
Alexander Stepanov Notes on Programming 10/31/2007

Preface.. 2
Lecture 1. Introduction .. 3
Lecture 2. Designing fvector_int ... 8
Lecture 3. Continuing with fvector_int ... 24
Lecture 4. Implementing swap.. 36
Lecture 5. Types and type functions .. 43
Lecture 6. Regular types and equality ... 51
Lecture 7. Ordering and related algorithms .. 56
Lecture 8. Order selection of up to 5 objects ... 64
Lecture 9. Function objects .. 69
Lecture 10. Generic algorithms .. 78

10.1. Absolute value ... 78
10.2. Greatest common divisor .. 83

10.2.1. Euclid’s algorithm ... 83
10.2.2. Stein’s algorithm .. 88

10.3. Exponentiation... 94
Lecture 11. Locations and addresses ... 110
Lecture 12. Actions and their orbits ... 113
Lecture 13. Iterators... 129
Lecture 14. Elementary optimizations ... 136
Lecture 15. Iterator type-functions .. 139
Lecture 16. Equality of ranges and copying algorithms 139
Lecture 17. Permutation algorithms ... 139
Lecture 18. Reverse .. 143
Lecture 19. Rotate ... 154
Lecture 20. Partition ... 167
Lecture 21. Optimizing partition .. 178
Lecture 22. Algorithms on Linked Iterators ... 183
Lecture 23. Stable partition ... 192
Lecture 24. Reduction and balanced reduction .. 199
Lecture 25. 3-partition ... 207
Lecture 26. Finding the partition point .. 211
Lecture 27. Conclusions... 215

 1

Alexander Stepanov Notes on Programming 10/31/2007

Preface

This is a selection from the notes that I have used in teaching programming courses at
SGI and Adobe over the last 10 years. (Some of the material goes back even further to the
courses I taught in the 80s at Polytechnic University.) The purpose of these courses was
to teach experienced engineers to design better interfaces and reason about code. In
general, the book presupposes a certain fluency in computer science and some familiarity
with C++.

This book does not present a scholarly consensus. It presents my personal opinions and
should, therefore, be taken with a grain of salt. Programming is a wonderful activity that
goes well beyond the range of what a single programmer can experience in a lifetime.

This is not a book about C++. Although it uses C++ and would be difficult to write the
focus is on programming rather than programming language. This is not a book about
STL. I often refer to STL as a source of examples both good and (more often than I
would like) bad. This book will not help one become a fluent user of STL, but it explains
the principles used to design STL.

This book does not attempt to solve complicated problems. It will attempt to solve very
simple problems which most people find trivial: minimum and maximum, linear search
and swap. These problems are not, however, as simple as they seem. I have been forced
to go back and revisit my view of them many times. And I am not alone. I often have to
argue about different aspects of the interface and implementation of such simple
functions with my old friends and collaborators. There is more to it, than many people
think.

I do understand that most people have to design systems somewhat more complex than
maximum and minimum. But I urge them to consider the following: unless they can
design a three line program well, why would they be able to design a three hundred
thousand line program. We have to build our design skills by following through simple
exercises, the way a pianist has to work through simple finger exercises before attempting
to play a complicated piece.

This book would never have been written without the constant encouragement of Sean
Parent, who has been my manager for the last three years. Paul McJones and Mark Ruzon
had been reviewing every single page of every single version of the notes and came up
with many major improvements. I was also helped by many others who assisted me in
developing my courses and writing the notes. I have to mention especially the following:
Dave Musser, Jim Dehnert, John Wilkinson, John Banning, Greg Gilley, Mat Marcus,
Russell Williams, Scott Byer, Seetharaman Narayanan, Vineet Batra, Martin Newell, Jon
Brandt, Lubomir Bourdev, Scott Cohen. (Names are listed in a roughly chronological
order of appearance.) It is to them and to my many other students who had to suffer for
years through my attempts to understand how to program that I dedicate my book.

 2

Alexander Stepanov Notes on Programming 10/31/2007

Lecture 1. Introduction

I have been programming for over 30 years. I wrote my first program in 1969 and
became a full time programmer in 1972. My first major project was writing a debugger. I
spent two whole months writing it. It almost worked. Sadly, it had some fundamental
design flaws. I had to throw away all the code and write it again from scratch. Then I had
to put hundreds of patches onto the code, but eventually I made it work. For several more
years I stuck to this process: writing a huge blob of code and then putting lots of patches
to make it work. My management1 was very happy with me. In 3 years I had 4
promotions and at the age of 25 obtained a title of a Senior Researcher – much earlier
than all of my college friends. Life seemed so good. By the end of 1975 my youthful
happiness was permanently lost. The belief that I was a great programmer was shattered.
(For better or for worse, I never regained the belief. Since that time I have been a
perplexed programmer searching for a guide. This book is an attempt to share some of the
things I learned during my quest.) The first idea was a result of reading the works of the
Structured Programming School: Dijkstra, Wirth, Hoare, Dahl. By 1975 I became a
fanatical disciple. I read every book and paper authored by the giants. I was, however,
saddened by the fact that I could not follow their advice. I had to write my code in
assembly language and had to use goto statement. I was so ashamed. And then in the
beginning of 1976 I had my first revelation: the ideas of the Structured Programming had
nothing to do with the language. One could write beautiful code even in assembly. And if
I could, I must. (After all I reached the top of the technical ladder and had to either aspire
to something unattainable or go into management.) I decided that I will use my new
insight while doing my next project: implementing an assembler. Specifically I decided
to use the following principles:

1. the code should be partitioned into functions;
2. every function should be most 20 lines of code;
3. functions should not depend on the global state but only on the arguments;
4. every function is either general or application specific, where general function is

useful to other applications;
5. every function that could be made general – should be made general;
6. the interface to every function should be documented;
7. the global state should be documented by describing both semantics of individual

variables and the global invariants.

The result of my experiment was quite astonishing. The code did not contain serious
bugs. There were typos: I had to change AND to OR, etc. But I did not need patches. And
over 95% of the code was in general functions! I felt quite proud. There remained a
problem that I could not yet precisely figure out what it meant that a function was

1 Natalya Davydovskaya, Ilya Neistadt and Aleksandr Gurevich – these were my original teachers and I am
very grateful to them. All three were hardware engineers by training. They were still thinking in terms of
circuits and minimality of the design was very important to them.

 3

Alexander Stepanov Notes on Programming 10/31/2007

general. As a matter of fact, it is possible to summarize my research over the next 30
years as an attempt to clarify this very point.

It is easy to overlook the importance of what I discovered. I did not discover that general
functions could be used by other programmers. As a matter of fact, I did not think of
other programmers. I did not even discover that I could use them later. The significant
thing was that making interfaces general – even if I did not quite know what it meant – I
made them much more robust. The changes in the surrounding code or changes in the
grammar of the input language did not affect the general functions: 95% of the code was
impervious to change. In other words: decomposing an application into a collection of
general purpose algorithms and data structures makes it robust. (But even without
generality, code is much more robust when it is decomposed into small functions with
clean interfaces.) Later on, I discovered the following fact: as the size of application
grows so does the percentage of the general code. I believe, for example, that in most
modern desktop applications the non-general code should be well under 1%.

In October of 1976 I had my second major insight. I was preparing for an interview at a
research establishment that was working on parallel architectures. (Reconfigurable
parallel architectures – sounds wonderful but I was never able to grasp the idea behind
the name.) I wanted this job and was trying to combine my ideas about software with
parallelism. I also managed to get very sick and while in the hospital had an idea: our
ability to restructure certain computations to be done in parallel depended on the
algebraic properties of operations. For example, we can re-order a + (b + (c + d)) into (a
+ b) + (c + d) because addition is associative. The fact is that you can do it if your
operation is a semigroup operation (this is just a special way of saying that the operation
is associative). This insight lead to the solution of the first problem: code is general if it is
defined to work on any inputs – both individual inputs and their types – that possess the
necessary properties that assure its correctness. It is worthwhile to point out again that
using the functions that depend only on the minimal set of requirements assures the
maximum robustness.

How does one learn to recognize general components? The only reasonable approach is
that one has to know a lot of different general- purpose algorithms and data structures in
order to recognize new ones. The best source for finding them is still the great work of
Don Knuth, The Art of Computer Programming. It is not an easy book to read; it contains
a lot of information and you have to use sequential access to look for it; there are
algorithms that you really do not need to know; it is not really useful as a reference book.
But it is a treasure trove of programming techniques. (The most exciting things are often
to be found in the solutions to the exercises.) I have been reading it for over 30 years now
and at any given point I know 25% of the material in it. It is, however, an ever-changing
25% – it is quite clear now that I will never move beyond the one-quarter mark. If you do
not have it, buy it. If you have it, start reading it. And as long as you are a programmer,
do not stop reading it! One of the essential things for any field is to have a canon: a set of
works that one must know. We need to have such a canon and Knuth’s work is the only
one that is clearly a part of such canon for programming.

 4

Alexander Stepanov Notes on Programming 10/31/2007

It is essential to know what can be done effectively before you can start your design.
Every programmer has been taught about the importance of top-down design. While it is
possible that the original software engineering considerations behind it were sound, it
came to signify something quite nonsensical: the idea that one can design abstract
interfaces without a deep understanding of how the implementations are supposed to
work. It is impossible to design an interface to a data structure without knowing both the
details of its implementation and details of its use. The first task of good programmers is
to know many specific algorithms and data structures. Only then they can attempt to
design a coherent system. Start with useful pieces of code. After all, abstractions are just
a tool for organizing concrete code.

If I were using top-down design to design an airplane, I would quickly decompose it into
three significant parts: the lifting device, the landing device and the horizontal motion
device. Then I would assign three different teams to work on these devices. I doubt that
the device would ever fly. Fortunately, neither Orville nor Wilbur Wright attended
college and, therefore, never took a course on software engineering. The point I am trying
to make is that in order to be a good software designer you need to have a large set of
different techniques at your fingertips. You need to know many different low-level things
and understand how they interact.

The most important software system ever developed was UNIX. It used the universal
abstraction of a sequence of bytes as the way to dramatically reduce the systems’
complexity. But it did not start with an abstraction. It started in 1969 with Ken Thompson
sketching a data structure that allowed relatively fast random access and the incremental
growth of files. It was the ability to have growing files implemented in terms of fixed size
blocks on disk that lead to the abolition of record types, access methods, and other
complex artifacts that made previous operating systems so inflexible. (It is worth noting
that the first UNIX file system was not even byte addressable – it dealt with words – but
it was the right data structure and eventually it evolved.) Thompson and his collaborators
started their system work on Multics – a grand all-encompassing system that was
designed in a proper top-down fashion. Multics introduced many interesting abstractions,
but it was a still-born system nevertheless. Unlike UNIX, it did not start with a data
structure!

One of the reasons we need to know about implementations is that we need to specify the
complexity requirements of operations in the abstract interface. It is not enough to say
that a stack provides you with push and pop. The stack needs to guarantee that the
operations are taking a reasonable amount of time – it will be important for us to figure
out what “reasonable” means. (It is quite clear, however, that a stack for which the cost of
push grows linearly with the size of the stack is not really a stack – and I have seen at
least one commercial implementation of a stack class that had such a behavior – it
reallocated the entire stack at every push.) One cannot be a professional programmer
without being aware of the costs of different operations. While it is not necessary, indeed,
to always worry about every cycle, one needs to know when to worry and when not to
worry. In a sense, it is this constant interplay of considerations of abstractness and
efficiency that makes programming such a fascinating activity.

 5

Alexander Stepanov Notes on Programming 10/31/2007

It is essential for a programmer to understand the complexity ramifications of using
different data structures. Not picking the right data structure is the most common reason
for performance problems. Therefore, it is essential to know not just what operations a
given data structure supports but also their complexity. As a matter of fact, I do not
believe that a library could eliminate the need for a programmer to know algorithms and
data structures. It only eliminates the need for a programmer to implement them. One
needs to understand the fundamental properties of data structures to use them properly so
that the application satisfies its own complexity requirements.

By complexity I do not mean just the asymptotic complexity but the machine cycle count.
In order to learn about it, it is necessary to acquire a habit of writing benchmarks. Time
and time again I discovered that my beautiful designs were totally wrong after writing a
little benchmark. The most embarrassing case was when after claiming publicly on
multiple occasions that STL had the performance of hand-written assembly code, I
published my Abstraction Penalty Benchmark that showed that my claims were only true
if you were using a specialized preprocessor from KAI. It was particularly embarrassing
because it showed that the compiler produced by my employer – Silicon Graphics – was
the worst in terms of abstraction penalty and compiling STL. The SGI compiler was
eventually fixed, but the performance of STL on the major platforms keeps getting worse
precisely because customers as well as vendors do not do benchmarking and seem to be
totally unconcerned about performance degradation. Occasionally there will be
assignments that require benchmarking. Please do them.

It is good for a programmer to understand the architecture of modern processors, it is
important to understand how the cache hierarchy affects the performance, and it is
imperative to know that virtual memory does not really help: if your working set does not
fit into your physical memory you are in big trouble. It is very sad that many young
programmers never had a chance to program in assembly language. I would make it a
requirement for any undergraduate who majors in computer science. But even
experienced programmers need the periodic refresher in computer architectures. Every
decade or so the hardware changes enough to make most of our intuition about the
underlying hardware totally obsolete. Data structures that used to works so well on PDP-
20 might be totally inappropriate on a modern processor with a multi-layer caches.

Starting at the bottom, even at the level of individual instructions, is important. It is,
however, equally important not to stay at the bottom but always to proceed upwards
through a process of abstraction. I believe that every interesting piece of code is a good
starting point for abstraction. Every so-called “hack,” if it is a useful hack, could serve as
a base for an interesting abstraction.

It is equally important for programmers to know what compilers will do to the code they
write. It is very sad that the compiler courses taught now are teaching about compiler-
writing. After all, a miniscule percentage of programmers are going to write compilers
and even those who will, will quickly discover that modern compilers have little to do
with what they learned in an undergraduate compiler construction course. What is needed
is a course that teaches programmers to know what compilers actually do.

 6

Alexander Stepanov Notes on Programming 10/31/2007

Every important optimization technique is affiliated with some abstract property of
programming objects. Optimization, after all, is based on our ability to reason about
programs and to replace one program with its faster equivalent.

