

– Master’s thesis –

Evaluation of requirements management
tools with support for traceability-based

change impact analysis

B.J.M. Abma

September 10, 2009

Committee
Prof. dr. ir. M. Aksit
Dr. ir. K.G. van den Berg (1st supervisor)
Dr. I. Kurtev

Research group
Software Engineering

Faculty of Electrical Engineering,
Mathematics and Computer Science

University of Twente

 i

Abstract
The environment in which most software systems operate changes constantly. As a
result, software systems need to be adapted to be able to fulfill their purpose in the
changing environment. Since the specification and management of the requirements is
one of the first and therefore most important steps of each software engineering
project, good requirements management is essential to cope with these changes.
Requirements management tools can support managing requirements. These tools
provide features to create and update requirements, specify the relations between them
and use this information to perform impact analysis to support change. Four of these
tools, IBM’s RequisitePro, Borland’s CaliberRM, TopTeam’s Analyst and
TeleLogic’s DOORS are evaluated to determine their support for change.

Previous research on change management has been used to gather a number of criteria
to test if and to what extend tools have features to support change impact analysis.
Some of the properties tested for are information model support, options to import and
export artifacts, integration with other tools used in the software life cycle, graphical
representation of the artifacts and their relations, coverage analysis and impact
analysis. A case study has been used to determine the impact analysis support of the
four tools selected tools. Based on these criteria none of the tools turned out to be a
clear winner; all tools had poor impact analysis features, meaning most work still had
to be done by hand. The differences between the tools appeared in their supporting
features for the actual impact analysis process. DOORS offered the best basis for
impact analysis through its extended information model support, providing custom
link types and custom attributes for links.

To quantify the performance of impact analysis methods in requirements management
tools a number of methods are available. Most of these methods measure the
performance of the change itself instead of the performance of the impact analysis
method. We show that impact analysis methods can be seen as binary classifiers and
therefore the accompanying metrics can be used to determine their performance. This
method has been applied to two of the four tools using a case study with change
scenarios. Again, there is no clear winner; the differences in the impact analysis
methods used by both tools are in some cases an advantage and others a disadvantage.

The results of this evaluation of requirements management tools with support for
traceability-based change impact analysis, shows the basics for impact analysis are
present in current tools through the support for information models, different link
types, custom link types, link attributes, graphical representations, etc. A lot of this
information is however not used during the impact analysis itself, leading to poor
results. Therefore, the impact analysis in current requirements management tools is
very limited and methods that are more effective are needed.

ii

Acknowledgements
I would like to thank everyone who has supported me during this research project.

Klaas van den Berg, Ivan Kurtev and Mehmet Aksit for guiding me through the
project all this time. I would especially like to thank Klaas, his encouragement and
support made it possible for me to go on and his constructive feedback made it
possible to conclude this report.

The hard-working fellow students in 5066, previously known as 5070, for the
productive working environment and interesting discussions. I also would like to
thank everyone regularly joining the “4-uur Cup-a-Choco” sessions, for the relaxing
experience at the end of each day.

Sander Bockting for refocusing my attention on binary classifiers while discussing his
research results. It was of great help during the evaluation of current impact analysis
performance methods.

Roderick van Domburg for providing a better view on the change management
process in the real world and our discussions on the application of BC-based metrics
to evaluate impact analysis techniques.

My parents Henk and Thea, for making it possible to study at Twente University in
many ways. Without your support and encouragement, this would not have been
possible. Thank you mom and dad, I love you.

Matthijs Abma, September 2009, Enschede

iii

Contents
1 Introduction 1

1.1 Context ..1
1.2 Problem statement ...2
1.3 Approach ...2
1.4 Contributions ...3
1.5 Outline ...3

Part A: Requirements management tools features 5

2 Introduction of requirements management tools 7
2.1 Selected tools...7
2.2 Other tools ...7

3 Criteria for tool evaluation 9
3.1 Basic concepts for feature support ..9

3.1.1 Requirements management..9
3.1.2 Traceability ..10
3.1.3 Change impact analysis..12
3.1.4 Models and modeling...14

3.2 Criteria for evaluating requirements management tools17
3.2.1 Criteria related to traceability ..17
3.2.2 Non-related criteria ..22
3.2.3 Rating...22
3.2.4 Conclusion ...22

3.3 Case study WASP..23
3.4 Conclusion...25

4 Impact analysis based feature support in tools 27
4.1 IBM Rational RequisitePro ...27

4.1.1 Implementing case study..27
4.1.2 Summary ..35

4.2 Borland CaliberRM ...36
4.2.1 Implementing case study..36
4.2.2 Summary ..46

4.3 TopTeam Analyst ..47
4.3.1 Implementing case study..48
4.3.2 Summary ..56

4.4 Telelogic DOORS ...57
4.4.1 Implementing case study..57
4.4.2 Summary ..68

4.5 Evaluation of tools...70

Part B: Change impact analysis performance 73

5 Metrics for impact analysis performance quantification 75
5.1 Related work..75

5.1.1 Introduction into set theory..75
5.1.2 Current methods to determine impact analysis performance...............76

CONTENTS

iv

5.1.3 Binary classification...79
5.1.4 Metrics based on binary classification...80
5.1.5 Current methods based on binary classifiers87

5.2 Binary classifiers for impact analysis performance.......................................87
5.2.1 Evaluation of Impact analysis methods ...88
5.2.2 Mapping original definitions to binary classifiers89
5.2.3 Definitions..95
5.2.4 Visualize and compare impact analysis metrics98

5.3 Case study CMS ..101
5.3.1 Changes..101

5.4 Conclusion...102

6 Change impact performance quantification 103
6.1 Application of metrics on impact analysis ..103
6.2 Implementing the CMS ...104
6.3 Presentation of metrics and visualization ..110
6.4 Conclusion...112

7 Conclusion 113
7.1 Summary..113

7.1.1 Criteria for tool comparison...113
7.1.2 Measure performance of impact analysis methods............................114
7.1.3 Visualization ..114
7.1.4 Change impact performance quantification example115

7.2 Results of the research questions...116
7.3 Discussion..118
7.4 Open issues..118

References 121

Appendix A Requirements for Course Management System 125

Appendix B Concrete sets used for impact analysis 127
B.1 DOORS sets...127
B.2 DOORS metrics...131
B.3 RequisitePro sets ...135
B.4 RequisitePro metrics..139

v

Table of figures
Figure 1: Document outline ...4
Figure 2: The meaning triangle (based on [OR23])...14
Figure 3: Metamodeling architecture (based on [Kur05]) ...15
Figure 4: Models used to model features of requirements management tools17
Figure 5: Information model for WASP 2.1 ..24
Figure 6: Metamodel for language to model requirements in RequisitePro................29
Figure 7 Object model for use case example in RequisitePro30
Figure 8: Requirement moved to another document..31
Figure 9: Attribute types in Caliber ...38
Figure 10: Metamodel for language to model requirements in Caliber.......................38
Figure 11: Cycle in links between artifacts..46
Figure 12: Metamodel for language to model requirements in Analyst49
Figure 13: Overview of elements in DOORS..58
Figure 14: System attribute types in DOORS..58
Figure 15: Metamodel for language to model requirements in DOORS.....................59
Figure 16: Grid view in DOORS ...65
Figure 17: Graph view in DOORS...66
Figure 18: Venn diagram showing four result sets of a binary classifier80
Figure 19: ROC plot template..84
Figure 20: Precision-Recall plot template..85
Figure 21: Venn diagram with subsets as described by Bohner88
Figure 22: ROC plot for use with impact analysis...99
Figure 23: PR plot for use with impact analysis ..100
Figure 24: Subsection of the Course Management System101
Figure 25: Precision-Recall plot with change scenario results111
Figure 26: ROC plot with change scenario results ..112

TABLE OF FIGURES

vi

vii

Table of tables
Table 1: Interpretation of criterion ratings...22
Table 2: Final set of criteria ...25
Table 3 Summary of criteria evaluation for RequisitePro ...35
Table 4: Summary of criteria evaluation for CaliberRM...46
Table 5: Summary of criteria evaluation for TopTeam Analyst..................................56
Table 6: Summary of criteria evaluation for DOORS ...69
Table 7: Summary of evaluation for all three tools ...71
Table 8: Confusion matrix showing four results of binary classifier..........................80
Table 9: Accuracy paradox, result normal test ..86
Table 10: Accuracy paradox, result negative test ..87
Table 11: Binary classifier results for impact analysis methods..................................88
Table 12: Mapping current definitions on binary classifier results89
Table 13: Mapping original metrics to BC-based metrics ...90
Table 14: Mapping BC-based metrics to original metrics ...93
Table 15: Accuracy paradox, result normal test ..97
Table 16: Accuracy paradox, result positive test ...97
Table 17: Impact analysis results for change scenarios in both tools108
Table 18: Impact analysis results in decimals for final selection of metrics109
Table 19: Performance of RequisitePro and DOORS..110

TABLE OF TABLES

viii

ix

List of abbreviations
BC Binary Classifier

CIA Change Impact Analysis

CMS Course Management System

FN False Negative

FP False Positive

IA Impact Analysis

MOF Meta-Object Facility

SRS Software requirements specification

TN True Negative

TP True Positive

UML Unified Modeling Language

WASP Web Architecture for Service Platforms

XML Extensible Markup Language

LIST OF ABBREVIATIONS

x

1

1 Introduction

``Everything changes, nothing remains without change.’’
Hindu Prince Gautama Siddharta, the founder of Buddhism, 563-483 B.C.

1.1 Context
The quote at the beginning of the chapter shows that it has been known for over 2,500
years that change is universal. In our modern society this is more the case then ever
before. Companies, the market in which they operate, economies, governments, they
all change constantly. To cope with these changes and sustain their purpose, the
software systems supporting these changing organizations must be modified too. In
general these software systems change sooner then later and the earlier a in the
software life cycle a change is performed, the lower the costs.

During the software life cycle, many different artifacts are created, used, modified and
removed. Artifacts can be scenarios, use cases, functional requirements, architectures,
designs, code or other byproducts generated during the creation of the final product.
When a change is made to the system, a number of these artifacts and artifact types
will be affected. O’Neil states IBM’s Santa Teresa Laboratory reported that an
average of 25 percent of the requirements for an average project will change before
completion of the project [OC01]. Costs for these changes are even higher, Cleland-
Huang shows that change can account for 40 to 90 percent of the total development
costs [CHC03]. To manage these artifacts and support the change process, tools can
be used. In the case of requirements, such a tools is called a requirements
management tool.

A requirements management tool is an application to create, retrieve, update and
remove requirements. This is only the most basic functionality needed. To make a
requirements management more useful, additional functionality is needed. For
example the option to import and export requirements, integrate with tools covering
artifacts in other stages of the software life cycle and specify relations between
requirements, called traceability.

Traceability is the ability to make relations between artifacts explicit. These relations
can be used for example to determine what scenario is the source of a specific use
case. It can also be used between different stages in the life cycle, for example to
show what sections of code are responsible for the implementation of a specific step
in a use case. Besides manually inspecting these traces, they can also be used by the
tool to perform coverage analysis, to determine if all requirements have been fulfilled
and every artifact is linked to at least one requirement to prevent unnecessary code.
Another use for traces is impact analysis.

Change impact analysis identifies all artifacts that have to be changed as a direct or
indirect result of a proposed change. Information obtained during impact analysis can
be used to predict the number and type of artifacts affected to establish the costs of a
change and to decide to perform a change or not. At the same time, it can be used to
get a clear image of all effected artifacts to make sure none of the systems other
functionality is affected by the change.

CHAPTER 1. INTRODUCTION

2

Requirements management tools with support for traceability and impact analysis can
be helpful in an environment with constantly changing requirements, where the
effects of these changes must propagate to all other artifacts in the system, without
breaking it.

1.2 Problem statement
Since changes are such an important part of modern software development and
maintenance, support for impact analysis appears to be an essential feature for tools
used during the software life cycle. Since a systems requirements are the origin and
reason for all other artifacts and therefore often less structured and harder to
automatically analyze then artifacts created later on in the life cycle. To evaluate the
status of current tools, a list of criteria for these tools is needed, leading to our first
research question.

What features in traceability based requirements management tools are
needed to perform change impact analysis?

The features for impact analysis in tools give a good idea about what options are
available, but they do not show the tools actual impact analysis performance. To
measure a tools impact analysis performance its method must be quantified in an
objective way. This leads to our second research question.

How can the performance of change impact analysis support in current tools
be quantified?

Finally, these criteria and metrics to determine an impact analysis methods
performance have to be applied to requirements management tools to evaluate their
status, leading to our final question.

What is the status of impact analysis in current tools, based on these
questions?

The rest of this document will be used to find the answers to these questions.

1.3 Approach
To answer the questions defined in the previous section, first current literature is
inspected to see what research results are already available. Based on the results a set
of criteria of metrics is composed to evaluate our selection of tools representing
current requirements management tools.

To inspect the features for impact analysis in current requirements management tools,
literature on the requirements for these tools is used. Several studies on the
requirements of requirements management tools have been performed, using cases
from the industry. The results could provide a good foundation for a set of criteria to
evaluate our tools.

The same approach is used for the quantification of the impact analysis methods
performance. Current literature on the evaluation of impact analysis methods will be
inspected to see if it is sufficient to evaluate our tools. If this is not the case, a new
method will be developed.

1.4 CONTRIBUTIONS

 3

Once the lists of criteria and metrics are composed, they will be applied to our
selection of tools and the results will be discussed.

1.4 Contributions
By answering the research questions, a number of contributions have been made. First
of all a list of criteria to evaluate the features for impact analysis available in
requirements management tools is presented. Next to the actual impact analysis
support, most of the criteria are related to features needed to make it possible to
perform impact analysis in the first place.

Besides investigating the features for impact analysis also a set of metrics has been
presented to quantify an impact analysis methods performance. These metrics make it
possible to show the relative number of misses and false alarms affecting the quality
of the impact analysis. These numbers can be used determine what change scenarios a
tool support well or does not support at all.

Applying these criteria and metrics to a selection of requirements management tools
showed that the basics needed for impact analysis are presented in some of the tools,
but the actual impact analysis feature is really limited in all tools, still needing a lot of
manual work. As a result, the performance of the impact analysis methods was also
not perfect. Even for a simple example case, each tool missed or falsely suspected at
least one artifact during each change scenario. None of the tools performed better then
the others, since their different properties were an advantage during some of the
changes, but a drawback for the rest of the changes.

1.5 Outline
The report has been divided into two parts as shown in Figure 1. Part A will cover the
features to support impact analysis present in current requirements management tools
and part B will cover the quantification of impact analysis performance.

The tools evaluated in this report are introduced in Chapter 2. Besides the tools used,
also a short summary is given of some of the other interesting tools that could not be
evaluated in this report. Chapter 2 will discuss the basic concepts relevant to
requirements management, traceability and change impact analysis. After this
introduction, a set of criteria will be presented based on needs from the industry
presented in the literature. These criteria are used in Chapter 4 to evaluate the tools in
our selection of requirements management tools using the requirements in the WASP
case.

Chapter 5 discusses the current methods to quantify and measure the performance of
impact analysis methods. The current methods appear to have some limitations, so a
new method to measure the performance of impact analysis methods is introduced. In
Chapter 6 all methods introduced in the previous chapter are applied to two of the
four tools. A set of sample changes based on a Course Management System is used as
change scenario.

CHAPTER 1. INTRODUCTION

4

Part A
Requirements
management tools

Part B
Change impact analysis
performance

Chapter 3
Criteria for tool

evaluation

Chapter 4
Impact analysis based
feature support in tools

Chapter 5
Metrics for impact

analysis performance
quantification

Chapter 6
Change impact
performance

quantification

Chapter 2
Introduction of
requirements

management tools

Applied in

Applied in

Used in

Chapter 1
Introduction

Chapter 8
Conclusion

Figure 1: Document outline

5

Part A: Requirements management tools features
The first part of this report will cover the support of impact analysis related features in
current requirements management tools.

Chapter 2 is used to present the four tools used as a representation of the current
requirements management tools. In addition, a number of tools that did not make the
selection, but still have some interesting features, are discussed.

Chapter 2 will cover the basic concepts related of requirements management,
traceability and impact analysis so it is clear what each of them means in the context
of this thesis. Once the definitions are clear, a set of criteria is specified to test what
features for the support of impact analysis are present in the tools. These criteria will
cover options like the specification of information models, import and export, tool
integration, options to visualize requirements and their relations and of course the
options for the impact analysis itself. Since not all these criteria are as relevant for
impact analysis, a ranking is used to determine the weight of each criterion. The
requirements document for the WASP case will be used to test if and to what extend
the features covered by the criteria are covered.

In Chapter 4 all criteria are applied to the four tools selected in Chapter 2: IBM
Rational RequisitePro, Borland CaliberRM, TopTeam Analyst and TeleLogic
DOORS. In the end, none of the tools is a clear winner when it comes to impact
analysis. The basic features to support impact analysis are there, like support for an
information model, custom link types, link attributes, etc, but actual impact analysis is
often limited to simply following the direct incoming or outgoing links or performing
transitive closure. When looking at these supporting features, DOORS appears to be
the winner, as it has extended support for custom trace links and link attributes.

PART A: REQUIREMENTS MANAGEMENT TOOLS FEATURES

6

7

2 Introduction of requirements management tools

``There are many ways of going forward, but only one way of standing still.’’

Franklin D. Roosevelt, American 32nd US President, 1882-1945

One of the research questions is to determine the status of the options for and
performance of change impact analysis in current requirements tools. A selection of
four tools will represent the current requirements tools.

2.1 Selected tools
The selection of these tools is based on what tools are being used by partners of the
QuadREAD project and tools mentioned in the literature. The tools being used by the
partners are IBM Rational RequisitePro, Borland CaliberRM and TopTeam Analyst.
The final tool selected is Telelogic DOORS, since several papers describe it as one of
the more extended traceability tools available [ARN06, CHC03, DP98].

2.2 Other tools
When looking for information on requirements management many tools to support
this process were discussed. Some of them were commercial and existed for years
while others were just created as a proof of concept. A selection of interesting tools
that did not make it into the final selection is discussed here.

Sparx Enterprise Architect
This tool is being used by one of the partners in the QuadREAD project and was
therefore on our short list. The tool has support for both requirements and models and
uses UML relations, like aggregation, composition and nesting, to link requirements
and model elements. The models are used to create new artifacts through model
transformations and this process is also used to immediately create traces between the
source and target models [SS09].

It seems like there is no dedicated impact analysis method available in Architect. All
options to use links and traces are manual processes using matrix views, hierarchies,
reports for specific trace types and an auditing view showing all changes made by
certain users.

In the end the tools was not selected since there were already enough tools used by
partners in the selection and this tool was introduced quite late in the evaluation
process.

HiVe (Hierarchical Verification Environment)
This tool is being developed by the Australian Department of Defense to manage
requirements. Not a lot is known about this tool, since only a comparison with
DOORS has been released [CMS06].

HiVe supports formal checking of requirements using a generic theorem prover called
Isabelle. By using a front-end language called Isar and a default set of theorems and
objects, this generic prover can be used for requirements. Since the proof tool is

CHAPTER 2. INTRODUCTION OF REQUIREMENTS MANAGEMENT TOOLS

8

interactive, user input is needed for each step of the proof. At the moment this
solution is used, since fully automated proof can be hard to comprehend by humans.

The requirements are modeled in a Z-like schema calculus, which has proved to be a
powerful tool for naming, structuring and reusing complex system requirements. The
results of this tool seem promising, but since it is not available, it could not be
included in our survey.

Microsoft Visual Studio
The latest version of Visual Studio has also support for model transformations. These
transformations can be used to create and maintain traces between the various levels
of models [GSC04]. Since this is a well-known and often used development platform,
it would have been interesting to make it part of our survey. However when the tools
were tested, the beta version had just been removed and was therefore no longer
available.

9

3 Criteria for tool evaluation

``Observe constantly that all things take place by change, and accustom
thyself to consider that the nature of the Universe love nothing so much

as to change. The Universe is change.’’
Marcus Aurelius, Roman emperor, 121-180 A.D.

In this chapter a list of criteria will be composed to be able to determine if and to what
extend it is possible to perform change management and especially change impact
analysis in requirements management tools. The criteria will be selected based on
previous research on the needs of functionality in requirements management tools. To
test if these criteria are met by our selection of tools, a sample case is also introduced.

3.1 Basic concepts for feature support
This section will describe the basic concepts needed for the evaluation of the features
related to impact analysis support. Section 3.1.1 will handle requirements
management, Section 3.1.2 will handle traceability and Section 3.1.3 will use these
previous two sections for change management and impact analysis. The final section,
Section 3.1.4, will discuss the models and modeling techniques used to model the
features of the tools.

3.1.1 Requirements management
During the development of a software system many different documents, models,
fragments of source code, test cases and executables are produced. All these elements
are called artifacts. Cleland-Huang defines an artifact as a piece of information
produced or modified as part of the software engineering process [CHC03].

One of the first type of artifacts produced during the development of a new software
system, is the requirement. Pfleeger describes a requirement as a feature of the
system or a description of something the system is capable of doing in order to fulfill
the system’s purpose [Pfl98]. This definition is focused on the presence of features
and capabilities, but does not mention any restrictions on the system. Wieringa
proposed a more neutral definition: requirements of a system are the desired system
properties needed to achieve the desired properties of the composite system. The
requirements are motivated by the properties of the composite system [Wie03].
Features and limitations are however not mentioned explicitly. Robertson and
Robertson define a requirement in their Volere template as follows: a measurable
statement of intent about something that the product must do: or a property that the
product must have: or a constraint on the system [RR97]. Since this definition clearly
states that requirements can contain both features and restrictions, it will be used from
now on.

Requirements come in different granularities, describing different levels of detail. The
highest level used in this work, will be the scenario. Merriam-Webster describes a
scenario as an account or synopsis of a possible course of action or events. This
describes indeed the essence of the scenario as requirements type. ,To target it more
towards software engineering a scenario describes in a simple way a possible course

CHAPTER 3. CRITERIA FOR TOOL EVALUATION

10

of several events performed by a user, external system or other entity that must be
supported by the system.

The next level will describe the events presented in the scenario in more detail. In this
context these events are called use cases and Pfleeger defined them as: a use case
describes particular functionality that a system is supposed to perform or exhibit by
modeling the dialog that a user, external system, or other entity will have with the
system to be developed [Pfl98]. A more compact version is given by Aizenbud-
Reshef et al: a use case is defined as a sequence of actions that returns value back to
an actor [ARN06].

The finest level of requirements we will use are the functional and non-functional
requirements. Pfleeger defines a functional requirement as the description of an
interaction between the system and its environment. A non-functional requirement
describes a restriction on the system that limits our choices for constructing a solution
to the problem [Pfl98]. A non-functional requirement is also called a constraint:
constraints are the desired system properties imposed by the environment; these are
the bounds within which the requirements must be realized [Wie03].

Besides the type and content of a requirement, the other information can be a valuable
addition to a requirement too. Knethen described some of these additional attributes
based on experiences from the industry. Difficulty of developing the requirement until
it is validated, who finances the implementation of a requirement, various measures
the requirement should satisfy when tested (absolute minimum, measured in the
contract, planned measure, desired measure), priority, release in which the
requirement should be implemented and status in the development cycle according to
a predefined set of states are some of these attributes [Kne02].

Managing these different levels, types and attributes of requirements throughout the
software life cycle is called requirements management. Hoffmann et al define
requirements management as the structuring and administration of information from
elicitation, derivation, analysis, coordination, versioning and tracking of requirements
during the complete product lifecycle [HKW04]. A more compact definition is
provided by Sommerville, but it lacks a reference to the total life cycle of the project:
requirements management is the process of understanding and controlling changes
to system requirements [Som89]. Cant et al present a definition that mentions both the
management and time aspect: requirements management is the process of capturing,
analyzing and tracking system requirements as they evolve through the system
lifecycle [CMS06].

Most steps in the software life cycle have tool support to make working with the
various artifacts more efficient. In the case of requirements these tools are called
requirements management tools and we define them as tools to create, retrieve,
update and remove requirements and everything related like relations, reference
documents, etc. This is a very basic definition, but the features provided by the
various tools differ a lot, and this definition covers them all.

3.1.2 Traceability
All artifacts in a software system are related. Each artifact type is the result of a
previous more generic level and results in a more detailed artifact type. These links

3.1 BASIC CONCEPTS FOR FEATURE SUPPORT

 11

between artifacts are called traceability links or traces: traceability links define the
relationships that exist between the various artifacts of the software engineering
process [CHC03].

Everything related to creating and maintaining traces is called traceability. There are
however a lot of definitions describing traceability each in a different way. Gotel and
Finkelstein identified four different types of traceability [GF94]:
• Purpose-driven, defined in terms of what it should do: ''...the ability to adhere to

the business position, project scope and key requirements that have been signed
off".

• Solution-driven, defined in terms of how it should do it: "...the ability of tracing
from one entity to another based on given semantic relations".

• Information-driven, emphasizing traceable information: "...the ability to link
between functions, data, requirements and any text in the statement of
requirements that refers to them".

• Direction driven, emphasizing traceability direction: "...the ability to follow a
specific item at input of a phase of the software lifecycle to a specific item at the
output of that phase".

Each definition has its own priorities and scope and none of them covers all aspects.
Therefore, we decided to use the following definition, without any priorities or
limiting scopes: traceability is the ability to make relations between artifacts explicit.

The current definition for traceability is very generic and to be able to specify more
precise what scope a certain traceability operation has, additional definitions have
been proposed. The direction of traceability information is called forward or
backward traceability. Wieringa describes forward traceability as the ability to trace
a requirement to components of a design or implementation and backward
traceability as the ability to trace a requirement to its source, i.e. to a person,
institution, law, argument, etc [Wie95]. Pre- and post-requirements traceability seem
to describe the same scope: pre-SRS traceability refers to those aspects of a
requirement's life prior to its inclusion in the requirement specification and post-RS
traceability refers to those aspects of a requirement's life that result from inclusion in
the requirement specification [GF94].

When only the traces between artifacts of a specific type are taken in account, it is
called inter-artifact traceability. When traces between different types are relevant, it
is called extra-artifact traceability. Pinheiro defined these scopes specifically for
requirements: inter-requirements traceability refers to the relationships between
requirements and extra-requirements traceability refers to the relationships between
requirements and other artifacts [Pin03]. Pfleeger made the same distinction, but he
called it horizontal and vertical traceability: for each artifact type, vertical
traceability expresses the relationships among the artifacts of the artifact type.
Horizontal traceability addresses the relationships of the components across
collections of artifacts [Pfl98].

Besides the orientation and scope of traceability, the general type of traceability is
also relevant. Both Ramesh and Lavazza make a distinction between product-related
and process-related traceability [LV00, RJ01]. Product-related traceability links and
mechanisms describe properties and relationships of design objects independent of
how they were created. Process-related traceability links and mechanisms are being

CHAPTER 3. CRITERIA FOR TOOL EVALUATION

12

captured by only looking at the history of actions taken in the process itself and are
not recoverable from the product relationships alone. Product-related traceability is
mainly used when the use of traceability information is not yet common in an
organization or project group. Generalization and aggregation abstractions are
common in this traceability model. When they get more experienced with traceability
the process leading to artifacts becomes more important. Instead of depending on
other artifacts, artifacts evolve into other artifacts according to a certain rationale.
More advanced traceability users use more of these process-related traces.

Creating relations with one generic trace type results in a set of traces that will be very
hard to use in all but the smallest projects. Several papers describe different types of
traces to cope with this problem [ARN06, LV00, PG96, RJ01].

3.1.3 Change impact analysis
Since a majority of the software systems has to change during their operational life
span, it helps a lot when they are developed with this need for change in mind. The
online dictionary Merriam-Webster defines a change as “to make different in some
particular” [MW09]. In a software engineering context a more strict definition is
provided by Ecklund Jr et al: a change is a requirements-level expression of an
intended revision [EDF96]. This shows again the importance of solid requirements
management, just as the initial project, changes also start with the requirements.

To cope with change the most important aspect is the evolvability of the software
system itself. Rowe et al describe a high-level definition of evolvability as “a system’s
ability to accept change”. Based on the framework of a quality attributes model a
number of change categories can be identified, like generality, adaptability, scalability
and extensibility. Using these categories they provide a refined definition of
evolvability: an attribute that bears on the ability of a system to accommodate change
in its requirements throughout the system’s lifespan with the least possible cost while
maintaining architectural integrity [RLL98].

When the design and architecture of a software system make it hard to perform any
changes at all, nothing is going to change that. However, when a system was designed
with evolvability in mind, a good change process can improve the implementation of
changes. Such a process is called change management by Bohner and Arnold and
provides a common communication channel between maintenance staff, users, project
managers and operations staff, and it provides a directory of changes to the system,
for status reporting, project management, auditing and quality control [BA96].

According to Moreton change management needs at least the following steps: impact
analysis, system release planning, change design, implementation, testing and system
release and integration [Mor96]. We are interested in the first stage: impact analysis.
Bohner and Arnold describe an impact as a part determined to be affected, and
therefore worthy of inspection [BA96]. Based on this definition of an impact and the
context of software engineering leads to their definition of impact analysis: the
activity of identifying what to modify to accomplish a change, or of identifying the
potential consequences of a change. Another definition is provided by Pfleeger as the
evaluation of the many risks associated with the change, including estimates of effects
on resources, effort, and schedule [Pfl98]. An important aspect all definitions have in

3.1 BASIC CONCEPTS FOR FEATURE SUPPORT

 13

common is that impact analysis normally does not change anything but our
understanding of the system and the effect of the proposed change [AB93].

Both these definitions do not only focus on the artifacts possibly affected, but also on
the consequences and risks. Since we will evaluate the impact analysis methods in
requirements management tools, that primarily support the identification of suspect
artifacts, we define change impact analysis as identifying all artifacts that have to be
changed as a direct or indirect result of a proposed change.

Arnold and Bohner identified two types of impact analysis being supported in tools.
The first type works based on analyzing the source code using techniques like
program slicing, cross-referencing and control flow analyzing. The second type is
more life-cycle-document oriented and is based on, creating relations between
artifacts from the beginning of the project, instead of the end. Using traceability
relationships, configuration management systems and consulting designs and
specifications are techniques used for this second type of impact analysis. According
to Arnold and Bohner, the first type is more mature and provides a finer grained
analysis of the impacts, while the second one is less mature but provides a broader
analysis [AB93]. Since we focus our evaluation on requirements management tools,
we will work with impact analysis methods of the second type.

Over time, Bohner has identified five different search algorithms to perform impact
analysis. Each of these algorithms has been presented in at least one paper [Boh02]:
• Semantically guided: the analysis is performed using predetermined semantics

for objects and relationships.
• Heuristically guided: identification is done by using predetermined rules or

heuristics to suggest possible paths to inspect or impossible ones to ignore.
• Stochastically guided: analysis is performed using probabilities derived for the

situation, using characteristics of the artifacts.
• Hybrid guidance: identification is done using a combination of the methods

described above; examples are program slicing and ripple-effect analysis.
• Unguided/exhaustive: impacts are identified using a brute force solution using

simple traceability information, for example transitivity closure algorithms.

Based on the same literature Bohner classified three key challenges in modern impact
analysis:
• Information source volume: Many information sources have to be analyzed and

related.
• Change semantics: the ways to describe software change relationships are limited

for the range of software artifacts.
• Analysis methods: the methods to analyze the dependencies and traceability

structures of software work products have not been fully explored for current
products (web services and COTS components).

These three challenges will be taken in account when evaluating the impact analysis
features present in the current tools.

CHAPTER 3. CRITERIA FOR TOOL EVALUATION

14

3.1.4 Models and modeling
The traceability options of tools can be described using text, but it takes a lot of text to
describe all options and limitations. Therefore, a model will be presented to depict the
traceability options available in each tool.

The definition of a model, according to the very general description of Cambridge, is
“a representation of something” [Cam09]. Dictionary.com is more specific, offering
multiple definitions of which “a simplified representation of a system or phenomenon,
as in the sciences or economics, with any hypotheses required to describe the system
or explain the phenomenon, often mathematically” seems to fit best in this case
[Dic07]. The Free On-line Dictionary of Computing is more aimed at computer
science and describes a model as “a description of observed behavior, simplified by
ignoring certain details. Models allow complex systems to be understood and their
behavior predicted within the scope of the model, but may give incorrect descriptions
and predictions for situations outside the realm of their intended use. A model may be
used as the basis for simulation” [How07].

A compact definition of a model targeted at computer science is provided by Kurtev:
a model represents a part of the reality called the object system and is expressed in a
modeling language. A model provides knowledge for a certain purpose that can be
interpreted in terms of the object system [Kur05]. So part of the objects existing in
reality is expressed in a model using a modeling language. Just as with normal
languages, like English, Dutch or German, something expressed in a language only
has meaning when the reader is able to associate it with the concept of the
corresponding real world object in his mind. Figure 2 shows the meaning triangle of
Ogden and Richards [OR23]. It shows how a real world object and a real world
symbol, expressed using a language, are related through the concept of these elements
in ones mind. The same holds for models and the modeling languages used to create
them. They use symbols to represent real world entities and relations and are only
understood when the observer is aware of their meaning in the real world.

Concept

Symbol

Mind
World

Object

Figure 2: The meaning triangle (based on [OR23])

The requirements management tools mentioned in Section 3.1.1 contain a model
expressing the actual requirements and their relations in the real world. This model is
created using a modeling language and just as the requirements themselves, it is also
possible to create a model to express this modeling language. The model for this
modeling language is called a metamodel [Kur05]. As a result, each model is an
instance of its metamodel.

Figure 3 shows an example of this metamodeling architecture. ModelL represents a
part of reality using a modeling language called L. The subscript part of the model

3.1 BASIC CONCEPTS FOR FEATURE SUPPORT

 15

name indicates the language it is expressed in. It is possible to create a model of
modeling language L, called a metamodel. This metamodel is expressed in a
metalanguage ML and therefore called LModelML. Again, it is possible to create a
model of meta modeling language ML, called a metametamodel. This metametamodel
can be expressed in a new metametalanguage MML, this language can again be
modeled and this process can be repeated an infinite number of times. In practice,
three modeling levels are often enough. The amount of levels can be limited by
expressing the metametamodel in the language ML itself. In this case, the
metametamodel will be called MLModelML. Language L is a language used to model
the real world and language ML is a language used to model a language model. So
ML cannot only be used to model LModelML, but also MLModelML, since it is just
another model. This makes the top-level a self-reflective model.

