
 1998 The McGraw Hill Companies. This material is part of the work Data
Structures, Algorithms, and Applications in C++ by Sartaj Sahni.

9.7 INTERVAL HEAPS

9.7.1 Double-ended Priority Queues

The priority queues we have studied so far in this chapter may moreaccurately
be calledsingle-ended priority queuesbecause they permit deletion from only
one end—either the min end or the max end. Adouble-ended priority queue,
on the other hand, permits you to delete from either end. ADT 9.2 gives the
abstract data type specification for a double-ended priority queue.

AbstractDataType DoubleEndedPriorityQueue{
instances

finite collection of elements, each has a priority
operations

Create():create an empty double-ended priority queue
Size():return number of elements in the queue
Min(): return element with minimum priority
Max(): return element with maximum priority
Insert(x): insertx into the queue
DeleteMin(x):delete the element with minimum priority from the queue;

return this element inx;
DeleteMax(x):delete the element with maximum priority from the queue;

return this element inx;
}

ADT 9.2 Abstract data type specification of a max priority queue

Like single-ended priority queues, double-ended priority queues can be
used in simulations. Suppose we are running simulations under the constraint
that the queue at any station has a maximum permissible size. When an attempt
is made to insert a new job that would increase the queue size beyond its max-
imum permissible size, the job with minimum priority is deleted. When deter-
mining this minimum priority job, the new job is also included. When the station
is ready to service a new job, the job with maximum priority is deleted from the
queue.

1

2 Chapter 9 Priority Queues

9.7.2 Definition of an Interval Heap

An interval heap is an elegant extension of a min heap and a max heap that per-
mits us to insert and delete elements inΟ(logn) time, wheren is the number of
elements in the double-ended priority queue.

Definition An interval heap is a complete binary tree that satisfies the following
properties:

• When the total numbern of elements is even, each node of this complete
binary tree has two elementsa and b, a ≤ b. We say that the node
represents the interval [a,b].

• Whenn is odd, each node other than the last one has two elementsa andb,
a ≤ b. The last node has a single elementa. The interval represented by
the last node is [a,a].

• Let [ac,bc] be the interval represented by any nonroot node in the interval
heap. Let [ap,bp] be the interval represented by the parent of this node.
Then, [ac,bc] ⊆ [ap,bp] (equivalently,ap ≤ ac ≤ bc ≤ bp).

A 19 element interval heap is shown in Figure 9.12. The shaded node is
the last node. Since each node other than the last has two elements, the total
number of nodes is 10. Notice that the left ends of the node intervals define a
min heap and that the right ends define a max heap. Using the definition of an
interval heap, you can verify that this is the case for all interval heaps. Further,
you can verify that whenn >1, the minimum element is the left end of the root
interval and the max element is the right end of the root interval; whenn = 1, the
single element in the root is both the min and the max element; and whenn = 0,
there is neither a min nor a max element.

8,16 9,15 5

8,16 4,10 10,15 5,12

3,20 4,25

2,30

Figure 9.12A 19 element interval heap

Section 9.7 Interval Heaps 3

Theorem 9.4A complete binary tree in which each node represents an interval
is an interval heap iff the left ends define a min heap and the right ends define a
max heap.

Proof From the definition of an interval heap, it follows that for every pair (c,p)
of nodes in an interval heap such thatc is a child of p, ap ≤ ac and bp ≥ bc.
Therefore, the interval left ends define a min heap and the right ends define a
max heap.

Next suppose we have a complete binary tree in which every node
represents an interval and the interval left ends define a min heap and the right
ends a max heap. It follows that for every pair (c,p) of nodes in the binary tree
such thatc is a child ofp, ap ≤ ac andbp ≥ bc. Further, since the elements inc
define an interval whose left end isac and whose right end isbc, it follows that
ap ≤ ac ≤ bc ≤ bp. Therefore, the binary tree is an interval heap.

Since an interval heap is a complete binary tree, it is efficiently represented
in a one-dimensional array using the formula-based scheme described in Section
8.4. Recall that the same scheme is used to represent a min heap and a max
heap. However, in the case of an interval heap, two elements are stored in each
array position. Ann element interval heap uses array positions 1, 2, . . . ,
H n /2 J . The last node is in array positionH n /2 J .