While it is possible to define object types in any way, there is a set of natural laws that
govern the behavior of most types. These laws define the meaning of fundamental
operations on objects: construction, destruction, assignment, swap, equality and total
ordering. They are based on a realistic ontology, where objects own their non-sharable
parts and equality is defined through a pair-wise equality of the corresponding parts. I
call objects satisfying such laws regular. We can extend the notion of regularity to
functions by defining a function defined on regular types to be regular if it gives equal
results on equal inputs. We shall see that this notion allows us to extend the standard
compiler optimization on composite objects and allows for a disciplined handling of
exceptional behavior.

In this book I will use C++. The main reason for that is that it is combines two essential
characteristics: being close to the machine and powerful abstraction facilities. I do not
believe that it is possible to write a book that I am trying to write without using a real
programming language. And since I am strongly convinced that the purpose of the
programming language is to present an abstraction of an underlying hardware C++ is my
only choice. Sadly enough, most language designers seem to be interested in preventing
me from getting to the raw bits and provide “better” machine than the one inside my
computer. Even C++ is in danger of being “managed” into something completely
different.

Problem: Take a look at the following definition:

bool operator<(const T& x, const T& y)
{
 return true;
}

Explain why this is wrong for any class T.

Problem: Take a look at the following definition:

bool operator<(const T& x, const T& y)
{
 return false;
}

Explain what are the requirements on T that makes this definition legitimate.

 7

Alexander Stepanov Notes on Programming 10/31/2007

Project: C arrays have size determined at compile time. Design a C++ class that
provides you with objects that behave like arrays of int except that their size is
determined at run time. Explain the reasons for your design decisions.

Lecture 2. Designing fvector_int

One of your assignments was to design a class that provides the functionality of a C array
of int but allows a user to define array bounds at run time. I received many different
solutions – as a matter of fact, every “interesting” mistake that I was planning to show
you during this lecture was submitted as somebody’s solution. The question, of course, is
to be able to distinguish a correct solution from an incorrect one. We will start by
showing a solution and incrementally improving and refining it. It closely corresponds to
the way most people usually work on their code. In my case it takes many iterations to
get something reasonable. Many of my original attempts to implement STL vectors were
not far removed from the half-baked pieces of code from which we start.

Let us look at the following code:

class fvector_int
{
private:
 int* v; // v points to the allocated area
public:
 explicit fvector_int(std::size_t n) : v(new int[n]) {}
 int get(std::size_t n) const { return v[n]; }
 void set(std::size_t n, int a) { v[n] = a; }
};

It clearly works. One can write:

fvector_int squares(std::size_t(64));

for (size_t i = 0; i < 64; ++i) {
 squares.set(i, int(i * i));
}

It even uses a correct type for indexing. std::size_t is the machine-dependent
unsigned integral type that allows one to encode the size of the largest object in memory.
There is an obvious benefit in std::size_t being unsigned: one does not need to
worry about passing a negative value to the constructor. (Later in the course we will talk
about the problems that are caused by the decision to make std::size_t unsigned
and a different type from std::ptrdiff_t. In case you forgot, std::size_t and
std::ptrdiff_t are defined in <cstddef>.) It is also good that the designer of the
class decided to make the constructor explicit. Implicit conversions are one of the main

 8

Alexander Stepanov Notes on Programming 10/31/2007

flaws of C and C++, and it is good to assure that your class will not be a part of this
wicked game. If a function expects an fvector_int as an argument and somebody
gives it an integer instead, it would be good not to convert this integer into our data
structure. (Open your C++ book and read about the explicit keyword! Also petition
your neighborhood C++ standard committee member to finally abolish implicit
conversions. There is a common misconception, often propagated by people who should
know better, that STL depends on implicit conversions. Not so!)

It is written in a clear object-oriented style with getters and setters. The proponents of this
style say that the advantage of having such functions is that it allows programmers later
on to change the implementation. What they forget to mention is that sometimes it is
awfully good to expose the implementation. Let us see what I mean. It is hard for me to
imagine an evolution of a system that would let you keep the interface of get and set, but
be able to change the implementation. I could imagine that the implementation outgrows
int and you need to switch to long. But that is a different interface. I can imagine that
you decide to switch from an array to a list but that also will force you to change the
interface, since it is really not a very good idea to index into a linked list.

Now let us see why it is really good to expose the implementation. Let us assume that
tomorrow you decide to sort your integers. How can you do it? Could you use the C
library qsort? No, since it knows nothing about your getters and setters. Could you use
the STL sort? The answer is the same. While you design your class to survive some
hypothetical change in the implementation, you did not design it for the very common
task of sorting. Of course, the proponents of getters and setters will suggest that you
extend your interface with a member function sort. After you do that, you will discover
that you need binary search and median, etc. Very soon your class will have 30 member
functions but, of course, it will be hiding the implementation. And that could be done
only if you are the owner of the class. Otherwise, you need to implement a decent sorting
algorithm on top of the setter-getter interface from scratch and that is a far more difficult
and dangerous activity than one can imagine.

Even a simple standard function swap will not work; you cannot just say:

fvector_int foo(size_t(15));
//some stuff
std::swap(foo[0], foo[14]);

as you can with arrays. You need to define your own function:

inline
void fvector_int_swap(fvector& v,
 std::size_t n,
 std::size_t m)
{
 int tmp = v.get(n);
 v.set(n, v.get(m));

 9

Alexander Stepanov Notes on Programming 10/31/2007

 v.set(m, tmp);
}

and only then can you do:

fvector_int_swap(foo, 0, 14);

In a couple of years somebody else will need to swap elements between two different
fvectors. And instead of the trivial (but not object oriented):

std::swap(foo[0], bar[0]);

they will have to define a new function:

inline
void fvector_int_swap(fvector& v, std::size_t n,
 fvector& u, std::size_t m)
{
 int tmp = v.get(n);
 v.set(n, u.get(m));
 u.set(m, tmp);
}

And then when somebody wants to start swapping between fvector and an array of int,
it quickly becomes apparent that a third version of swap is needed.

Setters and getters make our daily programming hard but promise huge rewards in the
future when we discover better ways to store arrays of integers in memory. But I do not
know a single realistic scenario when hiding memory locations inside our data structure
helps and exposure hurts; it is, therefore, my obligation to expose a much more
convenient interface that also happens to be consistent with the familiar interface to the C
arrays. When we program in C++ we should not be ashamed of its C heritage, but make
full use of it. The only problems with C++, and even the only problems with C, arise
when they themselves are not consistent with their own logic.

It is quite obvious that all these problems disappear if we replace the convoluted
getter/setter interface with an interface that exposes memory locations in which integers
are stored:

class fvector_int
{
private:
 int* v; // v points to the allocated memory
public:
 explicit fvector_int(std::size_t n) : v(new int[n]) {}
 int& operator[](std::size_t n) {

 10

Alexander Stepanov Notes on Programming 10/31/2007

 return v[n];
 }
 const int& operator[](std::size_t n) const {
 return v[n];
 }
};

Notice how we use overloading on const to assure that the right kind of reference is
returned when we construct a constant object. If the bracket operator is applied to a
constant object it will return a constant reference and it will not be possible to assign to
that location.

Now we can easily swap elements with the help of the standard swap – we will soon see
how standard swap is implemented. And if we overcome our shyness and disclose in our
interface description that the references to consecutive integers reside in consecutive
locations of memory – and I fully understand that it will prevent us in the future from
storing them in random locations – we can sort them quite easily:

fvector_int foo(std::size_t(10));

// fill the fvector with integers

std::sort(&foo[0], &foo[0] + 10);

(My remark about exposing the address locations of consecutive integers is not facetious.
It took a major effort to convince the standard committee that such a requirement is an
essential property of vectors; they would not, however, agree that vector iterators should
be pointers and, therefore, on several major platforms – including the Microsoft one – it
is faster to sort your vector by saying the unbelievably ugly

if (!v.empty()) {
 sort(&*v.begin(), &*v.begin() + v.size());
}

than the intended

sort(v.begin(), v.end());

Attempts to impose pseudo-abstractness at the cost of efficiency can be defeated, but at a
terrible cost.

C++ Quiz:

Figure out why you need to check for v.empty() and why you cannot write
&*v.end(). Do not just check it with your compiler: the fact that your compiler might
let you get away with something – does not make it a standard conforming C++.)

 11

Alexander Stepanov Notes on Programming 10/31/2007

Our class is still far from perfect. Some of you noticed that it lacks a destructor. What
happens if we do not write a destructor? As a matter of fact, if we do not write a
destructor, one will be provided for us by the compiler. Such a destructor is called a
synthesized destructor. A synthesized destructor applies individual member destructors to
all its members in the reverse order in which they are declared. Since we have only one
member of the class, and since this member is a pointer and a pointer destructor is an
empty operation, our synthesized destructor is going to do nothing.

Why is it wrong? A typical usage of our class might be something like:

void print_shuffled_integers(std::size_t n)
{
 fvector_int integers(n);
 for (std::size_t i = 0; i < n; ++i)
 integers[i] = int(i);
 std::random_shuffle(&integers[0], &integers[n]);
 for (std::size_t i = 0; i < n; ++i)
 std::cout << integers[i] << std::endl;
}

Our procedure is going to allocate memory during construction and then let it disappear
into a black hole during destruction. Now the first mission of the constructor is to obtain
resources needed for the object: storage, files, devices, etc. (The only reason for a
constructor to raise an exception is the unavailability of the needed resources.) And the
stack-based model of computation dictates that when an object is destroyed all the
resources it acquired are released. (The only reason for an object to raise an exception
during destruction is to indicate that resources acquired by it disappeared without a trace
– which should never occur in a properly designed system.) The idea of an object owning
a resource is a wonderful idea missing from many programming languages. In Lisp, for
example, a list does not own its cons cells, and – in the case of lexically scoped dialects
of Lisp – even procedural objects do not own their local state which can survive and be
used long after the exit from the procedure. The total lack of ownership makes
centralized garbage collection essential and encourages a rather wasteful style of
programming. Why, indeed, bother to recycle if the resources are unlimited? The model
of ownership-based semantics was first introduced in ALGOL 60, which actually had
dynamic arrays – something very close to what we are trying to design. C++ does not
have built-in dynamic arrays, but the fundamental mechanism of constructors/destructors
allows us to implement them. As a matter of fact, we will make all kinds of different data
structures that behave according to the stack-based machine model.

I am not an enemy of garbage collection. There are many important algorithms in the area
of memory management, and I have been urging Hans Boehm for years to write a book
about them – the chapter in the first volume of Knuth while still essential is very
incomplete. While reference counting tends to be a more important tool for general

 12

Alexander Stepanov Notes on Programming 10/31/2007

system design, all memory management techniques are important. What I object to is the
insistence that garbage collection is the only way.

My second objection to “automatic memory management” whether it is garbage
collection, reference counting or ownership-based container semantics is that none of
these techniques is sufficient to solve real problems. It is essential for any serious
application to develop a data model that clearly describes who de-allocates and when.
Anything else is just trading one kind of bug for another. If, when we design a corporate
system, we do not assure that when a person is purged from the employee database he is
purged from the corporate library, having garbage collection will not help. The record of
the long-gone person will still be pointed to by the library. We are trading dangling
pointers for memory leaks. A long time ago I read a proposal that every object needs to
maintain a list of all the objects which point to it and that when an object is destroyed it
should go and zero all the pointers pointing at it. It is a bizarre idea if it is applied to
every object, but for certain classes of objects it is a good solution. Again, there is no
single right way to manage storage or other resources.

And now let us get back to fvector_int.

It is trivial to add a proper destructor:

class fvector_int
{
private:
 int* v; // v points to the allocated memory
public:
 explicit fvector_int(std::size_t n) : v(new int[n]) {}
 ~fvector_int() { delete [] v; }
 int& operator[](std::size_t n) {
 return v[n];
 }
 const int& operator[](std::size_t n) const {
 return v[n];
 }
};

but one has to admit that the syntax of new and delete in C++ is an example of a
syntactic embarrassment. They are function calls or, more precisely, template function
calls and should look like function calls.

The resource allocation/de-allocation is done properly as long as we have a single copy of
the object. The problem changes when we attempt to pass it to a function. At present the
class does not define a copy constructor. As is the case with the destructor, the compiler
provides us with a synthesized copy constructor. It applies their copy constructors to all
the members, doing a member-wise construction. In our case, there is only one member, a
pointer to the allocated memory, and it is constructed by copying its value. Now we have
two copies of the same class sharing the same array of integers. Sharing and private

 13

Alexander Stepanov Notes on Programming 10/31/2007

ownership do not work well together. At the procedure’s exit point it calls the destructor
of the copied object and according to the fundamental principle of private ownership –
après nous, le déluge, it de-allocates the memory which leaves the original owner in a
rather peculiar situation.

(Copy-on-write data structures do not allow sharing but delay copying. It is possible to
design STL conforming containers which do copy-on-write. It is, after all, an
optimization that does not change the semantics. In my experience, however, the
primitive data structures such as vector and list do not benefit from such
optimization.)

It is worthwhile to observe that the way arrays are passed to functions is another
embarrassment. It dates back to the time when C did not allow passing large objects to a
function. Even structures could not be passed by value. As a “convenient” feature,
passing an array would result in converting it to a pointer and passing the pointer. Within
a few years it became possible to pass structures by value. (Fortunately, there was no
“convenient” conversion of a structure to a pointer to it.) But arrays remained in the
embarrassing state. You can pass an array by value if you enclose it in a structure:

template < std::size_t m>
struct cvector_int {
 int values[m];
 int& operator[](std::size_t n) {
 assert(n < m);
 return values[n];
 }
 const int& operator[](std::size_t n) const {
 assert(n < m);
 return values[n];
 }
};

template < std::size_t m>
cvector_int<m> reverse_copy(cvector_int<m> x) {
 std::reverse(&x[0], &x[m]);
 return x;
}

We need our fvector_int class to behave like the cvector_int class. In other
words, we need to provide it with an appropriate copy constructor. After all, the main
reason for the existence of fvector_int is that the size of cvector_int has to be
known at compile time. (One of the reasons for the demise of Pascal – a wonderful
language in many respects – was the fact that its arrays – at least in the original version of
the language – were pretty much like cvector_int; it is really important to be able to
have arrays whose size is determined at run time.) But its semantics should mimic the
wonderful semantics of cvector_int that fits into our stack based machine model and

 14

Alexander Stepanov Notes on Programming 10/31/2007

has ownership semantics. In general, we will attempt to make our classes behave like
familiar C objects. Our containers will behave like structures and our iterators will behave
like pointers. Such an approach has two advantages. First, it imposes a consistent
behavior between primitive objects and our extensions; and second, it assures that our
abstractions are based on something that has been proven useful.