Figure 3: Metamodeling architecture (based on [Kur05])

Atkinson identified two separate dimensions for metamodeling. This leads to two
different forms of instantiation. The first dimension handles the language definition
and as a result uses linguistic instantiation, just as the original instantiation. The
second dimension handles the domain definition and therefore used the ontological
instantiation [AK03]. The linguistic metamodel is a model to define a modeling
language that can be used for the linguistic instantiation. The ontological metamodel
is a model to describe what concepts exist in a certain domain and what properties and
relations they have and is used for the ontological instantiation. It relates user
concepts to their domain and allows for the creation of types of types or domain
metatypes. These two forms occur at the same time and allow us to locate a model
element precisely in the language-ontology space.

The real world artifacts and their relations will be modeled in the requirements
management tools. Therefore, the real world artifacts will be in the real world level or
M0 and the model of these elements will be in the model level or M1, as depicted in
Figure 3. If we want to create a model of the modeling features of the tools, we need a
model of the language used to create the model: a metamodel. Therefore, the model
for the tools modeling features will be in the metamodel level or M2. The metamodel

CHAPTER 3. CRITERIA FOR TOOL EVALUATION

16

will be expressed in the language modeled in the metametamodel in the
metametamodel level or M3. In this case, the metametamodel will be the Meta-Object
Facility (MOF), the same metametamodel used to model the language used to express
UML.

The standard linguistic metamodel architecture combined with the ontological
metamodels applied to requirements management has been depicted in Figure 4. The
various model levels contain the following models:
M3 Linguistic metametamodel for the metamodel, modeling the language used

to describe the modeling features of the tool. In this case the
metametamodel is the MOF.

M2 Linguistic metamodel for the model, modeling the language for modeling
the concrete artifacts, the relations and the information model with their
corresponding types. This metamodel will be used to describe the
modeling capabilities of the various requirements management tools.

M1 O1 Model representing the general concepts of artifacts and their relations,
also called artifact types and relation types in the requirements
management tool. At the same time it is also the ontological metamodel of
the concrete artifacts model M1 O0, describing the various types of
artifacts and relations used there. This is the information model for a
project.

M1 O0 Model representing the concrete artifacts and their relations in the
requirements management tool.

M0 ‘O1’ General concepts of real world artifacts and their relations.
M0 ‘O0’ Concrete traceability project with real world artifacts and their relations.

3.2 CRITERIA FOR EVALUATING REQUIREMENTS MANAGEMENT TOOLS

 17

REQ_SCH_001Functional
requirement

ArtifactArtifactType

Ontological
instance of

Class

Linguistic instance ofLinguistic instance of

Linguistic instance of Linguistic instance of

Represents

Functional requirement
Requirement ID: REQ_SCH_001
Category: Functional
There SHOULD be an application
that provides functionality for
mobile users to propose and
schedule meetings.

Functional requirement
Requirement ID: REQ_SCH_001
Category: Functional
There SHOULD be an application
that provides functionality for
mobile users to propose and
schedule meetings.

Represents

M3

M2

M1

M0

O0O1 Ontological
instance of

Figure 4: Models used to model features of requirements management tools

3.2 Criteria for evaluating requirements management tools
To evaluate what features are available in the requirements tools for change impact
analysis a series of criteria are composed. The criteria will not only focus on the
impact analysis method itself, but also on the features providing the basis to perform
any impact analysis at all. There are criteria to determine the options to model an
information model, to import and export artifacts, to integrate with other tools, etc.
Not all criteria are as important for impact analysis, therefore each criterion gets a
rating to show its relative weight compared to the others.

3.2.1 Criteria related to traceability
To determine which requirements are relevant for requirements management tools in
general and traceability in particular, a number of papers on this subject have been
consulted. Hoffmann composed a list of requirements for requirements tools
[HKW04]. Most of the requirements are based on projects at Daimler Chrysler. So it
is not supported by many cases, but in general it is a good basis for a list of
requirements for traceability in these requirements management tools. Dömges and
Pohl wrote a paper on adjusting traceability environments to project specific needs
[DP98]. It describes a number of requirements to perform traceability, why they are
needed and how they could be implemented in a tool. Their core requirements for
adaptable environments are the need for project-specific data types (which data types

CHAPTER 3. CRITERIA FOR TOOL EVALUATION

18

must be captured) and project-specific trace strategies (in which situations, how and
by whom must these types be captured). Aizenbud-Refesh et al. describe some
traceability support problems in current requirements management tools and give
some reasons why these could (partly) solved by using model driven development
[ARN06]. They point out problems with the lack of a metamodel, links to artifacts in
external tools, the automated creation of links, maintenance of traceability
relationships and the poor support for methodologies.

Based on the requirements and problems discussed in these publications the following
list of criteria, with functional requirements sought in modern traceability
environments, is created.

Criterion (1) Information model support [HKW04]
Description Tools shall allow the definition of requirements

management information models.
Motivation Requirements management information models are

metadata models used in requirements management projects
to formally define objects of different types, their attributes,
and links between them [WW02]. This helps the engineers
to understand this information and how they should
systematically manage their specifications. The model is
created beforehand and is independent of the tools, so the
tool has to support free modeling of the requirements so the
model can be used.

How is it measured Is free modeling possible, yes or no? If it is possible, what is
exactly possible? Is it only possible to create general
requirements with general links between them, or is it
possible to clearly specify the types of the requirements (use
case, functional, non-functional)? What is the model of
these possibilities?

Criterion (2) Links detached from artifacts [ARN06]
Description Information about the link should not be stored in the

artifact it originates from or points to.
Motivation If the trace information is stored in the artifact, the

requirement management tool has to be able to recognize
and manipulate all the artifacts involved. Therefore, it needs
explicit support for all the artifacts or it has to tread them as
plain text and leave the understanding of the semantics to
the user. If the trace information is only in the source, it is
not known at the target. However, if it is stored in both the
source and the target, updating will be more cumbersome
since the info is in two locations. Therefore, the link
information should not be stored in the actual artifacts.

How is it measured Is the tool able to store information in the artifacts, or has it
an internal representation of the artifact that can be used by
the link?

3.2 CRITERIA FOR EVALUATING REQUIREMENTS MANAGEMENT TOOLS

 19

Criterion (3) Uniquely identifiable reference objects [ARN06]
Description The tools must be able to uniquely identify a reference

object in space and time.
Motivation If the trace information is not stored in the artifact itself, the

artifact has to be identifiable. Even if it has been moved,
merged with another artifact or changed the link must point
to the right artifact.

How is it measured Does the tool store an identifier in the reference object, yes
or no? If it does, how is this identifier constructed?

Criterion (4) Traceability link types [ARN06]
Description It must be possible to use different types of traceability

links, each with their own meaning.
Motivation Not all relations between artifacts have the same meaning.

A relation indicating that an artifact satisfies another artifact
has a different effect on change in the requirements then a
relation indicating that one artifact evolved into another one.
Therefore, to give more meaning to the relations between
artifacts, different types of traceability links are required.

How is it measured Is it possible to use more then one type of trace link? How
many types can be used, is it possible to add own types?
How does the tool use the different trace links?

Criterion (5) Assign attributes to links [HKW04]
Description It must be possible to assign attributes to links.
Motivation In a real world software project, not every relation between

two artifacts has the same properties. Therefore, the
availability of link attributes is necessary to express these
characteristics in the traceability model. When the relations
between the various artifacts are used for analysis or
filtering later on, the link attributes can be used to query the
right ones.

How is it measured Is it possible to add attributes to links, yes or no? Is it also
possible to create custom attributes for links?

Criterion (6) Automatic link detection [ARN06]
Description The tool should be able to automatically detect relations

between artifacts through for example information retrieval
techniques, monitoring of change history, naming schemas
or model transformations.

Motivation The increased effort that is needed to manually create and
maintain traceability information causes the lack of general
acceptance. Therefore, the automatic detection of relations
between artifacts can help a lot.

How is it measured Is there any way to automatically determine if new traces
are required or existing ones need revisioning? What
technique is used to determine these relationships?

CHAPTER 3. CRITERIA FOR TOOL EVALUATION

20

Criterion (7) Enforce traceability links [HKW04]
Description The tool must be able to enforce the creation and change of

certain traceability links.
Motivation If the tool is able to enforce the creation or change of traces

if a requirement is altered, the traceability information stays
consistent. If the changes in the traceability information,
because of a change in the requirements, have to be made
manually, it is possible the changes are not carried out or
they are carried out wrongly, causing an inconsistent trace
model. If any other changes are made with this inconsistent
system as a basis, the inconsistency will spread, eventually
resulting in barely usable trace data.

How is it measured Is there a way to enforce the creation or change of traces,
through for example scripting? If so, in which cases can the
enforcement be used and what link types can be created and
or changed as a result?

Criterion (8) Requirements documentation support [HKW04]
Description The tool needs to be able to read and import requirements

from requirement specification documents created outside
the tool, in for example Microsoft Word. At the same time,
it needs to support the creation of documents describing the
requirements in the tool.

Motivation For a development team all the necessary requirements
information is stored in the requirements management tool.
Therefore, in their case the need for separate requirements
specification documents is not that urgent anymore.
However there are still parties with no or limited access to
the tool, for example the customer or other companies
working on the same project. For them it is important that
the tool support a way to import and export the requirements
information in the tool.

How is it measured Is it possible to import or export any requirements
information from or to a document? When importing is it
possible to recognize requirements, how are they detected,
can link information be identified? What information can be
exported, what document formats are supported, is there
support for document templates, is it possible to export meta
information like history or ownership?

Criterion (9) Tool integration [HKW04]
Description The tool needs to be able to interface with other tools in the

product life cycle to make information stored in them visible
and linkable.

3.2 CRITERIA FOR EVALUATING REQUIREMENTS MANAGEMENT TOOLS

 21

Motivation There are many tools involved in the software product life
cycle, each with their own artifacts. Because these artifacts
are the result of one or more requirements, they have to be
represented in the requirement management tool. If this is
not the case, the consistency of the system’s representation
in the requirements tool will be insufficient and the
traceability information will deteriorate. To keep the
information in the requirements management tool consistent
during the various product phases and the traceability
information complete, the information in the artifacts has to
be visible and linkable for the tool. This can be realized by
interfaces between the various tools.

How is it measured Is it possible to link to external artifacts? What types of
artifacts? Is the interface active, so the requirements
management tool is aware of changes in the artifact? What
is the granularity of the smallest possible structure and is
there any redundant data because of the interface?

Criterion (10) Graphical representation traces [HKW04]
Description The tool must provide graphical user-friendly representation

of traces.
Motivation To determine the relations between artifacts and to analyze

the interdependencies in case of a change, some form of
visualization of the trace info is needed. The traces can be
shown using for example matrices, trees or graphs, so the
information can always be shown in an appropriate form.

How is it measured What visualization forms to represent traces are present in
the tool?

Criterion (11) Coverage analysis support [HKW04]
Description The tool must be able to produce an overview of the

artifacts that have no traces to previous or subsequent
artifacts.

Motivation When artifacts appear without traces to artifacts produced
earlier in the software life cycle, this can mean that
unnecessary functionality is introduced. If artifacts have no
traces to artifacts realizing the requirements, this can mean
they are not being implemented and functionality is missing.
An overview of all artifacts not being traced to previous or
subsequent artifacts in the software life cycle can help to
prevent this.

How is it measured Is there a view to list all artifacts without traces to or from
the neighboring stages in the software life cycle? Can all
types of artifacts be shown in one view with both missing
traced from and traced to links, or are several views needed?

Criterion (12) Impact analysis support [HKW04]
Description The tool must provide a way to perform an impact analysis

to determine the effected artifacts.

CHAPTER 3. CRITERIA FOR TOOL EVALUATION

22

Motivation To support the evolvability of the system, a change strategy
is needed to make sure all changes are performed in such a
way that risks to the system are minimized. An analysis of
the impact of the change can help to create an overview of
what to modify to accomplish the proposed change or to
identify potential consequences of the change. These related
artifacts can be located with the help of the traceability
information.

How is it measured Is it possible to propose a change and get an overview of
artifacts directly or indirectly affected? What is the
granularity and extend of this information?

3.2.2 Non-related criteria
The literature mentioned in the previous section also discusses some requirements for
requirements traceability tools being less relevant for the traceability support or the
determination of the implicit metamodels of the selected tools.

For example, the different views specifically for requirements are less relevant for
traceability, since the relevant views for traceability are already discussed. The
generation of requirements documents is not that relevant for traceability either.
Maybe it uses some of the traceability information to resolve the relations between
requirements, but the generation itself has nothing to do with traces. Neither have
collaborative working on the same task, checking out for offline use or web access to
the requirements. Administrative tasks like central installation and administration;
management of users, roles and rights and workflow management are of no relevance
to the tracing process either, hence they will be not evaluated.

3.2.3 Rating
After the criteria have been evaluated for each tool, an overview table is presented
after each evaluation with for each criterion a rating for its performance and a small
outline describing important aspects present and missing. The interpretation of the
rating given to each criterion is explained in Table 1. To make it possible to do a
quick comparison of the three tools, a table is presented showing only the rating each
tool gets for each criterion, after the individual tool evaluations.

Table 1: Interpretation of criterion ratings
Score Interpretation

+ Important aspects of a criterion are supported.
□ Number of important aspects is available, but some are also missing.
- Most important aspects of a criterion are missing.

3.2.4 Conclusion
In this chapter a selection of criteria is presented, to create an overview of the tracing
capabilities of the various requirements management tools. This tracing capabilities
overview will be created during the tool evaluation and used a basis for the
implementation of the case study.

The whole information structure to store and trace requirements is represented in
these criteria. It starts with the setup of a traceability model that can be used as a

3.3 CASE STUDY WASP

 23

reference for the rest of the project. In what detail can the reference objects be
described, is it possible to specify different types of relations and can the relations be
enriched with attributes? Then the creation of traces at the start of the project is
covered. Is there support for automation to create links between certain artifacts
automatically and is there a way to enforce the creation of traces between certain
artifacts? Together with the creation of the links, the support for maintenance of the
links in case of changes in one of the artifacts is investigated. And finally yet
importantly, the usability of the links to improve the development process is
examined. What views to inspect the traces are provided, is it possible to do a change
impact analysis of the trace information and is it possible to inspect the link structure
for inconsistencies?

3.3 Case study WASP
When investigating how each requirements management tool performs on each of the
criteria, a requirements document with several layers of requirements will be useful.
The requirements description for Web Architecture for Service Platforms (WASP)
describes different scenarios that make use of context-aware mobile services to supply
the end-user with information and services [EKS02].

The requirements for WASP are described using three requirements types. Scenarios
give a high-level overview of typical situations the system should be able to handle.
From these scenarios use cases are derived describing specific conditions mentioned
in the scenarios. These use cases are used to create the final list of concrete functional
and non-functional requirements. So this case describes several levels of
requirements, as depicted in Figure 5, and is therefore ideal for the evaluation of the
criteria.

CHAPTER 3. CRITERIA FOR TOOL EVALUATION

24

-ID
-Description

Scenario

Requirements document

-ID
-Description

Item

-ID
-Title
-Goal
-Derived from
-Primary actor
-Precondictions
-Actors
-Succes
-Failure
-Trigger
-Description
-Extensions
-Priority
-Frequency
-Super-ordinates
-Sub-ordinates

Use case

-ID
-Category
-From use case
-Requirement
-Description

Requirement

1
1..*

1 1..*

1..*
1..*

1..*
1..*

-Sub-ordinates

*

-Super-ordinates

*

-Implies/Extends

*

*

Derived from

From

Figure 5: Information model for WASP 2.1

3.4 CONCLUSION

 25

3.4 Conclusion
The following list of criteria has been composed to test for different aspects if change
management and especially impact analysis:

Table 2: Final set of criteria

Criteria W
ei

gh
t

1. Information model support +
2. Links detached from artifacts □
3. Uniquely identifiable reference objects –
4. Traceability link types +
5. Assign attributes to links +
6. Automatic link detection □
7. Enforce traceability links –
8. Requirements documentation support –
9. Tool integration –
10. Graphical representation traces +
11. Coverage analysis support +
12. Impact analysis support +

The case that will be used for these criteria is the WASP case, describing different
scenarios that make use of context-aware mobile services to supply the end-user with
information and services. This case has a clear information structure, with different
types and levels of artifacts.

CHAPTER 3. CRITERIA FOR TOOL EVALUATION

26

27

4 Impact analysis based feature support in tools

``There is nothing permanent, except change.’’
Heraclitus of Ephesus, Greek philosopher, 540-480 B.C.

By implementing the case studies in the tool and looking at the underlying data
structures the criteria, as described in section 3.2.1, have been evaluated and the
results are presented per tool.

4.1 IBM Rational RequisitePro
IBM Rational RequisitePro is a requirements management tool that is part of IBM’s
Rationale Suite. This tool can be used to model requirements and store them in a
relational database. A version history of the changes made to the requirements is
maintained, so it is clear for everybody what has been changed and when.
Requirements and artifacts can be linked to each other through traces. These traces
make it possible to do a simple impact analysis to determine what other artifacts are
effected when one of the artifacts is changed.

The tool also integrates with Microsoft Word, so requirements and other artifacts can
be specified in Word and RequisitePro will be able to monitor them for changes or
update them with information from the tool. Besides Word, it also integrates with
some of the other tools in the Rational suite.

Since RequisitePro is in essence a requirements management tool, all artifact types
and artifacts that are created are called requirement types and requirements by
RequisitePro. Since both requirement types and requirements are completely
customizable, they can be used to represent almost any artifact in the software
development process. Therefore the word artifact will be used in this section for what
is called a requirement in RequisitePro. The version used for this evaluation is IBM
Rational RequisitePro 7.0.1.

4.1.1 Implementing case study
To determine how RequisitePro handles the various criteria defined in section 3.2.1,
the case study from section 3.3 is being implemented. In this section the results of the
implementation on all of the criteria are described.

4.1.1.1 Information model support
Tools shall allow the definition of requirements management information models.

The requirements management model as described in section 3.3 can be modeled
partially in RequisitePro. Modeling the custom artifact types is completely supported.
It is possible to create a type and assign a set of custom attributes to it. These
attributes can be valued using either a user defined list or a free text field. The options
for the list can be specified when creating the attribute and it is possible to indicate if
only one of the values in the list can be selected or if it is possible to select multiple
items at the same time.

CHAPTER 4. IMPACT ANALYSIS BASED FEATURE SUPPORT IN TOOLS

28

Since RequisitePro has the option to import and monitor Word documents for
attributes, it is also possible to specify document types as part of the information
model. Such a document type contains a custom template so new attributes can be
specified using a standard layout. A document type also has a default artifact type,
which will be selected when a new attribute is marked in a document of this type.

Since it is possible to define custom representation objects for artifacts, all objects and
their attributes in the WASP requirements management information model can be
freely modeled. When multiple projects use the same information model, it is possible
to create a template from an existing project. Such a template can contain only the
various types (documents, requirements, attributes) of elements or also the content of
the project for reuse in other projects.

Specifying the possible links between the various artifact types in the information
model is not possible in RequisitePro.

Information metamodel
Through the implementation of the WASP 2.1 case study, a lot of information about
the structure of RequisitePro was gathered. Part of this information is described in the
evaluation of the criteria in the previous section. However not all the information
related to RequisitePro’s capabilities to store information to manage requirements is
expressed in these criteria.

To show the exact possibilities of expressing requirements information, especially the
traces among requirements and other artifacts, we created a model describing the tools
modeling capabilities in Figure 6. The model is based on the results of the criteria
evaluation and an inspection of the data structures used by RequisitePro.

As described in criterion two, the links are detached from the actual artifacts. They are
not located inside the Word documents, but in the tool itself. The link between two
artifacts can be of one of two types, a very specific hierarchical link or a more general
trace link.

4.1 IBM RATIONAL REQUISITEPRO

 29

DocumentType ArtifactType Attribute

ListItem

Document

Hierarchical

Trace

*

*

0..1

*

*

1 1

0..1

**

1 1

* *

*

1*

type type

instance

tofrom FieldValue

Artifact

Project

Relationship

* *

default
type

Linguistic
model of

O1

described
in

instance

*

1 1

1

1

contains*

Linguistic
model of

O0

<<abstract>>
SystemElement

<<abstract>>
EnvironmentElement

<<abstract>>
ProjectElement

SystemAttributeUserAttribute

1

contains* contains*

*

Figure 6: Metamodel for language to model requirements in RequisitePro

Example project
Although all artifact types in RequisitePro can be defined by hand, to match the
project as good as possible, the tool is also provided with a number of default
projects. Since RequisitePro is focused on the requirements management process, all
the default projects only contain the requirements specification phase.

The example based on use cases as provided by RequisitePro is depicted in the object
diagram in Figure 7. It contains a selection of the information model used to describe
the requirements when using use cases. It starts with a vision document type,
describing the high-level features that have to be delivered to the stakeholders and
investors. Each feature in the document will become an artifact of the type product
feature.

CHAPTER 4. IMPACT ANALYSIS BASED FEATURE SUPPORT IN TOOLS

30

From this vision document, a number of documents containing more specific
functional use cases and non-functional supplementary requirements are derived.
Every requirement in one of these documents will be represented in RequisitePro,
using an artifact of the default type of the document they are described in.

Eventually each artifact type has a number of attributes and if the attribute has a list as
data type it also has a number of list items to choose from.

This example shows the flexibility of the customizable artifact types in RequisitePro.
The requirements artifact types of both the WASP 2.1 case study and this RUP use
case example can be modeled. It is however not possible to specify the structure of the
various types of artifacts, since there is no way to indicate if it is possible or not to
create relations between a number of artifact types.

Figure 7 Object model for use case example in RequisitePro

4.1 IBM RATIONAL REQUISITEPRO

 31

4.1.1.2 Links detached from artifacts
Information about the link should not be stored in the artifact it originates from or
points to.

RequisitePro stores no direct trace information in the artifact itself. It creates a
representation of the artifact in RequisitePro and creates the links between these
representations. However, there is some link between the actual artifact and its
representation needed, so RequisitePro can monitor it for changes. This link is
realized by assigning a unique identifier, as described in Section 4.1.1.3, to the
requirement in the artifact and store this identifier in RequisitePro. This way
RequisitePro can track the requirement even when it moves to another document,
without keeping any link information in the artifact.

4.1.1.3 Uniquely identifiable reference objects
The tools must be able to uniquely identify a reference object in space and time.

Normally RequisitePro stores the Word documents in its own format, so they cannot
be altered outside the application. However, this can be turned off. When the
requirements document is altered without RequisitePro running, it can still detect
changes in the requirement when it is started again. It is even possible to move a
requirement from one document into another and RequisitePro will detect the change,
recognize the requirement and will offer several options to solve the difference
between RequisitePro and the document (Figure 8).

Figure 8: Requirement moved to another document

RequisitePro realizes this functionality by storing an identifier in the requirement
using Microsoft Word’s Bookmarks tag. This identifier is also stored in the
requirement’s representation in RequisitePro making it possible to link the original
requirement to its representation regardless the document the requirement is in.

CHAPTER 4. IMPACT ANALYSIS BASED FEATURE SUPPORT IN TOOLS

32

4.1.1.4 Traceability link types
It must be possible to use different types of traceability links, each with their own
meaning.

In RequisitePro it is possible to use two link types to connect artifacts. The first link
type is the general trace link. It can be used to link any two artifacts represented in
RequisitePro. It can be created from the origin artifact as a 'trace to' link and from the
target as a 'traced from' link. Besides the direction of the link, no additional
information can be stored in a link.

The second link type is the hierarchical relationship. Hierarchical relationships are
parent-child relationships between artifacts of the same type. Hierarchical
relationships can be used to subdivide a general artifact into more explicit artifacts.
Child artifacts provide additional detail for their parent artifact [IBM06]. This means
each parent artifact can have multiple child artifacts of the same type as the parent.
Every child artifact can have only one parent, but a child can be the parent of other
artifacts.

When artifacts are changed, the links with the directly related artifacts are marked as
‘suspect’ (see section 4.1.1.12 for details). If two artifacts are linked to each other
through an indirect link between one or more other artifacts, this indirect link is
marked ‘indirect suspect’ if one or more of the individual links are marked ‘suspect’.
However if one of the links in this indirect link is a hierarchical relationship, the
indirect link will not be marked as ‘indirect suspect’.

The limitations of the hierarchical link make it quite specific and only usable in a
limited number of relations. The WASP 2.1 requirements specification uses several
relations between artifacts, some examples: derived from, super-ordinates, sub-
ordinates, extension of and implied by. None of these can be represented using the
hierarchical relationship, since it is not used during impact analysis.

Besides the hierarchical and trace links, it is not possible to create any other custom
link type.

4.1.1.5 Assign attributes to links
It must be possible to assign attributes to links.

As described in criterion 4, the only two link types possible are the hierarchical link
and the general trace link. For both it is not possible to add any additional information
like attributes. The only information stored with a link is its direction and status.

4.1.1.6 Automatic link detection
The tool should be able to automatically detect relations between artifacts through for
example information retrieval techniques, examining active code during test
scenarios, monitoring of change history, naming schemas or model transformations.

There is no option in RequisitePro to automatically detect links between artifacts. It
does maintain links when artifacts are moved from document to document as
described in criterion 3. But since only the external documents change in this case and

4.1 IBM RATIONAL REQUISITEPRO

 33

not the internal state of RequisitePro, it is questionable if this is really maintaining the
links.

4.1.1.7 Enforce traceability links
The tool must be able to enforce the creation and change of certain traceability links.

As described at the evaluation of the first criterion, it is not possible to specify
between which types of artifacts links are allowed. So RequisitePro is not able to
enforce the creation of any links between artifacts. All relations have to be created by
hand. There are some limitations to where links can be created. It is for example not
possible to create cycles in the links. A parent can have only children of the same type
of artifact, they have to be described in the same document and these children can
have only one parent. The last limitation is that it is not possible to create a normal
trace link, when a hierarchical link is already in place between two artifacts.

4.1.1.8 Requirements documentation support
The tool needs to be able to read and import requirements from requirement
specification documents created outside the tool, in for example Microsoft Word. At
the same time it needs to support the creation of documents describing the
requirements in the tool.

RequisitePro is able to import Word documents containing requirements. The
individual requirements are recognized by formatting style or special character string
denoting the beginning and end of a requirement. It is not possible to detect or import
any link information that may be present in the specification of the requirements.

RequisitePro also supports the exporting of requirements to a document. This is
however limited to one type of requirements at time and it only creates a table
containing the names of the requirements and their attributes. It is not possible to
structure the output with for example a custom template. Besides the requirements
themselves, it is also possible to export the views, like the completeness and impact
analysis, on the requirements. However this will not be presented in a Word
document, but in a plain text file as comma separated values.

4.1.1.9 Tool integration
The tool needs to be able to interface with other tools in the product life cycle to make
information stored in them visible and linkable.

By default, RequisitePro integrates with Microsoft Word. All requirements written in
Word can be imported in RequisitePro and once that has been done, RequisitePro
monitors these requirements for changes. If there are differences between
RequisitePro and the document, it asks what happened and which of the two versions
should be kept. RequisitePro is also able to manipulate the Word document, so
changes made directly in RequisitePro are also present in the originating Word
document.

Since RequisitePro is part of IBM's Rational suite, it is able to exchange requirements
information with some of the other application in the suite. The integration with
Rational ClearQuest, a change request management tool, looks most useful. It allows

CHAPTER 4. IMPACT ANALYSIS BASED FEATURE SUPPORT IN TOOLS

34

the user to link change requests to requirements in RequisitePro, making it easier to
determine the impact of a request. Since ClearQuest is not available right now, the
integration options with this tool has not been tested.

Besides the integration with Word and maybe Rational, there are no external tools
RequisitePro can exchange requirements information with. There is also a
RequisitePro Extensibility server (RPX), which can be used to access the objects in
the database. The GUI library can be used to control the user interface.

4.1.1.10 Graphical representation traces
The tool must provide graphical user-friendly representation of traces.

RequisitePro has several ways to present relations. The hierarchical relations are
shown in the three representing the various types of artifacts, documents and views.
By default only the parent containing the children is shown. The parent can be
expanded to show the children directly linked to the parent. Children that are also the
parent for other children can be expanded in the same way.

The general trace links can be shown in two ways. The first is by using a matrix view.
The rows of the matrix are one type of artifact and the columns can be the same or
another type of artifacts. When there is a direct trace link between the two types of
artifacts, an arrow indicates the direction of the trace on the intersection of the row
and the column. It is also possible to show the indirect trace links between the two
types of artifacts. These are represented using semi-transparent arrows.

The second way to show general traces is with a tree. This tree shows all artifacts
traced to or from a specified type of artifact. It shows only direct links, but it does this
for multiple levels of artifacts. Both these views and their settings can be stored in the
project for easy reuse.

4.1.1.11 Coverage analysis support
The tool must be able to produce an overview of the artifacts that have no traces to
previous or subsequent artifacts.

RequisitePro supports a matrix view showing two types of artifacts, type A in the
rows of the matrix and type B in the columns (which can be of the same type). Each
type can be filtered for certain attribute values using a query. To show if there are any
requirements without traces to subsequent requirements, only the artifacts of type A
are enlisted with no direct traces to any of the artifacts of type B. In the same view it
is possible to enlist all artifacts of type B without traces from type A in the columns of
the matrix.

It is not possible to show the missing relations between more then two types in the
same view. So an individual view is needed for each pair of types. If the traces
between the two types are not all in the same direction (all relations trace from the
scenarios to the use cases) there are two views needed. One for the traces from type A
to type B and one for traces the other way around.

4.1 IBM RATIONAL REQUISITEPRO

 35

4.1.1.12 Impact analysis support
The tool must provide a way to perform an impact analysis to determine the effected
artifacts.

The criterion about graphical representations shows that there is a matrix view to
show the traces and their direction between two types of artifacts. Therefore, it is
possible to find the forward and backward traces between two phases. When an
artifact in the source phase has been changed, this matrix view also shows which
target artifacts can be affected by this change. There is however not a way to
automatically determine which mappings have to be preserved. This has to be done by
hand.

Normally a change affects artifacts in more then two phases, since the artifacts in the
target phase of the first mapping, often act as the source phase for the next phase in
the development cycle. Therefore, the system, to detect mappings that have to be
changed or preserved between two phases, has to be extended so it takes in account
the mappings in and between multiple phases.

RequisitePro supports limited impact analysis between multiple phases. Using the
matrix view it is possible to show the indirect traces between two types of artifacts,
created through the transitivity of traces from and to the phases in between. Both
forward and backward traceability are used to create the indirect links. It is however
not possible to determine which of the suspected links indicate if the mapping
between the artifacts has to be changed or preserved. Since it is only possible to show
the suspected links between two types of artifacts, a view for every pair of artifacts
has to be created.

The multiphase impact analysis is therefore only useful as an indication of where to
look for artifacts that have to be changed or preserved. It is no complete solution to
find all mappings that have to be changed, preserved or that need special attention
since they are affected by multiple mappings.

4.1.2 Summary
During the implementation of the WASP 2.1 case study, the criteria created to
evaluate the capabilities of the various requirements management tools have been
described for RequisitePro in section 4.1.1. The outcome of these criteria is
summarized in Table 3.

Table 3 Summary of criteria evaluation for RequisitePro

Criteria Rating Result
1. Information
model support

□ Specification of custom artifacts is possible;
the specification of relations and custom
traces is not.

2. Links detached
from artifacts

+ Links are stored in RequisitePro and not in
the Word documents themselves.

3. Uniquely
identifiable reference
objects

+ Every requirement in the Word document
has a unique identifier, linking it to the
reference object in RequisitePro.

4. Traceability link □ • Trace relation: general trace link used in

CHAPTER 4. IMPACT ANALYSIS BASED FEATURE SUPPORT IN TOOLS

36

types most cases;
• Hierarchical relation: link type that can be

used in only a very limited number of
cases.

5. Assign attributes
to links

- It is not possible to assign any attributes to
links.

6. Automatic link
detection

- There are no special techniques to detect
links.

7. Enforce
traceability links

- Since it is not possible to specify any
possible links in the information model, it is
not possible to enforce them.

8. Requirements
documentation
support

□ Limited to Word documents. During import
no trace information can be detected.
Exporting only possible according to
standard structure.

9. Tool integration □ Limited to Microsoft Word and other IBM
Rational products.

10. Graphical
representation traces

+ A matrix view and a tree view are available.

11. Coverage
analysis support

+ Direct coverage between two types of
requirements.

12. Impact analysis
support

□ It is possible to create a list showing only
artifacts directly related to the changed
artifact, or it is possible to show all indirectly
effected artifacts in the matrix view.

4.2 Borland CaliberRM
Borland’s requirements management tool is called Caliber Analyst. It consists of two
parts: Caliber DefineIT, a tool to define and refine requirements at the beginning of a
project, and CaliberRM, a tool to manage requirements and help with collaboration,
impact analysis and communication during the software lifecycle.

CaliberRM is the real requirements management tool we are interested in. It maintains
traceability information between various requirements in Caliber, but also between
artifacts in other tools. It also offers a number of ways to keep an overview of all
requirements and it combines these features to analyze the impact of change
proposals. At the same time, it maintains a history of all changes to both artifacts and
the links between them, so it is possible to go back in time to see what changes have
been made previously to the requirements. The version tested for this evaluation was
Borland CaliberRM 2006 9.0.847.0

4.2.1 Implementing case study
To determine how Caliber handles the various criteria defined in section 3.2.1, the
case study from section 3.3 is being implemented. In this section, the results of the
implementation on all of the criteria are described.

