leibniz obtains 2bdb =2xdb+adb. Eliminating b 
between 2b = 2x+a and the given equation, he obtains as the required envelope 
the parabola ax+ (a2/4) =y2. After studying Leibniz's introductory remarks, 
we feel that, in differentiating the two sides of the equation, he consciously kept 
both x and y constant and took b as an independent variable. We feel this 
notwithstanding the fact that he does not state this relation explicitly when 
differentiating. Leibniz did not call the equation 2b=2x+a by any special 
name. It is not a differential equation, but the process of partial differentiation 
is involved in its derivation. 

Nor can we accept the validity of the recent claim3 that Jakob Hermann 
used partial differentiation and partial differential equations in 1717, in special 
solutions of the celebrated problem of orthogonal trajectories to plane curves.4 
That problem, as ordinarily treated, does not give rise to partial differential 
equations, nor even to partial differentiation, except perhaps in the differentia- 
tion of implicit functions. The process, as followed by Hermann, consists in 
finding the total derivative dy/dx, introducing -dx/dy in its place, and eli- 
minating a parameter. Hermann solves four special cases, but does not give 
the equations to be differentiated in the form requiring partial differentiation. 

However, Hermann did use partial differentiation on another occasion. 
Leibniz,5 in a letter to John Bernoulli, describes a procedure which Hermann is 
reported to have explained to Chr. Wolf, and which clearly involves this 
process. 

Partial differential equations stand out clearly in six examples on trajec- 
tories published in 1719 by Nicolaus Bernoulli (1695-1726),j the twenty-four 
year old son of John. He takes the curve ym= amlx, "cujus differentialis com- 

I Edmund Hoppe, Archiv fur Geschichte der Mathematik, der Naturwissenschaf ten und der Tech- 
nik, vol. 10 (1927), pp. 161, 162. Hoppe refers to articles and letters of Leibniz in Acta eruditorum (1694), 
p. 311; Leibnizens Mathematische Schriften, vol. II, p. 166, vol. III (1855), pp. 967, 969. But we 
have not been able to find that Leibniz gives or solves partial differential equations in these articles. 

2 Acta eruditorum, 1694, p. 311. 
3 E. Hoppe, loc. cit., p. 163. 
4J. Hermann, Acta eruditorum (1717), p. 349. 
5 Leibniz's letter to John Bernoulli, July 26, 1716, Leibnizens Mathematische Schrif ten, vol. III, 

pp. 967, 968. 
6 Acta eruditorum (1719), p. 298. Republished in Johannis Bernoullo Opera omnia, Lausannae et 

Genevae, vol. II (1742), p. 399. 
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pleta est mym-1dy=(m-1)am-2x da+am-1 dx; hic p=mym-1:am-l=mx:y, et 
q = (1 - m)x: a, . . . ". Here we have the "complete" differentiation, followed by 
the two partial differential equations, in which p = Ox/dy and q = dx/Oa. 

Argument over a differential equation of Newton involving three variables 

In his Method of Fluxions Newton solves differential equations and gives 
one example, 2x - + x = 0, of a differential equation involving three variables. 
The fluxion x signifies our time-derivative dx/dt. On the European continent, 
some writers have interpreted this equation as a partial differential equation, 
other writers, as a total differential equation. We begin by quoting the passage 
in Newton:' 

"The Resolution of the Problem will soon be dispatch'd, when the Equation 
involves three or more Fluxions of Quantities. For between any two of those 
Quantities any Relation may be assumed, when it is not determined by the 
State of the Question, and the Relation of their Fluxions may be found from 
thence; so that either of them, together with its Fluxion, may be extermin- 
ated . Let the Equation proposed be 2x- +yx=0; that I may obtain the 
Relation of the Quantities x, y, and z, whose Fluxions x, y, and t are contained 
in the Equation; I form a Relation at pleasure between any two of them, as 
x andy, supposing that x=y or 2y=a+z, or x=yy etc. But suppose at present 
x = yy and thereforet = 2yy. Therefore writing 2yy for x, and yy for x, the Equa- 
tion proposed will be transform'd into this: 4~y -+yy2O0. And thence the 
relation between y and z will arise, 2yy+ y3=z. In which if x be written for 
yy and x2 for y3, we shall have 2x?+ 1 z. So that among the infinite ways in 
which x, y, and z may be related to each other, one of them is here found, which 
is represented by these Equations, x = yy, 2y2 + =y3 z, and 2x + x3x = z." 