It is quite simple to provide our class with an appropriate copy constructor except for one
little detail. The copy constructor does not know the size of the original object. Our class
does not have enough members. It is constructionally incomplete. We call a class
constructionally incomplete if it cannot implement its own copy. If we look back at our
examples of usage, we always used the size available externally. We need to store it
internally and that, incidentally, will also allow us to put proper asserts into our bracket
operators:

class fvector_int
{
private:
 std::size_t length; // the size of the allocated area
 int* v; // the pointer to the allocated area
public:
 fvector_int(const fvector_int& x);
 explicit fvector_int(std::size_t n)
 : length(n), v(new int[n]) {}
 ~fvector_int() { delete [] v; }
 int& operator[](std::size_t n) {
 assert(n < length);
 return v[n];
 }
 const int& operator[](std::size_t n) const {
 assert(n < length);
 return v[n];
 }
};

fvector_int::fvector_int(const fvector_int& x)
 : length(x.length), v(new int[x.length]) {
 for(std::size_t i = 0; i < length; ++i)
 (*this)[i] = x[i];
}

The fact that we need to store the size with the vector is the result of a sloppy design of
operators new [] and delete []; that design goes back to a sloppy design of the
malloc/free calls in C. It should be perfectly clear that the implementation of the
array operators new and delete knows what is the number of the objects allocated by
it. If it did not, it would not be able to destroy them when the operator delete is applied

 15

Alexander Stepanov Notes on Programming 10/31/2007

to the pointer returned by new. The same is, of course, true for malloc/free. This is
why we now need to store the length together with the pointer, duplicating the
information that is stored by the system. It is even worse, since the system knows both
the amount of storage allocated and the amount of storage where objects are actually
constructed. If we had access to both we could implement a type-safe version of
realloc and even reduce the size of the header of std::vector to the size of one
pointer which would make operations on vectors of vectors really efficient. And it would
improve the memory utilization since instead of two sections of unused memory – one in
the vector and another one in the allocated memory block – we would have only one. But
all my offers to redesign the memory allocation interfaces in C++ were rejected since it
was viewed that new and delete are part of the core language and I was not authorized
to touch them.

It does not take much to realize that we have one more problem. Indeed, while we
provided a copy constructor, we did not provide an assignment operation. We will, of
course, be provided with a synthesized one, and it is fairly easy to guess the semantics of
it: it will do pair-wise assignments between the members in the order they are defined.
That is, of course, not at all what we need. Copying and assignment must be consistent.

Before we implement our assignment we need to answer an important question: should
we be able to assign fvector_ints if their size is different? Since we agreed that the
size is determined at construction time, it should not change. Should we check for the
size being equal and raise an exception? The problem does not arise with
cvector_int since two cvector_ints of the same type have the same size; we
cannot, therefore, use them as a guide for what to do. That would be unwise since it will
break two wonderful rules of any good type: a = b is always legal and should raise an
exception only if we run out of resources to construct a copy of b in a; secondly,
programmers should be able to write:

T a; a = b;

whenever they can write

T a(b);

and these program fragments should mean the same thing and be interchangeable. Here
we are meeting for the first time one of our major design principles: when a code
fragment has a certain meaning for all built-in types, it should preserve the same
meaning for user-defined types. Since the two code fragments are equivalent for all
built-in types, they should be equivalent for our class. (This is why I object to using
operator+ for string concatenation. For all built-in types and their non-singular values
– as we shall see later in this lecture we often need to make this exception for mysterious
singular values because of another standard, the IEEE floating point one – we can be sure
that a + b == b + a. Notice, that no mathematician will use + for a non-
commutative operation. This is why Abelian groups use + and non-Abelian groups use
multiplication. It would have been perfectly fine to use * for string concatenation – after

 16

Alexander Stepanov Notes on Programming 10/31/2007

all that’s what was traditionally done in the Formal Language Theory. If a set has one
binary operation defined on it and it is designated by *, we have a right to assume that it
is not commutative.)

This is why we are going to allow assignment between fvector_int of different sizes.

Now there should be a really easy way of obtaining an assignment operator: first we need
to clean up the left side of the assignment using the destructor and then copy into our
fresh storage the value from the right side of the assignment. It is, of course, important
not to do any of this when both sides refer to the same object. In such a case, we can
safely do nothing. That gives us a boilerplate for a generic assignment operator:

T& T::operator=(const T& x)
{
 if (this != &x) {
 this -> ~T(); // destroy object in place
 new (this) T(x); // construct it in place
 }
 return *this;
}

Unfortunately, there is a problem with this definition of assignment. If there is an
exception during the construction, the object is going to be left in an unacceptable
“destroyed” state. In the next lecture we will learn that there is a better “generic”
definition of assignment that could be used, but, at least for the time being let us ignore
the “advanced” notion of exception safety and proceed with the one we have now.

(Some of you might think that such definition of assignment without proper exception
safety would never appear anywhere real. Well, this was the definition of assignment
used in all the implementations of STL for the first 4 years of its life. It was seen by all
the main experts and nobody ever objected. It was a result of gradual evolution – not
complete even today – of a notion of exception safety that eventually made this definition
suspect. We will talk more about it in the next lecture.)

There is a sad obligation to return a reference from the assignment. C introduced the
dangerous ability to write a = (b = c). C++ made it so that we can write the even
more dangerous (a = b) = c. I would rather live in a world where assignments
return void. And while we are forced to make our assignments to conform to the
standard semantics, we should avoid using this semantics in our code. (This is similar to
Jon Postel’s Robustness Principle: “TCP implementations will follow a general principle
of robustness: be conservative in what you do, be liberal in what you accept from
others.”)

In the case of fvector_int, there is, however, a nice optimization. If two instances
have the same size then we can copy values from one to the other without any need for

 17

Alexander Stepanov Notes on Programming 10/31/2007

allocation. That gives us the nice property that if two fvector_ints are of the same
size we can guarantee that the assignment does not raise an exception:

class fvector_int
{
private:
 std::size_t length; // the size of the allocated area
 int* v; // the pointer to the allocated area
public:
 fvector_int(const fvector_int& x);
 explicit fvector_int(std::size_t n)
 : length(n), v(new int[n]) {}
 ~fvector_int() { delete [] v; }
 fvector_int& operator=(const fvector_int& x);
 int& operator[](std::size_t n) {
 assert(n < length);
 return v[n];
 }
 const int& operator[](std::size_t n) const {
 assert(n < length);
 return v[n];
 }
};

fvector_int::fvector_int(const fvector_int& x)
 : length(x.length), v(new int[x.length]) {
 for(std::size_t i = 0; i < length; ++i)
 (*this)[i] = x[i];
}

fvector_int& fvector_int::operator=(const fvector_int& x)
{
 if (this != &x)
 if (this->length == x.length)
 for (std::size_t i = 0; i < length; ++i)
 (*this)[i] = x[i];
 else {
 this -> ~fvector_int ();
 new (this) fvector_int (x);
 }
 return *this;
}

Let us observe another fact that follows from the equivalence of the two program
fragments

T a; // default constructor

 18

Alexander Stepanov Notes on Programming 10/31/2007

a = b; // assignment operator

and

T a(b); // copy constructor

Since we want them to have the same semantics and would like to be able to write one or
the other interchangeably, we need to provide fvector_int with a default constructor
– a constructor that takes no arguments. The postulated equivalence of two program
fragments gives us an important clue about the resource requirements for default
constructors. It is almost totally clear that the only resource that a default constructor
should allocate is the stack space for the object. (It will become totally clear when we
discuss the semantics of swap and move.) The real resource allocation should happen
during the assignment. The compiler provides a synthesized default constructor only
when no other constructors are defined. (It is, of course, an embarrassing rule: adding a
new public member function – a constructor is a special kind of a member function – to a
class can make an existing legal code into code that would not compile.)

Clearly the default constructor should be equivalent to constructing an fvector_int
of the length zero:

class fvector_int
{
private:
 std::size_t length; // the size of the allocated area
 int* v; // the pointer to the allocated area
public:
 fvector_int() : length(std::size_t(0)), v(NULL) {}
 fvector_int(const fvector_int& x);
 explicit fvector_int(std::size_t n)
 : length(n), v(new int[n]) {}
 ~fvector_int() { delete [] v; }
 fvector_int& operator=(const fvector_int& x);
 int& operator[](std::size_t n) {
 assert(n < length);
 return v[n];
 }
 const int& operator[](std::size_t n) const {
 assert(n < length);
 return v[n];
 }
};

Let us revisit our design of the copy constructor and assignment. While we now know
why we needed to allocate a different pool of memory, how do we know that we need to
copy the integers from the original to the copy? Again, let us look at the semantics of
copy that is given to us by the built-in types. It is very clear (especially if we ignore

 19

Alexander Stepanov Notes on Programming 10/31/2007

singular values given to us by the IEEE floating point standard) that there is one
fundamental principle that governs the behavior of copy constructors and assignments for
all built-in types and pointer types:

T a(b); assert(a == b);

and

T a; a = b; assert(a == b);

It is a self-evident rule: to make a copy means to create an object equal to the original.

The rule, unfortunately, does not extend to structures. Neither C nor C++ define an
equality operator. (operator== – I do hate the equality/assignment notation in C; I
would be so happy if we moved back to Algol’s notation := for the assignment and to the
five century old mathematical symbol = for equality. I do, however, find != to be a better
choice than Wirth’s <>.) The extension would be quite simple to define: compare
members for equality in the order they are defined. I have been advocating such an
addition for about 12 years without any success.

(In the programming language of the future it would not be necessary to have built-in
semantic definition for synthesized equality. It would be possible to say in the language
that for any type for which its own equality is not defined – or, as might be the case for
some irregular types – is “undefined”, the equality means the member-wise equality
comparison. The same, of course, would be done for synthesized copy constructors,
default constructors, etc. Such things would require some simple reflection facilities that
are absent from C++.)

The same extension should work for arrays except for the unfortunate automatic
conversion of arrays into pointers. It is easy to see the correct equality semantics for
cvector_int:

template <std::size_t m>
bool operator==(const cvector_int<m>& x,
 const cvector_int<m>& y)
{
 for (std::size_t i(0); i < m; ++i)
 if (x[i] != y[i]) return false;
 return true;
}

The reason we define the equality as a global function is because the arguments are
symmetric, but more importantly because we want it to be defined as a non-friend
function that accesses both objects through their public interface. The reason for that is
that if equality is definable thorough the public interface then we know that our class is
equationally complete, or just complete. In general, it is a stronger notion than

 20

Alexander Stepanov Notes on Programming 10/31/2007

constructional completeness, since it requires that we have a public interface that is
powerful enough to distinguish between different objects. We can easily see that
fvector_int is incomplete. The size is not publicly visible. It is now easy to see that
it is not just equality definition that is not possible. No non-trivial function – that is a
function that will do different things for different values of fvector_int is definable.
Indeed if we are given an instance of fvector_int we cannot look at any of its
locations without the possibility of getting an assert violation. After all, it could be of size
0. And since operator[] is the only way to observe the differences between the
objects we cannot distinguish between two instances.

Should we make our member length public? After all, I have been advocating
exposing things to the user. Not in this case, because it would allow a user to break class
invariants. What are our invariants? The first invariant is that length must be equal to
the area of the allocated memory divided by sizeof(int). The second invariant is
that the memory will not be released prematurely. This is the reason why we keep these
members private. In general: only members that are constrained by class invariants
need to be private.

While we could make a member function to return length, it is better to make it a
global friend function. If we do that, we will be able eventually to define the same
function to work on built-in arrays and achieve greater uniformity of design. I made
size into a member function in STL in an attempt to please the standard committee. I
knew that begin, end and size should be global functions but was not willing to risk
another fight with the committee. In general, there were many compromises of which I
am ashamed. It would have been harder to succeed without making them, but I still get a
metallic taste in my mouth when I encounter all the things that I did wrong while
knowing full how to do them right. Success, after all, is much overrated. I will be
pointing to the incorrect designs in STL here and there: some were done because of
political considerations, but many were mistakes caused by my inability to discern
general principles.)

Now let us see how we do the equality and the size:

class fvector_int
{
private:
 std::size_t length; // the size of the allocated area
 int* v; // v points to the allocated area
public:
 fvector_int() : length(std::size_t(0)), v(NULL) {}
 fvector_int(const fvector_int& x);
 explicit fvector_int(std::size_t n)
 : length(n), v(new int[n]) {}
 ~fvector_int() { delete [] v; }
 fvector_int& operator=(const fvector_int& x);
 friend std::size_t size(const fvector_int& x) {

 21

Alexander Stepanov Notes on Programming 10/31/2007

 return x.length;
 }
 int& operator[](std::size_t n) {
 assert(n < size(*this));
 return v[n];
 }
 const int& operator[](std::size_t n) const {
 assert(n < size(*this));
 return v[n];
 }
};

bool operator==(const fvector_int& x,
 const fvector_int& y) {
 if (size(x) != size(y)) return false;
 for (std::size_t i = 0; i < size(x); ++i)
 if (x[i] != y[i]) return false;
 return true;
}

It is probably worthwhile to change even our definitions of the copy constructor and
assignment to use the public interface.

fvector_int::fvector_int(const fvector_int& x)
 : length(size(x)), v(new int[size(x)])
{
 for(std::size_t i = 0; i < size(x); ++i)
 (*this)[i] = x[i];
}

fvector_int& fvector_int::operator=(const fvector_int& x)
{
 if (this != &x)
 if (size(*this) == size(x))
 for (std::size_t i = 0;
 i < size(*this);
 ++i)
 (*this)[i] = x[i];
 else {
 this -> ~fvector_int ();
 new (this) fvector_int (x);
 }
 return *this;
}

We can also “upgrade” our cvector_int class to match fvector_int by providing
it with a size function:

 22

Alexander Stepanov Notes on Programming 10/31/2007

template <std::size_t m>
struct cvector_int;

template <std::size_t m>
inline
size_t size(const cvector_int<m>&)
{
 return m;
}

template < std::size_t m>
struct cvector_int {
 int values[m];
 int& operator[](std::size_t n) {
 assert(n < size(*this));
 return values[n];
 }
 const int& operator[](std::size_t n) const {
 assert(n < size(*this));
 return values[n];
 }
};

And now we can write equality for cvector_int by copy-and-pasting the body of the
equality of fvector_int. It does an unnecessary comparison of sizes – since they are
always the same the comparison could safely be omitted – but any modern compiler will
optimize it away:

template <std::size_t m>
bool operator==(const cvector_int<m>& x,
 const cvector_int<m>& y)
{
 if (size(x) != size(y)) return false;
 for (std::size_t i = 0; i < size(x); ++i)
 if (x[i] != y[i]) return false;
 return true;
}

One of the goals of the first part of the course is to refine this code to the point that the
same cutting-and-pasting methodology will work for any of our data structures. After all
the code could be restated in English as the following rule: two data structures are equal
if they are of the same size and are element-by-element equal. In general, we will try to
make all our functions as data structure-independent as possible.