4.2 BORLAND CALIBERRM

 37

4.2.1.1 Information model support
Tools shall allow the definition of requirements management information models.

The WASP 2.1 requirements management model, as described in section 3.3, can be
modeled in Caliber to some extend. It is possible to create custom artifact types to
match the ones present in the requirements management model. Besides the name of
this type of artifact, a suffix can be specified that will be used as the start of the
artifact identifier. To set the various artifact types apart, it is possible to assign
attributes to an artifact and presented them in different groups. The rest of the
properties for an artifact type have to do with user rights and access levels. These
describe for example who can remove a specific artifact type (no one, the owner or
everybody) and who can change which attributes. They also determine if artifacts of
this type are hidden and if they can be created or only viewed.

The custom artifact types, specified when implementing the information model for a
project, are also available in other projects. This means they can be reused in new
projects. So specifying these types can be seen as a good investment for the future, if
most of the software development projects are based on the same artifact structure.

The attributes for the artifacts can be created in the same way as the artifacts
themselves. Attributes have a name, a type (all possible types are enlisted in Figure 9)
and a description. The effect of this attribute on the major version number and the
status of the trace links of an artifact in case of a change is specified next. As with the
artifacts, the last set of options can be used to specify the user rights. For each artifact
type it is possible to specify who can change this artifact (no one, the owner or
everybody).

Beside these attributes specified by the user, there are also a number of system
attributes that are created by default for each artifact type. They specify for each
artifact for example the owner, the id, the version number, the status and the priority.
In case of the priority and status it is possible to change the list entries so they match
the project being modeled.

It is not possible to define any information about the links that can exist between the
various types of artifact types. The original WASP information model allows only
specific link types between certain types of artifacts. It is however not possible to
define this information when specifying the information model in Caliber. So when
modeling the actual requirements, users can specify links between any two artifacts,
which conflicts with the original information model.

Caliber supports the specification of different types of requirements, each with their
own set of attributes, but it is not possible to use or specify different link types or
between which types of requirements links are or are not allowed.

CHAPTER 4. IMPACT ANALYSIS BASED FEATURE SUPPORT IN TOOLS

38

Figure 9: Attribute types in Caliber

Information metamodel
Just as for RequisitePro, a lot of information about Caliber was gathered through the
implementation of the WASP 2.1 case study. Not all this information could be
described using the criteria, so the information metamodel for Caliber is depicted in
Figure 10. The model is based on the results of our criteria evaluation and an
inspection of the data structures used by Caliber.

Attribute

Project

Linguistic
model of

O1

1..*

contains

UserDefinedAttribute SystemAttribute

RequirementType

*

*

*
*

Artifact

1

ValueType

Trace
from

to

1

1 *

*

ExternalArtifactRequirement AttributeValue

*1

*

1

*

contains*

Linguistic
model of

O0

type

instance

1

*

ExternalArtifactType

type

instance*

1

<<abstract>>
ProjectElement

<<abstract>>
SystemElement

<<abstract>>
EnvironmentElement

contains*

*

value
propertiescharacterizes

Figure 10: Metamodel for language to model requirements in Caliber

4.2 BORLAND CALIBERRM

 39

4.2.1.2 Links detached from artifacts
Information about the link should not be stored in the artifact it originates from or
points to.

The artifacts have to be imported into the tool before any traceability links can be
created to or from any other artifacts. So both the artifact and the link information
between them is always stored in the tool itself and not in the artifact documents.

It is possible to create a traceability link between an artifact in the tool and its
originating document. This link is only maintained in the tool, so here the link is also
detached from the document.

4.2.1.3 Uniquely identifiable reference objects
The tools must be able to uniquely identify a reference object in space and time.

When using Caliber, this tool is supposed to be the main repository of artifacts. The
link with the originating document is lost after importing the document. Afterwards it
is possible to create a reference or traceability link to the originating document, but it
is not possible to specify more detail then the location of the document in the file
system. Once the artifacts are imported in Caliber, they get their own unique
identification number, so the representations of the original artifacts are uniquely
identifiable.

4.2.1.4 Traceability link types
It must be possible to use different types of traceability links, each with their own
meaning.

Caliber supports one general type of traceability links between artifacts. It is just a
normal traceability link that can be established between any two artifacts indicating
that there is some relation between two artifacts. These artifacts can be of the same
type or different types and even external artifacts, like files, UML elements or test
cases.

The relation between a parent artifact and its child in the hierarchy, supported by
Caliber, could be seen as a link too. This relation is however not used for any
traceability purposes like the determination of indirect links, so it is not seen as a
separate traceability link type.

4.2.1.5 Assign attributes to links
It must be possible to assign attributes to links.

A traceability link in Caliber stores which artifacts are linked together and the
direction of the link. Furthermore, it maintains the status of the link, showing if the
link is suspect or not as a result of a change in one of the two related artifacts. Besides
the status attribute, it is not possible to assign any additional attributes to traces. Nor
is it possible to customize a link in any other way.

CHAPTER 4. IMPACT ANALYSIS BASED FEATURE SUPPORT IN TOOLS

40

4.2.1.6 Automatic link detection
The tool should be able to automatically detect relations between artifacts through for
example information retrieval techniques, examining active code during test
scenarios, monitoring of change history, naming schemas or model transformations.

It looks like Caliber has no option to automatically detect links. The first option to
create links is by specifying them in de traceability section of an artifact’s details. It is
possible to select a target artifact from the project three or one of the external artifact
source and create a from- or to-link to this selected artifact. The second way to create
links is using the traceability matrix. By selecting the intersection between two
requirements, it is possible to create a link in the desired direction. By selecting
multiple intersections at once, it is possible to create or change multiple links at the
same time. The matrix view can also be used to change the direction of links or to
remove them.

There is however no way to create links in an automated or even semi-automated
way. It is not possible to assign certain identifiers to a special attribute during import,
to create links, nor is it possible to automatically create links to source artifacts when
importing.

4.2.1.7 Enforce traceability links
The tool must be able to enforce the creation and change of certain traceability links.

It is not possible to enforce or prevent the creation of links between two types of
artifacts. So once the actual artifacts are being modeled in Caliber, it is possible to
create links between any two types of artifacts.

4.2.1.8 Requirements documentation support
The tool needs to be able to read and import requirements from requirement
specification documents created outside the tool, in for example Microsoft Word. At
the same time it needs to support the creation of documents describing the
requirements in the tool.

Since Caliber maintains all requirements inside the tool, without monitoring the
originating document, extensive import and export techniques are needed to prevent
data deterioration.

Import
Calibers import option only supports Microsoft Word documents at the moment.
Before a document can be imported, the artifact type of the artifacts contained in the
document has to be specified in the project, since the imported artifacts will be
created as the children of a type. Once a Word document has been specified, the styles
in the document are retrieved and can be used to specify which styles contain the
names and descriptions of the artifacts. If the artifacts are structured in a hierarchy,
this hierarchy can be preserved by selecting all styles containing the names of artifacts
in the various levels present in the document. Besides specifying a style to select the
artifacts description, it is also possible to select all the content between two artifact
names, between two delimiters or containing a number of keywords. Besides text,
Caliber also supports images and tables in the content. It is however not possible to

4.2 BORLAND CALIBERRM

 41

capture more details besides the artifact description. So it is not possible to
automatically assign values to user defined attributes based on keywords, delimiters
or other information available in de content of the artifact.

Once the import tool has retrieved all artifacts in the document, a preview showing
the names, the description and the structure is presented. In this preview it is possible
to reorder artifacts on the same level and to change artifact names. Once the order and
names are correct, the location where the artifacts will be inserted into the existing
structure can be specified.

When all the artifacts are extracted from the document and imported in Caliber, there
is no link with the originating document anymore. Therefore, in the case that the
artifacts in the document are altered, the tool will not be aware of this in any way. It is
possible to create a traceability link from the document to the representation of the
artifact in Caliber, but when the document changes, this is not detected by the tool
either. Even when someone wants to update the artifact descriptions in Caliber by
telling it the document has to be imported again, this is not possible. Caliber will
import the artifacts as a new set of artifacts, with no option to inherit the user defined
attributes or traceability links from the original artifacts.

Once the document with the artifacts is imported, the artifacts should be managed
from Caliber and the document should not be used anymore to make changes.

Export
Caliber has a several options to export the artifacts in projects. The simplest options
just export (part of) the Caliber database into another format. Caliber works with its
own Microsoft SQL Server or Oracle Database. Project information from all these
databases can be exported to Microsoft Access. When only a subsection of the
information is needed, for example a traceability matrix, it is also possible to export
this information in a simpler Microsoft Excel sheet or an XML file. The same holds
for the requirements grid, an overview of all artifacts and their attributes, it can be
exported to an XML, a comma separated or a plain text file.

When a more detailed overview of the current project is needed, Caliber offers a
number of reports that can be generated from the artifacts in the current project. These
reports can be focused on the artifact details, status or responsibility. The details
report shows a list of all artifacts with their attributes. The status report shows all
artifacts and their system attributes and groups them by their status. The responsibility
report shows for each registered user what artifacts he or she is responsible for. The
quick reports will be exported as XML files.

If previous reports are not sufficient and even more specific details or a predefined
structure are needed, the Caliber document factory can be used. This tool supports the
creation of templates for Microsoft Word, plain text and rich text documents that can
be used to represent the artifact information present in the tool. The templates use
commands to structure the artifact data and fields to insert the actual information
about the artifacts into the document. The commands to structure the artifacts can be
divided into formatting, sorting, definition and filtering of scopes.

CHAPTER 4. IMPACT ANALYSIS BASED FEATURE SUPPORT IN TOOLS

42

A scope is used to select the information that has to be shown. This can be a set of
artifacts of one type, one particular artifact or even an attribute belonging to a
particular artifact. It is possible to specify a custom scope with its own filter to select
a type or concrete artifact or attribute, but it is also possible to use one of the default
scopes containing often-used information. These default scopes enclose information
like the discussions, history and traces for artifacts or even the whole project.

Inside one of these scopes, it is possible to apply several sorting options to present
artifacts in an order relevant to the type of document containing them. It is possible to
sort by artifact identifier or the hierarchy as present in the tool, but it is also possible
to sort by artifact type, priority, status or even a number of the user-defined attribute
types. A scope is also used to specify the formatting of the artifacts it contains. Most
formatting can be done when the template for the document is created. By applying
markup on the keywords used to insert the actual information, the actual information
in the final document will have the same markup.

The import options provided by Caliber are limited to Microsoft Word documents
only. The options for exporting information are more extensive. Not only is it possible
to export the database to various other database formats, it is also possible to export
this type of data to Microsoft Excel, XML, comma separated or plain text files. For
more detailed and specific reports about the current status of requirements, a series of
reports can be generated by Caliber. When even more control about the details, order
and formatting is needed, it is even possible to create export templates to export
information to Microsoft Word documents.

4.2.1.9 Tool integration
The tool needs to be able to interface with other tools in the product life cycle to make
information stored in them visible and linkable.

Caliber offers a number of connectivity options with other tools. Most of these tools
are also made by Borland, but there is also support for tools from other suppliers.
According to the external traceability options, the following tools are supported by
Caliber: files in the files system, Borland Together, Borland SilkCentral, Borland
StarTeam, HP Quality Center and Microsoft Visual Studio Team System for tests and
work items.

Borland Together
Since there are several tools that should integrate with Caliber, the connectivity of one
tool is tested. Since the connectivity with one of Borland’s own tools is probably the
best, Borland Together was chosen as it is also the next step in the software
development life cycle and available on the systems at the university. Together is a
Java IDE combined with an UML modeling tool and based on the UML models from
the modeler it is possible to generate a Java framework in which the final code can be
entered.

Besides using information from Caliber, it is also possible to connect Together with
RequisitePro. The requirements in either tool can be linked to almost any UML
element in Together: classes, attributes, procedures, packages, interfaces, but also
activities in activity diagrams, etc. Only the links between elements cannot be linked
to. The communication about link information is performed by the Together trace

4.2 BORLAND CALIBERRM

 43

synchronizer. This tool shows all traces to and from objects in Together. When
something changed in Caliber or Together the information between both tools has to
be synced manually.

It is not clear what has to be changed in Together to mark an object changed and the
link with Caliber suspect. Changing the name of an object in Together caused no
suspect links and the name change was performed in Caliber without a warning.
Adding an attribute to an object did not result in any suspect links either. Both cases
should not cause any problems in their related requirements, so the absence of the
suspect status can be explained. However when the type of an attribute is changed, the
links to the corresponding requirements are still not marked suspect. When this is an
important attribute, this behavior could lead to serious problems.

Besides this limited suspect marking, the communication between both tools is also
limited. For example when a class was removed in Together, the link to the
requirement was also removed in Together. After synchronization with Caliber, it was
still present in Caliber and its status was still normal and not suspect. When the
description of a requirement in Caliber was changed, the link to the Together element
was marked suspect in Caliber. After synchronization, the same link in Together was
not marked suspect. Restarting all tools and reconnecting them, made the suspect
status appear in Together too. However, when the status was cleared in Together, it
was still marked suspect in Caliber after synchronization.

The communication between both tools seems to be not very robust. On multiple
occasions one of the applications stopped responding completely during a
synchronization action. After several hours, it was still unresponsive and performing a
hard reset on the application was the only way to get it running again.

If the communication with the other tools is as limited as with Together, these tool
integration options are limited.

Other tools
Besides integration with Borland’s other tools, it is also possible to export
requirements to a select number of applications from other manufacturers. The first
application to export to is Borland StarTeam. This is a version system for artifacts in a
software project. It is mainly targeted at source code, but it is also supports
requirements. There are even some options to create links between the supported
artifacts. The second application to export to is Mercury or HP Quality Center. This is
a test management tool that uses requirements to see if all requirements are validated
by tests and that these tests test what the requirement describes. At the same time it is
also used to make sure there are no tests without a requirement and thus testing code
that is probably not needed or not linked to the right requirement.

4.2.1.10 Graphical representation traces
The tool must provide graphical user friendly representation of traces.

When viewing artifacts in the main view, the hierarchy of the artifacts can be seen in
the left column. The hierarchical links are however not used for the traceability of this
relation. To let the hierarchy have any effect a normal link must be created between
the parent and the child. Normal traces to other artifacts can be found in the

CHAPTER 4. IMPACT ANALYSIS BASED FEATURE SUPPORT IN TOOLS

44

traceability tab of an artifact. There is a separate list for the direct in- and outgoing
links showing the target artifacts, the status of the links and in which project or file
the target artifacts resides. Besides inspecting the traces, it is also possible to modify
the links from this view. It is possible to remove links, change their target or their
status. There is however no indirect link information available in this tab.

Traceability matrix
For a clear overview of all links between artifacts, Caliber offers two traceability
views. The first view is presented using a matrix with a selection of artifacts in the
rows and columns of the matrix. Only the artifacts present in Caliber are shown in this
view, artifacts in other tools or the file system and the links to or from them are not
shown. When there is a direct link between two of these artifacts, an arrow in the
direction of the link will be shown on their intersection. It is also possible to show
indirect links between two artifacts, these will be shown as dashed arrows. There is
however no easy way to see which direct links are responsible for an indirect link.
When a change is made to an artifact, it is direct in- and outgoing links are marked
suspect by showing a question mark next to the arrow. Besides indirect links, it is also
possible to mark artifacts with no links at all.

By default, all artifacts for the active project will be shown in both the rows and the
columns. In case of a serious project, the amount of artifacts and thus the size of the
matrix can become overwhelming. Therefore, the matrix view offers an option to
filter the row and column artifacts based on project, artifact type, link direction, link
status and even attribute value. To make these filters even more specific they can be
combined using logical operators.

All the settings for a traceability matrix can be stored in a so-called view. These views
are stored as files in the file system and to enable them again, they have to be loaded
from the file system too. Therefore, they are not as easily accessible as for example in
RequisitePro, where they are part of the projects hierarchy. The filters used to select
the artifacts for the rows and columns are stored in Caliber itself and are therefore
easier accessible then the views.

Traceability diagram
The second view for traceability data is the traceability graph. It shows the selected
artifact in the middle, all artifacts with direct incoming links on the left and all
artifacts with direct outgoing links on the right. All incoming artifacts on the left also
show all artifacts with direct links to them and this happens until all artifacts with
direct links to the selected artifact or any of its predecessors are shown. The same
happens for the artifacts with outgoing links on the right of the selected artifact. All
the artifacts they link to using outgoing links are shown too and this is step is repeated
again for these new artifacts.

The traceability matrix is a good help to determine which artifacts are related and this
traceability graph helps to see how artifacts are related. It makes it possible to see
which direct links are responsible for an indirect link in the traceability matrix. When
a link between two artifacts is marked suspect, the arrow in the graph becomes red
with a question mark next to it. The diagram also supports links to and from artifacts
in external artifacts and tools.

4.2 BORLAND CALIBERRM

 45

There are three ways to depict links between artifacts in Caliber. The traceability
information shown at the artifact details, gives a detailed overview of all links related
to a particular artifact. The matrix view gives a quick overview of all links between a
large group of artifacts, including indirect and suspect links. At the same time it can
be used to quickly create multiple links between artifacts. The diagram view shows a
graph showing all in- and outgoing links for a particular artifact and all artifacts
linking indirectly to this artifact. It can therefore be used to inspect indirect traces and
the possible effect of a change on any artifacts before or after this one.

4.2.1.11 Coverage analysis support
The tool must be able to produce an overview of the artifacts that have no traces to
previous or subsequent artifacts.

In the traceability matrix there is a button to mark all artifacts without any in- or
outgoing links. This option does however not allow filtering for artifacts with only
missing ingoing links or missing outgoing links. A useful option to detect artifacts
that could represent an unnecessary feature (no incoming links) or a feature not being
implemented (no outgoing links).

Using the custom filters available for the traceability matrix it is possible select only
artifacts with no trace from relations, to detect missing incoming links, or no trace to
relations, to detect missing outgoing links. Since all types of artifacts are shown in the
same grid by default, it is possible to get an overall view of all artifacts with missing
links. When there are too many artifacts present in Caliber for this view to work, it is
also possible to filter for certain types or artifacts or even specific attributes and their
values.

4.2.1.12 Impact analysis support
The tool must provide a way to perform an impact analysis to determine the effected
artifacts.

All impact analysis in Caliber must be done by hand. The three ways to inspect links,
as described in section 4.2.1.10 about graphical representation, are also the tools used
for impact analysis. The details view for a particular artifact can be used see which
other artifacts are directly linked to this one. By doing this again for all these linked
artifacts and their links it is possible to analyzing the impact. This is however very
time consuming and by using the other two views, it can be done much faster.

The traceability matrix has the option to show indirect links. These indirect links
show which predecessors the links to a selected artifact have and which successors a
link from this artifact has. When an artifact is changed only the direct in- and
outgoing links for this artifact are marked suspect. So this cannot be used to determine
indirect suspect links. The parent-child hierarchy is not used either in the calculation
of indirect links. When the relation between a parent and a child is relevant for the
analysis, a normal link should be created between them. Sometimes it is not easy to
see what the intermediate steps of an indirect link are. To make these steps visible the
traceability diagram can be used.

When the effect of new or changed links is investigated, the matrix view has some
options to make the effects of this change visible. When a new link is created or an

CHAPTER 4. IMPACT ANALYSIS BASED FEATURE SUPPORT IN TOOLS

46

existing link is changed in the traceability matrix, it is marked in another color and so
are the indirect links that are a result of these new links

The indirect links from the matrix and diagram views are a good start, but to find all
possible effected artifacts each relation from and to the changed artifact must be
investigated manually. When a link becomes suspect as a result of this change, it can
be marked suspect in the matrix view and all links from and to the other side of this
link will be investigated in the same way. Using this strategy the impact of a change
can be determined.

The links between artifacts have to create a structure between artifacts to make clear
which artifacts are predecessors or successors of an artifact. This way it is possible to
locate the source or end result of a particular artifact. To maintain this structure, it
should not be possible to create cycles in the links between artifacts, since that would
make it impossible to locate some of the sources or targets of artifacts in this cycle. In
Caliber it is however possible to create cycles in the artifacts. An example is shown in
Figure 11 where user requirement 3 links to number 4, number 4 links to number 2
and number 2 links back to number 3. This behavior should not be allowed.

Figure 11: Cycle in links between artifacts

Caliber supports tools for manual impact analysis, but also allows the creation of
cycles, making the evaluation of traces potentially difficult.

4.2.2 Summary
During the implementation of the WASP 2.1 case study, the criteria created to
evaluate the capabilities of the various requirements management tools have been
described for Caliber in section 4.2.1. The outcome of these criteria is summarized in
Table 4.

Table 4: Summary of criteria evaluation for CaliberRM

Criteria Rating Result
1. Information model
support

□ It is possible to create different reusable
artifact types each with their own set of
attributes. It is not possible to specify link
types.

4.3 TOPTEAM ANALYST

 47

2. Links detached
from artifacts

+ Links are not stored in the original artifacts,
but in a separate table in Caliber.

3. Uniquely
identifiable reference
objects

+ Reference objects in other tools are addressed
by their internal unique identifiers. Only
reference objects in the file system cannot be
identified uniquely.

4. Traceability link
types

- There is only one generic link type.

5. Assign attributes
to links

- Besides the direction and status, it is not
possible to assign any attributes to links.

6. Automatic link
detection

- It is only possible to manually create and
update links.

7. Enforce
traceability links

- There is no option to limit the creation of links
between specific artifact types.

8. Requirements
documentation
support

+ Most import and export options are targeted at
Microsoft Word, but the options to create
documents and reports is quite extended.

9. Tool integration □ Various tools can share traceability
information with Caliber, but the quality of the
information exchange is unreliable.

10. Graphical
representation traces

+ Three possible ways to investigate links on
different levels.

11. Coverage
analysis support

+ It is possible to filter artifacts with no
incoming, no outgoing or no links at all.

12. Impact analysis
support

□ No way to do an automated analysis,
everything has to be done by hand using the
graphical representations. It is also possible to
create cycles, something that should not be
possible in a traceability tool.

4.3 TopTeam Analyst
TopTeam is the only tool in this survey with native support for more then only textual
requirements. It also supports use cases and test cases to support the requirements
specification process. Since these additional artifacts do have semantics, TopTeam is
less flexible then some of the other tools. When a project uses UML in the way it has
been implemented in TopTeam, it can be a great help. When a project is however not
using UML as it has been implemented in TopTeam, or it even does not even use
UML at all, its less flexible setup can become a problem.

The documentation was very limited in the version used for testing. There is a
document explaining the higher-level concepts and there are a number of movies
describing how to work with the use cases in the tool. There is however no general
help system present. There are some links in the tool to websites that should provide,
but now of testing these websites were not available. To make sure no functionality
was missed, a demo given by Synergio, the Dutch distributor of TopTeam, was
attended. The version tested for this evaluation was TopTeam Analyst 3.20.

CHAPTER 4. IMPACT ANALYSIS BASED FEATURE SUPPORT IN TOOLS

48

4.3.1 Implementing case study
To determine how TopTeam Analyst handles the various criteria defined in section
3.2.1, the case study from section 3.3 is being implemented. In this section the results
of the implementation on all of the criteria are described.

4.3.1.1 Information model support
Tools shall allow the definition of requirements management information models.

In contrast with some of the other tools, TopTeam Analyst supports more then only
text-based requirements. It has also native support for use cases and test cases. For
each project that is managed in TopTeam Analyst it is possible to specify which of
these three types will be available. Besides primary elements, it is for example also
possible to specify at the setup of the project who will be working on it, but since this
is not directly related to requirements management, it will not be discussed. In the
case of projects that are more complex it is possible to create one or more child
projects and store them in the main project.

Once a project has been created in TopTeam Analyst, it is time to model the
information model. The different artifact types used in a project are called record
types in Analyst. By default, a number of parent record types are available, like
Documents, Base requirement type, Context diagram, Diagrams, etc. representing
basic artifacts. More specific record types can be created based on these parent types.
Besides a parent record type, a name, prefix and description must be provided on
creation of the new type.

Once the new record type is created, additional characteristics can be specified. States
can be used to describe the current condition of a requirement. These states can be
used in project rules, for example to warn a team member when a record gets in a
certain state. Rules also specify allowed state transitions and what actions are allowed
(modify the record, change the type, add or remove attachments or comments, etc).
Next to states it is also possible to assign attributes, called fields in TopTeam Analyst,
to each new record type. The last relevant option related to requirements management
is the option to specify what type of links can be created to what types of records from
this particular record type.

All new record types are stored centrally in TopTeam Analyst and are therefore
immediately available to all new and existing projects for reuse.

Information metamodel
Just as for RequisitePro and Caliber, a lot of information about Analyst was gathered
through the implementation of the WASP 2.1 case study. Not all this information
could be described using the criteria, so the information metamodel for Analyst is
depicted in Figure 12. The model is based on the results of our criteria evaluation and
an inspection of the data structures used by Analyst.

4.3 TOPTEAM ANALYST

 49

Project

Linguistic
model of

O1

Record

*

*

Linguistic
model of

O0

1

Attribute

RecordType

System
Attribute

Custom
Attribute

*from

to
*

*

Value

* *

Value

*

n

<<abstract>>
ProjectElement

<<abstract>>
SystemElement

<<abstract>>
EnvironmentElement

Value

DirectionalLink

NonDirectionalLink

TracesInto

Impacts

UsedIn

2

*

DirectionalLinkType

*

*

AttributeType

Requirements
DocumentNode

UseCaseNode

TestCaseNode

Requirements
Document

RequirementsType

Requirement

UseCase

TestCase

from

to

1*

*

*

*

*

**

*

*

n

* *

*

contains contains contains***

Figure 12: Metamodel for language to model requirements in Analyst

4.3.1.2 Links detached from artifacts
Information about the link should not be stored in the artifact it originates from or
points to.

The real artifact, the original document with requirements, is only used during import;
afterwards there is no link with the document anymore. So the links are detached from
the original artifact by default.

Once the artifacts are stored in the tool, it seems the links are still detached. Changes
to links are immediately visible at both the source and target of a link and no
problems with asynchronous link information have been encountered during the
investigation of the tool.

CHAPTER 4. IMPACT ANALYSIS BASED FEATURE SUPPORT IN TOOLS

50

The smallest artifact to link to in TopTeam Analyst is a record. Therefore, it is not
possible to create traceability links to elements in a record, for example a step in a use
case or a model element. Non-traceability links, like the link between the reference to
an actor in a use case and the actual actor, can exist between elements smaller then a
record, but they are not part of the traceability model.

4.3.1.3 Uniquely identifiable reference objects
The tools must be able to uniquely identify a reference object in space and time.

The source of records, the original document, is not uniquely identifiable, since the
links to files only refer to the location in the file system. So it is not possible to link to
the specific location in the file, or to determine if the original was changed or moved
in the file system.

The records in the tool itself, representing the various artifacts, are uniquely
identifiable using a unique identifier composed of a type abbreviation and a number.

4.3.1.4 Traceability link types
It must be possible to use different types of traceability links, each with their own
meaning.

TopTeam Analyst supports three directed trace types: traces into, impacts and used in.
In the documentation these links are called dependency type relationships, but an
individual description for each of the types is missing. During a TopTeam demo, it
became clear that the three trace types present in the tool have no other semantics then
there is a directed link between two records. Any difference between the links must be
created, maintained and interpreted by the users of the tool. It was also confirmed that
it is not possible to specify custom directed traces besides the three traces available in
the tool.

Next to the three types of directed links, there is also a non-directed link available.
This link is used when there is no clear dependency relation, for example between an
actor and its representation in a use case. Non-directional links are not used in the
traceability model.

Besides these four links described in the documentation and clearly visible in the tool,
there are also a number of hidden links in the tool, behaving like traces. The
<<includes>> and <<extends>> relations are only available for use cases, but they are
directional and visible in the Repository explorer three as links. They are also shown
in the traceability tab of the related records and it is possible to make these links
suspect. When an <<includes>> relation is created in a use case diagram, but the use
case being included is not described, the application shows a warning. These two
relations are however not part of the traceability model.

There are also special links for screen mockups (navigates to/from), which are also
available in the Repository explorer three as links. They are however not in the
traceability tab of the related records and not part of the traceability model.

Just as with the directed links, it is not possible to create custom links with this kind
of semantics.

4.3 TOPTEAM ANALYST

 51

4.3.1.5 Assign attributes to links
It must be possible to assign attributes to links.

The three default traceability links have a number of default attributes. The identifiers
of the source and target records are logical attributes for a link. Next to a source and a
target, a link in TopTeam Analyst also has two changeable attributes: a suspect
attribute and a rationale text field. There are also a number of attributes not
changeable by the users: the creator and updater of the link and the time and dates this
happened.

It is not possible to add custom attributes to these links.

4.3.1.6 Automatic link detection
The tool should be able to automatically detect relations between artifacts through for
example information retrieval techniques, examining active code during test
scenarios, monitoring of change history, naming schemas or model transformations.

During the creation of the flow-of-events in a use case, it is possible to detect terms
and actors automatically, since they are specified already. The links between the
actors in the flow and the actual actor is not a real traceability link, but it makes
navigation at least easier and it is the closest to automatic link detection until now.

4.3.1.7 Enforce traceability links
The tool must be able to enforce the creation and change of certain traceability links.

For each record type it is possible to specify to which other record types links can be
created and which of the three directed links (traces into, impacts, used in) are
allowed. When creating links between records only the selected record and link types
are available. So it is possible to enforce the creation and changing of links according
to the information model. It is however not possible to enforce at least one link
between a specific record and another type.

4.3.1.8 Requirements documentation support
The tool needs to be able to read and import requirements from requirement
specification documents created outside the tool, in for example Microsoft Word. At
the same time it needs to support the creation of documents describing the
requirements in the tool.

Import
TopTeam supports different ways to import requirements into the tool.

Style based
The first import method is based on the styles used in documents created with
Microsoft Word (rtf or doc). Since the method needs Word to interpret the files, it
only works when Word also installed on the system. To import requirements the
location of the requirements document must be specified, together with the styles used
for requirements titles and requirements descriptions. When the document is scanned,
an overview showing all detected titles and their description is presented. This
overview can be used to change the order, hierarchy level, type, title and description

CHAPTER 4. IMPACT ANALYSIS BASED FEATURE SUPPORT IN TOOLS

52

of each individual requirement found during the scanning process. It is also possible
to remove, merge and split requirements before actually importing them into
TopTeam. The Word styles are stored and used in TopTeam Analyst and used again
during export.

In theory this a well executed import system, but after importing several documents a
number of problems appeared. After selecting the styles that had been used for the
requirements descriptions, the import method also returned several sections with non-
selected styles. When the name of a style contains a colon, it will not show up in the
list of selectable styles during import. Renaming the style in Word solves the
problem, but since a lot of custom styles have colons in their name, this is a
cumbersome process. On another occasion, importing all titles in the document went
ok, but random descriptions were missing. In the end it took three attempts to get all
descriptions right. When the results of the scanned document are edited, before
actually being importing in the database, there is no option to undo changes made to
the results of the scan. Therefore, one has to be careful when performing operations
where data is changed or removed.

It is not possible to assign certain styles from the document to attributes of the various
requirement types.

Normal (legacy)
When the requirements are not available in a supported rich text format, it is possible
to import it using the normal import method. After specifying the requirements
document, it is shown in the same tool as the requirements after the scan of a
document containing styles. Requirements are created by copying them from the
original document and pasting them in a record. The same order and hierarchy tools
are available as in the style based import tool, together with options to remove, merge
and split requirements.

Import requirement from file (excel)
Requirements in tabular form (csv, txt, doc, xls or mdb) can also be imported. After
specifying the file location and the type of requirements available in the document, a
preview of the columns is presented. Each column can be mapped to a specific
attribute of the selected requirement type, making it probably the best way to
exchange requirements between tools. Once the columns have been mapped to
attributes, the requirements that are actually being imported can be selected.

Import a use case from a document
Besides importing plain text requirements, there is also an option to import more
structural requirements, like use cases, into TopTeam Analyst. When a text file
containing the use cases is imported, it is presented next to an empty use case. Use
case sections in the text document have to be moved manually into their respective
elements in the TopTeam use case record. Terms and actor names mentioned in the
use case steps are automatically linked to the instances with the same name in
TopTeam Analyst. This procedure makes the importing of textual use cases into the
tool as easy as possible.

4.3 TOPTEAM ANALYST

 53

Export
Records can be exported using a number of project or system wide templates. These
export templates work in a similar way as the templates in Caliber. Using a simple
scripting language a sub selection of records is fetched, for example all records of a
specific type, and sorted based on an attribute, like its identification number, status or
priority. The formatting of a TopTeam template can be done using Microsoft Word
templates. This makes it possible to not only format the record title and description,
using the styles they had during import, but also the rest of the attributes without
formatting information from the import process. These export templates can be used
for normal requirements, use cases and test cases.

For most graphical representations of record data, like trace representations or use
case flow diagrams, it is possible to export them as images to the clipboard or a file.
Various raster and vector formats to store these images are available, like jpeg, bmp,
svg and emf. Use cases can also be exported as XML file or XMI (XML Metadata
Interchange) file.

4.3.1.9 Tool integration
The tool needs to be able to interface with other tools in the product life cycle to make
information stored in them visible and linkable.

Support for the integration with other tools is not mentioned in the documentation, the
website, or the tool itself. Microsoft Word is used to import formatted documents and
it is possible to export data in various formats, like XML; XMI; Excel; etc, for use in
other tools. It is also possible to send e-mail messages when a record with a
subscription is changed or information is needed from other users.

A demo showed that the interaction with other tools is indeed limited. Most important
options are the export of test cases to Visual Studio and Quality Center and the option
to export use cases to Visual Studio. There is however no support for the integration
of traceability data with these tools.

TopTeam promotes Analyst as a tool supporting more then only text-based
requirements, but also graphical use cases and testing information. Through the
integration of these different artifacts into one tool, and not a whole suite of different
application like some other venders do, they claim to offer an easy solution. This is
probably also the reason for the little amount of integration with other tools.

TopTeam is however working on an API to make it possible to export data to other
IDE’s then Visual Studio and Quality Center.

4.3.1.10 Graphical representation traces
The tool must provide graphical user-friendly representation of traces.

There are four ways to inspect traces.