Notice also that the height of an interval heap isΟ(logn) because it is a
complete binary tree.

9.7.3 Insertion into an Interval Heap

Suppose we wish to insert the element 1 into the interval heap of Figure 9.12.
Since the last node has only one element, this node can accomodate the new ele-
ment. If we put the new element into this node, the interval represented by the
node becomes [1,5] (see Figure 9.13(a). Notice that the interval right ends still
define a max heap. However, the interval left ends do not define a min heap. To
remedy this, we proceed as if we are inserting 1 into the min heap defined by the
left ends. Recall that when inserting into a min heap, we traverse the path from
the new node to the root. In the case of an interval heap, this corresponds to
traversing the path from the last node to the root. Since 1 < 4, the 4 is moved
down to the last node to get the configuration of Figure 9.13(b). Then 1 is com-
pared with the left end 3 of the parent of the shaded node of Figure 9.13(b).
Since 1 < 3, the 3 is moved to the shaded node and the configuration of Figure
9.13(c) is obtained. Finally, 1 is compared with the left end of the root. Since 1
< 2, the 2 is moved down and we obtain the configuartion of Figure 9.13(d).
Notice that this moving down of left ends replaces old left ends with smaller
ones. Consequently, the pair in each node defines an interval and every child
interval is contained in its parent interval. The result is an interval heap.

4 Chapter 9 Priority Queues

8,16 9,15 1,5

8,16 4,10 10,15 5,12

3,20 4,25

2,30

(a)

8,16 9,15 4,5

8,16 ,101 10,15 5,12

3,20 4,25

2,30

(b)

8,16 9,15 4,5

8,16 3,10 10,15 5,12

,201 4,25

2,30

(c)

Figure 9.13Insertion into an interval heap (continues)

As another example, consider the insertion of 25 into the interval heap of
Figure 9.13(d). Since this interval heap has an even number of elements, we
must add a new last node. The new last node will contain only one element.
Tentatively, the element in the new last node is 25 (see Figure 9.13(e)). The

Section 9.7 Interval Heaps 5

interval right ends do not define a max heap. To fix this problem, we use the stra-
tegy used to insert into a max heap. That is, we follow the path from the new
node to the root. The interval right ends of the nodes on this path are examined
and a right end is moved down if it is less than the newly inserted element.

8,16 9,15 4,5

8,16 3,10 10,15 5,12

2,20 4,25

1,30

(d)

8,16 9,15 4,5 25

8,16 3,10 10,15 5,12

2,20 4,25

1,30

(e)

Figure 9.13Insertion into an interval heap (continues)

In our example, 25 is first compared with 10. Since 10 < 25, the 10 is
moved down to the last node to get the configuration of Figure 9.13(f). Next 25
is compared with 20 and the 20 is moved down. Since 25 < 30, the 30 is not
moved down and the 25 is inserted into the left child of the root. The resulting
interval heap is shown in Figure 9.13(g).

Whenever we insert into an interval heap, three cases are possible—(1) the
new element lies within the interval defined by the parent (if any) of the last
node, (2) the new element lies to the left of the parent interval, and (3) the new
element lies to the right of the parent interval. When case (1) happens, the new
element remains in the last node and no element moving is required. In case (2)
the interval left ends do not define a min heap and we proceed to fix this problem

6 Chapter 9 Priority Queues

8,16 9,15 4,5 10

8,16 3, 25 10,15 5,12

2,20 4,25

1,30

(f)

8,16 9,15 4,5 10

8,16 3,20 10,15 5,12

2,25 4,25

1,30

(g)

Figure 9.13Insertion into an interval heap (concluded)

using the strategy used to insert into a min heap. When case (3) arises, the inter-
val right ends do not form a max heap and we fix this problem using the strategy
used to insert into a max heap.

Since we can insert an element into an interval heap making a leaf to root
pass doing constant work per node encountered, the time needed for the insert
operation isΟ(logn).