Problem 1.

 23

Alexander Stepanov Notes on Programming 10/31/2007

Refine your solution to Problem 1 of Lecture 1 according to what we learned today.

Problem 2.

Extend your fvector_int to be able to change its size.

Lecture 3. Continuing with fvector_int

In the previous lecture we implemented operator== for fvector_int. It is an
important step since now our class can be used together with many algorithms that use
equality, such as, for example, std::find. It is, however, not enough to define
equality. We have to define inequality to match it. Why do we need to do that? The main
reason is that we want to preserve the freedom to be able to write

a != b

and

!(a == b)

interchangeably.

The statements that two things are unequal to each other and two things are not equal to
each other should be equivalent. Unfortunately, C++ does not dictate any semantic rules
on operator overloading. A programmer is allowed to define equality to mean equality
but the inequality to mean inner product or division modulo 3. That is, of course, totally
unacceptable. Inequality should be automatically defined to mean the negation of
equality. It should not be possible to define it separately and it has to be provided for us
the moment equality is defined. But it is not. We have to acquire a habit to define both
operators together whenever we define a class. Fortunately, it is very simple:

inline
bool operator!=(const fvector_int& x, const fvector_int& y)
{
 return !(x == y);
}

Unfortunately, even such a self-evident rule as the equivalence of inequality and negation
of equality does not hold everywhere. The floating-point data types (float and
double) contain a value NaN (not-a-number) that possesses some remarkable
properties. The IEEE 754 standard requires that every comparison (==, <, >, <=, >=)
involving NaN should return false. This was a terrible decision that overruled the
meaning of equality and made it difficult to do any careful reasoning about programs. It
makes it impossible to reason about programs since equational reasoning is central to

 24

Alexander Stepanov Notes on Programming 10/31/2007

reasoning about programs. Because of the unfortunate standard we can no longer
postulate that:

T a = b; assert(a == b);

or

a = b; assert(a == b);

The meaning of construction and assignment is compromised. Even the axioms of
equality itself are no longer true since because of NaN the reflexivity of equality is no
longer true and we cannot assume that:

assert(a == a);

holds. (We shall see later that the consequences for ordering comparisons are equally
unpleasant.) The only reasonable approach is to ignore the consequences of the rules,
assume that all the basic laws of equality hold, and then postulate that the results of our
reasoning and all of the program transformations that such reasoning allows us to do,
hold only when there are no NaNs generated during our program execution. Such an
approach will give us reasonable results for most programs. For the duration of our
lectures we will make such an assumption.

(There is a lesson in this: the makers of the IEEE standard concentrated on the semantics
of floating point numbers but ignored the general rules that govern the world: the law of
identity that states that everything is equal to itself and the law of excluded middle that
states that either a proposition or its negation is true. They made a clumsy attempt to map
a multi-valued logic {true, false, undefined} into a two-valued logic {true, false}, and we
have to suffer the consequences. The standards are seldom overturned to conform to
reason and, therefore, we have to be very careful when we propose something as a
standard.)

We will return to our discussion of equality in the next lecture, but now let us consider if
we should implement operator< for fvector_int. When a question like that is
asked, we need to analyze it in terms of what we will be able to do if we define it. And
the immediate answer is that we will be able to sort an array of fvector_int. While
we are going to study sorting much later in the course, every programmer knows why
sorting is important: it allows us to find things quickly using binary search and to
implement set operations such as union and intersection.

It is clearly a useful thing to do and it is not hard to see how to compare two instances of
fvector_int: we will compare them lexicographically. As with operator== it is
proper to define operator< as a global function that uses only the public interface:

bool operator<(const fvector_int& x, const fvector_int& y)
{

 25

Alexander Stepanov Notes on Programming 10/31/2007

 size_t i(0);

 while (true) {
 /*
 if (i >= size(x) && i >= size(y)) return false;
 if (i >= size(x)) return true;
 if (i >= size(y)) return false;
 // these three if statements are equivalent
 // to the next two
 */
 if (i >= size(y)) return false;
 if (i >= size(x)) return true;
 if (y[i] < x[i]) return false;
 if (x[i] < y[i]) return true;
 ++i;
 }
}

Or slightly more cryptic:

bool operator<(const fvector_int& x, const fvector_int& y)
{
 size_t min_size(std::min(size(x), size(y)));
 size_t i(0);
 while (i < min_size && x[i] == y[i]) ++i;
 if (i < min_size) return x[i] < y[i];
 return size(x) < size(y);
}

Quiz:

Convince yourself that the two implementations are equivalent. Which one is more
efficient and why? Test if your efficiency guess is correct.

Now, we clearly want to preserve the rule that programmers can write

a < b

and

b > a

interchangeably. Moreover, we would like to be certain that

!(a < b)

is equivalent to

 26

Alexander Stepanov Notes on Programming 10/31/2007

a >= b

and

a <= b

is equivalent to

!(a > b)

As with equality, C++ does not enforce that all of the relation operators should be defined
simultaneously. It is important to define them simultaneously and while it is tedious, it is
not intellectually challenging. While it is not strictly speaking necessary, I recommend
that you always define operator< first and then implement the other three in terms of
it:

inline
bool operator>(const fvector_int& x, const fvector_int& y)
{
 return y < x;
}

inline
bool operator<=(const fvector_int& x, const fvector_int& y)
{
 return !(y < x);
}

inline
bool operator>=(const fvector_int& x, const fvector_int& y)
{
 return !(x < y);
}

If a type has operator< defined on it, it should mean total ordering; otherwise some
other notation should be used. In particular, it is strictly totally ordered. (That means that
a < a is never true.) As I said before, having a total ordering on a type is essential if we
want to implement fast set operations. It is, therefore, quite remarkable that C and C++
dramatically weaken the ability to obtain total ordering provided by the underlying
hardware. The instruction set of any modern processor provides instructions for
comparing two values of any built-in data type. It is easy to extend them to structures
using lexicographical ordering. Unfortunately, there is a trend to hide hardware
operations that has clearly affected even the C community. For example, one is not
allowed to compare void pointers. Even with non-void pointers, they can be compared
only when they point to the same array. That, for example, makes it impossible to sort an

 27

Alexander Stepanov Notes on Programming 10/31/2007

array of pointers to heap-allocated objects. Compilers, of course, cannot enforce such a
rule since it is not known where the pointer is pointing.

I would say that all built-in types need to provide < by at least exposing the natural
ordering of their bit patterns. It is terribly nice if the ordering preserves the topology of
algebraic operations, so that if a < b we know that a + c < b + c, and it should do so in
many natural cases. It is, however, essential to allow people to sort their data even if
ordering is not consistent with other operations. If it is provided, we can be sure that the
data can be found quickly.

For user-defined structures, the compiler can always synthesize a lexicographical
ordering based on members, or a user needs to define a more semantically relevant
ordering. In any case, the definition of < should be consistent with the definition of == so
that the following always holds:

!(a < b) && !(b < a)

is equivalent to

a == b

Only the classes that have the relational operators defined can be effectively used with
the standard library containers (set, map, etc) and algorithms (sort, merge, etc).

(One of the omissions that I made in STL was the omission of relational operators on
iterators. STL requires them only for random access iterators and only when they point to
the same container. It makes it impossible to have a set of iterators into a list. Yes, it is
impossible to assure the topological ordering of such iterators – the property that if a <
b then ++a < ++b or, in other words, that the ordering imposed by < coincides with
the traversal ordering – but such a property is unneeded for sorting. The reason that I
decided not to provide them was that I wanted to prevent people writing something like

for (std::list<int>::iterator i = mylist.begin();
 i < mylist.end(); ++i) sum += *i;

In other words, I considered “safety” to be a more important consideration than
expressibility, or uniform semantics. It was a mistake. People would have learned that it
was not a correct idiom quickly enough, but I made it much harder for me to maintain
that all regular types – we will be defining what “regular” means in the next lecture but,
simply speaking, the types that you assign and copy – should have not just equality but
also the relational operators defined. General principles should not be compromised for
particular, expedient reasons.)

Now we can create a vector of fvector_int

vector<fvector_int> my_vector(size_t(100000),

 28

Alexander Stepanov Notes on Programming 10/31/2007

 fvector_int(1000));

and after we fill all the elements of the vector with data, we can sort it. It is very likely
that somewhere inside std::sort, there is a piece of code that swaps two elements of
the vector using std::swap.

As we shall discover in this course, swapping is one of the most important operations in
programming. We encountered it in the previous lecture when we wanted it to work with
elements of fvector_int. Now we need to consider applying swap to two instances
of fvector_int. It is fairly easy to define a general purpose swap:

template <class T> // T models Regular
 // the previous comment will be
 // explained later
inline
void swap(T& x, T& y)
{
 // assert(true); // no preconditions
 // T x_old = x; assert(x_old == x);
 // T y_old = y; assert(y_old == y);
 T tmp(x); // assert(tmp == x_old);
 x = y; // assert(x == y_old);
 y = tmp; // assert(y == x_old);
 // assert(x == y_old && y == x_old);
}

It is a wonderful piece of code that depends on fundamental properties of copy and
assignment. We are going to use the assertions later on to derive axioms that govern
copying and assignment. I am sure that some of you are astonished that I am ignorant of
the basic mathematical fact that one does not derive axioms but only theorems. You have
to think, however, about where axioms come from. It is not hard to see that short of
demanding a private revelation for every set of axioms, we have to learn how to induce
axioms governing the behavior of our (general) objects from observing the behavior of
some particular instances. Induction – not the mathematical induction but the technique
of generalizing from the particular to the general – is the most essential tool of science
(the second most essential being the experimental verification of the general rules
obtained through the inductive process.).

There is, of course, a tricky way of doing swap without using a temporary:

inline
void swap(unsigned int& x, unsigned int& y)
{
 // assert(true); // no preconditions
 // unsigned int x_old = x; assert(x_old == x);
 // unsigned int y_old = y; assert(y_old == y);
 y = x ^ y; // assert(y == x_old ^ y_old);

 29

Alexander Stepanov Notes on Programming 10/31/2007

 x = x ^ y; // assert(x == y_old);
 y = x ^ y; // assert(y == x_old);
 // assert(x == y_old && y == x_old);
}

This code, nowadays, is almost always slower than the one with a temporary. It might on
very rare occasions be useful in assembly language programming for swapping registers
on processors with a limited number of registers. But it is beautiful and frequently
appears as a job interview question. It is interesting to note that we do not really need the
exclusive-or to implement it. One can do the same with + and -:

 y = x + y; // assert(y == x_old + y_old);
 x = y - x; // assert(x == y_old);
 y = y - x; // assert(y == x_old);

The general purpose swap clearly works for fvector_int. All the operations that are
used by the body of the template are available for fvector_int and you should be
able to prove all of the assertions without much difficulty. There are, however, two
problems with this implementation. First, it takes a long time. Indeed we need to copy an
fvector_int – which takes time linear in its size – and then we do two assignments –
which are also linear in its size. (Plus the time of the allocation and de-allocation which,
while usually amortized constant, could be quite significant.) Second, our swap can throw
an exception if there is not enough memory to construct a temporary. It seems that both
of these things are generally unnecessary. If two objects use extra resources, they can just
swap pointers to them. And swap should never cause an exception since it does not need
to ask for additional resources. It is quite obvious how to do that: swap members of the
class member-by-member. In general, we call a type swap-regular if its swap can be
implemented by swapping the bit-patterns of corresponding objects. All the types we are
going to encounter are going to be swap-regular. (One can obtain a non-swap-regular
type by defining a class with remote parts that contain pointers to the object itself. It is
usually unnecessary and can always be avoided by creating a remote header node to
which the inverted pointers can point.)

Swap allows us to produce a better implementation of assignment. The general purpose
assignment that we introduced in the previous lecture looked like:

T& T::operator=(const T& x)
{
 if (this != &x) {
 this -> ~T(); // destroy object in place
 new (this) T(x); // construct it in place
 }
 return *this;
}

 30

Alexander Stepanov Notes on Programming 10/31/2007

If the copy constructor raises an exception we are left in a peculiar situation since the
object on the left side of the assignment is left in an undefined state. It is clearly bad
since, when the stack is unwound and objects are destroyed, it is likely that the destructor
will be applied to the object again. And it is highly improper to destroy things twice.
Moreover, even if we ignore this aspect, it would be terribly nice if incomplete
assignments left the object unmodified. (If you cannot store a new value at least leave the
old value untouched.) If we have swap that is fast and exception-free we can always
implement the assignment with the properties we desire:

T& T::operator=(const T& x)
{
 if (this != &x) {
 T tmp(x);
 swap(*this, tmp);
 }
 return *this;
}

Notice that if the copy constructor throws an exception, *this is left untouched.
Otherwise after swapping, the temporary is destroyed and the resources that used to
belong to *this before the swap are de-allocated.