Individual records
Each record has its own tab with all traces to and from other records. These traces can
be used to navigate to the linked artifacts. The same information is also present in the

CHAPTER 4. IMPACT ANALYSIS BASED FEATURE SUPPORT IN TOOLS

54

repository explorer, showing all requirements types and the various link types related
to them, in a tree.

Traceability matrix
It is possible to select the type of artifact (business rules, software requirements, and
use cases) and the specific project and document containing these artifacts in the rows
and columns.

By default, the links presented in the matrix are only trace links. It is however also
possible to use any other type of link available in the tool. This includes all UML
links like forward traces as <<extend>>, <<include>>, Impacts, Includes, Navigates
to, etc and reverse traces like Dependent on, extended in, included in, etc.

Once all these options are filled out, the matrix showing the links between artifacts
from the rows to the columns is presented. From this view it is possible to create trace
in and to links, remove links, make links suspect, clear the suspect status and add
notes to links to add a form of rationale.

Traceability network diagram
Shows one or more threes of record types (features, use cases, screen prototypes) and
the relations (traces into, impacts, used in) between them. It is possible to show four
record types and links are only shown from a lower level number to a higher-level
number. Relations are depicted as arrows and when a relation is selected details of the
relation (type, source, target, suspect status, rationale) are shown. When a record is
selected all records with direct links to or from this selected record are shown in a
bold blue font and arrow.

To make the view more clear, it is possible to hide selected records. It is also possible
to zoom in and out, change the width of the text for each record tree. Since it is not
really possible to show indirect links, links from higher to lower record types and the
number of record types in the diagram is limited to four, it is easy to miss relations
between record types, making it useful for direct link analysis, but maybe less useful
for higher level impact analysis.

Besides inspecting links, it is also possible to create links by specifying the type of
link to be created, select the option to create new links, and start drawing from the
source to the target record. It is also possible to mark/clear links as suspect, to add a
rationale for a particular link or to permanently remove a link.

It seems there is not really a way to store a view with the selected record types so it
can easily be reused.

Multi-level traceability report
A multi-level report shows all traces from a specified record type to a depth of a
specified number of levels. It is also possible to show traces to the selected record
type. It is also possible only selected record types in the network or only specific trace
types. The report is text based and shows all identifiers and titles of the selected
record type and indents when one of the records has one or more traces to other
records, showing all records with the specified trace types. When one of these records
has traces to other records, the same happens.

4.3 TOPTEAM ANALYST

 55

4.3.1.11 Coverage analysis support
The tool must be able to produce an overview of the artifacts that have no traces to
previous or subsequent artifacts.

Like the other tools, TopTeam also supports the filtering of requirements based on
their properties. The requirements tree shows the hierarchy of all requirements and
also allows the use of various filters. The default set of available filters contains a
filter to isolate requirements without any outgoing links (traces into, impacts, used in)
and a filter to isolate only requirements without outgoing traces into relation. Using
custom filters, it is also possible to isolate any of the other link types or requirements
with no incoming links.

This works however only for the record types in the requirements group. For the use
cases there is not really an option to easily filter for use cases without in- or outgoing
links. There are however various ways to show for each use case (or other record
type) if there are any in- or outgoing links. The object list can be used to filter a
specific record type and by adding a traceability explorer or diagram, it can be easily
seen if there are any links from or to this particular record. But all records must be
scanned manually, which can be a problem in larger projects.

The Multi-level traceability report can be used for coverage analysis. It shows all
outgoing or incoming links from one type of record to all other types or a sub
selection of record types. This allows for easy manual analysis.

4.3.1.12 Impact analysis support
The tool must provide a way to perform an impact analysis to determine the effected
artifacts.

Suspect links
When a record is changed, direct links are not automatically marked suspect. In the
traceability tab it is however very easy to select all traces and mark them suspect all at
once. This is however a manual task, that can be forgotten when many changes are
made at once.

It is possible to subscribe to specific records. When one of these records is changed by
someone else, the subscribers get a message. The message contains the name of the
record, the user who changed the record and a link to the record for a quick
inspection.

When the suspect status is added or removed, no rationale is asked.

Tracking items
Besides the normal records like requirements and use cases, TopTeam also supports
so-called tracking items. These items are records to support the use of the normal
records. The default tracking item types are: change request, issue, problem report and
enhancement request. When a change request is created for a record, it is also possible
to create items called impacts, describing the impact of this change request on other
records. The original change request in divided in, for example, these impacts to make
it easier to plan and manage the implementation of the request.

CHAPTER 4. IMPACT ANALYSIS BASED FEATURE SUPPORT IN TOOLS

56

Such a system can be very useful for the management of changes to the project, but at
the moment the tracking system does not seem to use any traceability information
present in the project. There is support for the storage of the various impacts of a
change request, but there is no real support for find these impacts using the tool.

Besides the traces, it is also possible to compare different baselines to see what has
been changed since the last baseline moment.

4.3.2 Summary
During the implementation of the WASP 2.1 case study, the criteria created to
evaluate the capabilities of the various requirements management tools have been
described for Analyst in section 4.2.1. The outcome of these criteria is summarized in
Table 5.

Table 5: Summary of criteria evaluation for TopTeam Analyst

Criteria Rating Result
1. Information model
support

□ It is possible to create different reusable
artifact types each with their own set of
attributes. It is also possible to specify what
link types are allowed between specific artifact
types.

2. Links detached
from artifacts

+ Links are not stored in the original artifacts,
but in a separate table.

3. Uniquely
identifiable reference
objects

+ Artifacts in the tool can be identified using
their unique identifiers. Reference objects in
the file system cannot be identified uniquely.

4. Traceability link
types

□ There are three traceability link types: traces
into, impacts and used in. It is not possible to
create custom link types.

5. Assign attributes
to links

□ It is not possible to assign custom attributes to
the links, but it is possible to mark links
suspect and to specify a rationale for the link.

6. Automatic link
detection

- It is only possible to manually create and
update links.

7. Enforce
traceability links

□ It is possible to specify which link types can be
created between what artifact types. There is
however no way to enforce the checking of
existing and new links after a change to an
artifact has been made.

8. Requirements
documentation
support

+ Most import and export options are targeted at
Microsoft Word, but the options to create
documents and reports is quite extended using
a script language to order and format artifacts.

9. Tool integration - It is only possible to export record data to
tools. There is no back- and forward
integration or option to synchronize
traceability data.

10. Graphical
representation traces

+ Various ways to investigate links on different
levels are available.

4.4 TELELOGIC DOORS

 57

11. Coverage
analysis support

+ It is possible to filter artifacts with no
incoming, no outgoing or no links at all.

12. Impact analysis
support

- At the moment it seems like impact analysis
support is very limited. Links are not marked
suspect after a change, it is not possible to
show indirect links and it seems there is no
way to use the impacts and used in link types
in a useful way.

4.4 Telelogic DOORS
DOORS is the requirements application offered by Telelogic as part of their collection
of tools to support the software engineering lifecycle. DOORS is mentioned in several
papers and is often referred to as very capable requirements management tool [Dic02,
DP98, Wie95].

DOORS is clearly targeted at organizations with multiple people working on
requirements at the same time. A server maintains the database with all projects,
requirements, links, etc. and users can login on this database using the client
application. Based on their user rights they can view or change information in the
database. The version used for this evaluation is TeleLogic DOORS 8.3.

4.4.1 Implementing case study
Using the criteria specified in section 3.2 Telelogic DOORS will be evaluated to see if
it is as capable as claimed, using the case study from section 3.3. In this section, the
results of the implementation on all of the criteria are described.

4.4.1.1 Information model support
Tools shall allow the definition of requirements management information models.

DOORS uses a database to store its entire project, just like the other tools. This
database can contain multiple projects and each of these projects can have its own
information model. A model contains a number of modules to store the links and
objects representing the actual requirements.

Each project can contain three types of modules:
• Formal modules are used to store representations of the requirements artifacts.

Each artifact is partitioned in smaller objects, which are the smallest linkable
sections of a requirements document. These objects can be structured in a
hierarchy to make navigation easier. Link modules are the second type and are
used to store the links between two objects, to indicate that there is a certain
relationship between them.

• A link module contains a linkset for each pair of formal modules with links
between them. These linksets can be created during the specification of the
information model to indicate between which formal modules links can and
cannot be created and which link modules will be used for these links.

• The third and last type of module is called the descriptive module and is not
really used anymore. Originally it was used to store the original artifact, but since

CHAPTER 4. IMPACT ANALYSIS BASED FEATURE SUPPORT IN TOOLS

58

a representation of the artifact is now stored in the formal module, use of the
descriptive module has no real advantage anymore.

The structure of these modules and their content is depicted in Figure 13. Since the
descriptive module is not being used anymore, it is left out.

Figure 13: Overview of elements in DOORS

Each module, object and link has a number of system attributes to store properties
needed by DOORS and it is possible to also specify custom attributes for these three
elements. Such a custom attribute has a name and a type. There are a number of
system types, like string; integer and date, but it is also possible to specify a custom
type with additional restrictions. All system types have been depicted in Figure 14.

Figure 14: System attribute types in DOORS

These elements are available to build the information model before any real
requirements are created. Each type of requirement, scenario; use case; system
requirements; etc, can have its own formal module with optional custom attributes.
Each type of link between those requirements can have its own link module with also
an option for custom attributes. When specific links can be used between two formal
modules, the linkset storing these links, can already be specified to make the creation
of the actual links later on easier. If there is only specific subset of link types allowed
between two formal modules, this can be specified in the source formal module.

It seems like the options to specify an information model in DOORS are quite
extended. It is possible to create different formal modules each with their own
attributes to store different types of requirements. Link modules can be created to
store specific link types, again each with their own set of attributes. To help the users
during the requirements creation and maintenance phases, a number of limitations on
the creation of, for example, links can be enforced, etc.

Information metamodel
Just as for RequisitePro, Caliber and TopTeam a lot of information about DOORS
was gathered through the implementation of the WASP 2.1 case study. Not all this
information could be described using the criteria, so the information metamodel for
DOORS is depicted in Figure 15. The metamodel is based on the results of our criteria
evaluation and an inspection of the data structures used by DOORS.

4.4 TELELOGIC DOORS

 59

Project

Linguistic
model of

O1

Object

*

*

Linguistic
model of

O0

1

Heading Text

Attribute

AttributeType

Module

FormalModuleLinkModule

LinkSet

*

1

UserDefined Attribute System Attribute

*

from

to

*

1

1

*

1

*

Link
from

to

1

1*

*

11

*

*

Value
*1

*

1

Value

*

*

1

1

<<abstract>>
ProjectElement

<<abstract>>
SystemElement

<<abstract>>
EnvironmentElement

ExternalLink

DescriptiveModule

UserDefined
AttributeType

System
AttributeType

base type1
*

1

*

Value

1

1

* *

contains contains contains***

Figure 15: Metamodel for language to model requirements in DOORS

4.4.1.2 Links detached from artifacts
Information about the link should not be stored in the artifact it originates from or
points to.

DOORS imports an artifact into a number of objects in one of the formal modules. At
this moment no links referring back to this source artifact are created, so all links
created in DOORS will always be detached from the source artifact. The links to and
from DOORS objects are stored in their own link modules, so the internal links are
also detached from the objects.

To link to artifacts not available in DOORS, external links are used. These external
links are plain URLs, so as long as an external artifact is a file or originates in an
application supporting URLs, it can be linked to. External links linking to artifacts
outside DOORS are stored in DOORS and are therefore also detached from the
artifacts they link to. These external links can also be used to link to DOORS objects
in other databases, since DOORS also supports URLs to links to most elements
available. These DOORS URLs can also be used in other documents and applications
to link back to elements in DOORS. These links will be stored in the actual artifacts,

CHAPTER 4. IMPACT ANALYSIS BASED FEATURE SUPPORT IN TOOLS

60

as they fall outside the scope of DOORS, and are therefore not detached from the
artifacts.

Links are detached from both the source artifact and the representations in DOORS
itself and stored in their own link modules. Only the external links are closely
integrated with their reference object in DOORS, but this should not be a problem,
since these links have only a source in DOORS.

4.4.1.3 Uniquely identifiable reference objects
The tools must be able to uniquely identify a reference object in space and time.

As a result of DOORS importing artifacts into modules and discarding the link with
the source artifact, uniquely identifiable reference objects in artifacts are not relevant
for normal links. The objects in the DOORS modules have their own unique identifier
and the combination of project; module and this identifier make them uniquely
identifiable for links in DOORS.

It is possible to create links to artifacts outside DOORS using external links. These
external links use URLs to identify the external artifacts in the file system or tool
containing them. This moves the responsibility of uniquely identifiable objects away
from DOORS, it allows for URLs that can uniquely identify an object, and moves it to
the people creating files or the tools creating artifacts to make sure they are unique.

4.4.1.4 Traceability link types
It must be possible to use different types of traceability links, each with their own
meaning.

DOORS supports semantics for two link types: internal and external links. Internal
links can be created between any two objects in the same database, while external
links can be used to link to external artifacts.

Internal links are stored in linksets in the standard DOORS links module. It is possible
to add custom attributes to links, so there is an option to add custom types to links.
There is however no native support for specific internal link types in DOORS.
Semantics must be added manually by using the custom attributes in filters and scripts
during analysis of the links.

Another way to specify different link types is by storing them in different link
modules. By giving these modules names like derived to and refined to it becomes
easier to see which links are used where. An additional advantage of this method is
the ability to allow only linksets in certain link modules to be used between two
formal modules. This feature can be used to enforce specific link types between
formal modules. Using link modules and linksets to specify link types, has one
disadvantage: it is only possible to have one linkset between two formal modules.
This means that only one link type can be used between two formal modules.

Besides the links in the link modules, it is also possible to assign external links to
objects. External links are stored with the source object and can contain a link to
another DOORS database or an URL. An external link is more than just embedding

4.4 TELELOGIC DOORS

 61

an URL in a text attribute. It can also have its own set of custom attributes and it is for
example part of the traceability wizard.

Example link to a bookmark in a Word document:

file:///H:/Afstuderen/Tools/document_with_bookmarks_to_link_to.
doc#second_section

This link will be opened by DOORS in a window of the systems default browser. It
depends on the browser how the link will be handled further. In the case of this Word
document, Internet Explorer will open the document in the browser window itself and
navigates to the optional bookmark present behind the number sign.

Besides linking from DOORS to external artifacts, it is also link from external
artifacts back to objects in DOORS using the same URL system. An URL to link back
to a DOORS object looks like this:

doors://EWI620:36677/?version=1,prodID=0,dbid=473b06d8125c3fa0,
container=00000024,object=182

DOORS supports two link types: normal and external links. Normal links can be
stored in link modules that can represent different types of links. The semantics of
these different link types are however not used by DOORS during link analysis.

4.4.1.5 Assign attributes to links
It must be possible to assign attributes to links.

DOORS supports the assignment of attributes to both the link module and the links
themselves. The type of the attribute can be of one of the system types, as shown in
Figure 14, or a custom type. It is also possible to indicate if a change in this particular
attribute should mark the containing object as changed to help with change
management and impact analysis. When an attribute should only be accessible for
specific users or a group or users, it is possible to assign access rights to specific
attributes.

4.4.1.6 Automatic link detection
The tool should be able to automatically detect relations between artifacts through for
example information retrieval techniques, examining active code during test
scenarios, monitoring of change history, naming schemas or model transformations.

DOORS supports a number of ways to create links between objects. The first way of
creating links between objects is by assigning them manually. The object to link to or
from is marked active, after which the second object can be selected and a link can be
created in the direction required. It is also possible to create links for multiple objects
at once, as long as they are adjacent, and in this case it is only possible to create links
from the source objects to the target objects. There is no easy way to change the
source or target for an existing link. The only way to change the source or target is by
removing it and creating a new one. Besides creating links in the main view, it is also
possible to create links in the grid view. By selecting the intersection of two
requirements, a new link can be created, edited or removed.

CHAPTER 4. IMPACT ANALYSIS BASED FEATURE SUPPORT IN TOOLS

62

The second way to create links is semiautomatic. The identifiers of the objects to link
to must be entered in a text attribute of the object to link from. Using the link by
attribute option the formal module with the target objects, a link module to store the
links in and the direction of the links can be selected. When links to more then one
module are needed, each of these modules will need its own attribute. When the
identifiers in one or more of the attributes have been changed, the linking procedure
has to be repeated manually. When identifiers in one of the attributes are removed and
the linking procedure is executed again, the links created by the removed identifiers
are not removed. So the link by attribute option only creates links and does not
remove them. Since this option only allows the use of DOORS’ own identifiers, it
cannot be used to create links based on the information in the original artifact, since
the identifiers generated by DOORS during import are not known yet at that moment.

The only way to automatically create links between objects is when the DOORS
change proposal system is used. When a change proposal is created, the system will
automatically create links from the change proposal to the objects the proposal refers
to. These links to meta-information are however not what we are looking for in a tool.
This means there is no automatic way to create links between objects. The options for
manually creating and changing links are limited, making the maintenance of links a
time consuming job and a potential source for invalid links.

4.4.1.7 Enforce traceability links
The tool must be able to enforce the creation and change of certain traceability links.

In a formal module it is possible to specify a list of target modules to which can be
linked and the link module used to do this. This triple of source, target and link
module can be made mandatory or overridable. The default is mandatory, which
means that the link module as specified in the triple is used. When the triple is
overridable, the links will be stored in a link set in the users default link module.

When the triples in this list are the only outgoing link allowed, this could be specified
in the source module. In this case, users are not able to create links from the source
module to any target module that is not specified in the triple list. The link module
used to create these allowed links, still depends on the mandatory or overridable flag
of each triple.

The rationale for this criterion was the creation or updating of links after changes
were made, to make sure the object is still linked to the right target objects and
existing links are still valid. Since DOORS only supports the prevention of certain
link types between two formal modules, this criterion is not supported.

4.4.1.8 Requirements documentation support
The tool needs to be able to read and import requirements from requirement
specification documents created outside the tool, in for example Microsoft Word. At
the same time it needs to support the creation of documents describing the
requirements in the tool.

Import
Just as the other tools DOORS is able to import requirements specified in various
types of text documents. Support for Microsoft Word, rich text format (RTF) and

4.4 TELELOGIC DOORS

 63

plain text documents can be used to import the text version of requirements. DOORS
also supports files created by Framemaker, a tool to create technical documentation.
The support for comma and tab separated files (CSV and TSV) is mainly targeted the
exchange of requirements between tools.

During the import of a formatted document, like Word or RTF, styles are recognized
and can be mapped to a text or heading object in the formal module. By default, all
heading styles are mapped to a heading object, making importing quite easy since the
structure of the original document is maintained. In a text section every piece of text
ending with a return character is marked as a separate object. In addition, every cell of
a table is marked as an individual object, but the structure of the table is maintained
using a DOORS table.

During import, it is only possible to fill information into the main text attribute of an
object. There is no option to convert certain parts of the imported document, like
priorities; relations with other sections; people responsible; etc, into other attributes.
The only exception is the storage of the meta-information containing the original
formatting of a section in an attribute, so it can be used again during export.

Export
DOORS is able to export the objects in formal modules to the following file formats:
Microsoft Word, Excel, Outlook, PowerPoint, Framemaker, CSV, TSV, RTF, HTML
and plain text. Most of these formats will contain a simple plain text representation of
the attributes enabled during the export of the module. The documents supporting rich
formatting, like Word and RTF, will be combined with the information in the
formatting attribute. When a template is used with the same formatting properties as
the original document, the exported document will look almost the same. Smart
objects like indexes will not be smart anymore after exporting, so these have to be
regenerated in the new document.

It is possible to export attributes next to the requirements text, but these attributes do
not have any formatting codes, since they were not imported from the original
document. To be able to format the attributes too during export, DOORS provides a
paragraph style editor. This makes it possible to add formatting information also to
attributes, making the export of requirements to rich formatted documents much
easier.

One other option that can be used for documentation is partitioning of the database. It
is possible to export a section of the database into a so-called away database. This
away database can then be copied anywhere without needing an active link with the
home database. Based on the rights given to the away database it is not only possible
to view the content of the database, but also to make changes that can be merged with
the home database on return. When changes can be made in the away database, all
changeable fields are locked in the home database to prevent integration problems
later on.

The DOORS documentation options appear to be sufficient. It is possible to import
and export various types of text documents, which should be enough to get most types
of requirements in and from the tool. Since formatting options are stored with the

CHAPTER 4. IMPACT ANALYSIS BASED FEATURE SUPPORT IN TOOLS

64

objects, exporting a document with close resemblance to the original document is
easily achieved.

4.4.1.9 Tool integration
The tool needs to be able to interface with other tools in the product life cycle to make
information stored in them visible and linkable.

DOORS is mainly targeted at the maintenance of requirements. The communication
with external tools is only possible using the external links. Therefore, it totally
depends on the integration options, especially the support for the URLs DOORS uses,
of external tools and even then it is only possible to use links originating in DOORS.

Telelogic, the developer of DOORS, also provides a number of other software life
cycle tools. One of these tools is Rhapsody, a development tool, which also supports
limited traceability support. By using the Telelogic Gateway module, it is also
possible to integrate Rhapsody with DOORS, Caliber and RequisitePro.

At the moment DOORS is targeted at the maintenance of various types of
requirements. It can import and export requirements documents, maintain traces
between the various objects in these requirements and it supports external links to
other resources in the software lifecycle. Since these external resources cannot be
represented in the tool, the traceability becomes poor after this point. To enlarge the
reach of the tool, Telelogic has an extension for DOORS called Analyst, which adds
UML 2.0 modeling support to DOORS. Analyst makes it possible to trace
requirements to their design models with the same customizable traces that were only
possible between requirements before. By interleaving requirements and models, a
much larger part of the software lifecycle can be executed in the DOORS
environment, allowing for much richer traceability. At the same time, the
development becomes more model driven and reusable. The usage of traceability
moves from product related to a more process related form. This way the tool moves
from simple traceability to a more rich traceability as described by [RJ01].

So it looks like there is no real built-in support for external tools in DOORS. It is
however possible to connect DOORS to other tools using TeleLogic's Gateway
application.

4.4.1.10 Graphical representation traces
The tool must provide graphical user-friendly representation of traces.

There are a number of ways to show the links between objects in DOORS. The first
and most basic graphical representation is the set of two arrows next to an object in a
formal module. When the arrow pointing to the left is selected all direct incoming
links, ordered by the formal module in which they reside, are shown. Selecting the
arrow pointing to the right shows all direct outgoing links. When the links are being
investigated it can be useful to shown these links all the time. Enabling one or more
traceability columns in the formal module view, shows all direct in- or outgoing links
for each object all the time. When more link information is needed, it is even possible
to show several levels of indirect links to and from this object.

4.4 TELELOGIC DOORS

 65

Grid view
In addition to these basic views in the formal modules, there are two more graphical
views available in the link modules. The default view presented in a link module is
the grid view as shown in Figure 16. The grid view shows a table with all visible
objects from the source module in its rows and the visible objects from the target
module in its columns. When there is a link between two objects the intersection of
the row containing the source object and the column containing the target of this link,
is marked with a contrasting color.

Figure 16: Grid view in DOORS

The objects shown in the rows and columns are a representation of the objects in the
formal module views of both types of objects. The filter, level and sort order applied
on the objects in the formal module view is also used in the matrix view. These filters
make the grid view much more usable, since they allow the user to leave out any
objects that are of no interest at this moment. This is a welcome help since the grid
view shows only a very limited number of objects at once, making it very difficult to
locate relevant links. There is however a potential problem when the links shown in
the grid view are between objects in the same formal module. Since the filter will
work on both the rows and columns, no links are shown when only objects with
outgoing links are filtered, for example. When objects are filtered using the option to
show only the first levels of the hierarchy, links from or to objects which are not
shown, are not mentioned in any way at the first parent object that is visible. So there
is no hierarchical transitivity. The filter options applied to the objects in a formal
module can be saved in a so-called view. By enabling one of these views, the
corresponding set of filters is applied again.

The limited number of objects visible at once is mainly caused by the fact that the
number of rows and columns are both limited by the height of the window. Since
most computer displays are wider then they are tall, in most cases the screen real

CHAPTER 4. IMPACT ANALYSIS BASED FEATURE SUPPORT IN TOOLS

66

estate will not be used as optimal as possible. A normal window is normally not able
to show more then fifteen objects on each side, which leads to a total lack of overview
and makes it really hard to locate any (relevant) links as seen in Figure 16.

Graph mode
The second view available in link modules is the graph mode. For each linkset present
in a link module, it will show an overview as shown in Figure 17. The left side of the
view has a tree-based representation of the objects in the source module and the right
side shows the objects and structure in the target module. The filters applied in the
formal module are also applied to the objects in the graph view. The links between
these two formal modules are represented by the lines in the middle. As with the grid
view, the navigation of the graph view is very limited. The vertical scrollbar is used to
navigate through the source objects and the horizontal scrollbar is used for the target
objects. When there is a link between two objects, the line representing the link
becomes black. However, since the objects are as small as in Figure 17, it is
impossible to determine which objects are selected. Therefore, the only way to know
which objects are linked is by switching back to the grid view.

Figure 17: Graph view in DOORS

Next to the graphical representations in DOORS itself, Telelogic also offers an add-on
called TraceLine. This add-on allows users to view and change requirements in a
browser and this presentation looks more solid and usable then the options available
in the core DOORS application. It is possible to specify views for different people in
the organization and it is also possible to zoom in and out to show more or less detail
in a fast way. It also adds a number of export options to HTML, Visio and Mindjet
MindManager. Since this functionality has to be bought as an add-on for the original
application, it has not been evaluated.

4.4 TELELOGIC DOORS

 67

The various graphical representations of objects and links are mostly targeted at small
sets of objects and links. Because of the simple and low-resolution graphics, the
information density in the graphical views is really low. Together with the completely
non-intuitive navigation in the link modules and a lack of options to configure the
graphical presentation, makes it insufficient.

4.4.1.11 Coverage analysis support
The tool must be able to produce an overview of the artifacts that have no traces to
previous or subsequent artifacts.

It is possible to add columns showing the in- or out-going links to and from a module.
It is also possible to show objects with links to these modules, up to n levels. As with
almost all filters, it is possible to show only links to and from objects in open modules
or all modules.

To determine which objects do not have ingoing, outgoing or any links at all, a basic
filter can be created. This filter can be used for simple direct link coverage analysis.

4.4.1.12 Impact analysis support
The tool must provide a way to perform an impact analysis to determine the effected
artifacts.

DOORS does not really provide an automated option to perform a semantic analysis
of links after an object has been changed to determine relevant effected artifacts. It
does however offer a number of tools and filters to make the manual analysis of the
links and objects affected by a change easier.

Suspect links
When an object is changed, its direct in- and outgoing links are marked suspect. This
suspect status is only visible from the target or source object and not from the
changed object itself. To make the suspect status visible a special column can be
created showing various levels of information. At the lowest level only an icon is
shown to indicate if there are any in- or outgoing suspect links for this particular
object. Like most columns or filters related to links, this column also has the option to
show this icon only when suspect links exist to modules which are opened at this
moment or to all modules available in the current database. This option helps to filter
only relevant links when a lot of links and modules are present.

When more information is required besides an icon, it is also possible to immediately
show what objects in which modules cause the suspect status. It is even possible to
add an overview of the changes made to this object; including the time and date they
were performed, since the last clearance or baseline for this project was created. To
make analysis even more useable, a filter can be created for each module showing
only objects with in- or outgoing suspect links. This filter can however not be saved in
a view.

When changes are made to the objects with in- or outgoing links, the suspect status
has to be cleared from these objects manually. When a new baseline is created for the
project and one or more of the objects still have a suspect link, these suspect links are
maintained. The history describing the changes made to the objects is however

CHAPTER 4. IMPACT ANALYSIS BASED FEATURE SUPPORT IN TOOLS

68

cleared and replaced by a message mentioning that the history from before the
baseline can be found in the previous baseline.

Traceability columns
When the objects directly affected by a potential change are identified, their traces to
other modules and objects must be inspected. The traceability columns introduced in
4.4.1.10 about the graphical representation can be used for this task. They allow for a
recursive analysis with an option to specify the number of levels to show, if links to
only open modules or all modules should be shown and which link modules should be
used.

Change proposal system
When many people are working on the same project and many changes are made at
any given moment, the impact analysis performed for a change, can become obsolete
really fast when other changes are being implemented during or right after this
particular impact analysis. To prevent that different groups are performing impact
analysis or changes at the same time, DOORS includes a Change proposal system
(CPS). This system allows a selected group to investigate and allow or deny change
proposals. They can keep an overview of proposed changes and can determine the
effect of these changes on the existing requirements and each other. Using the CPS in
DOORS proposals are stored in a central place, so change proposals do not get lost,
and automatic links are created from an to the originating object to make the
investigation of proposals more convenient.

When a change is proposed, it will be investigated by this special group working on
change proposals. Once they investigated the proposal, they can approve or reject it.
The status of a change can be one of the following: new, in review, approved, on hold,
rejected, applied. The links with the originating objects can be used to locate possible
problems, for example when different proposals are related to the same object. The
CPS has options to find these proposals, however when there are two proposals
related to the same object and one of them is marked approved and the other rejected,
the check still gives a warning. This can make this option less useful when more
change proposals have been approved or rejected over time.

The approved changes can be processed by the team. When the changes are made, the
status changes from approved to applied. Since the new values for the attributes
mentioned in the proposal are already there, applying the changes is as easy as
clicking Apply or Apply all.

DOORS has no option for semantic analysis based on the type of link and type of
change that has to be applied. There are however enough tools to help with the
manual analysis of the change impact.

4.4.2 Summary
During the implementation of the WASP 2.1 case study, the criteria created to
evaluate the capabilities of the various requirements management tools have been
described for DOORS in section 4.4.1. The outcome of these criteria is summarized in
Table 6.

4.4 TELELOGIC DOORS

 69

Table 6: Summary of criteria evaluation for DOORS
Criteria Rating Result
1. Information model
support

+ It is possible to specify an information model
with specific modules for each requirement type
and modules for different link types between
these requirements. Each module can have its
own attributes and it is possible to put
restrictions on which links can be used for
which types of requirements.

2. Links detached
from artifacts

+ Links are detached from both the original source
artifact and the representation of a link in
DOORS itself and stored in their own link
modules.

3. Uniquely
identifiable reference
objects

+ The link with the original requirements
document is lost after the requirements are
imported into DOORS. This means the
reference object has no unique identifier.
However, the objects in DOORS, representing
the original document, are uniquely identifiable,
since they have their own unique identifier.

4. Traceability link
types

+ DOORS supports normal and external links.
Normal links can be stored in link modules that
can represent a certain type. The semantics of
these types are however not used by DOORS
during analysis.

5. Assign attributes
to links

+ A number of system attributes are available for
links and custom attributes can be added when
needed.

6. Automatic link
detection

- There is no option for automatic link detection
and the manual ways to create links are
cumbersome.

7. Enforce
traceability links

□ No, there is no way to enforce the creation or
updating of links after a change has been made.
It is only possible to restrict the types of links
that can be created between two formal
modules.

8. Requirements
documentation
support

+ Yes, it is possible to import and export quite
some formats (Microsoft Word, RTF, plain text,
etc). During import the paragraph styles are
saved and are used again during export, to create
documents with close resemblance to the
original.

9. Tool integration □ No, but using another TeleLogic's tool it is
possible to exchange data with other
applications.

10. Graphical
representation traces

□ Yes, but very limited. The graphical
representations are only useable for very small
sets of requirements, otherwise the lack of
overview and good navigation options make it
almost unusable.

CHAPTER 4. IMPACT ANALYSIS BASED FEATURE SUPPORT IN TOOLS

70

11. Coverage
analysis support

+ Yes, it is possible to filter objects with in- or
outgoing links to selectable types of
requirements and it is also possible to filter
objects without any in- or outgoing links.

12. Impact analysis
support

+ There is no way to use the semantics of the
various link types to help with impact analysis.
There are however e number of tools to analyze
suspect links and traces up or down multiple
levels. To streamline change management a
change proposal system is available, allowing a
group of users to investigate and regulate all
change proposals and maintain an overview.

4.5 Evaluation of tools
After working with the four selected tools, to determine their performance for all
criteria, a good impression of the tools is available. The ratings for all four tools have
been combined into Table 7 and besides the necessary differences between the tools;
there are also some criteria for which they perform the same.

The coverage analysis support is present in all four tools, for example. It is possible to
check only for missing in- or outgoing links for all types, but it is also possible to
apply filters to select only specific types of requirements, so coverage analysis of
different types is possible. All tools also have their links detached from both original
artifacts and the representations in the tool itself. Another thing they have in common
is the support for automated link detection; none of them supports it. Some have
limited semi-automated support or good tools for manual creation, but none of them
supports any automated detection. The integration with other tools is also limited and
when it is available, synchronizing links can be hard.

The first differences start to appear at the support of documentation. Importing and
exporting documents is an important feature, since it makes it possible to present the
requirements, for example, to the customer. RequisitePro works very close with the
original document and synchronizes the content of the tool constantly with the content
of the word document. Caliber on the other hand imports the original requirements
document into the tool and looses the link with the document afterwards. By using a
formatting language, the requirements can be exported again in a lot of different
ways. TopTeam uses import and export methods comparable to Caliber. Importing is
also based on the styles in rich text documents and exporting also uses little scripts to
select and order requirements and Microsoft Word templates for formatting. DOORS
also imports the original document. It supports most document formats of all tools and
stores available formatting information during import. This information is used again
during export to create documents with close resemblance to the original document.

The graphical representation of links also differs a bit between the tools. RequisitePro
and Caliber both offer a grid-based and graph-based view, providing a good overview
of the existing links. TopTeam offers an equal matrix view, but a more limited graph
view to maintain a better overview when the number of requirements increases.
DOORS supports the same two views, but implemented in a very limited way and
therefore less usable then the other three.

4.5 EVALUATION OF TOOLS

 71

The differences between the tools become bigger when the information model and the
criteria related to links are compared. All tools are able to create different
requirements types, each with their own attributes. TopTeam and DOORS are
however the only tools supporting different link types and limitations on what links
can be created between two requirement types. DOORS is however the only one
supporting the creation of custom link types and assigning custom attributes to them.