9.7.4 Deletion from an Interval Heap

Suppose we are to delete the min element from the interval heap of Figure
9.13(g). This element is the left end of the root interval, that is element 1. Fol-
lowing the deletion of the element 1, the interval heap contains only 20 elements.
Therefore, the current last node is to be removed. The single element 10 that is
in this last node must be reinserted. Figure 9.14(a) shows the interval heap
configuration after the min element and the last node are deleted. Notice that the

Section 9.7 Interval Heaps 7

element removed from the last node is guaranteed to be <= the right end of the
root interval because this right end in the max element.

8,16 9,15 4,5

8,16 3,20 10,15 5,12

2,25 4,25

,3010

(a)

8,16 9,15 4,5

8,16 3,20 10,15 5,12

,2510 4,25

2,30

(b)

8,16 9,15 4,5

8,16 ,2010 10,15 5,12

3,25 4,25

2,30

(c)

Figure 9.14Deletion from an interval heap (continues)

8 Chapter 9 Priority Queues

Since the element 10 that is to be reinserted is less than the remaining ele-
ment in the root, it is a candidate for the left end of the root interval. We check
for a possible left end violation by comparing against the left ends of the children
of the root. The smaller of the children left ends is 2 and 2 < 10. Therefore, the
2 is moved to the root and becomes the root’s left end. Figure 9.14(b) shows the
new configuration. Next we attempt to place 10 into the node that formerly
housed 2. Since 10 < 25, we attempt to put it in as the left end of this node’s
interval. The smaller of the left ends of the children of the shaded node of Figure
9.14(b) is determined and compared with 10. Since 3 < 10, 3 is moved up and
the configuration of Figure 9.14(c) is obtained. Since 10 < 20, we attempt to
make 10 the left end of the interval of the shaded node of Figure 9.14(c). So we
check the min heap property at this node. Since 10 > 4, 4 is moved up and the
configuration of Figure 9.14(d) is obtained. Now since 10 > 5, we swap the 10
and 5 and attempt to make 5 the left end of the interval of the shaded node of
Figure 9.14(d). Figure 9.14(e) shows the result. Even though we have swapped
the 10 and 5, a right end violation is not possible because we have replaced the
old right end by a larger value that is known to be <= the right end of the parent.
Notice the similarity between this deletion process and that used to delete from a
heap. The only difference is that each time we move one node down, we may
need to swap the left end candidate with the right end of the node we have
moved to.

Suppose we wish to delete the max element from the interval heap of Fig-
ure 9.14(e). The right end 30 of the root interval is to be deleted. Following the
deletion, the interval heap will have 19 elements. So the last node should have a
single element. We remove one of the two elements from the last node. If we
remove the right end 10 of the last node, the configuration of Figure 9.14(f)
results. Notice that the element removed from the last node is guaranteed to be
>= the left end of the root because the left end of the root is the min element.
Before we can make 10 the right end of the root interval, we must verify the max
heap property at this node. Since 10 < 25, one of the two 25s is to be moved up.
If we move the 25 from the left child, the new configuration is as in Figure
9.14(g). Since 10 > 3, we attempt to make 10 the right end of the shaded node’s
interval. But since 10 < max{16, 20}, the 20 is moved up and the configuration
of Figure 9.14(h) obtained. Since 10 > 4, we attempt to make 10 the right end of
the interval of the shaded node. Since 10 is at least as large as the right end of
the child’s interval, 10 is inserted into the shaded node of Figure 9.14(h) and the
configuration of Figure 9.14(i) obtained.

To summarize, we can delete either the min or the max element following a
procedure similar to that used to delete from a heap. To delete the min element,
we delete the left end of the root as well as the last element in the interval heap.
We then proceed to reinsert the deleted last element into the min heap of the
interval heap. This reinsertion proceeds like the reinsert step following the dele-
tion of the min element from a min heap. However, each time we move to a
node at the next level, we swap the element to be reinserted with the right end of

Section 9.7 Interval Heaps 9

8,16 9,15 10,5

8,16 4,20 10,15 5,12

3,25 4,25

2,30

(d)

8,16 9,15 5, 10

8,16 4,20 10,15 5,12

3,25 4,25

2,30

(e)