Somebody might object that there are circumstances when the old definition is better
since it does not try to obtain memory before the old memory is returned. That might be
more beneficial when dealing with assignments of large data structures. We might prefer
to trade the preservation of the old value in case of an exception to ability to encounter
the exception less frequently. It is, however, easy to fix. We need to provide a function
that returns memory and call it before the assignment. It is trivial to implement for
fvector_int:

inline
void shrink(fvector_int& x)
{
 fvector_int tmp;
 swap(x, tmp);
}

Now we need only to call shrink and then do the assignment.

Swap is more efficient than assignment for objects that own remote parts that need to be
copied. Indeed let us look at the complexity of the operations that we have defined on
fvector_int. Before we can talk about complexity of operations we need to figure
out how we measure the size of objects. C/C++ provide us with a built-in type-function
sizeof. It is clearly not indicative of the “real” size of the object. In the case of
fvector_int we have size that tells us how many integers it contains. We can

 31

Alexander Stepanov Notes on Programming 10/31/2007

“normalize” our measure by defining a function areaof that tells us the number of
bytes that an object owns. In case of fvector_int it can be defined as

size_t areaof(const fvector_int& x)
{
 return size(x)*sizeof(int) + sizeof(fvector_int);
}

We can determine how well our class uses its memory with the help of:

double memory_utilization(const fvector_int& x)
{
 double useful(size(x)*sizeof(int));
 double total(areaof(x));
 return useful/total;
}

It is clear that both copying and assignment are O(areaof(x)). Swap is
O(sizeof(x)). Equality and less than are O(areaof(x)) in the worst case but it is
easy to observe that they are constant time on the average assuming a uniform
distribution for values of integers stored in fvector_int. The default constructor is
constant time and the initializing constructor
(fvector_int::fvector_int(size_t)) seems to be constant time (assuming
that allocation is constant time). It is tempting to believe that so is the destructor, but in
reality most modern systems fill the returned memory with 0 as a security measure, so in
reality it is O(areaof(x)). And both size and operator[] are constant time.

Now we can put together everything that we have learned into a refined version of
fvector_int:

#include <cstddef> // the definition of size_t
#include <cassert> // the definition of assert

template <class T>
inline
void swap(T& x, T& y)
{
 T tmp(x);
 x = y;
 y = tmp;
}

class fvector_int
{
private:
 size_t length; // the size of the allocated area

 32

Alexander Stepanov Notes on Programming 10/31/2007

 int* v; // v points to the allocated area
public:
 fvector_int() : length(std::size_t(0)), v(NULL) {}
 fvector_int(const fvector_int& x);
 explicit fvector_int(std::size_t n)
 : length(n), v(new int[n]) {}
 ~fvector_int() { delete [] v; }
 fvector_int& operator=(const fvector_int& x);
 friend void swap(fvector_int& x, fvector_int& y)
 {
 swap(x.length, y.length);
 swap(x.v, y.v);
 }
 friend std::size_t size(const fvector_int& x)
 {
 return x.length;
 }
 int& operator[](std::size_t n)
 {
 assert(n < size(*this));
 return v[n];
 }
 const int& operator[](std::size_t n) const
 {
 assert(n < size(*this));
 return v[n];
 }
};

fvector_int::fvector_int(const fvector_int& x)
 : length(size(x)), v(new int[size(x)])
{
 for(std::size_t i = 0; i < size(x); ++i)
 (*this)[i] = x[i];
}

fvector_int& fvector_int::operator=(const fvector_int& x)
{
 if (this != &x)
 if (size(*this) == size(x))
 for (std::size_t i = 0;
 i < size(*this);
 ++i)
 (*this)[i] = x[i];
 else {
 fvector_int tmp(x);
 swap(*this, tmp);

 33

Alexander Stepanov Notes on Programming 10/31/2007

 }
 return *this;
}

bool operator==(const fvector_int& x,
 const fvector_int& y) {
 if (size(x) != size(y)) return false;
 for (std::size_t i = 0; i < size(x); ++i)
 if (x[i] != y[i]) return false;
 return true;
}

inline
bool operator!=(const fvector_int& x, const fvector_int& y)
{
 return !(x == y);
}

bool operator<(const fvector_int& x, const fvector_int& y)
{
 for (size_t i(0); ; ++i) {
 if (i >= size(y)) return false;
 if (i >= size(x)) return true;
 if (y[i] < x[i]) return false;
 if (x[i] < y[i]) return true;
 }
}

inline
bool operator>(const fvector_int& x, const fvector_int& y)
{
 return y < x;
}

inline
bool operator<=(const fvector_int& x, const fvector_int& y)
{
 return !(y < x);
}

inline
bool operator>=(const fvector_int& x, const fvector_int& y)
{
 return !(x < y);
}

size_t areaof(const fvector_int& x)

 34

Alexander Stepanov Notes on Programming 10/31/2007

{
 return size(x)*sizeof(int) + sizeof(fvector_int);
}

double memory_utilization(const fvector_int& x)
{
 double useful(size(x)*sizeof(int));
 double total(areaof(x));
 return useful/total;
}

 35

Alexander Stepanov Notes on Programming 10/31/2007

Lecture 4. Implementing swap

Up till now we have dealt mostly with two types: fvector_int and int. These type
have many operations in common: copy construction, assignment, equality, less than. It is
possible to write code fragments that can work for either. We almost discovered such a
fragment when we looked at the implementation of swap:

T tmp(x);
x = y;
y = tmp;

While the code makes sense when we replace T with either of the types, we discovered
that there is an implementation of swap for fvector_int that is far more efficient.
The question that we need to raise is whether we can find a way of making codes that
would work efficiently for both cases.

Let us look at a very useful generalization of swap:

template <typename T>
inline
void cycle_left(T& x1, T& x2, T& x3) // rotates to the left
{
 T tmp(x1);
 x1 = x2;
 x2 = x3;
 x3 = tmp;
}

While it clearly works for both types, it is quite inefficient for fvector_int since it is
complexity is linear in the sum of the sizes of three arguments, and it might raise an
exception if there are not enough resources to make a copy of x1.

We can do much better if we replace it with the following definition:

template <typename T>
inline
void cycle_left(T& x1, T& x2, T& x3) // rotates to the left
{
 swap(x1, x2);
 swap(x2, x3);
}

Since swap is a constant time operation on fvector_int, we can use this definition
without much of a problem. Unfortunately, this kind of definition is often going to be
slower since it is going to expand to:

 36

Alexander Stepanov Notes on Programming 10/31/2007

T tmp1(x1);
x1 = x2;
x2 = tmp1;
T tmp2(x2);
x2 = x3;
x3 = tmp2;

and while there is a chance that a good optimizing compiler will make it as fast as the
first version for int and double, it is unlikely that extra operations will be eliminated
when we deal with structures, and the potential performance loss might be around 50% .

So we need both definitions – one to use with fvector_int and other classes with
remote parts and the other to use with the built-in types and user-defined types which
have no user defined copy-constructors, assignments and destructors. C++ language
specialists call such types POD types where POD stands for plain old data. There is at
present no easy way in C++ to write code that will do one thing for POD types and
something else for more complicated types.

We can, however, attempt to unify our two versions with the help of a weaker version of
assignment operation. We will call such an operation move. When we do an assignment
we know that

assert(b == c); a = b; assert(a == b && b == c);

In other words, assignment makes its left-hand side equal to the right-hand side, while
leaving the right hand side unchanged.

move has weaker semantics:

assert(b == c && &b != &c); move(b, a); assert(a == c);

In other words, move assures that the value moves from the source to the destination;
there are no guarantees that the source is unchanged. The weaker semantics of move
frequently allows for faster implementation. We can define the most general version of
move to default to assignment:

template <typename T>
inline
void move(T& source, T& destination)
{
 destination = source;
}

Note that we take the source argument as a reference and not a constant reference. While
it is not needed for the most general case, its refinements will modify the source, and we
want to have our signature consistent between the general case and the refinements.

 37

Alexander Stepanov Notes on Programming 10/31/2007

For types, such as fvector_int, we can provide a more efficient implementation of
move:

inline
void move(fvector_int& source, fvector_int& destination)
{
 swap(source, destination);
}

The properly implemented move will never need extra resources and, therefore, will
never raise an exception.

Now we can implement cycle_left with the help of move:

template <typename T>
inline
void cycle_left(T& x1, T& x2, T& x3) // rotates to the left
{
 T tmp;
 move(x1, tmp);
 move(x2, x1);
 move(x3, x2);
 move(tmp, x3);
}

Since the well-behaved default constructors do not raise an exception, we also have an
exception-safe implementation. It is much more reasonable for fvector_int than the
implementation based on three assignments but much less efficient than the
implementation that uses two swaps.

We can, of course, specialize cycle_left for fvector_int the way we specialized
it for swap and move. That will, however, lead to specializing every other algorithm that
uses similar technique, and we shall see many of them later in the course. It would be
much better if we can find a primitive that would allow us to produce swap,
cycle_left, and would also work for rotate, partial_sort and many other
functions that permute values in place. All this functions are realizable with the help of
swap but only at the expense of doing unnecessary operations.

So, while move is a useful operation all our types should have, we cannot design a
generic implementation of cycle_left that is going to be as fast for int as it is for
fvector_int. The main reason for that is that we are trying to combine efficiency and
safety. Our implementation of move for fvector_int is doing a lot more work than
absolutely necessary by assuring that the source is left in a proper state. Concern for
safety is a good thing but we should be able to allow for a disciplined violation of safety
rules.

 38

Alexander Stepanov Notes on Programming 10/31/2007

We can weaken the semantics of move even further by introducing a notion of the raw
move. It is not guaranteed to leave the source in a valid state. In particular, the source
might not be destructible. It should be possible, however, to make an object in an invalid
state valid by moving a valid object back into it.

As was the case with move we can implement the general version of move_raw with
the help of the assignment:

template <typename T>
inline
void move_raw(T& source, T& destination)
{
 destination = source;
}

Now we can provide an implementation of move_raw for fvector_int:

friend void move_raw(fvector_int& source,
 fvector_int& destination)
{
 destination.length = source.length;
 destination.v = source.v;
}

Now, the problem with move_raw is that it is difficult to find a way of using it safely.
Before we formulate the rules, let us try using it to implement cycle_left:

template <typename T>
inline
void cycle_left(T& x1, T& x2, T& x3) // rotates to the left
{
 T tmp;
 move_raw(x1, tmp);
 move_raw(x2, x1);
 move_raw(x3, x2);
 move_raw(tmp, x3);
}

At the end x1, x2 and x3 have the correct values in them. The problem is that we now
have an invalid object in tmp before we exit the function and calling the destructor on an
invalid object is very dangerous. We could “fix” the problem at least in the case of
fvector_int, by changing the code to:

template <typename T>
inline
void cycle_left(T& x1, T& x2, T& x3) // rotates to the left

 39

Alexander Stepanov Notes on Programming 10/31/2007

{
 T tmp;
 move_raw(x1, tmp);
 move_raw(x2, x1);
 move_raw(x3, x2);
 move_raw(tmp, x3);
 move_raw(T(), tmp);
}

This version keeps tmp valid by relying on the fact that move_raw out of the
anonymous default value that was constructed by T() does not make any resource
allocations. Now we introduce a rule that move_raw should leave a default-constructed
object in a valid state so that it can be safely destroyed. The rule is not particularly
onerous since we already agreed that it is good for a default constructor not to allocate
any resources and, therefore, it does not need to de-allocate them. But this solution is not
general enough and leads to a totally unnecessary fifth move_raw. What we need is the
ability to turn off the destruction of tmp and that will eliminate the need for keeping tmp
in a valid state. (We would also like to avoid doing any work during its construction but
shall address that issue later.)

It could be easily imagined how to do this if for any type T we had another type U such
that we can move objects from T into U and back such that U would be left in a valid state
for destruction. In other words we want a type that will treat the bit pattern that describes
T as a bit pattern only. We will call such a type an underlying type. If we had such a type
we could implement cycle_left as:

template <typename T>
inline
void cycle_left(T& x1, T& x2, T& x3) // rotates to the left
{
 UNDERLYING_TYPE(T) tmp;
 move_raw(x1, tmp);
 move_raw(x2, x1);
 move_raw(x3, x2);
 move_raw(tmp, x3);
}

provided that move_raw was also defined between T and UNDERLYING_TYPE(T)
and the other way around. Here we encounter for the first time an example of a type
function, a function that takes a type and returns a type. The type returned by a type
function is called an affiliated type.

Defining type functions in C++ is very difficult, so before we attempt to do it, let us
define it in English. First, it is clear that for any built-in type its underlying type is
identical to the type itself. For user-defined types we can define it to be equal to a struct
composed sequentially out of the underlying types of its members. Now, for built-in

 40

Alexander Stepanov Notes on Programming 10/31/2007

types, move_raw is just an assignment, and for user-defined types it is equivalent to
member-wise raw moves between members in the type and the corresponding members
of UNDERLYING_TYPE(T). If we had a programming language designed for doing
things like that it would take less space than in English to define a general way of
obtaining underlying type and the raw moves into it and from it. As we shall see in the
next lecture it will require a lot of ugly hacking (some people call such hacking template
meta-programming) to accomplish the task.

It should be noted that if we can have UNDERLYING_TYPE(T) and the raw moves, we
can finally come up with a definition of swap that will work equally efficiently for both
int and fvector_int:

template <typename T>
inline
void swap(T& x, T& y) {
 UNDERLYING_TYPE(T) tmp;
 move_raw(x, tmp);
 move_raw(y, x);
 move_raw(tmp, y);
}

The only deficiency of this code is that while the construction of the temporary is taking
place for the underlying_type of fvector_int, the compiler is likely to generate
some code that initializes the struct while it is not going to generate code for int. It is an
embarrassment that C++ treats initialization of built-in types differently from the
initialization of user-defined types and while if one writes

int array[100];

one can be sure that no code will be generated, there is no way to assure the same
behavior when one writes:

complex<int> array[100];

We need to have a weaker constructor than the default constructor. I call such a
constructor a construct-any constructor. If it is not defined, it defaults to the default
constructor. It should, however, be defined for the types for which any bit-pattern
constitutes a valid value. Then it is possible to require that

T a;

and

T a[100];

 41

Alexander Stepanov Notes on Programming 10/31/2007

call constructor-any instead of calling the default constructor. Such a rule will allow us to
avoid unnecessary initializations and will justify the fact that

int n; // the value of n is not defined

while
int n(int()); assert(n == 0);

It is fairly easy to come up with a reasonable syntax. Something like

T::T(std::any)

could be used where std::any is a special class, the use of which means that no work
needs to be done.