In all the tools the impact analysis of a potential change has to be done manually with
help of the graphical representations. There is support for indirect links in all tools
except TopTeam Analyst, and in RequisitePro and Caliber only links in the same
direction are used, so a manual check for effected artifacts is still needed. The big
difference here is the DOORS Change Proposal System, allowing a dedicated group
to perform the analysis and maintaining the overview.

In the end, there is not really one tool that is without doubt the best tool to use for
impact analysis during a project. The biggest difference between the tools, and also
the cause of the relatively high score, is the support for link types and attributes in
DOORS. It does not really use the link support during analysis yet, but using the
script language, it can be made more useful. The change proposal system is also a
unique feature that can result in added value for larger projects.

Although it is definitely not the ideal traceability tool, after getting used to the
interface and the way it works, DOORS supports most criteria and has the best basis
for a trace management tool.

If impact analysis of less importance, the other tools also have their advantages. If the
requirements are maintained in the tool itself, but also in a separate Word document,
and both are updated simultaneously, RequisitePro’s extended integration with Word
can be a reason to select this tool. When requirements are often exported using
complex export templates, CaliberRM has an advantage over the other tools. And
when support for use cases in the tool itself is needed, TopTeam Analyst is highly
recommended.

Table 7: Summary of evaluation for all three tools

Criteria R
eq

ui
si

te

C
al

ib
er

T
op

T
ea

m

D
O

O
R

S

W
ei

gh
t

1. Information model support □ □ □ + +
2. Links detached from artifacts + + + + □
3. Uniquely identifiable reference objects + + + + –
4. Traceability link types □ – □ + +
5. Assign attributes to links – – □ + +
6. Automatic link detection – – – – □
7. Enforce traceability links – – □ □ –
8. Requirements documentation support □ + + + –
9. Tool integration □ □ – □ –
10. Graphical representation traces + + + □ +

CHAPTER 4. IMPACT ANALYSIS BASED FEATURE SUPPORT IN TOOLS

72

11. Coverage analysis support + + + + +
12. Impact analysis support □ □ – + +

73

Part B: Change impact analysis performance
In Part B the performance of the impact analysis methods used by the requirements
management tools is quantified.

To determine the performance, a method is needed to quantify the result of the impact
analysis and a set of metrics are needed add value to these numbers. Chapter 5
describes a number of existing methods, but these seem to focus more on the quality
of the change itself then the performance of the impact analysis method. To cope with
this problem, a quantification method based on binary classifiers is proposed.
Comparable methods are already used to determine the performance of medical tests,
production lines and information retrieval methods and we show they can be used for
impact analysis too.

In Chapter 6 the various methods discussed in Chapter 5 are applied to two of the four
tools. Since the only big difference in impact analysis techniques between all four
tools is the usage of only the direct links to mark artifacts suspect or the usage of
transitive closure so artifacts related through indirect links are also marked suspect.
TopTeam Analyst and DOORS used the first method, while RequisitePro and
CaliberRM use the second method. As a result, only the performance of the impact
analysis methods in DOORS and RequisitePro are tested.

Since the WASP case, used in Part A, contains no change scenarios, another case is
used to determine the impact analysis performance of the tools: the Course
Management System. This case contains three change scenarios that can be used to
test the tools and performance methods. After implementing the changes in both tools
and gathering the numbers for the various metrics, the results show no surprises.
Change scenarios affecting several levels of requirements are better predicted by the
tools with transitive closure based impact analysis methods, while change scenarios
effecting only requirements on the same level are better predicted by the impact
analysis methods that follow only direct links.

The methods to determine the performance show a bigger difference. The original
methods were indeed targeted at the performance of the change itself and not the
impact analysis method used to inspect them. The method based on binary classifiers
does show the performance of the actual impact analysis method. A result that has
been confirmed by other recent research.

PART B: CHANGE IMPACT ANALYSIS PERFORMANCE

74

75

5 Metrics for impact analysis performance
quantification

``Change does not necessarily assure progress,

but progress implacably requires change.’’
Henry S. Commager, American historian, 1902-1998

In this chapter an overview of current quantification methods is presented and the
problems with these methods are discussed. Based on these problems an existing test
evaluation technique is introduced for tests with a binary output like impact analysis
methods. These metrics based on binary classifiers will be compared with the existing
impact analysis methods to show they work without restricting preconditions and at
the same time tell more about the performance of an impact analysis method. The
performance of an impact analysis method will be defined as the ability to identify
artifacts that have to be changed as a result of an initial set of changes, with as little
false alarms and misses as possible.

5.1 Related work
In the last 20 years several methods to quantify the performance of impact analysis
have been proposed. Most of these methods are based on sets with artifacts that have
or have not been changed and artifacts that have or have not been identified by the
tools. To understand the operations performed on these sets, Section 5.1.1 contains an
elementary introduction into set theory. Section 5.1.2 describes a number of methods
that have been used in the past to quantify the performance of impact analysis
methods. There are however some problems with these methods, disqualifying them
for determining impact analysis performance. An alternative method, based on binary
classifiers, that has proven itself already in other fields of work is introduced in
Section 5.1.3. Section 5.1.4 discusses the metrics that can be used based on binary
classifiers. The final section, Section 5.1.5, shows some of the latest methods to
determine an impact analysis methods performance, based on binary classifiers and
their metrics.

5.1.1 Introduction into set theory
Set theory describes the mathematics that can be applied to collections of elements.
These elements can be abstract numbers, real objects like products made in a factory,
people, etc. The order of elements in a set is not relevant.

A set, called A, with n elements, called a1, a2, …, an-1, an, is denoted as A = {a1, a2, …,
an-1, an}. The number of elements in a set is called its cardinality, so the cardinality |A|
of set A is n. If an element is part of a set this is symbolized by ∈. Element a2 is part
of set A: a2∈A. Two sets are equal when they contain the same elements: A=B. A set
with no elements and a cardinality of zero is called an empty set and symbolized by
∅.

When multiple sets are available, they can be compared and combined into new sets.
If all elements of set B are also part of set A and A and B are not equal, then B is a

CHAPTER 5. METRICS FOR IMPACT ANALYSIS PERFORMANCE QUANTIFICATION

76

subset of A: B⊂A. The case where B is a subset of A or both sets are equal is
symbolized by B⊆A.

There are three ways to combine two sets:
• When all elements in set A and B are combined in a new set, this is called a union.

The union of A and B is denoted as A∪B.
• Selecting only the elements present in both set A and set B, is called an

intersection. The intersection of A and B is denoted as A∩B.
• Selecting all elements in set B that are not also part of set A, is called the relative

complement of A in B. The relative complement of A in B is denoted as B-A.

5.1.2 Current methods to determine impact analysis performance
Over time a number of methods to determine the performance of impact analysis
techniques have been proposed. This section will describe four of them. Three
methods are based on sets originally defined by Arnold and Bohner [AB93]. The last
method is based on sets defined by Cleland-Huang [CHC03].

5.1.2.1 Arnold and Bohner sets
Arnold and Bohner introduced their proposal to determine the performance of impact
analysis for the first time in their framework for the comparison of impact analysis
methods in 1993 [AB93]. In 2002 an update was provided with additional metrics.
Fasolino and Visaggio propose their own system to measure the performance of
impact analysis methods, but these are based on the initial sets introduced by Arnold
and Bohner [FV99].

Bohner and Arnold 1993
In 1993 Bohner and Arnold present their first work on a framework for the
comparison of impact analysis methods [AB93]. The framework consists of three
sections. The first section describes the impact analysis application and looks at how
is the impact analysis method is used to accomplish impact analysis and examine the
features offered at the methods interface. It can be compared to our work on the
criteria used to evaluate requirements management tools in section 3.2.1. The second
section describes the impact analysis parts and examines the nature of the internal
parts and methods used to perform the impact analysis, like the description of the
information model options in section 3.2.1. The third and last section described the
effectiveness of the impact analysis method. It examines the properties of the search
results of the IA approach, to see if it accomplishes the goals of IA.

For the evaluation of the IA approach the framework compares the following sets:

• Universe: all possible artifacts;
• System: a bounding set of objects in which the IA will take place (all artifacts

present in the system);
• Start Impact Set (SIS): all impacted artifacts identified at the start of the

change;
• Estimated Impact Set (EIS): all additional impacted artifacts found by the IA

approach (including the SIS);
• Actual Impact Set (AIS): the artifacts actually changed because of the change.

5.1 RELATED WORK

 77

Using these five sets, a property called Effectiveness could be determined for an IA
method. It contained four elements:

• SIS and EIS: What trend is observed in the relative size of the SIS and EIS
when the approach is applied to typical problems? They would like the EIS to
be as close as possible to the SIS: |SIS| / |EIS| = 1, or nearly 1.

• EIS and System: What trend is observed in the relative size of the EIS and
System when the approach is applied to typical problems? They would like the
EIS to be much smaller than the System: |EIS| / |System| < N, where N is some
small tolerance level.

• EIS and AIS: What trend is observed in the relative size of the EIS and AIS
when the approach is applied to typical problems? They would like the EIS to
contain the AIS and the AIS to equal to or smaller than the EIS: |EIS| / |AIS| =
l, or nearly 1.

• Granularity: What is the relative granularity of the artifact object model vs.
the interface object model? They would like the granularities to match, if
possible.

In the end, five IA approaches are compared using the framework. Since only the
approaches are investigated and not a specific case study, the effectiveness based on
the sets cannot be used. Therefore, only the granularity is evaluated.

Bohner 2002
In 2002 Bohner presented an addition to his previous work [Boh02]. He uses a
number of the impact sets presented earlier and one of them is renamed:

• Starting Impact Set (SIS): initial set of objects thought to be affected by a
change. Normally determined when examining the change specification.

• Candidate Impact Set (CIS): set of objects estimated to be affected. Produced
while conducting IA. This was called the estimated impact set (EIS) before.

• Actual Impact Set (AIS): set of objects actually modified. Not necessarily
unique, as a change can be implemented in several ways.

Two new impact sets are introduced to make two groups of impacted artifacts more
explicit:

• Discovered Impact Set (DIS): set representing an under-estimate of impacts;
artifacts identified as part of the implementation of the change, so not present
in the CIS but present in the AIS

• False Positive Impact Set (FPIS): set representing the over-estimate of impacts
in the analysis; all artifacts identified by the CIS, but not actually changed in
the AIS.

These two sets are used to obtain the accuracy .This Accuracy is expressed using the
Error = (|DIS| + |FPIS|) / |CIS|. The target of impact analysis is to get a CIS as close
to the AIS as possible, so the size of both DIS and FPIS should be as close to zero as
possible. This leads to an error close to zero. The error can be anything in the range
[0, ∞ >.

Fasolino and Visaggio
Fasolino and Visaggio propose their own system to measure the performance of
impact analysis methods [FV99]. Their approach is based on two dimensions.
Adequacy is the capability of the approach to identify potentially affected artifacts

CHAPTER 5. METRICS FOR IMPACT ANALYSIS PERFORMANCE QUANTIFICATION

78

that contain at least all artifacts that will be changed in the end. Effectiveness is the
quality of the impact analysis, the ability to produce results that are useful for the
maintainer.

Their approach is also based on sets containing artifacts. These sets are used for the
analysis:

• System: all artifacts present in the system;
• Primary Impact Set (PIS): the set of affected artifacts determined by the

maintainer;
• Secondary Impact Set (SIS): the set of artifacts that is returned by the impact

analysis with the PIS as a start set;
• Estimated Impact Set (EIS): PIS and SIS combined;
• Actual Impact Set (AIS): the set of artifact changed because of actually

implementing the change.

Adequacy is measured using a metric called inclusiveness, a binary value being one
when the EIS contains the AIS and zero when this is not the case. According to
Fasolino any results from an impact approach are useless when the inclusiveness is
zero, since the maintainer is not receiving all artifacts that need investigation. This
means all artifacts have to be investigated anyway, making the impact analysis
pointless.

Once the adequacy has been confirmed, the quality of the set of artifacts returned by
the impact analysis approach can be investigated. Fasolino uses three metrics to
determine the quality: Ripple-sensitivity, Sharpness and Adherence.

Ripple-sensitivity is the characteristic describing the relation between the PIS and the
SIS. When the SIS is much larger then the PIS, the approach is sensitive for the ripple
effect. This sensitivity is expressed using the amplification ratio metric: |SIS| / |PIS|.

The sharpness of the approach is its ability to not include all artifacts in the system,
but only the artifacts that are probably affected by the change. It is expressed using
the change rate: |EIS| / |System|. Since the EIS is always included by the system, this
value is always between 0 and 1. The smaller the better (since the inclusiveness is one
to start with, meaning EIS contains the AIS).

The adherence of the approach is a more detailed version of the inclusiveness. It
describes the relative size difference between the EIS and AIS. When these two sets
are close, fewer artifacts not affected by the change have to be investigated by the
maintainer, making analysis more efficient. The adherence is expressed using the S-
ratio, showing the relation between the EIS and AIS: |AIS| / |EIS|. The result is best
when this ratio is one.

5.1.2.2 Cleland-Huang sets
Cleland-Huang also presents a number of scenarios for the implementation of changes
based on sets. The sets introduced are the following [CHC03]:

• Impacted artifacts: The (theoretical) set of impacted artifacts as a result of
proposed change C on artifact a.

5.1 RELATED WORK

 79

• Identified artifacts: The set of artifacts actually identified as impacted by the
proposed change C upon artifact a. Unless a developer manually identifies
artifacts as impacted outside the traceability schema, Identified(C,a) should be
a subset of Linked(a).

• Updated artifacts: The set of artifacts updated as a result of implementing
change C upon artifact a, after moment t in time after which all artifacts and
links related to change C are updated: Updated(C,a,t) <= Identified(C,a)

Impacted(C,a) is a theoretical set of all impacted artifacts as a result of change C upon
artifact a. Identified(C,a) is the actual set of artifacts that will be impacted by change
C upon artifact a (based on the traceability schema and the input from the developers).
Updated(C,a) is the set of actually updated artifacts.

The four scenarios presented by Cleland are the following:

• No errors: the impacted, identified and updated sets are the same.
• Identification errors: artifacts that are impacted are not identified. This could

be the result of broken or missing traces or an incorrect interpretation of the
source or target artifact: Impacted(C,a) > Identified(C,a). –> not found

• Update errors: occur when impacted artifacts and their links are not updated
to reflect the implemented change. Impacted(C,a) > Updated(C,a,t). <– not
implemented

• Inclusion errors: artifacts are identified as being impacted while they are not.
So the intersection of Identified(C,a) and not Impacted(C,a) is not an empty
set.

So compared to the framework presented by Bohner and Arnold, SIS is a set of
change C and artifact a pairs, EIS is a concatenation of all Identified(C,a) sets for each
pair in SIS and AIS is a concatenation of all Updated(C,a,t) sets for each pair in SIS.

Although according to the framework EIS is only based on SIS, while Identified(C,a)
can also contain manually added artifacts. In the framework it is also possible that
|EIS| < |AIS|, but the definition of Updated(C,a,t) states Updated is a subset of
Identified. This is comparable to the inclusiveness as presented by Fasolino.

5.1.3 Binary classification
A binary classifier is a test returning a binary result: positive or negative, true or false,
etc. A lot of tests can be classified as binary classifiers, as these examples show:

• Medical tests: when a test for a specific disease is applied, it should return
positive when someone has this disease and negative when this is not the case.

• Quality control: the test should decide if a product is good enough to be sold.
• Information retrieval: the test should determine if a page should be returned or

not as result of a query.

The performance of these tests is most of the time not perfect; meaning the set of
elements retrieved by the test is not the same as the set of relevant elements. Since the
test is binary, any element inspected by the test can be placed in one of four
categories, as shown in Table 8. An element that is retrieved by the test and is
relevant, is called a true positive (TP) or hit. For example an actually ill person that is
identified by a medical test as being ill. An element that is not retrieved by the test

CHAPTER 5. METRICS FOR IMPACT ANALYSIS PERFORMANCE QUANTIFICATION

80

and is not relevant according to the test, is called a true negative (TN) or correct
rejection. For example a person that is not actually ill and also identified by the test as
not being ill.

For a perfect test all elements would belong to one of these two sets. Most tests are
however not perfect, leading to results that do not fit in one of these sets. An element
that is retrieved by the test, but is not actually relevant, is called a false positive (FP),
Type I error or false alarm. For example a person that is not actually ill, is being
identified as ill by the test. In the other scenario an element that is relevant is not
retrieved by the test, called a false negative (FN), Type II error or miss. For example
an actually ill person who is not identified as being ill by the test.

Figure 18 shows these four sets in a Venn diagram. As seen in the diagram all four
sets are disjoint, so TP ∩ FP ∩ FN ∩ TN = ∅, TP ∪ FP ∪ FN ∪ TN = {all
elements}, TP ∪ FP = Retrieved and TP ∪ FN = Relevant.

Table 8: Confusion matrix showing four results of binary classifier
 Condition or relevance

(as determined by "Gold standard")
 Relevant Nonrelevant

Retrieved True Positive (TP)
Hit

False Positive (FP)
False alarm Test

outcome Not
retrieved

False Negative (FN)
Miss

True Negative (TN)
Correct rejection

TP

RelevantRetrieved

FNFP

TN

Figure 18: Venn diagram showing four result sets of a binary classifier

5.1.4 Metrics based on binary classification
As said before, most nontrivial tests do not have empty error sets and are therefore not
perfect. To determine the performance of a binary classifier, a number of expressions
or metrics based on the four results sets have been created. Fawcett gathered a number
of these expressions presented over time to analyze the performance of binary
classifiers [Faw04]:

• Recall, also known as true positive rate (TPR), hit rate or sensitivity
Recall = TP / (TP + FN)

5.1 RELATED WORK

 81

• Precision, also known as positive predictive value (PPV)
Precision = TP / (TP + FP)

• Fall-out, also known as false positive rate (FPR) or false alarm rate
Fall-out = FP / (FP + TN)

• Specificity (SPC) or True Negative Rate
SPC = TN / (FP + TN) = 1 – FPR

• Accuracy (ACC)
ACC = (TP + TN) / (TP + FP + FN + TN)

• F-score, also known as F1-score or F-measure
F = 2 · (Precision · Recall) / (Precision + Recall)

5.1.4.1 Definitions expressions
The expressions used most are described in some more detail.

Recall shows the ratio between the number of true positives and the total amount of
relevant results, containing both the true positives and false negatives. It shows the
proportion of relevant elements that was also retrieved by the test. A result of one
means all relevant elements were retrieved by the test, while a score of zero means not
one of the relevant elements was retrieved.

The result of this metric gives a good indication of a tests performance when it is
important to identify all relevant elements. It is however easy to obtain a score of one,
by just returning all elements. This way all relevant elements are always included, but
all nonrelevant elements are included too. So it also shows Recall should always be
presented together with another metric, like Precision or Fall-out.

In case of a highly contagious disease that can be easily cured, it is very important all
ill people are identified and treated. In this case the amount of persons not actually
being ill, but being identified and cured anyway, is less of a problem then not
identifying ill people. Therefore, this is an example where only the Recall describes
the performance of the test quite good.

Precision shows the ratio between the number of true positives and the total amount
of retrieved results, containing both the true positives and false positives. It shows the
proportion of relevant elements in the set of elements retrieved by the test. A result of
one means all elements in the retrieved set are relevant, while a score of zero means
not one of the elements in the retrieved set is relevant.

Where the result of Recall gives a good indication of the proportion of relevant items
retrieved, the result of Precision gives a good indication of a tests performance when
it is important to retrieve as little as possible nonrelevant elements. The opposite of
Precision is the False Discovery Rate (FDR) describing the proportion of nonrelevant
elements in the set of elements retrieved by the test. Just as with Recall there are some
ways to easily obtain high scores. When one and only one relevant result is returned,
the Precision will be one, suggesting a high precision test. So Precision should also be
accompanied by the Recall results of a test, to get a complete image of its
performance.

In information retrieval, and web searching in particular, retrieving all relevant
elements is of little importance, but retrieving as little nonrelevant elements as

CHAPTER 5. METRICS FOR IMPACT ANALYSIS PERFORMANCE QUANTIFICATION

82

possible is important. When people look for information, they do not need thousands
of relevant results with even more nonrelevant results, but only a limited number or
relevant results with as little as possible nonrelevant results. So this is an example
where only the Precision describes the performance of the test quite good.

Fall-out shows the ratio between the number of false positives and the total amount of
nonrelevant results, containing false positives and true negatives. It shows the
proportion of nonrelevant elements that was incorrectly retrieved by the test, also
called false alarms. A result of one means all nonrelevant results were retrieved by the
test, meaning the tests performance is not good, while a score of zero means not one
of the nonrelevant elements was retrieved by the test, meaning good test performance.
Its opposite is Specificity, showing the proportion of nonrelevant elements that was
not retrieved by the test and thus correctly rejected.

In quality control for critical devices it is of utter importance these devices perform as
specified. So the production process is optimized to produce as little defects as
possible and of all broken devices, none is allowed to be shipped. The proportion of
shipped devices that is correct (Precision), contains too many correct devices
compared to defects. The proportion of correct devices that is being shipped (Recall),
says nothing about shipped broken devices at all. So the proportion of broken devices
that is being shipped is what is needed, and this value should be as small as possible.
Fall-out describes just this ratio and describes the performance of this test much better
then Precision or Recall.

Accuracy shows the ratio between all correctly identified elements, both true
positives and true negatives, and the total number of elements, the total of all four
result sets. A result of one means the test identified all elements correctly, while a
result of zero means not one of the elements was identified correctly.

A result of zero is only possible when all relevant elements are retrieved as
nonrelevant and all nonrelevant elements are retrieved as relevant. This makes the test
a perfect qualifier, only the labels are inverted, relevant should be nonrelevant and
visa versa. When the labels are corrected the score will be one. So the worst result for
Accuracy is not one or zero, but when the classifiers returns random results at 0.5.
There is also a problem with the Accuracy, resulting in better Accuracy scores while
the other metrics show worse scores. This is the so-called Accuracy paradox,
described in Section 5.1.4.3.

F-score as described by Fawcett is the harmonic mean of Precision and Recall. It is a
weighted average of these two metrics where a result of zero indicates a poor test
result, while a result of one means the result of the test was perfect. This basic F-score
weights both Precision and Recall the same. When one of these metrics should have
more effect, the Fß-score can be used to shift the weight towards one of the metrics
[Rijs79]. The value of the Recall is β times as much important as Precision.

Fß = (1 + ß2) · (Precision · Recall) / (ß2 · Precision + Recall)

The basic F-score returns the same result as the F1-score and is therefore also referred
to as the F1-score.

5.1 RELATED WORK

 83

5.1.4.2 Visualize and compare metrics
Most of the metrics defined in the previous section do not give a clear view of an
impact analysis methods performance on their own. The values for Precision and Fall-
out alone can not be used to determine a methods performance. They both need Recall
for the total picture. Since a combination of two values is needed, it is possible to plot
these combinations in a two-dimensional plot for a quick overview of a tools
performance characteristics.

ROC plot
The ROC (Receiver Operating Characteristic) plot is one of these plots to analyze the
performance of different binary classifiers or different configurations of one binary
classifier. An example of a ROC plot is given in Figure 19. A ROC plot shows how
the number of correctly classified positive examples varies with the number of
incorrectly classified negative examples. Therefore, a result in the top left corner,
means there were no false alarms and all relevant elements were identified by the test,
so this is the best result possible. Results on the ascending diagonal have the same
amount of true results as false alarms, meaning this method has the same performance
as a random guess. So the closer a result is to (0,1) and the further away from the
diagonal, the more reliable the predictive capabilities of a method or configuration
are.

Results below the diagonal can also have good predictive capabilities. A result close
to the bottom right corner means the number of true positives and true negatives is
close to zero. So almost all true positives have been identified as negatives and all true
negatives have been identified as positive. Inverting the labels of the test results, turns
it into a classifier with an almost perfect performance. So inverting the labels of the
test results, causes the result points to be mirrored in the in the ascending diagonal,
moving them from the area bellow the pure chance line to the area above it.

Instead of a ROC plot with only one data point per classifier, it is also possible to
create a ROC curve. When a binary classifier is based on a threshold to determine if
an element is retrieved or not, it is possible to perform the test with different
thresholds. Each threshold results in a data point and by connecting these data points
the ROC curve is created. A curve always starts in the lower left corner and ends in
the top right corner. The curve of a good classifier gets, just as the ROC plot, close to
the top left corner, while the curve of a random classifier stays close to the ascending
diagonal. The area under this curve, or AUC, therefore determines the performance of
a classifier.

Since the Fall-out is determined using only negative elements and the Recall is
determined using only positive elements, the ratio of positive elements to negative
elements has no effect on the ROC plot or curve. This makes it possible to compare
the results of data sets with different ratios.

CHAPTER 5. METRICS FOR IMPACT ANALYSIS PERFORMANCE QUANTIFICATION

84

ROC plot

Classifier with
inverted results

Perfect
classifier

Retrieve no
elements at all

Retrieve all
available
elements

Random
classifier

0.9 0.8 0.7 0.6
0.5

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Fall-out

R
ec

al
l

Figure 19: ROC plot template

PR plot
Precision-recall plots are another way to visualize the information in a confusion
matrix to determine the performance of the classifier. An example of a Precision-
Recall plot, or PR plot, is given in Figure 20. An ideal result would have a Recall and
Precision of one, meaning there are no false alarms or misses and the test result was
perfect. So the closer a result is to the upper right corner, the better the binary
classifier. When a classifier retrieves all available elements, its Recall will be high,
since all relevant artifacts have been identified, but the Precision will be low, since
there will be a lot of false alarms. Such a result will be located close to the lower right
corner. When a method returns only one relevant artifact, its Precision will be high,
since there are no false alarms, but the Recall will be low, since there are probably a
number of misses. A result like this will be located close to the top left corner of the
plot.

5.1 RELATED WORK

 85

Precision-Recall plot

Perfect
classifier
(elements are
retrieved if and
only if relevant)

Retrieve all
available
elements

Retrieve one,
relevant
element

0.80.60.40.2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Recall

Pr
ec

is
io

n

Figure 20: Precision-Recall plot template

Isometrics
Both plots have an ideal spot and the rest of the plot is reserved for non-perfect
results. To be able to determine which of two results is best, some sort of isometric is
needed for each plot to show which results have equal performance. For both plots a
number of options are available [Fla04].

The ROC plot can use Precision, F-score, Accuracy or AUC (area under curve). The
first three isometrics are based on additional metrics besides the two key metrics for
the ROC plot: Recall and Fall-out. This means the isometrics depend on the ratio of
positive and negative elements. This means it is not possible to plot the results of tests
using different ratios in the same plot and use the metrics to compare them. Since the
AUC is only based on Recall and Fall-out, it does not have this problem.

The PR plot can use the F-score, Accuracy or the AUC. When Accuracy is expressed
using Precision and Recall a variable representing the ratio between relevant and
irrelevant elements is introduced [Alv02]. This means it is not possible to plot results
with different ratios in one plot. Both the F-score and AUC can be used as isometrics
when the results of sets with different ratios of positive and negative elements have to
be compared.

The ROC plot in this section already shows what the isometrics look like when AUC
is used. The numbers along the top indicate the actual area under the curve. The PR
plot is provided with the F-score as isometric. The values along the top show the
values for the F-score.

CHAPTER 5. METRICS FOR IMPACT ANALYSIS PERFORMANCE QUANTIFICATION

86

Differences between ROC and PR plots
Although the data points in ROC and PR plots are based on the same confusion
matrix, there are a number of differences between them [DG06]. First of all the PR
plot gives a more objective image when the ratio of relevant and irrelevant artifacts is
highly skewed. In addition, a data point or curve dominates in ROC space if and only
if it also dominates in PR space. In ROC space it is correct to interpolate between data
points using a linear line, in PR space this is not allowed. Finally ROC space can be
used to determine if the output of classifier is random or not, by performing multiple
tests with a classifier and measure their distance to the ascending diagonal.

5.1.4.3 Accuracy paradox
The Accuracy for binary classifiers can be misleading in some cases. The Accuracy
compares the correctly identified elements with the total number of elements:

Accuracy = (TP + TN) / (TP + FP + FN + TN)

When the amount of true positives is smaller then the amount of false positives for a
particular test, the Accuracy increases when this test is discarded and replaced by a
test where the test outcome for all elements is negative. The same holds when the
amount of true negatives is smaller then the number of false negatives and the test
outcome for all elements becomes positive.

Table 9 shows the confusion matrix for the impact analysis of the modification of
Req9 in DOORS as described in Section 6.2. The impact analysis returned six
elements of which one was actually relevant. The Accuracy for this impact analysis
and change is therefore 11/16.

Table 10 shows what happens when all elements are just marked as negative; meaning
none of the artifacts should be changed. In this case only one artifact is missed and the
Accuracy for this ‘impact analysis’ is 15/16.

So by using no test at all, the Accuracy is increased. In this case this is logical, since
the remaining classifier participating in the Accuracy (true positive or true negative) is
increased with a larger number (false negative or false positive) then the true negative
or true positive was originally.

This shows Accuracy is not a reliable metric to determine a tests performance. The
combination of Precision and Recall is much more reliable as the result of both these
metrics would be zero when the actual test is replaced by a test returning always
positive or negative as a result.

Table 9: Accuracy paradox, result normal test

 Condition
 Relevant Not Relevant

Positive 1 5 Test outcome
Negative 0 10

5.2 BINARY CLASSIFIERS FOR IMPACT ANALYSIS PERFORMANCE

 87

Table 10: Accuracy paradox, result negative test

5.1.5 Current methods based on binary classifiers
When looking for literature on impacts analysis using binary classifiers and the
metrics derived from them, a number of publications have been found.

Lindvall and Sandahl investigated a manual impact analysis method used during a real
project taking four years [LS98]. They link requirements to classes and after a change
had been performed, not only the affected artifacts are recorded, but also the traces
used to get to these artifacts, called back tracing. In the end all of the thirty predicted
classes were actually changed based on their relation with one or more requirements.
When inspecting the individual changes, some predicted classes were not actually
changed as a result of the prediction of the particular change, which can be described
as a false positive. At the same time there were also changes where classes were
changed that had not been predicted, which can be described as false negatives.
During the analysis of the results they introduce a metric called Correctness with the
same behavior as Precision. So they have identified all possible options of a binary
classifier, but have not identified it as such, missing out on most of the metrics based
on them.

A year later Cimitile, Fasolino and Visaggio refer to this same paper to describe the
difference between the set of elements used to start an impact analysis (SIS) and the
result set of the impact analysis (EIS) [CFV99]. They stick however with their own
limited metrics describing more of the change itself then the performance of the
impact analysis method they are after.

Ibrahim, Idris, Deraman and Selangor are also looking for a way to evaluate impact
analysis methods as part of their software traceability validation for change impact
analysis of object oriented software [IID06]. They refer to the work by Lindvall, but
also Bohner and Fasolino. In the end they choose the more limited method presented
by Fasolino.

Hattori Guerrero Figueiredo Brunet Damasio 2008 [HGF08]
Name of paper: On the Precision and Accuracy of Impact Analysis Techniques
Hattori, Guerrero, Figueiredo, Brunet and Damasio measure both Precision and Recall
to cover both false positives and false negatives. Something not done by any of the
previous references. They use three simple code-slicing applications to analyze a
number of changes from a CVS system and their conclusion is that limiting the
number of trace levels increases Precision, but decreases Recall even more. In the title
of their publication they mention accuracy, but since they are using Precision and
Recall, this is clearly not the Accuracy based on binary classifiers.

5.2 Binary classifiers for impact analysis performance
Impact analysis can be seen as a binary classifier. For each artifact in the system it
determines if it is suspect or not. This section will show how the sets presented in

 Condition
 Relevant Not Relevant

Positive 0 0 Test outcome
Negative 1 15

CHAPTER 5. METRICS FOR IMPACT ANALYSIS PERFORMANCE QUANTIFICATION

88

Section 5.1.2 can be mapped to a binary classifier so they can be used in the binary
classifier based metrics. Once the mapping is complete, the various methods are
compared and a final set of definitions for quantifying the performance of impact
analysis methods is presented.

5.2.1 Evaluation of Impact analysis methods
An impact analysis method can also be seen as a binary classifier, determining for
each artifact in a system if it has to be changed or not as result of a proposed change.
To compare this impact analysis method with other methods, the four qualifications
and the associated analysis expressions can be used.

Using the quantification sets as presented by Bohner, impact analysis can be classified
as shown in Figure 21. In this case the system is a set containing all artifacts, EIS is
the set containing the result of the impact analysis binary classifier: all artifacts
marked suspect and AIS contains the artifacts actually changed. Table 11 shows the
classifiers when applied to impact analysis methods.

AIS
∩

EIS

AISEIS

DISFPIS

System

Figure 21: Venn diagram with subsets as described by Bohner

Table 11: Binary classifier results for impact analysis methods
 Result after implementation
 Actually changed Not actually changed

Marked
suspect AIS ∩ EIS FPIS Result

impact
analysis
method

Not marked
suspect DIS System – AIS – EIS

Now the impact analysis sets have been applied to the confusion matrix, it is also
possible to apply them to the metrics based on binary classifiers:
Precision: TP / TP+FP = |AIS ∩ EIS| / |AIS ∩ EIS| + |FPIS| = |AIS ∩ EIS| / |EIS|
Recall: TP / TP+FN = |AIS ∩ EIS| / |AIS ∩ EIS| + |DIS| = |AIS ∩ EIS| / |AIS|
Fall-out: FP / FP+TN = |FPIS| / |FPIS| + |System – AIS – EIS| = |FPIS| / |System –
AIS|

In the next section these binary classifier-based metrics will be compared with the old
metrics based on the original sets provided by Arnold and Bohner.