8,16 9,15 5

8,16 4,20 10,15 5,12

3,25 4,25

2, 10

(f)

Figure 9.14Deletion from an interval heap (continues)

the node moved to in case the element to be reinserted is greater than the right
end. To delete the max element, we delete the right end of the root as well as the
last element of the interval heap. The deleted last element is reinserted using a
process similar to that used to reinsert into a max heap. However, each time we
move to a node at the next level, we swap the element to be reinserted with the

10 Chapter 9 Priority Queues

8,16 9,15 5

8,16 4,20 10,15 5,12

3, 10 4,25

2,25

(g)

8,16 9,15 5

8,16 4, 10 10,15 5,12

3,20 4,25

2,25

(h)

8,16 9,15 5

8,16 4,10 10,15 5,12

3,20 4,25

2,25

(i)

Figure 9.14Deletion from an interval heap (concluded)

left end of the node moved to in case the element to be reinserted is less than the
left end.

Since we can delete either the min or max element from an interval heap
making a root to leaf pass doing constant work per node encountered, the time
needed for the delete isΟ(logn).

Section 9.7 Interval Heaps 11

9.7.5 Initializing an Interval Heap

An n element array with two elements in each array position except possibly the
last position which may have one element can be restructured, in linear time, so
as to represent ann element interval heap. The strategy is very similar to that
used for the linear time initialization of a min or max heap.

To initialize an interval heap, the array positions are examined in the order
H n /2 J , . . . , 1. When we examine array positioni, we first order the up to two
elements in positioni so that the left one is≤ the right one. Next we ensure that
the right element in positioni is the largest one in the subtree with rooti. This is
done by using the procedure used to reinsert the element removed from the last
node following the deletion of the max element from the root. Finally we ensure
that the left element ini is the smallest one in the subtree with rooti. This is
done by using the procedure used to reinsert the element removed from the last
node following the deletion of the min element from the root. The time spent at
each array positioni is Ο(height of the subtree with rooti). This is the same as
the time spent at each nonleaf node by the heap initialization method. The time
spent at each leaf node isΘ(1) and the number of leaf nodes isΘ(n). Therefore,
the total time taken to initialize an interval heap isΘ(n).

9.7.6 The ClassIntervalHeap

An interval heap can be represented as an array of typeTwoElement . Pro-
gram 9.16 gives the definition of the classTwoElement .

template <class T>
class T woElement {

friend IntervalHeap<T>;
public:

T left, // left element
right; // right element

};

Program 9.16 The classTwoElement

To simplify the code we duplicate the single element that resides in the last
node whenever the total number of elements is odd. When this is done, all nodes
have two elements in them. We shall use this strategy for our implementation.
Program 9.17 gives the specification of the classIntervalHeap . The codes
for the methodsMin and Max are also given here. Notice that because of the
duplication strategy used, the code forMax does not handle the case when the
current size is 1 any different from the case when the current size is > 1.

12 Chapter 9 Priority Queues

template<class T>
class IntervalHeap {

public:
IntervalHeap(int IntervalHeapSize = 10);
~IntervalHeap() {delete [] heap;}
int Size() const {return CurrentSize;}
T Min() {if (CurrentSize == 0)

throw OutOfBounds();
return heap[1].left;
}

T Max() {if (CurrentSize == 0)
throw OutOfBounds();

return heap[1].right;
}

IntervalHeap<T>& Insert(const T& x);
IntervalHeap<T>& DeleteMin(T& x);
IntervalHeap<T>& DeleteMax(T& x);

private:
int CurrentSize, // number of elements in heap

MaxSize; // max elements permitted
TwoElement<T> *heap; // element array

};

Program 9.17 The class IntervalHeap

Program 9.18 gives the code for the interval heap constructor. Although
the code permits you to have an odd maximum size, there will generally be no
advantage to specifying an odd maximum size.

template<class T>
IntervalHeap<T>::IntervalHeap(int IntervalHeapSize)
{// Interval heap constructor.