And, since we are dealing with all the issues around constructors it is important to
indicate one major deficiency in C++ that prevents us from unifying int and
fvector_int. It is easy to write a function that will return int:

int successor(int i) { return ++i; }

While it is equally easy to write a function that returns fvector_int:

fvector_int multiply_by_scalar(const fvector_int& v, int n)
{
 fvector_int result(v);
 for (std::size_t i = 0; i < size(result); ++i) {
 result[i] *= n;
 }
 return result;
}

it is not really desirable to do that since there will be an extra expensive copy done when
the result is returned. It would be terribly nice if we can assure that instead of an
unnecessary copy, the compiler would do an raw move and then not apply the destructor.
In other words, we need what I call a copy-destructor which is called whenever a copy is
immediately followed by the destructor. A copy destructor should default to move_raw.

And before I forget, let us define a rule that makes a sequence of move_raws safe: the
sequence of raw moves is safe if it generates a permutation of the original values of the
type. This rule will allow us to use it when we deal with general permutations algorithms
later in the course.

 42

Alexander Stepanov Notes on Programming 10/31/2007

Lecture 5. Types and type functions

We observe that there are similarities between int and fvector_int. We also
discovered that it is possible to connect a type with another type through the use of type
functions. But what do we mean by a type? This question is one of the central questions
in programming. We will be talking about it throughout the course. But we will start now
with the most general definition: a type is a method of assigning meaning to data
stored in computer memory. This definition is important for us because it states that
types have existence irrespective of the programming language that we use. Even if we
program in assembly language we assign meaning to different sequences of bits in
memory. This meaning is usually expressed in operations that we define on them, the
properties we expect them to obey and the mappings from them onto the physically
observable values through input/output. The types that our programming language
provides for us are just approximations to the full meanings that we see in the bit patterns
of our applications. It is important to remember this so that we do not drive our designs
by the limitations of the language but come up with the intended definitions of types and
only then map them onto the programming language. In other words, design your data
structures and algorithms first and only then map them into a programming language. Do
not start with inheritance or templates but with linked lists and hash functions. Think in
assembly language or C and then implement in a high level language such as C++.

Every type has a (potentially infinite) set of computable functions definable on it. Out of
this set we can select a subset such that all other functions can be defined in terms of it. I
call such a subset a computational basis of a type. I call a computational basis efficient if
all the functions on the type can be expressed in terms of the basis as efficiently as if they
had access to the bit representation of the type. I call a computational basis orthogonal if
no functions in it can be expressed in terms of other functions without loss of efficiency.
(It is less important to design an orthogonal basis than an efficient basis for a type; we
will frequently insert “unnecessary” helper functions to make the interface more
convenient. For example, operator!= is not strictly necessary but we will require it
for all regular types.)

It is frequently necessary to define (at least conceptually) functions that operate on types
themselves – not on the objects. I call such functions type functions. The best example of
a type function in C and C++ is the sizeof operator. It takes a type and returns
size_t; its pseudo-signature is:

size_t sizeof(type);

Another example of a type function is a postfix unary operator* that takes a type and
returns a pointer type pointing to it.

Sadly enough, C and C++ not only lack facilities for defining type functions but do not
provide most useful type functions for extracting different type attributes that are trivially

 43

Alexander Stepanov Notes on Programming 10/31/2007

known to the compiler. It is impossible to find out how many members a type has; it is
impossible to find the types of the members of a structure type; it is impossible to find
out how many arguments a function takes or their types; it is impossible to know if a
function is defined for a type; the list goes on and on. The language does its best to hide
the things that the compiler discovers while processing a program. That is why it is
impossible to express the most self-evident things such as the default definition of
equality: if equality is not defined for a type, provide it with member-by-member
equality. And that is what makes it so difficult for us to give a compilable definition of
the underlying_type type function and the corresponding move_raw.

This fundamental limitation of the language caused the development of a collection of
techniques that is called template meta-programming. As I said before, it is a good
example of programming technique known as ugly hacking. It should be noted that I do
not claim that people who do it are ugly. (After all, I am personally responsible for
unleashing this thing onto the world: STL was not just the first major example of generic
programming but the first major example of template hacking.) I consider ugly hacking
to be a technical term that describes techniques that use machinery designed for some
other purpose to provide fragile partial solutions of fundamental problems. Ugly hacking
is invariably “clever”. It is similar to playing the violin with one’s feet. It is admirable
that it can be done but its place is in the circus and not in the Conservatoire.

While I am at it, let me put a disclaimer about the use of the term generic programming.
The term was introduced by David Musser and me in our 1988 paper “Generic
Programming” which defines the term like so: “Generic programming centers around the
idea of abstracting from concrete efficient algorithms to obtain generic algorithms that
can be combined with different data representations to produce a wide variety of useful
software. For example, a class of generic sorting algorithms can be defined which work
with finite sequences but which can be instantiated in different ways to produce
algorithms working on arrays or linked lists.” It has nothing to do with templates or
template meta-programming. It has everything to do with algorithms and data structures.
Unfortunately, the term was kidnapped and is frequently used to describe the “clever” use
of templates. Almost every week I am met by somebody in an elevator who lets me know
that he is interested in attending my template meta-programming course. I try to teach
programming, not template meta-programming!

Unfortunately, I will have to use ugly hacking to do certain things. It will allow me to
introduce some essential ideas. But please remember that it is an act of desperation. Do
not do it yourself unless absolutely necessary. And if you do, do not be proud of your
accomplishments but be sad that you had to inflict such ugliness on future readers of your
code.

It is relatively easy to implement a basic type function for structures and classes as long
as we define a function for every point of its domain, one definition at a time. For
example if inside our definition of fvector_int we put the following definition:

 44

Alexander Stepanov Notes on Programming 10/31/2007

public:
 struct underlying_type
 {
 size_t length;
 int* v;
 };
 friend
 void move_raw(fvector_int& x, underlying_type& y) {
 y.length = x.length;
 y.v = x.v;
 }
 friend
 void move_raw(underlying_type& x, fvector_int& y) {
 y.length = x.length;
 y.v = x.v;
 }
 friend
 void move_raw(fvector_int& x, fvector_int& y) {
 y.length = x.length;
 y.v = x.v;
 }

It seems that we are almost there. If we define:

#define UNDERLYING_TYPE(T) typename T::underlying_type

we can use our final generic definition of swap

template <typename T>
inline
void swap(T& x, T& y) {
 UNDERLYING_TYPE(T) tmp;
 move_raw(x, tmp);
 move_raw(y, x);
 move_raw(tmp, y);
}

with fvector_int and get rid of the specialized version of swap for this class.
Unfortunately, that will make our “generic” definition unable to swap two integers since
we can not put the following line inside the definition of int:

typedef int underlying_type;

There seems to be no way for extracting a type from int the way we are extracting a
type from fvector_int. Sadly enough there is an ugly hack that allows us to squeeze
by. (I say, sadly enough, because if it were not for ugly hacks the core language designers

 45

Alexander Stepanov Notes on Programming 10/31/2007

would be forced to introduce proper linguistic mechanisms.) We can use a special helper
class to generate an affiliated type.

template <typename T>
struct underlying_type_traits
{
 typedef T underlying_type;
};

template <>
struct underlying_type_traits<fvector_int>
{
 typedef fvector_int::underlying_type underlying_type;
};
// needs to be defined after the definition of fvector_int
// but before the definition of fvector_int::operator=
// why is that?

#define UNDERLYING_TYPE(T) typename \
 underlying_type_traits<T >::underlying_type
// no spaces after the backslash!
// and a space after T!

And we have to remember that our macro works only for template arguments because we
cannot use the keyword typename outside a template definition. If we need to refer to
the underlying type of some type outside a template definition we need to write the full
incantation. For example:

underlying_type_traits<int>::underlying_type tmp1;
underlying_type_traits<fvector_int>::underlying_type tmp2;

Now we will need to do extra work for all classes for which their underlying type is
different from them.

If we could, however, manipulate our types and if we assume that a composite type is a
sequence of other types we could define a meta-procedure:

type underlying_type(const type& t)
{
 if (!is_composite(t)) return t;
 type result(composite_type(size(t)));
 for (size_t i(0); i < size(t); ++i)
 result[i] = underlying_type(t[i]);
 return result;
}

 46

Alexander Stepanov Notes on Programming 10/31/2007

And – isn’t it nice to be able to program in an imaginary programming language – we
would be able to define all raw moves once and for all!

If we return to reality, we can produce a version of our fvector_int that includes all
of our newly discovered facilities:

#include <cstddef> // the definition of size_t
#include <cassert> // the definition of assert

template <typename T>
struct underlying_type_traits
{
 typedef T underlying_type;
};

#define UNDERLYING_TYPE(T) typename \
 underlying_type_traits<T>::underlying_type

template <typename T>
inline
void swap(T& x, T& y) {
 UNDERLYING_TYPE(T) tmp;
 move_raw(x, tmp);
 move_raw(y, x);
 move_raw(tmp, y);
}

template <typename T>
inline
void cycle_left(T& x1, T& x2, T& x3)
{
 UNDERLYING_TYPE(T) tmp;
 move_raw(x1, tmp);
 move_raw(x2, x1);
 move_raw(x3, x2);
 move_raw(tmp, x3);
}

template <typename T>
inline
void cycle_right(T& x1, T& x2, T& x3) {
 cycle_left(x3, x2, x1);
}

class fvector_int
{
private:

 47

Alexander Stepanov Notes on Programming 10/31/2007

 size_t length; // the size of the allocated area
 int* v; // v points to the allocated area
public:
 fvector_int() : length(std::size_t(0)), v(NULL) {}
 fvector_int(const fvector_int& x);
 explicit fvector_int(std::size_t n)
 : length(n), v(new int[n]) {}
 ~fvector_int() { delete [] v; }
 fvector_int& operator=(const fvector_int& x);
 friend std::size_t size(const fvector_int& x)
 {
 return x.length;
 }
 int& operator[](std::size_t n)
 {
 assert(n < size(*this));
 return v[n];
 }
 const int& operator[](std::size_t n) const
 {
 assert(n < size(*this));
 return v[n];
 }
 struct underlying_type
 {
 size_t length;
 int* v;
 };
 friend
 void move_raw(fvector_int& x, underlying_type& y) {
 y.length = x.length;
 y.v = x.v;
 }
 friend
 void move_raw(underlying_type& x, fvector_int& y) {
 y.length = x.length;
 y.v = x.v;
 }
 friend
 void move_raw(fvector_int& x, fvector_int& y) {
 y.length = x.length;
 y.v = x.v;
 }

};

template <>

 48

Alexander Stepanov Notes on Programming 10/31/2007

struct underlying_type_traits<fvector_int>
{
 typedef fvector_int::underlying_type underlying_type;
};

fvector_int::fvector_int(const fvector_int& x)
 : length(size(x)), v(new int[size(x)])
{
 for(std::size_t i = 0; i < size(x); ++i)
 (*this)[i] = x[i];
}

fvector_int& fvector_int::operator=(const fvector_int& x)
{
 if (this != &x)
 if (size(*this) == size(x))
 for (std::size_t i = 0;
 i < size(*this);
 ++i)
 (*this)[i] = x[i];
 else {
 fvector_int tmp(x);
 swap(*this, tmp);
 }
 return *this;
}

inline
void move(fvector_int& x, fvector_int& y)
{
 swap(x, y);
}

bool operator==(const fvector_int& x,
 const fvector_int& y) {
 if (size(x) != size(y)) return false;
 for (std::size_t i = 0; i < size(x); ++i)
 if (x[i] != y[i]) return false;
 return true;
}

inline
bool operator!=(const fvector_int& x, const fvector_int& y)
{
 return !(x == y);
}

 49

Alexander Stepanov Notes on Programming 10/31/2007

bool operator<(const fvector_int& x, const fvector_int& y)
{
 for (size_t i(0); ; ++i) {
 if (i >= size(y)) return false;
 if (i >= size(x)) return true;
 if (y[i] < x[i]) return false;
 if (x[i] < y[i]) return true;
 }
}

inline
bool operator>(const fvector_int& x, const fvector_int& y)
{
 return y < x;
}

inline
bool operator<=(const fvector_int& x, const fvector_int& y)
{
 return !(y < x);
}

inline
bool operator>=(const fvector_int& x, const fvector_int& y)
{
 return !(x < y);
}

size_t areaof(const fvector_int& x)
{
 return size(x)*sizeof(int) + sizeof(fvector_int);
}

double memory_utilization(const fvector_int& x)
{
 double useful(size(x)*sizeof(int));
 double total(areaof(x));
 return useful/total;
}

 50

Alexander Stepanov Notes on Programming 10/31/2007

Lecture 6. Regular types and equality

The introduction of move_raw and UNDERLYING_TYPE dismayed many of you. They
seemed to contradict common rules of software engineering allowing us to violate type
invariants and put our objects in an unsafe state. And so they do. That, of course, requires
an explanation.

There are two main reasons why I choose to ignore commonly accepted software
engineering strictures.

The first reason is that the goal of my quest in programming is to combine two seemingly
irreconcilable desires:

– to write programs in the most general terms, and
– to write programs as efficient as the underlying hardware allows.

The desire to write programs in the most general terms forces me to extend my type
system to be able to deal with complex data structures (such as fvector_int) as if
they were built-in types. I would like to be able to store them in other data structures and
use them with standard algorithms such as swap. That requires that certain operations
such as copying and assignment preserve certain fundamental invariants.

Preserving invariants is, however, a costly activity. And sometimes I can ignore them if
there is a rule that allows me to assure that a sequence of operations restores invariants. It
is not acceptable to make a fundamental operation several times slower than it needs to
be only to assure that all the intermediate states are valid. What is essential is that the
validity is restored at the conclusion of an operation or when an exception occurs.