5.2 BINARY CLASSIFIERS FOR IMPACT ANALYSIS PERFORMANCE

 89

5.2.2 Mapping original definitions to binary classifiers
Table 12 shows our first attempt to create a mapping from the original definitions to
the results of a binary classifier. This mapping can be used to see if the original
impact analysis sets can be mapped to the four sets of the confusion matrix. The rows
show the original definitions, the columns show the various binary classifiers and the
cells show the relation between the definition and the various results of the binary
classifier. When multiple cells in a row show a relation, it means the result sets of
each relation are combined, like a union. The gray rows and columns show
expressions without a mapping.

For example the System set contains all elements in the system. Using the binary
classifier result sets, this means all four sets: System = TP ∪ FP ∪ FN ∪ TN. The
Estimated Impact Set contains all results of the impact analysis method, so all
elements identified as positive by the test: EIS = TP ∪ FP. The Starting Impact Set
(SIS) contains a subset of the EIS, so it can contain both elements from TP and FP:
SIS ⊆ TP ∪ FP.

Table 12: Mapping current definitions on binary classifier results
Element sets Binary classifier sets
Code Name TP FP FN TN
A2 System = = = =
A3 SIS ⊆ ⊆
A4 EIS = =
A5 AIS = =

B1 System = = = =
B2 PIS ⊆ ⊆
B3 SIS ⊆ ⊆
B4 EIS = =
B5 AIS = =

C1 System = = = =
C2 SIS ⊆ ⊆
C3 CIS = =
C4 AIS = =
C5 FPIS =
C6 DIS =

D1 Impacted
D2 Identified = =
D3 Updated = =

The result shows most sets used by the original definitions can be expressed using the
results of a binary classifier. Only the starting sets and secondary impact set have no
direct mapping, but this is no problem since these sets are only used for metrics
describing the change itself instead of the performance of the impact analysis method
used. The Impacted set cannot be mapped, since its definition is not clear.

CHAPTER 5. METRICS FOR IMPACT ANALYSIS PERFORMANCE QUANTIFICATION

90

Table 13 shows the first attempt to map the original expressions to expressions based
on the binary classifier. The rows show all original metrics and the columns the
metrics based on the binary classifier. The first four columns in Table 13 are the same
as the columns in Table 12, since some analysis expressions only return one of the
four results of the binary classifier. Recall, Precision, Fall-out and Accuracy are the
four metrics based on the results of the binary classifier as presented in other research.
The gray rows and columns show again metrics without a mapping.

As in Table 12 not all original metrics have a direct mapping to the metrics based on
the results of the binary classifier. Therefore two different relation types are used:
= the result for the original metric, when acknowledging its preconditions, is the

same as for the BC metric;
≈ the result for the original metric is not the same as for the BC metric, but both

metrics focus on the same characteristic.

For example the intersection of EIS and AIS (E3.3) is the same as TP, since it
contains all artifacts that have to be changed and are returned by the IA method.

The ratio between the number of elements in AIS and EIS (E3.1 and F2.3) has the
precondition that AIS must be a subset of EIS. When this is the case, the result of this
metric is the same as the result of Precision. So when the precondition is
acknowledged, the result for E3.1 is the same as the result for Precision (since
Precision has no preconditions, its results are meaningful for any input, making it
more generic, but this is discussed when describing Table 14).

The Error as described by original metric G1 compares the errors made by the IA
method to the returned result, while Accuracy compares the correctly identified
elements with all elements in the system. So they both say something about the
accuracy, but one based on the errors and the other based on the correctly identified
elements.

Table 13: Mapping original metrics to BC-based metrics
 Binary classifier sets and metrics

Original metrics
Code Metric TP

FP

FN

TN

R
ec

al
l

Pr
ec

is
io

n

Fa
ll-

ou
t

A
cc

ur
ac

y

E1 |SIS| / |EIS|
E2 |EIS| / |System|
E3.1 |AIS| / |EIS| =
E3.2 |EIS| / |AIS| =
E3.3 |EIS ∩ AIS| =
E4 Granularity

F1 AIS ⊆ EIS =
F2.1 |SIS| / |PIS|
F2.2 |EIS| / |System|
F2.3 |AIS| / |EIS| =

5.2 BINARY CLASSIFIERS FOR IMPACT ANALYSIS PERFORMANCE

 91

G1 (|DIS|+|FPIS|) / |CIS| ≈

H1 No errors = =
H2 Identification errors =
H3 Update errors
H4 Inclusion errors =

The mappings show which original metrics are not covered by metrics based on the
binary classifiers. Granularity and Update errors are not covered since their
definitions are not clear enough for exact quantification. The other original metrics
not covered by the BC-based metrics, appear to be evaluation the change itself,
instead of the impact analysis method. At the end of this section these metrics are
evaluated to see if they describe any additional details about the performance of the
impact analysis method.

The opposite mapping from BC-based metrics to the original metrics is presented in
Table 14. Only the original metrics with any relation to BC-based metrics in Table 13
are presented in the columns to save space. The first four rows show the four results
of the binary classifier and to which original definitions they can be mapped, just like
the first four columns of Table 13. The other rows contain metrics using the four basic
results to get a better view of the performance of an impact analysis method. Rows
with a grey background do not have any mappings to original expressions. Some of
the BC-based metrics are just the opposite of others, for example the False discovery
rate and Specificity. The result range for the BC-based metrics is [0,1], the same
range as for probabilities in probability theory. To invert a probability, it is decorated
with the prime symbol: P(A′) = 1 – P(A). So when the result of a mapping is inverted,
the mapping is also decorated with the prime symbol.

As in Table 12 not all BC-based metrics have a direct mapping to the original metrics.
Therefore four different relation types are used:
= the result for the BC-based metric is the same as for the original metric;
⊇ the result for the BC-based metric is the same as for the original metric as long

as the input is in the range of the original metrics preconditions. Nothing can
be said about the result of the original metric when its preconditions are not
met, while the result of the BC-based metric is meaningful for any input. So
the input options for the original metric are a subset of or equal to the input
options of the BC-based metric;

≈ the result for the BC-based metric is not the same as for the original metric,
but both metrics focus on the same characteristic;

′ the result for the BC-based metric is the inverse of the result for the original
metric.

When ⊇ and ′ are combined, this does not mean the superset relation is inverted. The
superset symbol describes the relation between the allowed input sets for both
metrics, while the prime symbol inverts the result or output value. Since the first
relates to the input and the second to the output, they cannot be combined, for
example into the ⊂ relation.

CHAPTER 5. METRICS FOR IMPACT ANALYSIS PERFORMANCE QUANTIFICATION

92

Table 13 showed that the intersection of EIS and AIS was the same as TP and this
table shows TP is also the same as the intersection of EIS and AIS. Therefore the
relation is marked with the = symbol.

Table 13 also showed that the ratio between the number of elements in AIS and EIS
(E3.1 and F2.3) returned the same result as Precision if and only if AIS was a subset
of EIS. However, when looking at Precision, it has no preconditions and it returns
meaningful results for any combination of input sets, not only when AIS is a subset of
EIS. Therefore the relation is marked with the ⊇ symbol.

The False discovery rate has the opposite result of Precision, but it accepts the same
input sets, so the relation is also marked with the ⊇ symbol and accompanied by the
prime symbol to indicate the result is inverted.

The relation between the Accuracy and the Error is the same as in Table 13, both give
an indication of the number of errors or correctly identified elements.

5.2 BINARY CLASSIFIERS FOR IMPACT ANALYSIS PERFORMANCE

 93

Table 14: Mapping BC-based metrics to original metrics
 Original expressions Code E3.1 E3.2 E3.3 F1 F2.3 G1 H2 H4

 Name Inclusiveness Adherence Error Identification

errors
Inclusion
errors

BC expressions
Name Synonyms

Expression
Expression |AIS| / |EIS| |EIS| / |AIS| |EIS ∩ AIS| AIS ⊆ EIS |AIS| / |EIS| (|DIS|+|FPIS|) /

|CIS|

True positive Hit TP =
False positive False alarm, Type I

error
FP =

False negative Miss, Type II error FN =
True negative Correct rejection TN
Recall True positive rate

(TPR), hit rate,
sensitivity

TP / (TP + FN)
 ⊇ ⊇

Precision Positive predictive
value (PPV)

TP / (TP + FP)
⊇ ⊇

False discovery
rate (FDR)

- FP / (TP + FP)
= 1 – Precision ⊇′ ⊇′

Accuracy (ACC) - (TP + TN) /
(TP + FP + FN +
TN)

 ≈

Fall-out False predictive
rate (FPR), false
alarm rate

FP / (FP + TN)

Specificity True negative rate
(TNR)

TN / (FP + TN)
= 1 – Fall-out

Negative
predictive value
(NPV)

- TN / (TN + FN)

CHAPTER 5. METRICS FOR IMPACT ANALYSIS PERFORMANCE QUANTIFICATION

94

The mappings show that all original metrics covering impact analysis methods instead of
the change itself are included in the BC-based metrics. So for the quantification of impact
analysis performance the BC-based metrics describe at least all IA related original
metrics. They describe even more, since no limiting preconditions are needed, making the
BC-based metrics more generic and some metrics, like Fall-out are not covered at all by
the original metrics.

The following original metrics do not have direct mappings, but do these metrics add any
new information about the performance of the impact analysis method?

Ripple-sensitivity
According to its original definition ripple-sensitivity gives an indication of the work that
has to be done to check the artifacts identified by the impact analysis method. It gives the
ratio of artifacts in the starting set to all artifacts identified by the impact analysis
method: |SIS| / |EIS| for Bohner or |PIS| / |SIS| for Fasolino. Since the AIS is not part of
the equation, it is hard to say anything about the performance of the method based on this
ratio. A big change has probably a bigger ripple-effect then a small change, so without
the end result (AIS) nothing can be said about the IA method. At the same time the SIS is
part of EIS, so it is already part of the Precision and Recall metrics.

Impact analysis is used to get an idea of the number of artifacts that have to be changed
as a result of a proposed change. So the smaller the number of errors (not identified or not
changed artifacts), the better the impact analysis method used by the tool. So the ripple-
sensitivity of the change itself is |SIS| / |AIS|, it is however hard to measure the distance
between this ratio and the ratio predicted by the tool using |SIS| / |EIS|. When the ripple-
sensitivity is higher, this could mean the tool identified too many false positives, meaning
the predicted impact is too big. This is also described by Precision and without the
additional comparison to the actual ripple-sensitivity of the change itself. The same holds
for a smaller ripple-sensitivity, this could mean the tool identified too little artifacts,
meaning the predicted impact is too small. Something that is also described by Recall.

Sharpness
Sharpness shows the ratio between EIS and System and according to its original
definition not all artifacts in the system should be affected, unless that is indeed the case.
So the definition already indicates it does not say much about the performance of the
impact analysis method used.

When comparing sharpness for two IA methods on the same change, this number says
nothing about which of the two methods is better, since it is not related to AIS. Precision
and recall show how many elements in EIS were correctly marked suspect and how many
of the elements that needed change, were actually detected. This information can be used
to identify which method performs better, instead of only showing which one returned
most elements.

The only used for these two definitions is to give the reader a better view of the change
being used to determine the performance of the impact analysis method.

5.2 BINARY CLASSIFIERS FOR IMPACT ANALYSIS PERFORMANCE

 95

Update errors
These errors are introduced when the changes made to the artifacts when performing the
change, are not updated in the traceability information in the tool. Since this is outside the
scope of impact analysis methods, there is not mapping.

5.2.3 Definitions
Since the metrics and definitions proposed by earlier work, are not always sufficient of
the quantification of an impact analysis methods performance, problems with current
definitions are described and the final set of definitions is presented.

5.2.3.1 Problems with definitions from literature
The three papers used before by Arnold, Bohner and Fasolino have some problems
regarding the difference between measuring the performance of a change itself and the
impact analysis method.

Bohner 1993
The problems with especially the effectiveness measurements is that the effectiveness of
the change scenario itself is tested. Why is an impact analysis method predicting an EIS
close to the System bad, when the AIS is also close to System and EIS? This means the
impact analysis method performs well, but the change proposal itself is poor, since
almost all elements have to be changed. The same holds for the comparison of EIS and
SIS. A method returning an EIS much bigger then the SIS, but almost equal to the AIS, is
again a good result. The change itself is maybe not, but that is not what effectiveness
should test for. So in the end only the comparisons between the elements in EIS and AIS
say something about the IA method itself.

When EIS and AIS are compared the metric used depends on a set of preconditions. It
would be more robust if there were one or two metrics without any preconditions that
would work in any case.

Granularity is not easily quantified. The evaluation of granularity offers three options,
the artifact model (actual artifacts) has a finer granularity, the interface model (impact
analysis tool) has a finer granularity, or both are about the same. There is however not
really a way to measure this granularity for an objective comparison. It can be good
criterion, since big difference in granularity between the artifacts and the tool can limit
the usefulness of the impact analysis results. On the other hand, the key impact analysis
itself is not really affected. The problems occur at the transitions across the interfaces.
This is where (most of the time) a fine granularity is made coarser to get it into the impact
analysis process. Since the impact analysis process only works on a set of objects,
unaware of any granularity or context, the granularity does not affect the key impact
analysis.

Fasolino 1999
Fasolino demands Inclusiveness, which means the Adequacy (Recall) is always one (AIS
is a subset of EIS). The Effectiveness definitions are only valid when the investigated

CHAPTER 5. METRICS FOR IMPACT ANALYSIS PERFORMANCE QUANTIFICATION

96

method is Inclusive, limiting the use of this evaluation system, since none of the current
systems is able to produce an Adequacy of one (without returning almost all elements in
the system). Adjusting the definitions so they take in account AIS ∩ EIS != AIS can
make this evaluation method usable in more cases.

Dropping Inclusiveness effects primarily Adherence = |AIS| / |EIS|, one of the ways to
measure Effectiveness. It will get the same problem as the definitions by Bohner:
preconditions to describe the sizes of both the AIS and EIS sets are needed to use the
expressions. The Ripple-effect only inspects EIS and Sharpness compares EIS to the total
System, so these two are not really affected when the Inclusiveness rule is dropped.

Fasolino is however also testing the change itself instead of the impact analysis method.
Ripple-sensitivity and sharpness have nothing to do with the impact analysis method,
leaving only inclusiveness and adherence. It is also a bit aggressive to exclude any
method not retrieving all elements in the AIS, since traceability information helps to find
missed artifacts.

Bohner 2002
Accuracy has been added to the earlier sets, describing the ratio between both the Type I
and II errors and the total number of results of the impact analysis approach: Error = (
|FPIS| + |DIS|) / |CIS|. Once the correct numbers are obtained during quantification, the
Error is a clear measurement. This version of Accuracy is not exactly the same as
Accuracy described in section 5.1.4.1, but is also affected by the Accuracy paradox. The
effects for this specific version are described in section 5.2.3.2.

When all elements are identified correctly, the ratio is zero and when none of the
elements is identified correctly, the ratio is |System|/|EIS|, which can be almost any value.
So the result is always in the [0,∞> range, instead of the normalized [0,1] range, making
comparisons harder. For a ratio in the [0,1] range the amount of errors should be divided
by the largest possible amount, which is |System|. So a better definition would be: Error =
(|FPIS| + |DIS|) / |System|.

Cleland 2003
Impacted elements (C,a) is a theoretical set of all elements impacted as result of change C
on artifact a. It is not the same as the set of Identified artifacts (determined by the
maintainer or the IA method) or the Updated artifacts (actually implemented). So it is
almost impossible to obtain this set in a operational way.

Since the scenarios presented by Cleland to evaluate the IA method, are all using the hard
to determine Impacted elements set, it is hard to use these scenarios to evaluate an impact
analysis method in a real world case.

5.2.3.2 Accuracy paradox
The Accuracy as presented by Bohner is a little different as it is called Error and
compares both errors with the positive test outcome:

5.2 BINARY CLASSIFIERS FOR IMPACT ANALYSIS PERFORMANCE

 97

Error = |FPIS + DIS| / |EIS| = (FP + FN) / (TP + FP)

In this case it is however also possible to create a higher Accuracy by mapping all
elements to one test outcome for certain situations, as in Section 5.1.4.3. When the
number of false negatives is equal or greater then the number of true negatives, the Error
is reduced when the test outcome for all elements is positive1.

Table 15 shows an example where fourteen artifacts were returned, from which four were
false alarms and there was one miss. The Error for this test is 5/14. When instead of using
a test, the test outcome of all artifacts just becomes positive, as shown in Table 16. The
Error in this case becomes 5/16.

So again by not using any test at all, the Accuracy is increased by lowering the Error.
This is logical, since the true negatives are not part of the Error equation. When the
method marks all artifacts as positive, the number of true positives becomes the number
of true positives and false negatives, and at the same time the number of false positives
becomes the number of false positives and true negatives. So when the number of false
negatives is equal or greater then the number of true negatives, the EIS becomes
relatively larger then the addition of both errors, leading to a lower Error.

This shows Error is also not a reliable metric to determine a tests performance. The
combination of Precision and Recall is much more reliable as the result of both these
metrics would be zero when the actual test is replaced by a test returning always positive
or negative as a result.

Table 15: Accuracy paradox, result normal test

Table 16: Accuracy paradox, result positive test

5.2.3.3 Final definitions
The sets are used to compare different impact analysis methods on the same set of
changes, not to analyze the result of a single impact analysis for a single change. But the
more it can be used on its own the better, since less other methods are needed for
comparison.

1 To be precise: when FN2 + (2FP+TP+TN)FN – TP∙TN > 0, the Error is smaller when the test outcome
for all elements is positive, demonstrating the accuracy paradox.

 Condition
 Relevant Not Relevant

Positive 10 4 Test outcome
Negative 1 1

 Condition
 Relevant Not Relevant

Positive 11 5 Test outcome
Negative 0 0

CHAPTER 5. METRICS FOR IMPACT ANALYSIS PERFORMANCE QUANTIFICATION

98

To evaluate the performance of impact analysis methods a number of sets is needed:
• System: set of all artifacts in the tool.
• EIS: set of all artifacts that have to be changed according to the impact analysis

method.
• AIS: set of all artifacts actually changed during correct implementation of the change.
• FPIS: set of all false positives or false alarms identified by the impact analysis

method, can be derived from EIS and AIS.
• DIS: set of all false negatives or misses identified by the impact analysis method, can

also be derived from EIS and AIS.

These sets can then be used to obtain values for the following metrics:
• Recall gives the ratio of artifacts identified by the impact analysis method that have

been actually changed to all artifacts that have been changed: |EIS ∩ AIS| / |AIS|. The
result range is [0,1] and closer to one means a smaller underestimation of the change
size.

• Precision gives the ratio of artifacts identified by the impact analysis method that
have been actually changed to all artifacts that have been identified: |EIS ∩ AIS| /
|EIS|. The result range is [0,1] and closer to one means a smaller overestimation of the
change size.

• Fall-out gives the ratio of artifacts identified by the impact analysis method that have
not been actually changed to all artifacts that have not been changed: |FPIS| /
(|System|–|AIS|). Like precision it gives and indication of the overestimation of the
method. The result range is [0,1] and closer to one means a bigger overestimation of
the change size. This alternative is used in the ROC plot.

• F-score provides a weighted average of Precision and Recall where a result of zero
indicates a poor test result, while a result of one means the result of the test was
perfect: 2 · (Precision · Recall) / (Precision + Recall).

Accuracy is left out since it does not really add information compared to Precision and
Recall. No distinction is made between the two types of correct identifications and the
two types of incorrect identification, nor the relations between them. Sharpness and
ripple-sensitivity have also been left out, since they only described the change and not the
performance of the impact analysis method.

5.2.4 Visualize and compare impact analysis metrics
When the results of an impact analysis method are presented in a ROC plot, the meaning
of the important points in the plot are as follows. A result in the top left corner, means
there were no false alarms and all relevant artifacts were found, so this is the best result
possible. Results on the ascending diagonal have the same amount of true results as false
alarms, meaning this method has the same performance as a random guess. So the closer
a result is to (0,1) and the further away from the diagonal, the more reliable the predictive
capabilities of a method or configuration are. An example is presented in Figure 22.

5.2 BINARY CLASSIFIERS FOR IMPACT ANALYSIS PERFORMANCE

 99

ROC plot

Classifier with
inverted results

Perfect
classifier

Retrieve no
artifacts at all

Retrieve all
artifacts in
System

Random
classifier

0.9 0.8 0.7 0.6
0.5

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Fall-out

R
ec

al
l

Figure 22: ROC plot for use with impact analysis

When plotting the results of the impact analysis method in a PR plot, the following data
points are important. An ideal result would have a Recall and Precision of one, meaning
there are no false alarms or misses and the prediction was perfect. So the closer a result is
to the upper right corner, the better the impact analysis performance of a method. When a
method retrieves all available elements, its Recall will be high, all relevant artifacts have
been identified, but the Precision will be low, since there will be a lot of false alarms.
When a method returns only one relevant artifact, its Precision will be high, there are no
false alarms, but the Recall will be low, since there are probably a number of misses.
Figure 23 shows all points in an actual plot.

CHAPTER 5. METRICS FOR IMPACT ANALYSIS PERFORMANCE QUANTIFICATION

100

Precision-Recall plot

Perfect
classifier
(artifacts are
retrieved if and
only if relevant)

Retrieve all
artifacts in
System

Retrieve one,
relevant artifact

0.80.60.40.2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Recall

Pr
ec

is
io

n

Figure 23: PR plot for use with impact analysis

Based on the differences between the ROC and PR plot described in Section 5.1.4.2, the
PR plot shows the most reliable image of a methods performance. Most changes in
software systems will not change half of the available artifacts each time. So the ratio of
relevant to irrelevant artifacts is in most cases highly skewed, making a PR plot the better
option to visualize the results.

Since the ROC plot uses Fall-out, which compares false positives to true negatives, in the
case of a set with a lot of irrelevant elements, the Fall-out changes only a little when
some false positives are added. When the number of true positives is also small (which it
is as a result of the relevant to irrelevant ratio) the Precision changes more aggressively,
since it looks at the ratio between true positives and false positives. Therefore the PR plot
gives a more interesting view of the data when it is skewed.

In Section 5.1.4.2 a number of isometrics were presented for both plots to be able to
compare two data points. The problem with most of these isometrics was their sensitivity
to different relevant to irrelevant ratios. Since the results for multiple test scenarios will
be plotted in the same figure for each impact analysis method, it is important the
isometric used does not depend on this ratio.

5.3 CASE STUDY CMS

 101

For the ROC plot this means only the AUC can be used. For the PR plot both the AUC
and F-score can be used. Since the F-score is a weighted average of Precision and Recall,
much used in statistics, and AUC is a generic metric, the F-score is used as isometric for
PR plots.

5.3 Case study CMS
In Part A the WASP case was used to test the features present in the requirements
management tools. The WASP case does provide no change scenarios, so it cannot be
used to determine the performance of the current requirements management tools.
Therefore the Course Management System (CMS) case (see Figure 24) used by Goknil is
being implemented in DOORS and RequisitePro [GKB08]. The requirements for this
course management system describe basic functionality like enrolling for courses,
uploading rosters and course material, grading students and sending e-mails to students.
The CMS contains sixteen requirements as artifacts, seventeen relations to connect them
and three change scenarios to determine the performance of the impact analysis methods.
Each of the requirements is described in Appendix A.

Req14

Req2

Req3

Req1

Req12

Req13

Req11Req10

Req8

Req9

Req7

Req6

Req5Req4

Req16

Req15

requires

requires

requires

requires

requires

requires

refines

requires

requires requires

requires

refines

requires

requires

contains

contains

Figure 24: Subsection of the Course Management System

5.3.1 Changes
The following three changes were made to the CMS:

• Delete Req6: The system shall maintain a list of events the students can be
notified about.

• Modify Req9: The system shall notify students about the events of the lectures
they are enrolled for.

• Modify Req11: The system shall allow lecturers to send e-mail to students
enrolled for the lecture given by that lecturer.

When implementing these changes in the tools, the support for impact analysis for the
deletion of artifacts seemed to be missing. To get a better view of what would be possible

CHAPTER 5. METRICS FOR IMPACT ANALYSIS PERFORMANCE QUANTIFICATION

102

when the impact analysis method used for modifications was also used for deletion, Req6
was also modified before deletion. This change scenario is called ‘Modify Req6’.

These four changes will be used in Chapter 6 to determine the impact on the other
artifacts. The input for the impact analysis is Starting Impact Set (SIS) or Primary Impact
Set (PIS). For each of the changes this set only contains the changed or deleted
requirement, so the cardinality for each change is one. The impact of these changes as
determined by Goknil, using a combination of an automated IA method and manual
confirmation, is used as the Actual Impacted Set (AIS), since these are the artifacts
actually changed when the changes would be performed.

5.4 Conclusion
This chapter has shown that earlier techniques to quantify the performance of impact
analysis have serious limitations. They can be used in a limited number of cases and often
test the quality of the change itself instead of the performance of the impact analysis
method.

The metrics based on binary classifiers cover all impact analysis performance aspects
also covered by the quantitative metrics in the earlier techniques. In addition they do not
use restrictive preconditions, but can be used for all cases. They also focus on the
performance of the impact analysis method instead of the change that is used to test the
method. Therefore, the metrics based on binary classifiers appear to be a good way to
quantify the impact analysis performance of our requirements management tools.

103

6 Change impact performance quantification

``To change is difficult. Not to change is fatal.’’
Ed Allen, contributor to the cable television industry, 1924-2000

The various impact analysis performance quantification methods introduced in Chapter 1
is applied to two of the requirements management tools investigated before. The results
of all methods are compared to see if the method based on binary classifiers is indeed a
reliable way to quantify the performance of an impact analysis method. Finally the two
tools will be compared to see which one has the best impact analysis performance.

6.1 Application of metrics on impact analysis
In Section 1 a lot of sets and metrics have been introduced. To test what these sets and
metrics can tell about the impact analysis method used by a tool, two tools will be used to
implement a test case and a number of changes and the results of this implementation will
be analyzed using the sets and metrics.

All sets and metrics with clear operational definitions have been gathered in the
following list:
Sets
A. Arnold/Bohner 1993:

A1. Universe
A2. System
A3. SIS
A4. EIS
A5. AIS

B. Fasolino 1999:
B1. System
B2. PIS (primary)
B3. SIS (secondary)
B4. EIS (=PIS+SIS)
B5. AIS

C. Bohner 2002:
C1. System
C2. SIS
C3. CIS
C4. AIS
C5. FPIS
C6. DIS

D. Cleland 2003:
D1. Identified artifacts
D2. Updated artifacts

CHAPTER 6. CHANGE IMPACT PERFORMANCE QUANTIFICATION

104

Metrics
E. Arnold/Bohner 1993:

E1. SIS and EIS: |SIS| / |EIS|
E2. EIS and System (sharpness): |EIS| / |System|
E3. EIS and AIS:

E3.1. |AIS| / |EIS|
E3.2. |EIS| / |AIS|
E3.3. |EIS ∩ AIS|

F. Fasolino 1999:
F1. Inclusiveness: AIS is a subset of or equal to EIS
F2. Effectiveness

F2.1. Ripple-effect: Amplification = |SIS| / |PIS| -> 1
F2.2. Sharpness: ChangeRate = |EIS| / |System|
F2.3. Adherence: S-Ratio = |AIS| / |EIS|

G. Bohner 2002:
G1. Accuracy: Error = (|DIS| + |FPIS|) / |CIS|

H. Binary Classification:
H1. Precision: |AIS ∩ EIS| / |EIS|
H2. Recall: |AIS ∩ EIS| / |AIS|
H3. I3 Fall-out: |FPIS| / (|System|–|AIS|)
H4. F-score
H5. Area under curve (AUC)

6.2 Implementing the CMS
The four changes for the CMS example have been implemented in DOORS and
RequisitePro. DOORS is chosen because it seems to be the tool with the best options and
RequisitePro has transitivity support for links. TopTeam and CaliberRM have no special
impact analysis features compared to DOORS and RequisitePro and therefore they are
not used for the example case. The sizes of the sets related to these changes have been
gathered in Table 17. The complete sets can be found in 7.4Appendix B.

The rows containing sets A1 to D3 are the sizes of the different sets needed to say
something useful about the various analysis methods. The cardinalities of these sets can
only differ for both tools, when the sets contain the result of the impact analysis method
or subsets of the result:

• EIS, CIS, FPIS and DIS for Bohner;
• SIS (Secondary Impact Set) and EIS for Fasolino;
• Identified artifacts for Cleland.

Estimated Impact Set (EIS), CIS, Identified artifacts and SIS (A4, B3, B4, C3, D2)
For the deletion of Req6 and the modification of Req11 both tools return the same EIS. In
the case of Req6 the EIS only contains Req6 itself as a result of the lack of IA support for
the deletion of artifacts in both tools. Req11 only has two direct relations with artifacts
that have no further relations in the same direction. So the result for DOORS, without
transitive closure, and RequisitePro, with transitive closure, is the same. When Req6 is

6.2 IMPLEMENTING THE CMS

 105

modified instead of removed, RequisitePro marks one more artifact suspect as a result of
its transitive closure support. The same holds for the modification of Req9.

False Positive Impact Set (FPIS) (C5)
The amount of false positives in the IA result set, so the artifacts present in EIS, but not
present in AIS: |EIS – AIS|. For the deletion of Req6 only Req6 itself was suspect, so
there are no false positives. When modifying Req6 both tools include Req4, as it has a
direct relation with Req6, but in the end it was not altered. Modifying Req9 only modifies
Req9 in the end, so all other direct and indirect related artifacts identified by both tools
are false positives. Since RequisitePro applied transitive closure, the amount of false
positives was higher. When modifying Req11 only one of the two detected suspects was
actually implemented, leading to one false positive for both tools.

Discovered Impact Set (DIS) (C6)
The amount of false negatives not in the result set, so the artifacts present in AIS, but not
present in EIS: |AIS – EIS|. The deletion of Req6 resulted in adjusting three other
requirements, since both tools missed all these artifacts, both have three false negatives.
When Req6 is modified DOORS misses one artifact that should be changed, while
RequisitePro detects all of them. For the two remaining changes none of the tools miss
any artifacts that have to be changed.

Rows E1 to G1 contain the metrics used to obtain numbers describing the performance of
the impact analysis methods of the tools for each change.

Only the differences between to results returned by the tools are discussed and since the
result sets for both the deletion of Req6 and the modification of Req11 were the same,
these will not be discussed. In the end the differences between both tools are caused
mostly by the transitive closure used in RequisitePro, resulting in more identified
artifacts, and the 1-level transitivity in DOORS, resulting in less identified artifacts.

Sharpness, |EIS| / |System| (E2, F2.2)
Gives more of an indication of the change then of the impact analysis method. The size of
the EIS compared to the system does not say anything about the impact analysis method
on its own, only when it is compared to the result of other tools. More artifacts marked
suspect leads to a larger Sharpness and since RequisitePro uses transitive closure, leading
to more suspects, its Sharpness is equal or larger then DOORS’. It is however hard to say
something about the quality of this IA method based on this information alone. It really
depends on the change if more or less Sharpness is good in this case.

Ripple-effect, |SIS| / |EIS|, |SIS| / |PIS| (E1, F2.1)
The Ripple-effect shows the ratio between the number of artifacts in the starting set and
the number of results of the impact analysis method. Bohner describes this ratio as the
size of the starting set compared to the total result set, while Fasolino describes it as the
number of elements purely identified by the IA method compared to the starting set, also
called the amplification. As a result of the transitive closure in RequisitePro, the number
of results returned is larger then for DOORS, leading to more Ripple-effect for the same

CHAPTER 6. CHANGE IMPACT PERFORMANCE QUANTIFICATION

106

change. Again without knowledge about the change and other tools to compare it with, it
is hard to say anything about the quality of an IA method using this information.

Adherence, |AIS| / |EIS|, Inclusiveness, AIS ⊆ EIS (E3.2, F2.3, F1)
For the expression |AIS| / |EIS|, Bohner added the pre-condition that AIS has to be a
subset of EIS (FN=0), so the result is always in the range [0,1]. It indicates that the
situation is safe, all elements were detected by the IA method. All Fasolino's expressions
have the pre-condition that AIS should be a subset of EIS, it is called Inclusiveness.
Otherwise all artifacts have to be inspected, resulting in a useless IA method, according
to Fasolino.
For the deletion of Req6 both tools do not include AIS in EIS and for the modification of
Req6 only DOORS does not include AIS in EIS. This means the precondition of Bohner
is not met in these cases, so the expression cannot be applied and the rest of Fasolino’s
expressions have no use, since the IA method failed the first test.
The other two changes and the modification of Req6 by RequisitePro include AIS in the
EIS. Since RequisitePro included AIS in EIS for the modification of Req6 and DOORS
did not, the first performed better. For the modification of Req9 DOORS performed
better then RequisitePro, since it did not return as many artifacts as a result of the lack of
transitive closure.
When the Recall=1, Bohner describes the Precision, so it really tells something about the
IA method.

|EIS| / |AIS|, (E3.1)
For the expression |EIS| / |AIS|, Bohner added the pre-condition that EIS was a subset of
AIS (FP=0), so the resulting value was always in the range [0,1]. When an IA method is
used with clear and explicit relations between its artifacts, a small difference between EIS
and AIS means less work to detect the artifacts missing in the result set and more work
when the difference between EIS and AIS becomes bigger.
When relations between artifacts are less clear, it becomes harder to find affected artifacts
based on relations. So when not all artifacts are detected by the IA method, this means all
artifacts in the system have to be investigated manually. In such a case this metric says
less about an IA method.
When the Precision=1, Bohner describes the Recall, so it really says something about the
IA method.

|EIS ∩ AIS| (E3.3)
The pre-conditions added by Bohner are |EIS ∩ AIS| ≥ 0 (always true, very hard to
produce negative cardinalities this way) and AIS ≠ EIS. Since there is no case in our
example in which EIS is equal to AIS, this expression would apply to all change
scenarios and tools. What Bohner wanted to test were situation in which the two sets
were disjoint. So the precondition should be: |AIS – EIS| > 0 and |EIS – AIS| > 0 (= FN >
0 and FP > 0). When modifying Req6 DOORS missed one artifact that should be
changed and RequisitePro did not, so it this case the latter performed better. When
modifying Req9 only one artifact was changed in the end and it was part of both result
sets, so they performed the same. On its own this expression does not say much about the

6.2 IMPLEMENTING THE CMS

 107

performance of a tool, but when combined with some others it can (basis for Precision
and Recall).

