WOLFRAMRESEARCH

ERIC WEISSTEIN'S wortd of PHYSICS

WORLD OF PHYSICS

- Astrophysics
- Electromagnetism
- Experimental Physics
- Fluid Mechanics
- History and Terminology

P Mechanics
Modern Physics
Optics

- States of Matter

Thermodynamics

- Units \& Dimensional Analysis

Wave Motion

ALPHABETICAL INDEX ©

- ABOUT THIS SITE
- FAQs

WHAT'S NEW
P RANDOM ENTRY

- BE A CONTRIBUTOR
- SIGN THE GUESTBOOK
, EMAIL COMMENTS

ERIC'S OTHER SITES ©

Electromagnetism ${ }^{\text {| }}$ Ionization *

Saha Equation

The Saha equation gives a relationship between free particles and those bound in atoms. To derive the Saha equation, choose a consistent set of energies. Also choose $E=0$ when the electron velocity is zero, so $E=-I$ for $\mathrm{n}=1$. Ignore
the energy of the higher n levels, since if an electron has enough energy to reach $n=2$, it needs only $1 / 4$ more energy to ionize completely, by the Bohr energy equation

$$
\begin{equation*}
E=\frac{Z}{n^{2}}(-13.6 \mathrm{eV}) \tag{1}
\end{equation*}
$$

Let $S\left(N_{e}, N\right)$ be the probability that the gas has N_{e} electrons out of N particles in a given ensemble. The partition functions for each class of particles are

$$
\begin{align*}
Z_{e} & \equiv \sum_{n} e^{-E(n) /(k T)} \tag{2}\\
Z_{p} & \equiv \sum_{n} e^{-E(n) /(k T)} \tag{3}\\
Z_{H} & \equiv \sum_{n} e^{-E(n) /(k T)} \tag{4}
\end{align*}
$$

So the probability function, assuming indistinguishable particles, is

$$
\begin{equation*}
S\left(N_{e}, N\right)=\frac{Z_{e}^{N_{e}}}{N_{e}!} \frac{Z_{p}^{N_{p}}}{N_{p}!} \frac{Z_{H}^{N_{H}}}{N_{H}!} . \tag{5}
\end{equation*}
$$

The sums in the partition functions are actually integrals, since the particles have a continuous momentum distribution. Therefore, for Z_{e} and Z_{p}

$$
\begin{equation*}
Z_{i}=\int g_{i} e^{-\left[p^{2} /(2 m)\right] /(k T)} \frac{d^{3} \mathbf{x} d^{3} \mathbf{p}}{h^{3}} \tag{6}
\end{equation*}
$$

where i is either e or p . Using

$$
\begin{equation*}
d^{3} \mathbf{p}=4 \pi p^{2} d p \tag{7}
\end{equation*}
$$

gives

$$
\begin{equation*}
Z_{i}=\frac{4 \pi g_{i}}{h^{3}} \int d^{3} \mathbf{x} \int_{0}^{\infty} p^{2} e^{-\left[p^{2} /(2 m)\right] /(k T)} d p \tag{8}
\end{equation*}
$$

Let

$$
\begin{gather*}
y^{2} \equiv \frac{p^{2}}{2 m k T} \tag{9}\\
2 y d y=\frac{p}{m k T} d p \tag{10}\\
p d p=2 m k T y d y \tag{11}
\end{gather*}
$$

then

$$
\begin{align*}
Z_{i} & =\frac{4 \pi g_{1} V}{h^{3}}(2 m k T)^{1 / 2} \int_{0}^{\infty}(2 m k T) y^{2} e^{-y^{2}} d y \\
& =4 \frac{\pi g_{1} V}{h^{3}}(2 m k T)^{3 / 2} \int_{0}^{\infty} y^{2} e^{-y^{2}} d y \\
& =4 \frac{\pi g_{1} V}{h^{3}}(2 m k T)^{3 / 2} \frac{\sqrt{\pi}}{4} \\
& =\frac{g_{i} V}{h^{3}}(2 \pi m k T)^{3 / 2} \tag{12}
\end{align*}
$$