The well known French writer on the calculus, Lacroix,2 interpreted New- 
ton's equation in three variables as a total differential equation. 

On the other hand Weissenborn3 says that Newton's problem was "nothing 
less than that of partial differential equations," in the treatment of which he was 
"not successful" since his solution is incorrect, as "one may see easily by trial." 
Weissenborn assigns no special reason for interpreting it as a partial differential 
equation any more than had Lacroix for calling it a total. That Newton's 
equation was "partial" was held also by the Swiss historian Heinrich Suter,4 
and the noted German historian Moritz Cantor5 in the third volume of his 

1 Sir Isaac Newton, The Method of Fluxions, translated into English by John Colson, London 
(1736), p. 41. 

2 S. F. Lacroix, TraitM du calcul diff6rentiel et du calcul inttegral, 2d. ed., vol. II (1814), p. 691. 
3 Hermann Weissenborn, Die Principien der hoheren Analysis, Halle (1856), p. 39. 
4 H. Suter, Geschichte der Mathematischen Wissenschaften, Zurich, vol. II (1875), p. 74. 
5 Moritz Cantor, Vorlesungen iiber Geschichte der Mathematik, vol. III, 1898, p. 166. 
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Vorlesungen, but in the Preface Cantor retracts the statement, only to adhere to 
his original view in the second edition of that volume which appeared three 
years later.' 

In direct opposition to Weissenborn's interpretation are E. Tischer2 of 
Leipzig, Zeuthen3 of Copenhagen, Enestrom4 of Stockholm and, very recently, 
Hoppe of Gottingen. Our own conclusion is in agreement with the last four 
writers; Newton's equation in three variables is a total differential equation. 
Newton treats this equation precisely as he does differential equations involving 
two variables, except that he assumes now a second relation x = yy to exist, so 
that he can eliminate x and x, and thereupon proceed as in case of two variables. 
Newton does not refer to any new principle involved in his equation in three 
variables. Moreover, Newton's solution of the equation is correct on the 
assumption that the differential equation is total, but incorrect on the assump- 
tion that it is partial. The conclusion is firmly established that neither Newton 
nor Leibniz in their published writings ever wrote down a partial differential 
equation and proceeded to solve it. 

Erroneous conceptions about the theory of fluxions 
While we agree with Tischer, Zeuthen and Hoppe that Newton's three- 

variable equation is a total differential equation, we do not agree at all with the 
reason which they assign for their conclusion. They base it on a preconceived 
erroneous conception according to which a partial differential equation is im- 
possible on the Newtonian theory of fluxions, for the reason that Newton's 
fluxions are all time-derivatives and therefore exclude, as the critics state, any 
independent variable other than "time." Thus Tischer says on page 40 of his 
tract: "The concern here is not with a function of several independent variables, 
but with several functions of one and the same independent variable." Zeuthen 
states5: "Since the entire theory of fluxions rests upon the assumption of a single 
independent variable, he (Newton) remarks that in cases where an equation is 
given involving more than two variables with their fluxions, new relations be- 
tween the variables may be introduced." We quote also Hoppe's statement: 
"When Newton has an equation in several fluents (we would say in variable 
magnitudes), that is, in x, y, z, u, etc., he derives the fluxions by assuming that 

1 Op. cit., vol. 3, 2d. ed. (1901), p. 172. 
2 Ernst Tischer, Ueber die Begriindung der Infinitesimalrechnung durch Newton und Leibniz, Jahres- 

bericht des Nicolaigymnasiums in Leipzig, Leipzig (1896), pp. 37-39. 
3 H. G. Zeuthen, Geschichte der Mathematik im XVI und XVII. Jahrhundert, Deutsche Ausgabe, 

von R. Meyer, Leipzig (1903), p. 379; also Zeuthen in Bullet. de l'Acad. d. sc. de Danemark (1895), p. 
263. 