The second reason for ignoring software engineering rules is that I do not accept attempts
to build safety through syntactic restrictions. For years we have been told that avoiding
gotos or pointers or other perfectly valid programming constructs will make our code
robust. It is clearly not the case, as the number of bugs in any major software product
attests. All attempts to legislate robustness or security through the draconian means of
restricting our access to some machine types or operations have not produced more
robust software. In some fundamental sense it is impossible to keep a programming
model expressive enough to be Turing-complete and make it robust. It will always be
possible for a programmer to write programs that do unwanted things. I believe that the
way to safety does not go through the creation of slow virtual machines and languages
that hide the machine from programmers but through the development of reliable and
efficient components. If we provide programmers with efficient algorithms and data
structures with precisely specified interfaces and complexity guarantees they will not
need to use unsafe operations such as move_raw (they will be used only by the few
writers of fundamental algorithms). Moreover, through the use of correct “standard”
algorithms instead of writing their own “partially correct” ones, they will be able in many
cases to avoid using statements such as for and while that can cause non-robust
behavior.

 51

Alexander Stepanov Notes on Programming 10/31/2007

I have to admit that my attempts to combine abstraction with efficiency have been only
partially successful. STL algorithms deteriorate quite dramatically on certain perfectly
legitimate inputs. Try using partial sort with strings and see how terrible the performance
is. On strings it is almost invariably faster to use sort than to use partial_sort.
The reason for such performance degradation is the fact that partial sort uses assignments
and not swaps. There are serious reasons to do it, and it makes partial sort much faster for
built-in types but slower for strings. It is in order to fix this performance degradation that
I introduced move_raw and UNDERLYING_TYPE. Yes, an entry-level programmer
should not use them or even know about them, but they are essential for people who want
to design efficient and reusable algorithms and data structures. But, be that as it may, the
present day STL is not yet capable of fully combining abstraction and efficiency.

And that leads us to a more general question: what are the requirements on a type that
will let it reside in STL containers and work with STL algorithms? Does STL rely on any
unwritten assumptions? As a matter of fact, they are unwritten because the powers that be
told me that I cannot put any requirements on general C++ types. As they see it,
programmers should be able to write anything they want, and it is nobody’s business to
put requirements on the behavior of arbitrary types. I admire their dedication to
programming freedom, but I claim that such freedom is an illusion. Finding the laws that
govern software components gives us freedom to write complex programs the same way
that finding the laws of physics allows us to construct complex mechanical and electrical
systems.

I call types that work with all STL algorithms and containers regular types. One of the
most shameful mistakes of my technical career is that I did not insist on inclusion of the
requirements of regular types into the C++ standard and that I did not even assure that all
the STL types are themselves regular.

So what are the fundamental operations that STL expects any type to have? They belong
to 3 groups:

1. Equality: in order to use find and other related algorithms STL requires
operator== to be defined and assumes certain properties of it.

2. Total ordering: sorting and binary searching that allow us to find equal elements
fast and on which sorted associative containers are based require operator<
and assume that it possesses certain properties. Total ordering must be consistent
with equality.

3. Copying and assignment: in order to put things into containers and to move
them with the help of different mutating algorithms STL assumes the existence of
copy constructors, assignment and related operations. They must be consistent
with equality.

Notice that groups 2 and 3 depend on group 1. Equality is conceptually central and it
happens to be the least understood of all the operations on regular types.

 52

Alexander Stepanov Notes on Programming 10/31/2007

When I asked you to figure out what the requirements on equality are, those of you who
attempted to do the homework suggested that equality is an operation that is:

• reflexive: a == a
• symmetric: a == b implies b == a
• transitive: a == b && b == c implies a == c

These are, of course, the properties of equality that define it as an equivalence
relationship. But these are not the essential properties of equality. There could be many
different equivalence relationship between elements of a type, but only one of them, a
very specific one, is called equality.

(Discussions of equality and identity were one of the stock discussions for analytic
philosophers in the last century. Since 1892 many a paper has been written to decide if
the morning star is the evening star and what “is” means. We will leave both stars to
philosophers and the meaning of “is” to presidential historians and attempt to give a more
computationally-oriented understanding of equality.)

When we say that two objects of the same type are equal we are attempting to say that
they are interchangeable as far as observations on them are concerned. All the
measurements (or at least all essential measurements) on them will return equal results.

We know that this is not really true. The total equality of all measurements will include
position (the address operator), and that will give us identity but not equality. We know
that there are non-identical but equal objects because we know that we can create copies
of objects. And a copy is equal but not identical to the original. In some sense, equality is
a relationship that is preserved by copying and assignment, but that is not its essential
definition either. We cannot implement equality through it.

We can get closer to equality if we define the notion of a regular function. We call a
function that takes an argument of a type T regular over this argument if it can be
substituted by an equal argument without changing the behavior of the function except
possibly some adjustment in complexity (the equal argument can, for example, be
“further” away, like not being in the cache). And we call a function regular if it is regular
over all of its arguments.

Different types have different sets of regular functions and it is a very important task to
identify them.

Quiz: Which functions in the interface of fvector_int are regular?

Observe that most common optimization techniques are based on the equality-preserving
properties of regular functions. Compilers can do constant folding and constant
propagation, common sub-expression elimination and even use general SSA (static single
assignment) form optimization on types if they know that types and the functions on them
are regular.

 53

Alexander Stepanov Notes on Programming 10/31/2007

There are functions that are not by themselves regular but possess the property that
composing them with some other functions produces regular functions. For example, the
address operator is not a regular function since a == b does not imply &a == &b. The
composition of the address with dereferencing gives us a regular function because *&a
== *&b. We call such functions dereference-regular. More precisely, a function f is
dereference-regular if and only if the composition of f and the dereference operator
(operator*) is a regular function (a == b implies *f(a) == *f(b)). When we
extend our fvector_int with iterators and begin and end functions we will observe
that begin is dereference-regular when dereferencing is defined.

A modifying operation on a type is called regular if after it is applied to two (non-
identical) equal objects they remain equal afterwards. In general, if a non-modifying
regular function is applied to the same non-volatile object twice without any modifying
operations happening in between the results will be the same. On the other hand, if there
are three different but equal objects a, b and c, and a is modified so that a != b, it
must still remain true that b == c.

We also expect that the equality operation on regular types is fast. The worst case
complexity of comparing two objects should be linear in the area of the smaller one. And
assuming the uniform distribution of bit values in a data structure, we can even expect
that the average complexity should be constant time.

While there are many different kinds of types that we need in programming, one of the
most important types is a data structure. The C++ community usually calls data structures
containers. I will use both terms indiscriminately. Let us try to outline briefly what we
mean by data structures. Knowing what data structures are will allow us to come up with
a more precise definition of equality and other operations on regular types.

A data structure is a collection of several objects called its parts. There are two different
kinds of parts: proper parts and connectors. For example, in fvector_int integers
stored in the allocated memory are proper parts. The pointer and the length fields in the
header are connectors. In other words, proper parts are those parts of the object that are
“interesting” to the user, while the connectors provide accessibility to the proper parts.

By the way, I just introduced a notion that is very important: header. The header is the
part of a data structure that allows an object to get to all of its parts and is strictly an
object in the traditional C++ sense: a struct with several members. I extend the notion
of object to include all the memory owned by it. A part of a data structure does not have
to be co-located with its header. The notion of type, which started with simple word-sized
things like integer and real in Fortran, then developed further to include record types
in Algol-68, Pascal, and C that allowed combining several objects laid out in
consecutive memory locations, needs to embrace all kind of data structures: lists, hash
tables, trees, etc.

 54

Alexander Stepanov Notes on Programming 10/31/2007

Now let me introduce a bunch of definitions. Eventually, as we build more and more data
structures, you will understand their significance.

A part of a data structure that resides in its header is called local. A non-local part is
called remote. The need for non-local parts arises from the need for objects whose
size is not known at compile time and also from the need for objects that change their
size and shape. Another advantage of non-local parts is making the header smaller to
make it cheaper to “move” the data structure should that be necessary.

All parts of an object are destroyed when an object is destroyed.

If two objects share a part, then one object is a part of the other. That means that there is
no sharing of parts. This semantics does not, of course, preclude copy-on-write, which is
fundamentally an optimization technique that does not violate the essential property of
non-sharing: if one object is modified, other objects that are not its parts remain
unchanged. There is no circularity among objects - an object cannot be a part of itself
and, therefore, cannot be part of any of its parts. That does not mean that we cannot have
circular data structures but only that one node in a data structure does not own another;
all the nodes are jointly owned by the same data structure.

An addressable part is a part for which a reference can be obtained through public
member functions. An accessible part is a part for which the value can be determined
through public member functions. Every addressable part is also accessible since if a
reference is available, it's trivial to obtain the value. An opaque object is an object with
no addressable parts.

An object is called an open data structure or an open container if all of its proper parts
are addressable.

Two open data structures are equal if all corresponding proper parts are equal. The
problem is to figure out what are corresponding parts. We clearly do not want the
sequence {1 ,2 ,3} to be considered equal to the sequence {2, 1, 3}. The corresponding
parts are determined by traversal protocols or iteration protocols of the data structure.

An object is called fixed-size if it has the same set of parts over its lifetime.

An object is called extensible if it is not of fixed size.

A part is called permanently placed if it resides at the same memory location over its
lifetime. Knowing that a part is permanently placed or not allows us to know how long a
pointer that points to it is valid. An object is called permanently placed if every part of
the object is permanently placed. In general, a properly specified object should have
precisely specified time intervals when its parts are not being reallocated.

An object is called simple if it is of fixed size and permanently placed.

 55

Alexander Stepanov Notes on Programming 10/31/2007

A concept is a collection of similar types together with a collection of similar programs
written in terms of the types and the properties of such programs and types.

Lecture 7. Ordering and related algorithms

Equality allows us to find an object in a sequence; it is impossible to implement the
simplest version of linear search without equality. We need to have an ordering if we
want to find things quickly. If we can order, we can sort, and if we can sort, we can use
binary search. While we are not yet ready to look at sorting and binary searching, we can
do many interesting little things with ordering.

We already encountered operator< when we were implementing it for
fvector_int. I remarked then that it is one of four relational operators that are
available in C++. I also stated that they should all be defined together. The language does
not require that. You can have a class that defines both < and > with x < y not
equivalent to y > x. A design like that causes people to consider overloaded operators
to be a big nuisance. The fundamental rule for overloading is that operators on user-
defined types should mean the same as on built-in types and in common mathematical
usage. It would be nice if the compiler would synthesize the three remaining relational
operators for any class after any one of the four (<, >, <=, >=) is defined. I could not do
it like that but attempted to do something almost equivalent by providing STL with the
following three templates that defined >, <=, >= when < was defined:

template <typename T> // T models Strict Totally Ordered
inline
bool operator>(const T& x, const T& y)
{
 return y < x;
}

template <typename T> // T models Strict Totally Ordered
inline
bool operator<=(const T& x, const T& y)
{
 return !(y < x);
}

template <typename T> // T models Strict Totally Ordered
inline
bool operator>=(const T& x, const T& y)
{
 return !(x < y);
}

 56

Alexander Stepanov Notes on Programming 10/31/2007

The standards committee in its infinite wisdom kept the definitions but moved them into
a special namespace that makes them quite useless. Be that as it may, I suggest that you
always copy these templates after your definition of operator< for your class and then
replace T with the name of your class until such time when the language and the compiler
do it for you automatically.

Since all four operators are equivalent, one has to make a choice of which one of them is
going to be used as a default operator in those cases when we define an algorithm that
uses total ordering. I chose operator<. I assumed that ascending ordering of elements
is more natural to us, and I also assumed that < requires less typing than <=. Both
assumptions could be challenged, but I still do not see why any other default would be
better.

Operator less-than must satisfy the three axioms of strict total ordering:

Irreflexive law: a == b implies !(a < b)

From this law we can easily derive that a == b implies !(b < a). Indeed, by
symmetry of equality a == b implies b == a and that implies that !(b < a).

Transitive law: a < b && b < c implies a < c

From this we can easily derive that !(a < b && b < a). Indeed, if
a < b && b < a then by transitivity a < a and that contradicts the irreflexive law.
In other words, irreflexivity and transitivity imply anti-symmetry. And, finally

Trichotomy law: a != b implies a < b || b < a

Notice that strict total ordering presupposes equality. While equality by itself does not
allow us to write many interesting algorithms – one needs at least an ability to iterate to
have something like linear search – we can write some really useful algorithms solely in
terms of ordering.

A good starting point is a very simple algorithm that many people get wrong: a function
to return the minimum of two objects.

You could frequently find the following “generic” definition of minimum:

template <typename T>
T min(T x, T y)
{
 return x < y ? x : y;
}

 57

Alexander Stepanov Notes on Programming 10/31/2007

This is a terrible piece of code. It has nothing to do with generic programming though it
starts with the keyword template. It is easy to see the most fundamental reason for its
terribleness if we attempt to restate the algorithm in English:

To find a minimum object out of two objects we first need to copy these two objects and
if the copy of the first is less than the copy of the second then we return a copy of the
copy of the first, otherwise we return a copy of the copy of the second.

We are clearly doing a bit more copying than absolutely necessary. One does not need to
know much about computer science to realize that to pick the smaller of the two objects
no copying is needed. And since this code takes an arbitrarily large T the overhead of
three unneeded copies could be quite dramatic. Comparing two objects should not raise
any exceptions but copying usually can. (Unfortunately, I have seen operator< raise
exceptions; there are, of course, no reasonable rules that the “experts” do not break. The
same experts then demand that sorting routines when faced with an exception should
restore a sequence to its original state. Otherwise, they say, your sort is not exception
safe.) This code takes something that should have constant-time average complexity –
the less-than operator should be linear in the worst case and constant time on the average
– and makes it into a linear-time operation that might throw an exception because of lack
of resources. It is quite easy to see that we need to pass our objects by reference:

template <typename T> inline
T& min(T& x, T& y)
{
 return x < y ? x : y;
}

We should also inline it since the body is so short that inlining will frequently not just
speed things up but shorten the code size. (Unfortunately, quite frequently modern
compilers ignore the inline directive. It would be fine if they would inline the functions
that really need inlining but it is not so. In 2005 a major desktop application was losing
15% performance because the compiler would not inline the indexing operator on
vectors.)