MaxSize = IntervalHeapSize;

// determine number of array positions needed
// array will be heap[0:n-1]
int n = MaxSize / 2 + MaxSize % 2 + 1;

heap = new TwoElement<T> [n];
CurrentSize = 0;

}

Program 9.18 Constructor for IntervalHeap

Section 9.7 Interval Heaps 13

Program 9.19 gives the code for the insert method and Programs 9.20 and
9.21 give the codes for the delete methods.

template<class T>
IntervalHeap<T>& IntervalHeap<T>::Insert(const T& x)
{// Insert x into the interval heap.

if (CurrentSize == MaxSize)
throw NoMem(); // no space

// handle CurrentSize < 2 as a special case
if (CurrentSize < 2) {

if (CurrentSize) // CurrentSize is 1
if (x < heap[1].left)

heap[1].left = x;
else heap[1].right = x;

else {// CurrentSize is 0
heap[1].left = x;
heap[1].right = x;
}

CurrentSize++;
return *this;
}

// CurrentSize >= 2
int LastNode = CurrentSize / 2 + CurrentSize % 2;
bool minHeap; // true iff x is to be

// inserted in the min heap part
// of the interval heap

if (CurrentSize % 2)
// odd number of elements
if (x < heap[LastNode].left)

// x will be an interval left end
minHeap = true;

else minHeap = false;
else {// even number of elements

LastNode++;
if (x <= heap[LastNode / 2].left)

minHeap = true;
else minHeap = false;
}

Program 9.19 Inserting into an interval heap (continues)

14 Chapter 9 Priority Queues

if (minHeap) {// fix min heap of interval heap
// find place for x
// i starts at LastNode and moves up tree
int i = LastNode;
while (i != 1 && x < heap[i / 2].left) {

// cannot put x in heap[i]
// move left element down
heap[i].left = heap[i / 2].left;
i /= 2; // move to parent
}

heap[i].left = x;
CurrentSize++;
if (CurrentSize % 2)

// new size is odd, put dummy in LastNode
heap[LastNode].right = heap[LastNode].left;

}
else {// fix max heap of interval heap

// find place for x
// i starts at LastNode and moves up tree
int i = LastNode;
while (i != 1 && x > heap[i / 2].right) {

// cannot put x in heap[i]
// move right element down
heap[i].right = heap[i / 2].right;
i /= 2; // move to parent
}

heap[i].right = x;
CurrentSize++;
if (CurrentSize % 2)

// new size is odd, put dummy in LastNode
heap[LastNode].left = heap[LastNode].right;

}

return *this;
}

Program 9.19 Inserting into an interval heap (concluded)

The insert and delete codes closely follow our earlier discussion. Our stra-
tegy of duplicating the last element when the current size is odd has simplified
these codes.

Section 9.7 Interval Heaps 15

template<class T>
IntervalHeap<T>& IntervalHeap<T>::DeleteMin(T& x)
{// Set x to min element and delete

// min element from interval heap.
// check if interval heap is empty
if (CurrentSize == 0)

throw OutOfBounds(); // empty

x = heap[1].left; // min element

// restructure min heap part
int LastNode = CurrentSize / 2 + CurrentSize % 2;
T y; // element removed from last node
if (CurrentSize % 2) {// size is odd

y = heap[LastNode].left;
LastNode--;
}

else {// size is even
y = heap[LastNode].right;
heap[LastNode].right = heap[LastNode].left;
}

CurrentSize--;

Program 9.20 Deleting the min element (continues)

9.7.7 An Application—The Complementary Interval Problem

The dynamic complementary interval problem is a problem from computational
geometry that involves a dynamic collection of points that lie on a straight line.
Each point is described by its coordinate which is just the distance of the point
from some reference point on the line. The following operations are performed
on the collection of points:

• insert a point (i.e., a coordinate)

• delete the point with min coordinate

• delete the point with max coordinate

• report all points that lie outside any given interval [x,y], x ≤ y (the point
with coordinatez is outside the interval iff eitherz < x or z > x)

It is clear that by using an interval heap to represent the point coordinates,
the insert and delete operations can be performed inΟ(logn) time per operation,
wheren is the number of points at the time the operation is performed. The