Error, (|DIS| + |FPIS|) / |CIS| (G1)
The Error as described by Bohner is the number of errors per retrieved artifact. When
Req6 is being modified, RequisitePro returns more results and one false alarm. DOORS
returns less artifacts, also one false alarm and it also misses one artifact. So RequisitePro
has a smaller Error and performs better. When Req9 is modified, only one artifact was
actually changed. Both tools returned more artifacts, but as a result of the transitive
closure in RequisitePro, it returned more artifacts and therefore the Error was bigger and
DOORS performs better.
Metric works with the error related to the result, so it says something about the IA
method, but is susceptible to the Accuracy paradox.

Based on these individual expressions it is hard to say something about the performance
of an IA method. It says more about the change itself. Therefore these expressions based
on binary classification can help:

Recall, |EIS ∩ AIS| / |AIS| (H1)
Recall describes the ratio between the actually changed artifacts in the result set and in
the total system. For IA it is important to have a Recall of one, since misses can make the
change look smaller then it actually is. Identifying missed artifacts can mean inspecting a
large portion of artifacts in the system, taking a lot of time and money. So it is a more
general version of Bohner's |EIS| / |AIS| and Fasolino’s AIS ⊆ EIS (meaning Recall=1).
When modifying Req6, DOORS missed one artifact that had to be changed, while
RequisitePro found all because of its transitive closure. This makes RequisitePro the
better performer here. When modifying Req9 both identify the one artifact being
changed, making their performance equal.

Precision, |EIS ∩ AIS| / |EIS| (H2)
Precision describes the ratio between actually changed artifacts in the result set and all
identified artifacts in the result set. For IA it is desirable to have a Precision of one, since
false alarms make a change look bigger then it actually is. All artifacts in the result set are
inspected to see what must be changed, and false alarms need no changes at all, saving
time and money. It is a more general version of Bohner and Fasolino’s |AIS| / |EIS|
expression. When Req6 is modified both tools return on false alarm, but since
RequisitePro returned more artifacts in the result set, its Precision is a little higher. When
Req9 is modified only one artifact is actually changed, but both tools return more
artifacts, causing a number of false alarms. As a result of RequisitePro's transitive
closure, it returns more false alarms then DOORS in this case, leading to a lower
Precision.

Fall-out, |FPIS| / (|System|–|AIS|) (H3)
The Fall-out is in a way the inverse of the Recall. It describes the ratio between the false
alarms in the result set and the total number of artifacts in the system not affected because
of the change. Since it looks at the false alarms, just as Precision, it gives an idea of how

CHAPTER 6. CHANGE IMPACT PERFORMANCE QUANTIFICATION

108

much the IA method overestimates the number of results. The Fall-out value will be big
when a there are a lot of false alarms and a lot of artifacts are actually changed.
Therefore, a high value means the change is big, but not as big as predicted by the IA
method. Small Fall-out values mean there are only a small amount of false alarms and
little artifacts are changed. So the prediction of the change is small, but not much bigger
then predicted.
When Req6 is modified, both tools identify only one false alarm, resulting in the same
score. When Req9 is modified, RequisitePro returns more false alarms as a result of the
transitive closure, leading to a higher Fall-out then DOORS.

F-score (H4)
The F-score is the harmonic average of Precision and Recall. It makes it possible to
combine these two metrics into one number to determine the absolute order of results.
Low results for Precision or Recall have a serious effect on the F-score. Tools focusing
on only one of these metrics and ignoring the other will therefore obtain really low values
on this test.
This behavior is shown really well when Req9 is modified. Both tools achieve a Recall of
one, but Precision is low. As a result both F-scores are also low, much lower then the
normal average of Precision and Recall. When Req6 is modified both Precision and
Recall are close to one, resulting in a F-score more close to the normal average of both
metrics.

Area under curve (AUC) (H5)
The AUC is based on the ROC plot and combines the results of Recall and Fall-out into
one number as the F-score does for Precision and Recall. Non-random results will have a
AUC between 1 and a 0.5 and the closer to one the better the result. The AUC behaves
like a normal average, so a low Recall or Fall-out has no stronger effect on the AUC then
a high result.
When Req6 is modified RequisitePro’s Recall is higher then DOORS’, leading to a
higher AUC. The higher number of indirectly effected artifacts when modifying Req9
leads to the opposite result: DOORS has a lower Fall-out, leading to a higher AUC.

Table 17: Impact analysis results for change scenarios in both tools
 Delete

Req6
Modify
Req6

Modify
Req9

Modify
Req11

Code Set or metric R
eq

ui
si

te
P

ro

D
O

O
R

S

R
eq

ui
si

te
P

ro

D
O

O
R

S

R
eq

ui
si

te
P

ro

D
O

O
R

S

R
eq

ui
si

te
P

ro

D
O

O
R

S

A1 |Universe| ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
A2 |System| 16 16 16 16 16 16 16 16
A3 |SIS| 1 1 1 1 1 1 1 1
A4 |EIS| 1 1 5 4 6 3 3 3
A5 |AIS| 4 4 4 4 1 1 2 2
B1 |System| 16 16 16 16 16 16 16 16

6.2 IMPLEMENTING THE CMS

 109

B2 |PIS| (primary) 1 1 1 1 1 1 1 1
B3 |SIS| (secondary) 0 0 4 3 5 2 2 2
B4 |EIS| (|PIS| + |SIS|) 1 1 5 4 6 3 3 3
B5 |AIS| 4 4 4 4 1 1 2 2
C1 |System| 16 16 16 16 16 16 16 16
C2 |SIS| 1 1 1 1 1 1 1 1
C3 |CIS| 1 1 5 4 6 3 3 3
C4 |AIS| 4 4 4 4 1 1 2 2
C5 |FPIS| 0 0 1 1 5 2 1 1
C6 |DIS| 3 3 0 1 0 0 0 0
D1 |Identified| 1 1 5 4 6 3 3 3
D2 |Updated| 4 4 4 4 1 1 2 2

E1 |SIS| / |EIS| 1 1 1/5 1/4 1/6 1/3 1/3 1/3
E2 |EIS| / |System| 1/16 1/16 5/16 4/16 6/16 3/16 3/16 3/16
E3.1 |AIS| / |EIS| 4 4 4/5 1 1/6 1/3 2/3 2/3
E3.2 |EIS| / |AIS| 1/4 1/4 1/4 1 6 3 3/2 3/2
E3.3 |EIS ∩ AIS| 1 1 4 3 1 1 2 2
F1 AIS ⊆ EIS False False False False True True True True
F2.1 |SIS| / |PIS| 0 0 4 3 5 2 2 2
F2.2 |EIS| / |System| 1/16 1/16 5/16 4/16 6/16 3/16 3/16 3/16
F2.3 |AIS| / |EIS| 4 4 4/5 1 1/6 1/3 2/3 2/3
G1 (|DIS|+|FPIS|) / |CIS| 3 3 1/5 2/4 5/6 2/3 1/3 1/3

H1 Precision:

|EIS ∩ AIS| / |EIS|
1 1 4/5 3/4 1/6 1/3 2/3 2/3

H2 Recall:
|EIS ∩ AIS| / |AIS|

1/4 1/4 1 3/4 1 1 1 1

H3 Fall-out: |FPIS| /
(|System|–|AIS|)

0 0 1/12 1/12 5/15 2/15 1/14 1/14

H4 F-score 2/5 2/5 8/9 6/8 2/7 2/4 4/5 4/5
H5 AUC 0.63 0.63 0.96 0.83 0.83 0.93 0.96 0.96

Table 18: Impact analysis results in decimals for final selection of metrics
H1 Precision:

|EIS ∩ AIS| / |EIS|
1.00 1.00 0.80 0.75 0.17 0.33 0.67 0.67

H2 Recall:
|EIS ∩ AIS| / |AIS|

0.25 0.25 1.00 0.75 1.00 1.00 1.00 1.00

H3 Fall-out: |FPIS| /
(|System|–|AIS|)

0.00 0.00 0.08 0.08 0.33 0.13 0.07 0.07

H4 F-score 0.40 0.40 0.89 0.75 0.29 0.50 0.80 0.80
H5 AUC 0.63 0.63 0.96 0.83 0.83 0.93 0.96 0.96

Results in italic are not relevant according to the analysis method based on preconditions,
but have been calculated anyway.

CHAPTER 6. CHANGE IMPACT PERFORMANCE QUANTIFICATION

110

6.3 Presentation of metrics and visualization
A summary of Table 17 can be found in Table 19. It contains only the final definitions as
presented in Section 5.2.3.3.

Table 19: Performance of RequisitePro and DOORS
 Delete

Req6
Modify
Req6

Modify
Req9

Modify
Req11

Code Set or metric R
eq

ui
si

te
P

ro

D
O

O
R

S

R
eq

ui
si

te
P

ro

D
O

O
R

S

R
eq

ui
si

te
P

ro

D
O

O
R

S

R
eq

ui
si

te
P

ro

D
O

O
R

S

A2 |System| 16 16 16 16 16 16 16 16
A4 |EIS| 1 1 5 4 6 3 3 3
A5 |AIS| 4 4 4 4 1 1 2 2
C5 |FPIS| 0 0 1 1 5 2 1 1
C6 |DIS| 3 3 0 1 0 0 0 0

H1 Precision

|EIS ∩ AIS| / |EIS|
1.00 1.00 0.80 0.75 0.17 0.33 0.67 0.67

H2 Recall
|EIS ∩ AIS| / |AIS|

0.25 0.25 1.00 0.75 1.00 1.00 1.00 1.00

H3 Fall-out: |FPIS| /
(|System|–|AIS|)

0.00 0.00 0.08 0.08 0.33 0.13 0.07 0.07

H4 F-score 0.40 0.40 0.89 0.75 0.29 0.50 0.80 0.80
H5 AUC 0.63 0.63 0.96 0.83 0.83 0.93 0.96 0.96

The results of our case study in Table 19 show the performance for none of the changes is
perfect. Both tools perform rather well when predicting the impact of the modification of
Req6 en Req11. The performance for the deletion of Req6 is not that good, since both
tools missed a lot of artifacts that had to be changed. Predicting the impact of modifying
Req9 was hard too, since both tools identified too many artifacts that were not changed in
the end. Based on these results it is hard to pick a clear winner. RequisitePro performed
better when modifying Req6, while DOORS performed better when Modifying Req9 and
in the other two cases their performance was the same.

6.3 PRESENTATION OF METRICS AND VISUALIZATION

 111

Precision-Recall plot

Requisite
DOORS

Requisite
DOORS

Requisite

DOORS

Requisite
DOORS

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Recall

Pr
ec

is
io

n

Delete Req6

Modify Req6

Modify Req9

Modify Req11

Figure 25: Precision-Recall plot with change scenario results

The results have also been plotted in a ROC plot, shown in Figure 26. Most results are
close to the upper left corner, meaning they are reliable. The deletion of Req6 is closed to
the ascending diagonal, meaning it is less reliable. Since it is also close to the lower left
corner, it means both tools behave as if they just retrieve no artifacts at all. This is
correct, since both tools do not perform any analysis when artifacts are deleted. For the
modification of Req9 both tools showed low performance in the PR plot. In the ROC plot
both results are relatively close to the ideal point, meaning the low performance for this
change is reliable.

The plot shows the characteristics of both tools quite good. The transitivity used by
RequisitePro caused too many false alarms in some cases, moving results towards the top
right corner (returning all artifacts and therefore catching all true results, but also all false
results). The lack of transitivity in the method used by DOORS causes results closer to
the lower left corner (returning no results at all and therefore missing all false alarms, but
also all true results). In addition, the lack of proper support for the deletion of artifacts in
both tools becomes clear, since this result is really close to the lower left corner.

CHAPTER 6. CHANGE IMPACT PERFORMANCE QUANTIFICATION

112

ROC plot

Requisite
DOORS

DOORS

Requisite
DOORS Requisite

Requisite
DOORS

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Fall-out

R
ec

al
l

Delete Req6

Modify Req6

Modify Req9

Modify Req11

Figure 26: ROC plot with change scenario results

6.4 Conclusion
First of all the lack of a real life case makes it hard to measure the real performance of the
tools or the quantification methods. But based on the results of the sample case it looks
like the metrics based on binary classifiers give a better view of a methods performance.
It is clear it looks only at the impact analysis method and not the quality of the change
itself, as some of the existing methods do.

There is no clear winner in our set of requirements management tools when it comes to
impact analysis. Both tools have their strengths and weaknesses and both are clearly
shown in the results, but in the end they level out to the same level.

113

7 Conclusion

``Change starts when someone sees the next step.’’
William Drayton, American politician, 1776-1846

The work done will be summarized in Section 7.1. The research questions defined in the
introduction will be answered in Section 7.2. In Section 7.3 we will reflect on our work
and discuss on the methods used to evaluate the requirements management tools and the
results of this evaluation. Section 7.4 describes some of the open issues that still need
investigation.

7.1 Summary
Since every company, market and economy are subject to change, the software systems
to support them are too. The requirements are the foundation of each system and the basis
for all of the following artifact types. As a result good management of requirements is
essential when changes to a software system are initiated. A lot of tools are available to
support the change management process and a number of these tools have been evaluated
in this work.

The current requirements management tools will be represented by a selection of four
tools. Three of them are used by partners of the QuadREAD project: IBM RequisitePro,
Borland CaliberRM and TopTeam Analyst. The last tool, TeleLogic’s DOORS, is
mentioned often in the literature for its extended set of options for requirements
management and therefore also part of the selection.

7.1.1 Criteria for tool comparison
Based on previous research on change management a number of criteria have been
gathered to test if and to what extend tools have features to support change impact
analysis. Some of the properties tested for are information model support, options to
import and export artifacts, integration with other tools used in the software life cycle,
graphical representation of the artifacts and their relations, coverage analysis and impact
analysis. The final list of criteria is presented in Section 3.2.

The criteria have been applied to the four selected tools to determine their support for
impact analysis related features. The WASP case has provided us with an example
information model, containing different types of requirements, and a concrete set of
requirements.

Based on these criteria none of the tools turned out to be a clear winner; all tools had poor
impact analysis features, meaning most work still had to be done by hand. The
differences between the tools appeared in their supporting features for the actual impact
analysis process. DOORS offered the best basis for impact analysis through its extended
information model support, providing custom link types and custom attributes for links.
Since the actual impact analysis in all tools is very limited, DOORS offers at least the

CHAPTER 7. CONCLUSION

114

options to model different relation types so the traceability information can be exported
and used in a tool specialized in impact analysis.

7.1.2 Measure performance of impact analysis methods
Besides determining the features supporting impact analysis in current requirements
management tools, quantifying their actual performance shows the quality of the impact
analysis method provided by the tools. Literature describes a number of methods to
quantify the performance of impact analysis methods. Measuring performance using
these metrics does not really express the performance of the impact analysis method, but
more the characteristics of the change itself. These metrics also come with a number of
preconditions, limiting their use.

A series of new definitions have been proposed to provide better metrics to determine the
impact analysis performance of tools, based on the concepts of binary classifiers.

To evaluate the performance of impact analysis methods, a number of sets is needed:

• System: set of all artifacts in the tool.
• Estimated Impact Set (EIS): set of all artifacts that have to be changed according

to the impact analysis method.
• Actual Impact Set (AIS): set of all artifacts actually changed during a correct

implementation of the change.
• False Positive Impact Set (FPIS): set of all artifacts identified by the impact

analysis method, but not actually changed during the implementation.
• Discovered Impact Set (DIS): set of all artifacts not identified by the impact

analysis method, but changed during the implementation.

These sets can then be used to obtain values for the following metrics:
• Recall gives the ratio of artifacts identified by the impact analysis method that

have been actually changed to all artifacts that have been changed: |EIS ∩ AIS| /
|AIS|. Also known as hit rate, sensitivity or true positive rate (TPR).

• Precision gives the ratio of artifacts identified by the impact analysis method that
have been actually changed to all artifacts that have been identified: |EIS ∩ AIS| /
|EIS|. Also known as positive predictive value (PPV).

• Fall-out gives the ratio of artifacts identified by the impact analysis method that
have not been actually changed to all artifacts that have not been changed: |FPIS| /
(|System| – |AIS|). Also known as false alarm rate or false positive rate (FPR).

For both Recall and Precision a result of one means the best result possible for the aspect
they cover and zero means the worst result possible. For Fall-out it is the other way
around; one means worst possible result, while zero represents the best possible result for
this aspect.

7.1.3 Visualization
Literature presents two types of plots to visualize these metrics: the Precision-Recall plot
and ROC plot. For each change scenario performed in a tool the previous metrics can be
calculated, resulting in a single point in each of the plots. Plotting the results of multiple

7.1 SUMMARY

 115

tools for a particular change scenario can be used to determine what tool predicts this
type of change best. Plotting the results of multiple change scenarios for a single tool to
discover what type of changes are handled best by this tool.

The Precision-Recall plot assigns the Recall value of a result to the horizontal axis and
the Precision value to the vertical axis. An ideal result would have a Recall and Precision
of both one, meaning there are no false alarms or misses and the prediction was perfect.
Results closer to the lower left corner are caused by low Precision and Recall numbers,
meaning relative large amounts of false alarms and misses and therefore a bad
performing impact analysis method. The upper left corner is home to results with low
Recall but high Precision, probably caused by a method returning only a very limited
amount of correct results, but as a result also a lot of misses. Results in the lower right
corner are the result of the opposite strategy. Impact analysis methods returning almost
all artifacts in the system will get a high Recall ratio, but a low Precision ratio. So the
closer a result is to the upper right corner, the better the impact analysis performance of a
method.

The ROC plot assigns the Fall-out value of a result to the horizontal axis and the Recall
value to the vertical axis. As a result the ROC plot shows how the number of changed
artifacts marked suspect by the method varies with the number of non-changed artifacts
incorrectly marked suspect by the method. This means a result in the top left corner
shows there were no false alarms and all relevant artifacts were identified by the method.
This is the best result possible. Results on the ascending have the same ratio of changed
artifacts marked suspect as non-changed artifacts marked suspect. This means the ratio of
hits to false alarms in the set of artifacts marked suspect by the impact analysis method is
the same as the ratio of changed to non-changed artifacts. The result of such a method is
equal to pure chance and the worst possible impact analysis method.

Results below the ascending diagonal can also have good predictive capabilities. A result
close to the lower right corner means the number of changed artifacts marked suspect and
non-changed artifacts not marked suspect is close to zero. So almost all changed artifacts
have been marked non-suspect and all non-changed artifacts have been marked suspect.
So almost all changed artifacts have been identified as non-changed artifacts and all non-
changed artifacts have been identified as changed artifacts. Inverting the labels of the test
results leads to an almost perfect performance for this impact analysis method. So
inverting the labels of the test results, causes the location of the result in the plot to be
mirrored in the in the ascending diagonal, moving them from the area bellow the pure
chance line to the area above it.

7.1.4 Change impact performance quantification example
The metrics and visualization options to quantify a tools impact analysis performance
have been applied to two of the tools representing current requirements management
tools. Both RequisitePro and CaliberRM use a method heavily relying on transitive
closure of the traceability information, while TopTeam and DOORS do not offer this
functionality or only with a lot of manual work. Therefore RequisitePro will represent the
transitive closure methods and DOORS will represent the tools lacking this feature.

CHAPTER 7. CONCLUSION

116

After performing the four change scenarios based on the CMS in the two tools, neither of
the tools was able to predict exactly which artifacts had to be changed for any of the
change scenarios. Three of the changes actually changed an artifact and the last change
deleted an artifact. For each change both tools marked at least one non-changed artifact
as suspect or a changed artifact as not suspect. It appears as if both tools do not support
impact analysis for the deletion of artifacts, since none of the other artifacts were marked
suspect. In the end there was no clear winner, since in two change scenarios both tools
performed the same, while in the third case RequisitePro performed better, because of its
support for transitive closure, and in the fourth case DOORS performed better, because of
its lack of transitive closure.

The results of this evaluation of requirements management tools with support for
traceability-based change impact analysis shows the basics for impact analysis are
present in current tools through the support for information models, different link types,
custom link types, link attributes, graphical representations, etc. A lot of this information
is however not used during the impact analysis itself, leading to poor results. When the
performance of the impact analysis methods is quantified, it shows none of the tools is
able to predict the impact of any of the sample changes perfectly. Neither is there a clear
winner, since the differences in their approach can be an advantage in one scenario and a
disadvantage in the next. Therefore, the impact analysis in current requirements
management tools is very limited and more effective methods are needed.

7.2 Results of the research questions
The research questions in the introduction of this report have been investigated
throughout this report and the answers to these questions will be presented in this section.

What features in traceability based requirements management tools are needed to
perform change impact analysis?
A list of criteria has been composed to determine what features are present in current
tools to perform impact analysis. Not only the impact analysis feature itself is covered,
but also the features needed to make impact analysis possible. Several studies have
investigated what features are needed by requirements management tools and based on
this literature a number of features important to impact analysis have been selected.

The first feature being tested is the support for an information model to describe the
artifacts and their relations at the start of a project. To what extend is it possible to
customize artifact types, relation types and the possible combinations of these two. Once
the model is ready, the project data has to be loaded into the model. The test this feature
the import and export options available in the tools are examined. Besides working with
data from external documents it should also be possible to work with data from other
tools in the software life cycle, therefore the features for tool integration are tested. To
examine the relations between artifacts, used to inspect the results of impact analysis,
options to depict the relations should be available, so features for graphical
representations are tested. Before any reliable impact analysis can be performed, all
artifacts should have links to previous and next stages in the software lifecycle. Coverage

7.2 RESULTS OF THE RESEARCH QUESTIONS

 117

analysis features are tested to see if this is supported. Finally the features available for
impact analysis itself will be tested. The final set of criteria is presented in Table 2.

How can the performance of change impact analysis support in current tools be
quantified?
Existing methods to quantify the performance of impact analysis methods do not support
all types of results returned by a method or test the change itself instead of the impact
analysis method. Binary classifiers and metrics based on them are used to quantify the
performance of medical tests, production lines and information retrieval methods. Since
the output of an impact analysis method is binary too, an artifact has to be changed or
not, metrics based on binary classifiers can be used to measure an impact analysis
methods performance too. Based on their relevance to impact analysis a selection of
metrics has been made that should be able to get a clear image of the performance of any
impact analysis method.

What is the status of impact analysis in current tools, based on these questions?
Four tools have been selected as a representation of current requirements management
tools. The structure and requirements from the WASP case have been used to test if and
how tools support the criteria. Modeling different requirement types, performing
coverage analysis, detach links from their source document, the lack of support for
automated link detection and the limited integration with other tools were the results all
four tools had in common.

The other results differed for at least one of the tools. During import and export Requisite
was the only tool maintaining a close link with the source document. The other tools lost
this link the moment the artifacts were imported into the tool. All four tools support some
form of matrix and graph views to inspect the different relations. The version in DOORS
is however barely usable, while the other tools offer different levels of customizability to
show the information needed. DOORS is the only tool supporting custom relations and
attributes for relations. TopTeam offers three different types of relations, but their effect
is the same and the remaining tools support only one generic relation.

Impact analysis is really limited since the analysis methods make no use of the different
link types, when available. Two of the tools mark artifacts with direct links to the
changed artifact suspect and have an option to also mark artifacts multiple links away.
DOORS and TopTeam only mark artifacts with a direct link suspect and TopTeam has no
option to do this automatically once an artifact is changed. Based on these results there is
no clear winner. All of them have their problems, but the extended information model
support of DOORS provides a better basis for impact analysis then the simple models
offered by the other tools.

Since the most important difference in impact analysis support was the availability of
transitive closure, the quantitative performance of only two of tools has been determined.
RequisitePro was used to show the effect of transitive closure while DOORS showed the
effect of a lack of transitive closure.

CHAPTER 7. CONCLUSION

118

The CMS and the four changes being performed, as presented in [GKB08], have been
used as the change scenarios to quantify the performance of both tools. Both tools
performed well when working on a change targeted at their way of performing impact
analysis. The change affecting a lot of indirect artifacts was predicted very well by
RequisitePro, while DOORS missed some artifacts. The changes affecting only artifacts
with a direct link to the changed artifact are predicted correctly by DOORS, while
RequisitePro returned a lot of false alarms.

7.3 Discussion
The tools representing the current requirements management tools were only evaluated
for their requirements and relations support. Support for multiple users, versioning,
usability of the interface, etc. has not been investigated. Since these parts have not been
evaluated, this is no complete requirements management tools evaluation covering all
aspects of requirements management and should therefore not be used as such.

The CMS used quantify the performance of the tools, is artificial and designed for the
analysis of traceability support in requirements management tools. The change scenarios
were really simple, and cannot be compared to the scenarios presented in. The real life
cases that were available to us, were not complete enough to be used with our metrics.
None of the cases described the situation before and after a specific change, making it
impossible to perform the impact analysis and compare it with the actually impacted
requirements.

The current gold standard, used to determine which artifacts have or have not been
changed, is predetermined. Since the current impact analysis methods used by the
requirements management tools are very poor, this is no problem. In the future it is
possible impact analysis methods come up with different solutions, making it necessary
to investigate each impact analysis individually and not work with one predetermined
solution. Since it will be possible the impact analysis proposed by a newer method is
better in some way then the predetermined solution used for the evaluation. Evaluating
each result individually is already used for the evaluation of medical tests.

The quantification of the performance using binary classifiers can be used for any impact
analysis technique, not only the ones based on explicit traceability of requirements. As
long as there is set with all available artifacts, a set with all artifacts changed in the final
implementation and a set with all artifacts marked suspect by the impact analysis method
the BC metrics can be applied. This makes it also usable for impact analysis based on
probabilities or impact analysis for design or code elements.

7.4 Open issues
After the evaluation of the features and performance of requirements management tools,
there are still a number of issues that still need attention. One of these issues was already
mentioned in the discussion: how will the quantification methods work for a real world
case. What is the effect of a case’s artifact granularity, is the performance of the impact
analysis method indeed measured or is the effect of the change itself again dominant?
Once the quantification method has been investigated, what is the actual performance of

7.4 OPEN ISSUES

 119

the tools using these real world cases. Are the results acceptable, as with our sample
CMS, or are the Precision and Recall values so low, the impact analysis methods present
in current tools are even worse then concluded after our evaluation.

Once a case study based on a real project has been used, it can also be used as the
foundation for a balanced set of test scenarios to test the impact analysis methods used by
tools supporting impact analysis. Some of the aspects that have to be covered by such a
set of change scenarios:
• Deep traces, a change that affects a limited number of artifacts, but the artifacts

affected reside on as much different levels of the information model as possible. This
information can be used to test the transitive closure capabilities of a method.

• Wide traces, a change affecting a lot of artifacts directly, but does not go to deep.
This information can be used to determine if a method is able to stop its transitive
closure in time, but still return all effected artifacts.

• Large relevant artifact sets, most changes do not affect more then half of the
artifacts, since they are probably very expensive. It is however interesting to see how
impact analysis methods cope with such big changes and if they are not too
conservative by default since this type of changes is unlikely.

• Small relevant artifact sets, since current have trouble identifying small changes
were only one or two artifacts are affected, it is interesting to see how other methods
cope with these small estimated impact sets.

At the moment the starting impact set is still part of the estimated impact set. This affects
the performance of an impact analysis method. Since the artifacts in the starting set have
been manually selected and the rest of the analysis is based on them, these artifacts must
definitely be changed. This artificially increases the Recall and especially the Precision of
an impact analysis method. An option to solve this problem is to leave the starting set out
of the estimated set. This will however lead to a varying number of artifacts in the system
set. It also causes problems when no additional artifacts were changed besides the ones in
the starting set. This means the set with changed artifacts that are also marked suspect
will be empty and both Precision and Recall will be zero as soon as at least one non-
changed artifact is marked suspect or one changed artifact is not marked suspect.
Precision and Recall will be undefined (infinite) as soon as the result is perfect, since
there will be a division by zero.

CHAPTER 7. CONCLUSION

120

121

References
[AB93] Arnold, R.S. and Bohner, S.A., Impact analysis - Towards a framework

for comparison. in Proceedings of Conference on Software Maintenance,
1993. CSM-93, (1993), 292-301.

[AK03] Atkinson, C. and Kuhne, T. Model-driven development: a metamodeling
foundation. Software, IEEE, 20 (5). 36-41.

[Alv02] Alvarez, S.A. An exact analytical relation among recall, precision, and
classification accuracy in information retrieval. Boston College, Boston,
Technical Report BCCS-02-01.

[ARN06] Aizenbud-Reshef, N., Nolan, B.T., Rubin, J. and Shaham-Gafni, Y. Model
traceability. IBM Syst. J., 45 (3). 515-526.

[BA96] Bohner, S.A. and Arnold, R.S. Software change impact analysis. IEEE
Computer Society Press, Los Alamitos, Calif., 1996.

[Boh02] Bohner, S.A., Software change impacts-an evolving perspective. in,
(2002), 263-272.

[Cam09] Cambridge University Press. Cambridge Dictionaries Online -
http://dictionary.cambridge.org/, 2007.

[CFV99] Cimitile, A., Fasolino, A.R. and Visaggio, G., A software model for
impact analysis: a validation experiment. in Reverse Engineering, 1999.
Proceedings. Sixth Working Conference on, (1999), 212-222.

[CHC03] Cleland-Huang, J., Chang, C.K. and Christensen, M. Event-based
traceability for managing evolutionary change. IEEE Transactions on
Software Engineering, 29 (9). 796-810.

[CMS06] Cant, T., McCarthy, J. and Stanley, R. Tools for Requirements
Management: a Comparison of Telelogic DOORS and the HIVE,
Australian Government Department of Defense, Defence Science and
Technology Organisation, 2006.

[DG06] Davis, J. and Goadrich, M., The relationship between precision-recall and
ROC curves. in 23rd International Conference on Machine Learning,
(Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, 2006),
ACM New York, NY, USA, 233-240.

[Dic02] Dick, J. Rich Traceability. Proceedings Automated Software Engineering.
[Dic07] Dictionary.com LLC. Dictionary.com - http://dictionary.reference.com/,

2007.
[DP98] Domges, R. and Pohl, K. Adapting traceability environments to project-

specific needs. Commun. ACM, 41 (12). 54-62.
[EDF96] Ecklund Jr, E.F., Delcambre, L.M.L. and Freiling, M.J., Change cases: use

cases that identify future requirements. in, (1996), ACM New York, NY,
USA, 342-358.

[EKS02] Ebben, P., Koolwaaij, J.W., Setten, M.v. and Wibbels, M. Requirements
for the WASP Application Platform, Telematica Instituut, Enschede,
Netherlands, 2002.

[Faw04] Fawcett, T. ROC graphs: Notes and practical considerations for
researchers. Machine Learning, 31.

REFERENCES

122

[Fla04] Flach, P.A., The Many Faces of ROC Analysis in Machine Learning. in
The Twenty-First International Conference on Machine Learning, (Banff,
Alberta, Canada, 2004).

[FV99] Fasolino, A.R. and Visaggio, G., Improving Software Comprehension
through an Automated Dependency Tracer. in, (1999), 58Ð65.

[GF94] Gotel, O. and Finkelstein, A., An Analysis of the Requirements
Traceability Problem. in Proceedings of the First International
Conference on Requirements Engineering, (Colorado Springs, CO, USA,
1994), 94-101.

[GKB08] Goknil, A., Kurtev, I. and van den Berg, K., Change Impact Analysis
based on Formalization of Trace Relations for Requirements. in ECMDA
Traceability Workshop (ECMDA-TW), (Berlin, Germany, 2008), 59-75.

[GSC04] Greenfield, J., Short, K., Cook, S. and Kent, S. Software factories. Wiley,
2004.

[HGF08] Hattori, L., Guerrero, D., Figueiredo, J., Brunet, J. and Damasio, J., On the
Precision and Accuracy of Impact Analysis Techniques. in 7th IEEE/ACIS
International Conference on Computer and Information Science,
(Portland, Oregon, USA, 2008), IEEE Computer Society.

[HKW04] Hoffmann, M., Kuhn, N., Weber, M. and Bittner, M. Requirements for
requirements management tools. Requirements Engineering Conference,
2004. Proceedings. 12th IEEE International. 301-308.

[How07] Howe, D. Free On-line Dictionary of Computing - http://foldoc.org/,
2007.

[IBM06] Corporation, I. Rational RequisitePro 7 Online Help, 2006.
[IID06] Ibrahim, S., Idris, N.B., Deraman, A. and Selangor, M., A software

traceability validation for change impact analysis of object oriented
software. in International Conference on Software Engineering Research
and Practice, (Las Vegas, Nevada, USA, 2006), 453-459.

[Kne02] von Knethen, A. and Paech, B. A Survey on Tracing Approaches in
Practice and Research IESE-Report No. 095.01/E, Fraunhofer IESE, 2002,
41.

[Kur05] Kurtev, I. Adaptability of model transformations. Faculty of Electrical
Engineering, Mathematics & Computer Science, UT, 8.

[LS98] Lindvall, M. and Sandahl, K. Traceability aspects of impact analysis in
object-oriented systems. Journal of Software Maintenance: Research and
Practice, 10 (1).

[LV00] Lavazza, L. and Valetto, G., Enhancing requirements and change
management through processmodelling and measurement. in Proceedings
4th International Conference on Requirements Engineering, (Schaumburg,
IL, USA, 2000), 106-115.

[Mor96] Moreton, R. A Process Model for Software Maintenance Software.
Change Impact Analysis, IEEE Computer Society. 29-33.

[MW09] Merriam-Webster, I. Merriam-Webster Online Dictionary -
http://www.merriam-webster.com/dictionary/, 2009.

[OC01] O'Neal, J. and Carver, D., Analyzing the Impact of Changing
Requirements. in, (2001), 190-195.

REFERENCES

 123

[OR23] Ogden, C.K. and Richards, I.A. The meaning of meaning: a study of the
influence of language upon thought and of the science of symbolism.
Harcourt, Brace & World, Inc., New York, New York, USA, 1923.