Since electrons and protons are both fermions,

$$
\begin{equation*}
g_{e}=g_{p}=2 \tag{13}
\end{equation*}
$$

and

$$
\begin{align*}
Z_{e} & =\frac{2 V}{h^{3}}\left(2 \pi m_{e} k T\right)^{3 / 2} \tag{14}\\
Z_{p} & =\frac{2 V}{h^{3}}\left(2 \pi m_{p} k T\right)^{3 / 2} \tag{15}
\end{align*}
$$

The derivation is identical for Z_{H}, except that the binding energy term is carried through and $g_{H}=4$, resulting in

$$
\begin{equation*}
Z_{H}=\frac{4 V}{h^{3}}\left(2 \pi m_{H} k T\right)^{3 / 2} e^{I /(k T)} \tag{16}
\end{equation*}
$$

We want to find the most probable state, so we should differentiate (2). However, because $\ln x$ is monotonic, $\ln f(x)$ will have a maximum at the same place as $f(x)$. Taking the log of (5) and using Stirling's approximation and $n \gg 1$

$$
\begin{equation*}
\ln n!\approx n \ln n-n \tag{17}
\end{equation*}
$$

the result is

$$
\begin{align*}
\ln S= & N_{e} \ln Z_{e}+N_{p} \ln Z_{p}+N_{H} \ln Z_{H}-N_{e} \ln N_{e} \\
& +N_{e}-N_{p} \ln N_{p}+N_{p}-N_{H} \ln N_{H}+N_{H} \tag{18}
\end{align*}
$$

Using the definitions

$$
\begin{align*}
N_{e} & =N_{p} \tag{19}\\
N_{H} & =N-N_{e} \tag{20}
\end{align*}
$$

and taking the derivative of (18)

$$
\begin{align*}
\frac{d(\ln S)}{d N_{e}}= & \ln Z_{e}+\ln Z_{p}-\ln Z_{H} \\
& -\ln N_{e}-\ln N_{e}+\ln \left(N-N_{e}\right)=0 \tag{21}
\end{align*}
$$

The resulting relationship is

$$
\begin{equation*}
\frac{Z_{e} Z_{p}}{Z_{H}}=\frac{N_{e}^{2}}{N-N_{e}} . \tag{22}
\end{equation*}
$$

Plugging in (14)-(16) into (22),

$$
\begin{equation*}
\frac{\left[\frac{2 V\left(2 \pi m_{e} k T\right)^{3 / 2}}{h^{3}}\right]\left[\frac{2 V\left(2 \pi m_{p} k T\right)^{3 / 2}}{h^{3}}\right]}{\left[\frac{4 V\left(2 \pi m_{H} k T\right)^{3 / 2}}{h^{3}}\right] e^{I /(k T)}}=\frac{N_{e}^{2}}{N-N_{e}} . \tag{23}
\end{equation*}
$$

Canceling and taking $m_{H} \approx m_{p}$,

$$
\begin{align*}
\frac{V}{h^{3}}\left(2 \pi m_{e} k T\right)^{3 / 2} e^{-I /(k T)} & =\frac{N_{e}^{2}}{N-N_{e}} \tag{24}\\
\frac{\left(2 \pi m_{e} k T\right)^{3 / 2} e^{-I /(k T)}}{h^{3}} & =\frac{n_{e}^{2}}{n-n_{e}} . \tag{25}
\end{align*}
$$

Defining the ionization fraction as

$$
\begin{equation*}
X \equiv \frac{n_{e}}{n} \tag{26}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{X^{2}}{1-X}=\frac{1}{n h^{3}}\left(2 \pi m_{e} k T\right)^{3 / 2} e^{-I /(k T)} . \tag{27}
\end{equation*}
$$

SEE ALSO: I onization