4 G. Enestr6m, Bibliotheca mathematica, vol. IV (1903), p. 400; vol. 11 (1910-11), pp. 172-173. 
5 Zeuthen, op. cit., p. 379. See also p. 358. 
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these variables are all functions of one and the same variable magnitude, for ex- 
ample, of the time. Then he marks the fluxion of x by x, of y by y, etc., so that x 
means in our notation dx/dt, y = dy/dt, z = dz/dt. Accordingly, if Newton had 
chosen to write his fluent equation briefly f(x, y, z, . ) = u, he would have 
meant by this, that x, y, z, I . . , u are fu'nctions of t, but not .... that u is a 
function of the independent variables, x, y, z, .... The x, y, z, . . ., u were 
themselves functions of the variable t the time or of the temperature or some 
similar variable, and f signified only that an equation existed between these 
functions. If Newton wished to represent dy/dx he had to write dy/dx = dy/dt . 
dx/dt = = a: 1, where a is a magnitude measured according to the unit of 
the fluxions.... In this theory of fluxions no path was open to partial differ- 
ential equations." 

These writers are correct in stating that all fluxions are time-derivatives, 
but where in Newton and other writers on fluxions is it stated that all fluxions 
must result from contemporaneous fluents? Why is it not possible to consider 
the velocity (fluxion) of u when only x changes, or when only y or z changes? 
These continental writers assume all fluxions to be contemporaneous and do 
not go to the trouble to see what the practice of British writers really was in 
this respect. To show the error of this contention it is sufficient to quote from 
Newton and other writers on fluxions where partial processes freely enter. 
To present our case convincingly, we shall go into considerable detail and 
thereby hope to make a contribution to the history of partial processes in 
England during the time of Newton and the eighteenth century. 

Partial differentiation and partial integration in Newton 

In the following quotation' from the Method of Fluxions, Newton explains 
the differentiation of an implicit function in x and y: 

"If the relation of the flowing Quantities x and y be x3 - ax2 + axy - y= 0; 
first dispose the Terms according to x, and then according to y, and multiply 
them in the following manner. 

Mult. X3-ax2 + axy- y3 -y3+ axy-cax2 

3x 2x x 3y 
by 0 O 

x x x y y 
makes 3xx2 - 2atx + aty * - 3yy2 + ayx * 

The sum of the Products is 3.X2-2ax +aty- 3y2+ayx=O, which Equation 
gives the Relation between the Fluxions x and y. For if you take x at plea- 
sure, the Equation X3-ax2 + axy-y3 = 0 will give y. Which being determined, 
it will be x:y: :3y2_ax:3x2-2ax+ay." 

I $ir Isaac Newton, Method of Fluxions, edited by John Colson (1736), p. 21, 
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Here clearly Newton allows x to vary, while y remains constant, and vice 
versa. In modern symbols, if z = x3-ax2 ? axy-y3, then az/ax = 3x2 - 2ax + ay, 
4z149y=ax-3y2. Such a procedure is a violation of the theory of fluxions as 
understood by Tischer, Zeuthen and Hoppe. 

In the process of partial integration, Newton's statement is equally clear. 
He considers the problem: A fluxional equation being given, to find a fluent 
equation. "As this Problem is the Converse of the foregoing, it must be solved 
by proceeding in a contrary manner."' He solves several examples. Thus 
Newton clearly and fully explained partial differentiation and partial integra- 
tion, but nowhere does he give a partial fluxional or differential equation. 

Newton worked on two problems for which he published only conclusions, 
namely the problem of the solid of least resistance,2 and the problem of,the path 
of a ray of light in a heterogeneous medium.3 The modern general treatment of 
these problems involves partial differential equations. Whether or not Newton 
himself used such equations we cannot profitably discuss here. 

Other British writers giving partial differentiation and partial integration 

We have not been able to discover the explicit use of partial processes in 
Maclaurin, Taylor and Stirling. Apparently using partial fluxions consciously, 
John Turner,4 a friend of Thomas Simpson, in 1748, maximized v4x3y2z when 
v+x+y+z=b. "Expunging z, b-v-x-y=1/v4x3y2. In fluxions -v-x-y 
= - 2y)/y3x3V4 - 3/y2x4v4-4v/y2x3v5; whence y = 2y/y3x3V4, X = 3/y2x4v4, =4V/ 
2 3 

y x3v5 

And 1/V4X3y2=y/2 = x/3 = v/4 = b-v-x-y." Thereupon each unknown is 
found in terms of b. In this process a total fluxional equation is found first; 
thereupon the partial fluxion obtained when y alone varies, on the left side of 
the fluent equation, is equaled to the partial fluxion with respect to y, on the 
right side of the equation. Similarly for the partial fluxions with respect to 
x, and v, respectively. Practically the same problem is solved in the same way 
by William Emerson.5 

Using the fluxional notation, John Playfair performs partial differentiation 
and partial integration in finding solids of greatest attraction.6 Partial processes 
occur, of course, in books employing partial fluxional equations. 