16 Chapter 9 Priority Queues

// find place for y starting at root
int i = 1, // current node of heap

ci = 2; // child of i
while (ci <= LastNode) {// find place to put y

// heap[ci].left should be smaller child of i
if (ci < LastNode &&

heap[ci].left > heap[ci+1].left) ci++;

// can we put y in heap[i]?
if (y <= heap[ci].left) break; // yes

// no
heap[i].left = heap[ci].left; // move child up
if (y > heap[ci].right)

Swap(y, heap[ci].right);
i = ci; // move down a level
ci *= 2;
}

if (i == LastNode && CurrentSize % 2)
heap[LastNode].left = heap[LastNode].right;

else heap[i].left = y;

return *this;
}

Program 9.20 Deleting the min element (concluded)

points that lie outside a given interval can be reported inΘ(K) time, whereK is
the number of points to be reported. That is, the interval heap structure is
optimal to within a constant factor for this operation.

Suppose we have the 19 points that are in the interval heap of Figure
9.14(i) and we are to report all points outside the intervalI = [4,30]. We start at
the root and see if either of the points stored here are outsideI. If neither point is
outsideI then we terminate because the intervals below the root are contained in
the root interval and so cannot contain points outsideI. In our example, only
point 2 is outsideI and it is output. Next we repeat this examination process at
the children of the root. Examining the left child, we see that it contains a point
outsideI. This point, 3, is output and we must examine the children of the left
child of the root. The first node with interval [8,16] is examined. Since it con-
tains no point that is outsideI, its subtrees are not examined. When the node
with interval [4,10] is examined, no point is reported and so its subtrees are not
to be examined. Only the right subtree of the root remains to be examined.

Section 9.7 Interval Heaps 17

template<class T>
IntervalHeap<T>& IntervalHeap<T>::DeleteMax(T& x)
{// Set x to max element and delete

// max element from interval heap.
if (CurrentSize == 0)

throw OutOfBounds(); // empty

x = heap[1].right; // max element

// restructure max heap part
int LastNode = CurrentSize / 2 + CurrentSize % 2;
T y; // element removed from last node
if (CurrentSize % 2) {// size is odd

y = heap[LastNode].left;
LastNode--;
}

else {// size is even
y = heap[LastNode].right;
heap[LastNode].right = heap[LastNode].left;
}

CurrentSize--;

Program 9.21 Deleting the max element (continues)

Since the root of this subtree reports no point, its subtrees are not examined. Fig-
ure 9.15 shows the nodes that are examined by the above procedure.

We observe that each examined node fits into one of the following
categories:

• One or two points are reported from this node.

• No point is reported from this node. However, if this node is not the root,
its parent reports at least one point. Consequently, the number of nodes
that fit into this category is at most twice the number of points reported
overall (an exception is when zero points are reported, in this case the
number of nodes examined is at most 1).

The total number of nodes examined isΘ(K), whereK is the number of
points that lie outside the given interval. Each node takesΘ(1) time to examine.
Therefore, the time need to report all points outside an interval isΘ(K)

18 Chapter 9 Priority Queues

// find place for y starting at root
int i = 1, // current node of heap

ci = 2; // child of i
while (ci <= LastNode) {// find place to put y

// heap[ci].right should be larger child of i
if (ci < LastNode &&

heap[ci].right < heap[ci+1].right) ci++;

// can we put y in heap[i]?
if (y >= heap[ci].right) break; // yes

// no
heap[i].right = heap[ci].right; // move child up
if (y < heap[ci].left)

Swap(y, heap[ci].left);
i = ci; // move down a level
ci *= 2;
}

heap[i].right = y;

return *this;
}

Program 9.21 Deleting the max element (concluded)

9.7.8 Reference

Interval heaps were invented by Leeuwen and Wood. Their original paper
‘‘Interval Heaps,’’ The Computer Journal, 36, 3, 1993, 209−216 also describes
extensions to the basic interval heap structure described here.

Section 9.7 Interval Heaps 19

8,16 9,15 5

8,16 4,10 10,15 5,12

3,20 4,25

2,25

√

√

√ identifies nodes that report a point
examined nodes are shaded

Figure 9.15Nodes examined when reporting points outside [4,30]

-- --