[Pfl98] Pfleeger, S.L. Software engineering: theory and practice. Prentice-Hall,
Inc. Upper Saddle River, NJ, USA, 1998.

[PG96] Pinheiro, F.A.C. and Goguen, J.A. An object-oriented tool for tracing
requirements. IEEE Software, 13 (2). 52-64.

[Pin03] Pinheiro, F.A.C. Requirements Traceability. in Prado Leite, J.C.S.d. and
Doorn, J.H. eds. Perspectives on Software Requirements, Kluwer
Academic Publishers, Assinippi Park, MA, USA, 2003, 91-113.

[Rijs79] Van Rijsbergen, C.J. Information Retrieval. Dept. of Computer Science,
University of Glasgow, Butterworth, London, 1979.

[RJ01] Ramesh, B. and Jarke, M. Toward reference models for requirements
traceability. IEEE Transactions on Software Engineering, 27 (1). 58-93.

[RLL98] Rowe, D., Leaney, J. and Lowe, D. Defining systems evolvability – a
taxonomy of change. Proceeding of the IEEE Conference on Computer
Based Systems. 45-52.

[RR97] Robertson, J. and Robertson, S. Volere requirements specification
template. Atlantic Systems Guild.

[Som89] Sommerville, I. Software Engineering. Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, 1989.

[SS09] Sparx Systems Reviewers Guide to Enterprise Architect 7.5.
[Wie03] Wieringa, R. Design Methods for Reactive Systems: Yourdan, Statemate,

and the UML. Morgan Kaufmann Publishers, 2003.
[Wie95] Wieringa, R.J. An Introduction to Requirements Traceability. Vrije

Universiteit, Faculty of Mathematics and Computer Science, Amsterdam,
1995.

[WW02] Weber, M. and Weisbrod, J. Requirements engineering in automotive
development-experiences and challenges. Proceedings. IEEE Joint
International Conference on Requirements Engineering, 2002. 331-340.

REFERENCES

124

125

Appendix A Requirements Course Management System
The CMS used to determine the performance of the requirements management tools and
described in Section 5.3 contains the following sixteen requirements:
Req1: The system shall allow end-users to provide profile and context information for

registration.

Req2: The system shall provide functionality to search for other people registered in
the system.

Req3: The system shall provide functionality to allow end-users to log in the system
with their password.

Req4: The system shall support three types of end-users (administrator, lecturer and
student).

Req5: The system shall allow lecturers to set an alert on an event.

Req6: The system shall maintain a list of events the students can be notified about.

Req7: The system shall notify the students about the occurrence of an event as soon as
the event occurs.

Req8: The system shall actively monitor all events.

Req9: The system shall notify students about the events of the lectures they are
enrolled for.

Req10: The system shall allow students to enroll for lecturers.

Req11: The system shall allow lecturers to send e-mail to students enrolled for the
lecture given by that lecturer.

Req12: The system shall allow assigning students to teams for each lecture.

Req13: The system shall allow lecturers to send e-mail to students in the same group.

Req14: The system shall allow lecturers to modify the content of the lectures.

Req15: The system shall give different access rights to different types of end-users.

Req16: The system shall support two types of end-users (lecturer and student) and it
shall provide functionality to allow end-users to log in the system with their
password.

APPENDIX A. REQUIREMENTS COURSE MANAGEMENT SYSTEM

126

127

Appendix B Concrete sets used for impact analysis
The CMS example is implemented in DOORS and RequisitePro. DOORS is chosen
because it seems to be the tool with the best options and RequisitePro has transitivity
support for links. TopTeam and CaliberRM have no special impact analysis features
compared to DOORS and RequisitePro and therefore they are not used for the example
case.

B.1 DOORS sets
This section enlists the sets of effected requirements for each change scenario when
implemented in DOORS.

B.1.1 Delete Req6
The deletion of Req6 is the first change scenario. The following sets were the result of
the impact analysis and implementation of the change.

Bohner 1993
This table contains the sets described in the original paper by Arnold and Bohner.
Set Effected requirements #
Universe ∞ ∞
System (all) 16
SIS Req6 1
EIS Req6 1
AIS Req6,Req5,Req7,Req9 4

Fasolino 1999
This table contains the sets described by Fasolino based on sets defined by Bohner.
Set Effected requirements #
System (all) 16
PIS (primary) Req6 1
SIS (secondary) (none) 0
EIS (=PIS+SIS) Req6 1
AIS Req6,Req5,Req7,Req9 4

Bohner 2002
This table contains the updated set of sets as specified by Bohner.
Set Effected requirements #
System (all) 16
SIS Req6 1
CIS Req6 1
AIS Req6,Req5,Req7,Req9 4
FPIS (none) 0
DIS Req5,Req7,Req9 3

APPENDIX B. CONCRETE SETS USED FOR IMPACT ANALYSIS

128

Cleland-Huang 2003
This table contains the sets as defined by Cleland-Huang. Since the Impacted elements
set was not defined clearly, this set could not be determined.
Set Effected requirements #
Identified elements Req6 1
Impacted elements undeterminable undeterminable
Updated elements Req6,Req5,Req7,Req9 4

B.1.2 Modify Req6
Since removing an artifact from most tools, does not trigger the IA process, the to be
deleted artifact is first changed to trigger the IA process. The following sets were the
result of the impact analysis and implementation of the change.

Bohner 1993
This table contains the sets described in the original paper by Arnold and Bohner.
Set Effected requirements #
Universe: ∞ ∞
System: (all) 16
SIS: Req6 1
EIS: Req6,Req4,Req5,Req7 4
AIS: Req6,Req5,Req7,Req9 4

Fasolino 1999
This table contains the sets described by Fasolino based on sets defined by Bohner.
Set Effected requirements #
System (all) 16
PIS (primary) Req6 1
SIS (secondary) Req4,Req5,Req7 3
EIS (=PIS+SIS) Req6,Req4,Req5,Req7 4
AIS Req6,Req5,Req7,Req9 4

Bohner 2002
This table contains the updated set of sets as specified by Bohner.
Set Effected requirements #
System (all) 16
SIS Req6 1
CIS Req6,Req4,Req5,Req7 4
AIS Req6,Req5,Req7,Req9 4
FPIS Req4 1
DIS Req9 1

B.1 DOORS SETS

 129

Cleland-Huang 2003
This table contains the sets as defined by Cleland-Huang. Since the Impacted elements
set was not defined clearly, this set could not be determined.
Set Effected requirements #
Identified elements: Req6,Req4,Req5,Req7 4
Impacted elements: undeterminable undeterminable
Updated elements: Req6,Req5,Req7,Req9 4

B.1.3 Modify Req9
The modification of Req9 is the third change scenario. The following sets were the result
of the impact analysis and implementation of the change.

Bohner 1993
This table contains the sets described in the original paper by Arnold and Bohner.
Set Effected requirements #
Universe: ∞ ∞
System: (all) 16
SIS: Req9 1
EIS: Req9,Req7,Req10 3
AIS: Req9 1

Fasolino 1999
This table contains the sets described by Fasolino based on sets defined by Bohner.
Set Effected requirements #
System (all) 16
PIS (primary) Req9 1
SIS (secondary) Req7,Req10 2
EIS (=PIS+SIS) Req9,Req7,Req10 3
AIS Req9 1

Bohner 2002
This table contains the updated set of sets as specified by Bohner.
Set Effected requirements #
System (all) 16
SIS Req9 1
CIS Req9,Req7,Req10 3
AIS Req9 1
FPIS Req7,Req10 2
DIS (none) 0

Cleland-Huang 2003
This table contains the sets as defined by Cleland-Huang. Since the Impacted elements
set was not defined clearly, this set could not be determined.
Set Effected requirements #
Identified elements: Req9,Req7,Req10 3

APPENDIX B. CONCRETE SETS USED FOR IMPACT ANALYSIS

130

Impacted elements: undeterminable undeterminable
Updated elements: Req9 1

B.1.4 Modify Req11
The modification of Req11 is the fourth and last change scenario. The following sets
were the result of the impact analysis and implementation of the change.

Bohner 1993
This table contains the sets described in the original paper by Arnold and Bohner.
Set Effected requirements #
Universe: ∞ ∞
System: (all) 16
SIS: Req11 1
EIS: Req11,Req10,Req13 3
AIS: Req11,Req13 2

Fasolino 1999
This table contains the sets described by Fasolino based on sets defined by Bohner.
Set Effected requirements #
System (all) 16
PIS (primary) Req11 1
SIS (secondary) Req10,Req13 2
EIS (=PIS+SIS) Req11,Req10,Req13 3
AIS Req11,Req13 2

Bohner 2002
This table contains the updated set of sets as specified by Bohner.
Set Effected requirements #
System (all) 16
SIS Req11 1
CIS Req11,Req10,Req13 3
AIS Req11,Req13 2
FPIS Req10 1
DIS (none) 0

Cleland-Huang 2003
This table contains the sets as defined by Cleland-Huang. Since the Impacted elements
set was not defined clearly, this set could not be determined.
Set Effected requirements #
Identified elements: Req11,Req10,Req13 3
Impacted elements: undeterminable undeterminable
Updated elements: Req11,Req13 2

B.2 DOORS METRICS

 131

B.2 DOORS metrics
This section enlists the results of the application of the metrics based on binary classifiers
using the sets specified in the previous section for DOORS.

B.2.1 Delete Req6
The deletion of Req6 is the first change scenario. The following sets were the result of
the impact analysis and implementation of the change.

Bohner 1993
This table contains the results for the metrics described in the original paper by Arnold
and Bohner.
Effect Metric #
SIS and EIS |SIS| / |EIS|: 1/1 = 1
EIS and System (sharpness) |EIS| / |System|: 1/16 = 1/16
EIS and AIS |AIS| / |EIS|: 4/1 = 4
EIS and AIS |EIS| / |AIS|: 1/4 = 1/4
EIS and AIS |EIS ∩ AIS|: |Req6| = 1
Granularity Granularity of artifact and interface

model
undeterminable

Fasolino 1999
This table contains the results for the metrics described by Fasolino based on sets and
metrics defined by Bohner.
Effect Metric #
Adequacy Inclusiveness = AIS ⊆ EIS: false 0
Ripple-effect Amplification = |SIS| / |PIS|: 0/1 0
Sharpness ChangeRate = |EIS| / |System|: 1/16 1/16
Adherence S-Ratio = |AIS| / |EIS|: 4/1 4

Bohner 2002
This table contains the additional metric based on the updated set of sets specified by
Bohner.
Effect Metric #
Accuracy Error = (|DIS| + |FPIS|) / |CIS|: (3+0) / 1 3

Cleland-Huang 2003
This table contains the sets as defined by Cleland-Huang. But since the way to obtain the
Impacted set is not specified and can therefore not be determined, it is also impossible to
use the metrics, since all metrics make use of the Impacted set.
Effect Metric #
No errors Impacted = Identified = Updated undeterminable
Identification errors Impacted ⊃ Identified undeterminable
Update errors Impacted ⊃ Updated undeterminable
Inclusion errors Identified ∩ Impacted ≠ ∅ undeterminable

APPENDIX B. CONCRETE SETS USED FOR IMPACT ANALYSIS

132

Binary Classification
This table contains the results of the metrics based on binary classifiers.
Effect Metric #
Precision |AIS ∩ EIS| / |EIS| = |Req6| / |Req6| 1
Recall |AIS ∩ EIS| / |AIS| = |Req6| /

|Req6,Req5,Req7,Req9|
1/4

Fall-out |FPIS| / (|System| – |AIS|) = 0/(16-4) 0
Accuracy |System| – |FPIS ∪ DIS| / |System| = 16-3/16 13/16

B.2.2 Modify Req6
Since removing an artifact from most tools, does not trigger the IA process, the to be
deleted artifact is first changed to trigger the IA process. The following sets were the
result of the impact analysis and implementation of the change.

Bohner 1993
This table contains the results for the metrics described in the original paper by Arnold
and Bohner.
Effect Metric #
SIS and EIS |SIS| / |EIS|: 1/4 = 1/4
EIS and System (sharpness) |EIS| / |System|: 4/16 = 1/4
EIS and AIS |AIS| / |EIS|: 4/4 = 1
EIS and AIS |EIS| / |AIS|: 4/4 = 1
EIS and AIS |EIS ∩ AIS|: |Req6,Req5,Req7| = 3
Granularity Granularity of artifact and interface

model
undeterminable

Fasolino 1999
This table contains the results for the metrics described by Fasolino based on sets and
metrics defined by Bohner.
Effect Metric #
Adequacy Inclusiveness = AIS ⊆ EIS: false 0
Ripple-effect Amplification = SIS# / PIS# -> 1: 3/1 = 3
Sharpness ChangeRate = EIS# / System#: 4/16 = 1/4
Adherence S-Ratio = AIS# / EIS#: 4/4 = 1

Bohner 2002
This table contains the additional metric based on the updated set of sets specified by
Bohner.
Effect Metric #
Accuracy: Error = (|DIS| + |FPIS|) / |CIS|: 1+1/4 = 1/2

B.2 DOORS METRICS

 133

Cleland-Huang 2003
This table contains the sets as defined by Cleland-Huang. But since the way to obtain the
Impacted set is not specified and can therefore not be determined, it is also impossible to
use the metrics, since all metrics make use of the Impacted set.
Effect Metric #
No errors Impacted = Identified = Updated undeterminable
Identification errors Impacted ⊃ Identified undeterminable
Update errors Impacted ⊃ Updated undeterminable
Inclusion errors Identified ∩ Impacted ≠ ∅ undeterminable

Binary Classification
This table contains the results of the metrics based on binary classifiers.
Effect Metric #
Precision |AIS ∩ EIS| / |EIS| = |Req6,Req5,Req7| / |EIS| 3/4
Recall |AIS ∩ EIS| / |AIS| = |Req6,Req5,Req7| / |AIS| 3/4 (9/12)
Fall-out |FPIS| / (|System| – |AIS|) = 1/(16-4) 1/12
Accuracy |System| – |FPIS ∪ DIS| / |System| = 16-2/16 14/16

B.2.3 Modify Req9
The modification of Req9 is the third change scenario. The following sets were the result
of the impact analysis and implementation of the change.

Bohner 1993
This table contains the results for the metrics described in the original paper by Arnold
and Bohner.
Effect Metric #
SIS and EIS |SIS| / |EIS|: 1/3 = 1/3
EIS and System (sharpness) |EIS| / |System|: 3/16 = 3/16
EIS and AIS |AIS| / |EIS|: 1/3 = 1/3
EIS and AIS |EIS| / |AIS|: 3/1 = 3
EIS and AIS |EIS ∩ AIS|: |Req9| = 1
Granularity Granularity of artifact and interface

model
undeterminable

Fasolino 1999
This table contains the results for the metrics described by Fasolino based on sets and
metrics defined by Bohner.
Effect Metric #
Adequacy Inclusiveness = AIS ⊆ EIS: true 1
Ripple-effect Amplification = SIS# / PIS# -> 1: 2/1 = 2
Sharpness ChangeRate = EIS# / System#: 3/16 = 3/16
Adherence S-Ratio = AIS# / EIS#: 1/3 = 1/3

APPENDIX B. CONCRETE SETS USED FOR IMPACT ANALYSIS

134

Bohner 2002
This table contains the additional metric based on the updated set of sets specified by
Bohner.
Effect Metric #
Accuracy Error = (|DIS| + |FPIS|) / |CIS|: 0+2/3 = 2/3

Cleland-Huang 2003
This table contains the sets as defined by Cleland-Huang. But since the way to obtain the
Impacted set is not specified and can therefore not be determined, it is also impossible to
use the metrics, since all metrics make use of the Impacted set.
Effect Metric #
No errors Impacted = Identified = Updated undeterminable
Identification errors Impacted ⊃ Identified undeterminable
Update errors Impacted ⊃ Updated undeterminable
Inclusion errors Identified ∩ Impacted ≠ ∅ undeterminable

Binary Classification
This table contains the results of the metrics based on binary classifiers.
Effect Metric #
Precision |AIS ∩ EIS| / |EIS| = |Req9| / |Req9,Req7,Req10| 1/3
Recall |AIS ∩ EIS| / |AIS| = |Req9| / |Req9| 1
Fall-out |FPIS| / (|System| – |AIS|) = 2/(16-1) 2/15
Accuracy |System| – |FPIS ∪ DIS| / |System| = 16-2/16 7/8

B.2.4 Modify Req11
The modification of Req11 is the fourth and last change scenario. The following sets
were the result of the impact analysis and implementation of the change.

Bohner 1993
This table contains the results for the metrics described in the original paper by Arnold
and Bohner.
Effect Metric #
SIS and EIS |SIS| / |EIS|: 1/3 = 1/3
EIS and System (sharpness) |EIS| / |System|: 3/16 = 3/16
EIS and AIS |AIS| / |EIS|: 2/3 = 2/3
EIS and AIS |EIS| / |AIS|: 3/2 = 3/2
EIS and AIS |EIS ∩ AIS|: |Req11, Req13| = 2
Granularity Granularity of artifact and interface

model
undeterminable

B.3 REQUISITEPRO SETS

 135

Fasolino 1999
This table contains the results for the metrics described by Fasolino based on sets and
metrics defined by Bohner.
Effect Metric #
Adequacy Inclusiveness = AIS ⊆ EIS: true 1
Ripple-effect Amplification = SIS# / PIS# -> 1: 2/1 = 2
Sharpness ChangeRate = EIS# / System#: 3/16 = 3/16
Adherence S-Ratio = AIS# / EIS#: 2/3 = 2/3

Bohner 2002
This table contains the additional metric based on the updated set of sets specified by
Bohner.
Effect Metric #
Accuracy Error = (|DIS| + |FPIS|) / |CIS|: 0+1/3 = 1/3

Cleland-Huang 2003
This table contains the sets as defined by Cleland-Huang. But since the way to obtain the
Impacted set is not specified and can therefore not be determined, it is also impossible to
use the metrics, since all metrics make use of the Impacted set.
Effect Metric #
No errors Impacted = Identified = Updated undeterminable
Identification errors Impacted ⊃ Identified undeterminable
Update errors Impacted ⊃ Updated undeterminable
Inclusion errors Identified ∩ Impacted ≠ ∅ undeterminable

Binary Classification
This table contains the results of the metrics based on binary classifiers.
Effect Metric #
Precision |AIS ∩ EIS| / |EIS| = |Req11,Req13| / |Req11,Req10,Req13| 2/3
Recall |AIS ∩ EIS| / |AIS| = |Req11,Req13| / | Req11,Req13| 1
Fall-out |FPIS| / (|System| – |AIS|) = 1/(16-2) 1/14
Accuracy |System| – |FPIS ∪ DIS| / |System| = 16-1/16 15/16

B.3 RequisitePro sets
This section enlists the sets of effected requirements for each change scenario when
implemented in DOORS. The option to show indirect traces is enabled when available
and all artifacts identified with these settings are counted.

B.3.1 Delete Req6
The deletion of Req6 is the first change scenario. The following sets were the result of
the impact analysis and implementation of the change.

APPENDIX B. CONCRETE SETS USED FOR IMPACT ANALYSIS

136

Bohner 1993
This table contains the sets described in the original paper by Arnold and Bohner.
Set Effected requirements #
Universe: ∞ ∞
System: (all) 16
SIS: Req6 1
EIS: Req6 1
AIS: Req6,Req5,Req7,Req9 4

Fasolino 1999
This table contains the sets described by Fasolino based on sets defined by Bohner.
Set Effected requirements #
System (all) 16
PIS (primary) Req6 1
SIS (secondary) (none) 0
EIS (=PIS+SIS) Req6 1
AIS Req6,Req5,Req7,Req9 4

Bohner 2002
This table contains the updated set of sets as specified by Bohner.
Set Effected requirements #
System (all) 16
SIS Req6 1
CIS Req6 1
AIS Req6,Req5,Req7,Req9 4
FPIS (none) 0
DIS Req5,Req7,Req9 3

Cleland-Huang 2003
This table contains the sets as defined by Cleland-Huang. Since the Impacted elements
set was not defined clearly, this set could not be determined.
Set Effected requirements #
Identified elements: Req6 1
Impacted elements: undeterminable undeterminable
Updated elements: Req6,Req5,Req7,Req9 4

B.3.2 Modify Req6
Since removing an artifact from most tools, does not trigger the IA process, the to be
deleted artifact is first changed to trigger the IA process. The following sets were the
result of the impact analysis and implementation of the change.

Bohner 1993
This table contains the sets described in the original paper by Arnold and Bohner.
Set Effected requirements #
Universe: ∞ ∞

B.3 REQUISITEPRO SETS

 137

System: (all) 16
SIS: Req6 1
EIS: Req6,Req4,Req5,Req7,Req9 5
AIS: Req6,Req5,Req7,Req9 4

Fasolino 1999
This table contains the sets described by Fasolino based on sets defined by Bohner.
Set Effected requirements #
System (all) 16
PIS (primary) Req6 1
SIS (secondary) Req4,Req5,Req7,Req9 4
EIS (=PIS+SIS) Req6,Req4,Req5,Req7,Req9 5
AIS Req6,Req5,Req7,Req9 4

Bohner 2002
This table contains the updated set of sets as specified by Bohner.
Set Effected requirements #
System (all) 16
SIS Req6 1
CIS Req6,Req4,Req5,Req7,Req9 5
AIS Req6,Req5,Req7,Req9 4
FPIS Req4 1
DIS (none) 0

Cleland-Huang 2003
This table contains the sets as defined by Cleland-Huang. Since the Impacted elements
set was not defined clearly, this set could not be determined.
Set Effected requirements #
Identified elements: Req6,Req4,Req5,Req7,Req9 5
Impacted elements: undeterminable undeterminable
Updated elements: Req6,Req5,Req7,Req9 4

B.3.3 Modify Req9
The modification of Req9 is the third change scenario. The following sets were the result
of the impact analysis and implementation of the change.

Bohner 1993
This table contains the sets described in the original paper by Arnold and Bohner.
Set Effected requirements #
Universe: ∞ ∞
System: (all) 16
SIS: Req9 1
EIS: Req9,Req7,Req10,Req6,Req8,Req4 6
AIS: Req9 1

APPENDIX B. CONCRETE SETS USED FOR IMPACT ANALYSIS

138

Fasolino 1999
This table contains the sets described by Fasolino based on sets defined by Bohner.
Set Effected requirements #
System (all) 16
PIS (primary) Req9 1
SIS (secondary): Req7,Req10,Req6,Req8,Req4 5
EIS: Req9,Req7,Req10,Req6,Req8,Req4 6
AIS Req9 1

Bohner 2002
This table contains the updated set of sets as specified by Bohner.
Set Effected requirements #
System (all) 16
SIS Req9 1
CIS: Req9,Req7,Req10,Req6,Req8,Req4 6
AIS Req9 1
FPIS: Req7,Req10,Req6,Req8,Req4 5
DIS (none) 0

Cleland-Huang 2003
This table contains the sets as defined by Cleland-Huang. Since the Impacted elements
set was not defined clearly, this set could not be determined.
Set Effected requirements #
Identified elements: Req9,Req7,Req10,Req6,Req8,Req4 6
Impacted elements: undeterminable undeterminable
Updated elements: Req9 1

B.3.4 Modify Req11
The modification of Req11 is the fourth and last change scenario. The following sets
were the result of the impact analysis and implementation of the change.

Bohner 1993
This table contains the sets described in the original paper by Arnold and Bohner.
Set Effected requirements #
Universe: ∞ ∞
System: (all) 16
SIS: Req11 1
EIS: Req11, Req10,Req13 3
AIS: Req11,Req13 2

Fasolino 1999
This table contains the sets described by Fasolino based on sets defined by Bohner.
Set Effected requirements #
System (all) 16
PIS (primary) Req11 1

B.4 REQUISITEPRO METRICS

 139

SIS (secondary) Req10,Req13 2
EIS (=PIS+SIS) Req11, Req10,Req13 3
AIS Req11,Req13 2

Bohner 2002
This table contains the updated set of sets as specified by Bohner.
Set Effected requirements #
System (all) 16
SIS Req11 1
CIS Req11, Req10,Req13 3
AIS Req11,Req13 2
FPIS Req10 1
DIS (none) 0

Cleland-Huang 2003
This table contains the sets as defined by Cleland-Huang. Since the Impacted elements
set was not defined clearly, this set could not be determined.
Set Effected requirements #
Identified elements: Req11, Req10,Req13 3
Impacted elements: undeterminable undeterminable
Updated elements: Req11,Req13 2

B.4 RequisitePro metrics
This section enlists the results of the application of the metrics based on binary classifiers
using the sets specified in the previous section for RequisitePro.

B.4.1 Delete Req6
The deletion of Req6 is the first change scenario. The following sets and numbers were
the result of the impact analysis and implementation of the change.

Bohner 1993
This table contains the results for the metrics described in the original paper by Arnold
and Bohner.
Effect Metric #
SIS and EIS |SIS| / |EIS|: 1/1 = 1
EIS and System (sharpness) |EIS| / |System|: 1/16 = 1/16
EIS and AIS |AIS| / |EIS|: 4/1 = 4
EIS and AIS |EIS| / |AIS|: 1/4 = 1/4
EIS and AIS |EIS ∩ AIS|: |Req6| = 1
Granularity Granularity of artifact and interface

model
undeterminable

Fasolino 1999
This table contains the results for the metrics described by Fasolino based on sets and
metrics defined by Bohner.

APPENDIX B. CONCRETE SETS USED FOR IMPACT ANALYSIS

140

Effect Metric #
Adequacy Inclusiveness = AIS ⊆ EIS: false 0
Ripple-effect Amplification = SIS# / PIS# -> 1: 0/1 = 0
Sharpness ChangeRate = EIS# / System#: 1/16 = 1/16
Adherence S-Ratio = AIS# / EIS#: 4/1 = 4

Bohner 2002
This table contains the additional metric based on the updated set of sets specified by
Bohner.
Effect Metric #
Accuracy Error = (|DIS| + |FPIS|) / |CIS|: 3+0/1 = 3

Cleland-Huang 2003
This table contains the sets as defined by Cleland-Huang. But since the way to obtain the
Impacted set is not specified and can therefore not be determined, it is also impossible to
use the metrics, since all metrics make use of the Impacted set.
Effect Metric #
No errors Impacted = Identified = Updated undeterminable
Identification errors Impacted ⊃ Identified undeterminable
Update errors Impacted ⊃ Updated undeterminable
Inclusion errors Identified ∩ Impacted ≠ ∅ undeterminable

Binary Classification
This table contains the results of the metrics based on binary classifiers.
Effect Metric #
Precision |AIS ∩ EIS| / |EIS| = |Req6| / |Req6| 1
Recall |AIS ∩ EIS| / |AIS| = |Req6| / |Req6,Req5,Req7,Req9| 1/4
Fall-out |FPIS| / (|System| – |AIS|) = 0/(16-4) 0
Accuracy |System| – |FPIS ∪ DIS| / |System| = 16-3/16 13/16

B.4.2 Modify Req6
Since removing an artifact from most tools, does not trigger the IA process, the to be
deleted artifact is first changed to trigger the IA process. The following sets and numbers
were the result of the impact analysis and implementation of the change.

Bohner 1993
This table contains the results for the metrics described in the original paper by Arnold
and Bohner.
Effect Metric #
SIS and EIS |SIS| / |EIS|: 1/5 = 1/5
EIS and System (sharpness) |EIS| / |System|: 5/16 = 5/16
EIS and AIS |AIS| / |EIS|: 4/5 = 4/5
EIS and AIS |EIS| / |AIS|: 5/4 = 5/4
EIS and AIS |EIS ∩ AIS|: |Req6,Req5,Req7,Req9| = 4

B.4 REQUISITEPRO METRICS

 141

Granularity Granularity of artifact and interface
model

undeterminable

Fasolino 1999
This table contains the results for the metrics described by Fasolino based on sets and
metrics defined by Bohner.
Effect Metric #
Adequacy Inclusiveness = AIS ⊆ EIS: false 0
Ripple-effect Amplification = SIS# / PIS# -> 1: 4/1 = 4
Sharpness ChangeRate = EIS# / System#: 5/16 = 5/16
Adherence S-Ratio = AIS# / EIS#: 4/5 = 4/5

Bohner 2002
This table contains the additional metric based on the updated set of sets specified by
Bohner.
Effect Metric #
Accuracy Error = (|DIS| + |FPIS|) / |CIS|: 0+1/5 = 1/5

Cleland-Huang 2003
This table contains the sets as defined by Cleland-Huang. But since the way to obtain the
Impacted set is not specified and can therefore not be determined, it is also impossible to
use the metrics, since all metrics make use of the Impacted set.
Effect Metric #
No errors Impacted = Identified = Updated undeterminable
Identification errors Impacted ⊃ Identified undeterminable
Update errors Impacted ⊃ Updated undeterminable
Inclusion errors Identified ∩ Impacted ≠ ∅ undeterminable

Binary Classification
Effect Metric #
Precision |AIS ∩ EIS| / |EIS| = |Req6,Req5,Req7,Req9| / |EIS| 4/5
Recall |AIS ∩ EIS| / |AIS| = | Req6,Req5,Req7,Req9| / |AIS| 1
Fall-out |FPIS| / (|System| – |AIS|) = 1/(16-4) 1/12
Accuracy |System| – |FPIS ∪ DIS| / |System| = 16-1/16 15/16

B.4.3 Modify Req9
The modification of Req9 is the third change scenario. The following sets and numbers
were the result of the impact analysis and implementation of the change.

Bohner 1993
This table contains the results for the metrics described in the original paper by Arnold
and Bohner.
Effect Metric #
SIS and EIS |SIS| / |EIS|: 1/6 = 1/6

APPENDIX B. CONCRETE SETS USED FOR IMPACT ANALYSIS

142

EIS and System (sharpness) |EIS| / |System|: 6/16 = 6/16
EIS and AIS |AIS| / |EIS|: 1/6 = 1/6
EIS and AIS |EIS| / |AIS|: 6/1 = 6
EIS and AIS |EIS ∩ AIS|: |Req9| = 1
Granularity Granularity of artifact and interface

model
undeterminable

Fasolino 1999
This table contains the results for the metrics described by Fasolino based on sets and
metrics defined by Bohner.
Effect Metric #
Adequacy Inclusiveness = AIS ⊆ EIS: true 1
Ripple-effect Amplification = SIS# / PIS# -> 1: 5/1 = 5
Sharpness ChangeRate = EIS# / System#: 6/16 = 6/16
Adherence S-Ratio = AIS# / EIS#: 1/6 = 1/6

Bohner 2002
This table contains the additional metric based on the updated set of sets specified by
Bohner.
Effect Metric #
Accuracy Error = (|DIS| + |FPIS|) / |CIS|: 0+5/6 = 5/6

Cleland-Huang 2003
This table contains the sets as defined by Cleland-Huang. But since the way to obtain the
Impacted set is not specified and can therefore not be determined, it is also impossible to
use the metrics, since all metrics make use of the Impacted set.
Effect Metric #
No errors Impacted = Identified = Updated undeterminable
Identification errors Impacted ⊃ Identified undeterminable
Update errors Impacted ⊃ Updated undeterminable
Inclusion errors Identified ∩ Impacted ≠ ∅ undeterminable

Binary Classification
This table contains the results of the metrics based on binary classifiers.
Effect Metric #
Precision |AIS ∩ EIS| / |EIS| = |Req9| / |EIS| 1/6
Recall |AIS ∩ EIS| / |AIS| = |Req9| / |Req9| 1
Fall-out |FPIS| / (|System| – |AIS|) = 5/(16-1) 5/15
Accuracy |System| – |FPIS ∪ DIS| / |System| = 16-5/16 11/16

B.4.4 Modify Req11
The modification of Req11 is the fourth and last change scenario. The following sets and
numbers were the result of the impact analysis and implementation of the change.

B.4 REQUISITEPRO METRICS

 143

Bohner 1993
This table contains the results for the metrics described in the original paper by Arnold
and Bohner.
Effect Metric #
SIS and EIS |SIS| / |EIS|: 1/3 = 1/3
EIS and System (sharpness) |EIS| / |System|: 3/16 = 3/16
EIS and AIS |AIS| / |EIS|: 2/3 = 2/3
EIS and AIS |EIS| / |AIS|: 3/2 = 3/2
EIS and AIS |EIS ∩ AIS|: |Req11, Req13| = 2
Granularity Granularity of artifact and interface

model
undeterminable

Fasolino 1999
This table contains the results for the metrics described by Fasolino based on sets and
metrics defined by Bohner.
Effect Metric #
Adequacy Inclusiveness = AIS ⊆ EIS: true 1
Ripple-effect Amplification = SIS# / PIS# -> 1: 2/1 = 2
Sharpness ChangeRate = EIS# / System#: 3/16 = 3/16
Adherence S-Ratio = AIS# / EIS#: 2/3 = 2/3

Bohner 2002
This table contains the additional metric based on the updated set of sets specified by
Bohner.
Effect Metric #
Accuracy Error = (|DIS| + |FPIS|) / |CIS|: 0+1/3 = 1/3

Cleland-Huang 2003
This table contains the sets as defined by Cleland-Huang. But since the way to obtain the
Impacted set is not specified and can therefore not be determined, it is also impossible to
use the metrics, since all metrics make use of the Impacted set.
Effect Metric #
No errors Impacted = Identified = Updated undeterminable
Identification errors Impacted ⊃ Identified undeterminable
Update errors Impacted ⊃ Updated undeterminable
Inclusion errors Identified ∩ Impacted ≠ ∅ undeterminable

Binary Classification
This table contains the results of the metrics based on binary classifiers.
Effect Metric #
Precision |AIS ∩ EIS| / |EIS| = |Req11,Req13| / |Req11,Req10,Req13| 2/3
Recall |AIS ∩ EIS| / |AIS| = |Req11,Req13| / | Req11,Req13| 1
Fall-out |FPIS| / (|System| – |AIS|) = 1/(16-2) 1/14
Accuracy |System| – |FPIS ∪ DIS| / |System| = 16-1/16 15/16

APPENDIX B. CONCRETE SETS USED FOR IMPACT ANALYSIS

144