1 Method of Fluxions, p. 25. 
2 Newton's Principia, Bk. II, Prop. 34, Scholium. See a modern treatment in A. R. Forsyth, Calculus 

of Variations, Cambridge (1927), p. 340; 0. Bolza, Bibliotheca Mathematica, vol. 13 (1912-13), p. 146. 
3 Newton's Opticks, Book II, Part III, Prop. 8. See a modem treatment of the problem in R. A. 

Herman, Treasise on Geometrical Optics, Cambridge (1900), p. 308. 
4The Mathematical Questions proposed in the Ladies' Diary, by Thomas Leybourn, vol. 1, London 

(1817), p. 395. 
6 W. Emerson, The Doctrine of Fluxions, 3d. Ed., London (1768), pp. 174, 175. 
6 Transactions of the Royal Society of Edinburgh, vol. 6 (1812), pp. 195, 196. 
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Partial Differential Equations in Books on Fluxions 
British writers on the history of the calculus have never claimed for them- 

selves any share, however modest, in the development of partial differential 
equations before the nineteenth century. John Leslie' speaks of the "capital 
extension about the middle of the last century by what is termed the Calculus 
of Partial Differences, which applies with singular felicity to the solution of 
the most arduous and recondite physical problems.. . . The first specimen of 
this sort of Integration was given by Euler in 1734, but D'Alembert expanded 
the process in his Discourse on the General Cause of the Winds, which appeared 
in 1749.... " Similar statements are made by David Brewster in the Edin- 
burgh Encyclopaedia, article "Fluxions." 

Nevertheless, I have found a few occurrences of partial fluxional equations. 
In 1737, Thomas Simpson2 derived the maximum of the expression (b3-x3) 
(X2Z- Z3) (xy_ y2) He began: "First considering y as a variable, we have 

xy -2yy - 0, or y = 2x .-. xy-yy = 4. By making z variable, we have x2s -3z2s = 0, 
or Zg3. . ." We see that, in obtaining the first differential equation, the 

fluxion of the given expression is found when y is the independent variable, z 
and x being taken to be constant; in obtaining the second equation, z is the 
independent variable, y and x being taken constant. If we introduce the letter 
u to represent the expression to be maximized, then, in modern symbols, 
the above analysis includes the process of finding aul/y = A (x - 2y), au/lz 
=B(X2 3y2), where A _ (b , and B=(b3-x3) (xy _y2). There are 
thus obtained two simultaneous partial differential equations with two inde- 
pendent variables y and z, in which, for a maximum value of u, au/ly = 0 and 
au/az = 0. 

A similar problem, to find the minimum of an expression xx+yy+zz, when 
ax+by+cz=d, is answered in the Ladies' Diary for 1757-58 by Lionel Charlton 
of Whitley, and seems to indicate that partial processes were understood by 
the rank and file of British matlhematicians. "Now seeing that any two of the 
quantities x, y, z may be varied independently of the other, we shall (by making 
x and y to flow, while z remains constant) have ax+by=O and 2xx+2yy 
=0 ...." "In the same manner" he lets x and z flow, while y remains con- 
stant. This amounts to taking y and z as independent variables and x as a 
dependent variable. Observing that <y-l=x/Oy, there are derived in the 
solution of this problem the simultaneous partial differential equations in 
two independent variables xax/y +y= 0, xax/az +z =0, aax/Oy + b = 0 and 
aax/az + c = 0. 

1 John Leslie, "On the Progress of Mathematical and Physical Science, chiefly during the eighteenth 
Century" in the eighth edition of the Encyclopaedia Britannica, p. 715. 

2 Thomas Simpson, Treatise of Fluxions, London (1737), p. 35. 
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A later writer, Vince,1 solves the problem, given x+y+z=a and xy2z3 a 
maximum, to find x, y, z. Vince says: "Let us suppose such a value of y to 
remain constant, whilst x and z vary till they answer the conditions, and then 
x+z=O and z3x+3xZ2z= 0.... Now let us suppose the value of z to remain 
constant, and x and y to vary ... 

Partial differential equations are rarities in English articles of the eighteenth 
century and in English books (with the exception of Waring's). Rigorous con- 
ditions for maxima and minima in expressions of more than two variables were 
not attempted. 

Edward Waring 

He was the only eighteenth century Englishman who wrote on partial 
differential equations other than the simplest types of the first order. He was 
a Senior wrangler and was described as "one of the strongest compounds 
of vanity and modesty." According to David Brewster, "His writings are the 
only mathematical works published in this country, until late years, that have 
kept pace with the improvements made in this science on the continent." 
Waring admitted that he "never could hear of any reader in England, out of 
Cambridge, who took the pains to read and understand" his writings. In his 
Meditationes analyticae he devoted to partial differential equations twenty-four 
pages (pp. 231-254) in the first edition (1776), and seventeen pages in the second 
edition (1785). A persistent student may master this topic as presented in the 
first edition, but in the second edition hope of conquest vanishes. There are 
here fewer examples; the statements of processes have a brevity and generality 
never attempted by earlier writers nor probably by later ones. On this subject 
Waring displayed less originality than in the theory of equations, algebraic 
curves, and the theory of numbers. In the introduction to the first edition of 
his Meditationes analyticae he expresses indebtedness on this subject to Clairaut, 
Euler, D'Alembert and Condorcet; in the second edition, also to Fontaine, 
Lagrange and Laplace, but nowhere does he give specific bibliographical refer- 
ences. We find that nearly all partial differential equations given in the first 
edition are found in Euler's Institvtiones calcvli integralis, Petropoli, 1770. 
Waring's presentation is of interest in showing how this subject is treated in 
the fluxional notation. We give in translation from his Latin the following 

definition (1st ed., p. 231): "Let the quantity (v) enclosed inparentheses denote 
the value of the fluxion of V, where x alone is variable, divided by x; that is, if 

V=px+qy, then (x) denotes the quantity p, and (y) denotes the quan- 
tity q." "By (T) is denoted the second fluxion of V, divided by xy, in the 

I S. Vince, Principles of Fluxions, 1st American Edition, Philadelphia (1812), p. 19. 
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derivation of which at first x alone varies, then y alone varies." In our notation 
these derivations are aV/ax and 02V/lxay. The use of parentheses to dis- 
tinguish partial derivatives from total derivatives was introduced by Euler. 
In the first edition, Waring treats briefly D'Alembert's equation arising in the 

famous problem of vibrating strings, () = a(X2), also thirteen other linear 
partial differential equations of the second order, two equations of the first 
order and one of the third. In the second edition the treatment is more ca- 
valierly presented; the solutions of only eight equations of the second order 
are sketched, and three theorems are given relating to equations of the nth 
order, one for homogeneous equations with constant coefficients and x and y 
as independent variables, another for homogeneous equations with constant 
coefficients and any number of independent variables, and the third for linear 
partial differential equations. The following quotation (2nd ed., p. 299) exhibits 
the notation and Waring's style of presentation: 

"Sit aequatio P ( ) +Q V +R V ) +etc.+P'(i7) +Q (I ) 
0xn tn-1 ) xn-2 y2 tn -1 )Xn-2y 

n-I \/n-2\ 

+R' (V) + etc.+P" V) + etc.+LV = 0; ubi in singulis terminis V vel 

ejus fluxio unam solummodo habet dimensionem; in hac aequatione pro V 
& ejus fluxionibus scribantur evXu & ejus correspondentes fluxiones, ubi v & 
u sunt functiones quantitatum x & y: functiones v & u pendent e functionibus 
P, Q, R, etc., P', Q', etc., P", etc. quo magis simplices sunt priores functiones, 
eo magis plerumque simplices erunt posteriores." 

SOME TETRAHEDRAL COMPLEXES 
By NATHAN ALTSHILLER-COURT, University of Oklahoma 

1. Consider the lines s in space such that the feet of the perpendiculars 
dropped upon them from a fixed point A lie in a given plane a. 

2. What is the configuration formed by the lines s which pass through a 
given point M? The foot U of the perpendicular A U from A upon s lies in the 
plane a and also on the sphere (AM) having the segment AM for diameter. 
Therefore the lines s passing through M project from M the circle of intersection 
of (AM) with the plane a. Thus: Tke lines s wkick pass througk a given point 
in space form, in general, a cone of second degree. 

3. The lines s which lie in a given plane ,u may be obtained as follows. Take 
any point U on the line of intersection a,y of the planes a, ,u and erect, in IA, 

the perpendicular s to AU. Now if A' is the projection of A upon ,u A'U is, 
by a well known theorem of elementary geometry, perpendicular to the line s. 
Thus the line s is a side of a right angle in the plane y, the other side of which 
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