Unfortunately, the code will not work for constant objects even though it does not modify
them. The solution is an annoying duplication of code. We need to overload on const
and produce an additional version of min:

template <typename T> inline
const T& min(const T& x, const T& y)
{
 return x < y ? x : y;
}

Now if at least one of the two objects is constant the second version will be selected. We
still, however, use it with non-constant objects to do something like:

 58

Alexander Stepanov Notes on Programming 10/31/2007

++min(a, b); // increment the smaller of the two objects

We are still far from the generic algorithm. To make it truly generic we need to see if the
set of requirements on the type is too restrictive. Indeed, we might use a minimum not
only when we deal with the default total ordering defined by operator< but also with a
different strict total ordering. Or we might use it with a strict weak ordering such as an
ordering of pairs of integers on their first elements:

struct pair_int_int
{
 int first;
 int second;
};

inline
bool first_ordering(const pair_int_int& x,
 const pair_int_int& y)
{
 return x.first < y.first;
}

The strict weak ordering obeys axioms similar to the axioms of strict total ordering but
instead of being based on equality it is based on a (often implied) weaker equivalence
relation eq that is:

Reflexive: a == b implies eq(a, b)
Symmetric: eq(a, b) implies eq(b, a)
Transitive: eq(a, b) && eq(b, c) implies eq(a, c)

Then a relation r(a, b) is a strict weak ordering if it obeys the following laws:

Irreflexive law: eq(a, b) implies !r(a, b)

From that we can easily show that eq(a, b) implies !r(b, a). Indeed, by
symmetry of eq, eq(a, b) implies eq(b, a) and that implies !r(b, a).

Transitive law: r(a, b) && r(b, c) implies r(a, c)

From that we can easily show that !(r(a, b) && r(b, a)). Indeed, if
r(a, b) && r(b, a) then by transitivity r(a, a) and that contradicts the
irreflexive law. As with strict total ordering, irreflexivity and transitivity imply anti-
symmetry. And, finally,

Trichotomy law: !eq(a, b) implies r(a, b) || r(b, a)

 59

Alexander Stepanov Notes on Programming 10/31/2007

Quiz: If first_ordering is our strict weak ordering, define the function that
implements the corresponding equivalence relation.

We can easily fix our min function to accept any strict weak ordering and even make it
default to the standard strict total ordering on the type.

template <typename T, // T models Any
 typename R> // R models StrictWeakOrdering on T
inline
T& min(T& x, T& y, R r)
{
 return r(x, y) ? x : y;
}

Notice that we pass T by reference while we pass R by value. The reason for that is the
fact that T can be very big and copying is expensive. R tend to be very small, often not
even having a state. It is, therefore, faster to pass it by value. The general convention that
we are going to be following is to pass small things (function objects and iterators) by
value, and to pass arbitrarily large objects by reference or constant reference. The
convention, however, is based on my performance measurements done in the early
1990ties and do not represent “eternal” truth but will need to be revised eventually. I
hope that eventually (in the future system programming language) all the arguments will
be passed by reference or constant reference and the passing by value will be done behind
the scene by the compiler wherever appropriate as a complier optimization.

And we can obtain the less general version by passing the total ordering as a default:

template <typename T> // T models Strict Totally Ordered
inline
T& min(T& x, T& y)
{
 return min(x, y, std::less<T>());
}

and

template <typename T, // T models Any
 typename R> // R models Strict Weak Ordering on T
inline
const T& min(const T& x, const T& y, R r)
{
 return r(x, y) ? x : y;
}

template <typename T> // T models Strict Totally Ordered

 60

Alexander Stepanov Notes on Programming 10/31/2007

inline
const T& min(const T& x, const T& y)
{
 return min(x, y, std::less<T>());
}

(If you do not know what std::less<T>() is doing, just accept on faith that it will
let the code use operator<. We will study function objects in a couple of lectures.)

Notice that while C++ allows us to write min, it requires us to write 4 different functions
to do the same rather trivial thing. Part of the reason is that it is impossible to unify the
const T& and T& signatures into a single function. It is a tricky language design
problem to find a way to unify them in C++ or in a future language. Finding such a
unification would reduce the number of interfaces from four to two. Another factor-of-
two reduction would be possible without much work when compilers will allow us to
write this standard-conforming code:

template <typename T, // T models Any
 typename R = std::less<T> >
 // R models Strict Weak Ordering on T
inline
T& min(T& x, T& y, R r = R())
{
 return r(x, y) ? x : y;
}

Since it is tedious to write the four versions of the same code I will from now on do only
one with T& and explicit comparison. It is assumed that the versions with const T&
and explicit comparison are defined analogously.

While it might appear that we are finally done, there is another problem that lurks
beneath the surface of this very simple code. To see it, let us implement another function
that could be done with two objects and a strict weak ordering on them, namely, a sorting
function. It seems that we can do it without much difficulty by swapping the inputs when
they are out of order:

template <typename T> // T models Strict Totally Ordered
inline
void sort_2(T& x, T& y)
{
 if (!(x < y)) swap(x, y);
}

This code possesses the unpleasant property that equivalent objects are swapped. In other
words, our sort_2 does more work than necessary and is not stable. A stable preserves

 61

Alexander Stepanov Notes on Programming 10/31/2007

the relative order of equivalent objects. As we shall see later in the course, stability is an
important property, and we should not abandon it without necessity. As a matter of fact, it
is trivial to fix the problem by performing the swap only when the second object is
strictly less than the first:

template <typename T> // T models Strict Totally Ordered
inline
void sort_2(T& x, T& y)
{
 if (y < x) swap(x, y);
}

Now it is obvious that there should be a relationship between sort_2 and min: after we
sort two elements, the first one should be the minimum:

template <typename T> // T models Strict Totally Ordered
inline
void sort_2(T& x, T& y)
{
 if (y < x) swap(x, y);

 assert(x == min(x, y));
}

This, however, is not true. Our min function is going to return the second object when
both objects are equivalent, and sort_2 is going to leave them alone and assume the
first object is the smaller one. We need to make our min stable:

template <typename T> // T models TotallyOrdered
inline
T& min(T& x, T& y)
{
 return y < x ? y : x;
}

Now we need one more sensible function: maximum. It is invariably the case that even
when people define min in a stable manner they assume, somehow, that max requires
only flipping the relation around (see, for example, the implementation of max in SGI
STL at http://www.sgi.com/tech/stl/stl_algobase.h):

template <typename T> // T models TotallyOrdered
inline
T& max(T& x, T& y)
{
 return x < y ? y : x;
}

 62

http://www.sgi.com/tech/stl/stl_algobase.h

Alexander Stepanov Notes on Programming 10/31/2007

(It is hard for me to blame people who do so: after all, they just follow the C++ standard
specification of max written by me. It took me several years to see that I was mistaken.)

When both objects are equivalent the first one is returned. That, of course, will break
another self-evident post-condition for sort_2:

template <typename T> // T models TotallyOrdered
inline
void sort_2(T& x, T& y)
{
 if (y < x) swap(x, y);

 assert(x == min(x, y));
 assert(y == max(x, y));
}

As a matter of fact, in order for this condition to hold, max should return the first object
only when it is strictly greater than the second:

template <typename T> // T models TotallyOrdered
inline
T& max(T& x, T& y)
{
 return y < x ? x : y;
}

There is an additional advantage of doing it this way. We can always obtain the “old”
semantics of max by passing the transposed ordering relation to min. (For the default
total ordering we can pass greater<T>() and for any user specified ordering r we
can pass the transpose(r) function object – and you have to wait a little while longer
to learn what transpose does and how it does it.)

Problem: Implement median_3 function that returns the median of 3 elements.

Problem: Implement median_5 function that returns the median of 5 elements.

 63

Alexander Stepanov Notes on Programming 10/31/2007

Lecture 8. Order selection of up to 5 objects

Now we know how to find the maximum and minimum of two elements. While we will
study algorithms dealing with arbitrary sequences of objects with strict weak ordering
defined on them later in the course, it is instructive to see how our algorithms defined on
2 objects generalize to 3, 4 and 5 objects. In this lecture we shall concentrate on
implementing these operations with the smallest possible number of comparisons. We
will occasionally overlook stability. (I will address techniques for guaranteeing stability
and the move minimization in future lectures.) Those of you who succeeded in
implementing median_5 know that it is a fairly difficult undertaking. One of the goals
is to see how we can handle the design of this function without heroic efforts and by
using a systematic approach. In general, the technique of finding the solution through
decomposition of problems into small reusable steps is the central idea of the course.

It is clear that we can easily generalize our min and max to 3 elements.

template <typename T> inline
T& min_3(T& x1, T& x2, T& x3)
{
 return min(min(x1, x2), x3);
}

template <typename T> inline
T& max_3(T& x1, T& x2, T& x3)
{
 return max(max(x1, x2), x3);
}

It is self-evident how to define versions of them for 4 or more arguments. When we learn
how to iterate through arbitrary sequences, we will write iterative versions of these
functions. If we have n elements we need n – 1 comparisons to find the minimum or the
maximum, since with a smaller number we cannot connect the elements together, and if
the comparison graph is disconnected we cannot possibly know in which connected
component the minimum or the maximum belongs.

It is a little bit more difficult to find the median element. The technique we are going to
use for finding an algorithm for median is by reducing it to a simpler problem. (It is not
that difficult to write the algorithm by doing a brute-force case analysis, but we shall see
that the technique will serve us well in the much more difficult case of median of 5. In
general, it is an important technique that needs to be mastered.)

It is often good to start searching for the solution by first assuming that that we are
halfway there. Let us assume that somehow the first two objects are known to be in the
right order, that is, the second is not greater than the first. Then we can define a simple

 64

Alexander Stepanov Notes on Programming 10/31/2007

function that will return the median. We call it median_3_2, meaning that the first 2
elements out of 3 are sorted.

template <typename T> inline
T& median_3_2(T& x1, T& x2, T& x3)
{
 assert(x1 <= x2);
 return x3 < x2 ? max(x1, x3) : x2;
}

Problem: Demonstrate that median_3_2 is stable.

It is now very easy to obtain a general median function by finding if the first two
arguments satisfy the precondition of median_3_2 and calling it in such a case;
otherwise we can exchange the order of the arguments:

template <typename T> inline
T& median_3(T& x1, T& x2, T& x3)
{
 return x2 < x1 ? median_3_2(x2, x1, x3)
 : median_3_2(x1, x2, x3);
}

(Note that we do not do swap(x1, x2) – since our median_3_2 is inlined no extra
work is going to be done.)

Problem: Demonstrate that median_3 is stable.

It is clear that median_3 does 3 comparisons in the worst case. It requires a bit of
thinking to compute the average number of comparisons. Let us assume for simplicity
that the three values are distinct. Then the function will do 2 comparisons only when x3
is the largest of three values; and that will happen in only one-third of the cases.
Therefore, the expected number of comparison is 2-2/3.

Problem: Implement sort_3.

Problem: How many comparisons does sort_3 do in the worst case and on the average?

We can do everything with three elements: maximum, minimum, median, and even sort.
Before we attempt to do five it is important that we do four elements. As we will
discover, it is much easier to do things methodically than to try to come up with the final
solution in a single step. We already know how to construct min_4 and max_4. While it
is impossible to find a median of four elements, it is possible to find the second smallest
and the third smallest elements out of four. (You will sometimes see definitions of
median as the average of the second smallest and third smallest elements out of four.
Such a definition, however, assumes that averages are defined. We assume only total

 65

Alexander Stepanov Notes on Programming 10/31/2007

ordering and, therefore, cannot possibly compute the average of two elements.) Again
we reduce the problem to a smaller problem using a technique similar to that used for
median_3. Let us assume that the first and the second as well as the third and the fourth
elements are in order. Then we can find the second smallest element with:

template <typename T> inline
T& select_2nd_4_2_2(T& x1, T& x2, T& x3, T& x4)
{
 assert(x1 <= x2 && x3 <= x4);
 return x3 < x1 ? min(x1, x4) : min(x2, x3);
}

template <typename T> inline
T& select_2nd_4_2(T& x1, T& x2, T& x3, T& x4)
{
 assert(x1 <= x2);
 return x4 < x3 ? select_2nd_4_2_2(x1, x2, x4, x3)
 : select_2nd_4_2_2(x1, x2, x3, x4);
}

Now we can easily find the second smallest element by assuring that the precondition that
the first and second pairs of elements are in proper order:

template <typename T> inline
T& select_2nd_4(T& x1, T& x2, T& x3, T& x4)
{
 return x2 < x1 ? select_2nd_4_2(x2, x1, x3, x4)
 : select_2nd_4_2(x1, x2, x3, x4);
}

It is easy to see that select_2nd_4 always performs 4 comparisons. It is one more
comparison than needed to return min_4.

Problem: Implement select_3rd_4.

Problem: Is select_2nd_4 stable?

To find the median of five elements we depend on the following observation: the median
of five is the second smallest of the four elements remaining after we remove the smallest
of the first four. Finding the smallest out of the first four takes three comparisons and
finding the second smallest out of the remaining four takes additional four comparisons.
But we can use knowledge that we obtained during finding the smallest one of the first to
use select_2nd_4_2 instead of select_2nd_4 and reduce the number of
comparisons to six. Again, let us assume that first two pairs of elements are in order:

 66

Alexander Stepanov Notes on Programming 10/31/2007

template <typename T> inline
T& median_5_2_2(T& x1, T& x2, T& x3, T& x4, T& x5)
{
 assert(x1 <= x2 && x3 <= x4);
 return x3 < x1 ? select_2nd_4_2(x1, x2, x4, x5)
 : select_2nd_4_2(x3, x4, x2, x5);
}

template <typename T> inline
T& median_5_2(T& x1, T& x2, T& x3, T& x4, T& x5)
{
 assert(x1 <= x2);
 return x4 < x3 ? median_5_2_2(x1, x2, x4, x3, x5)
 : median_5_2_2(x1, x2, x3, x4, x5);
}

template <typename T> inline
T& median_5(T& x1, T& x2, T& x3, T& x4, T& x5)
{
 return x2 < x1 ? median_5_2(x2, x1, x3, x4, x5)
 : median_5_2(x1, x2, x3, x4, x5);
}

This version of median_5 does the smallest possible number of comparisons in the
worst case. We can, however, do slightly fewer comparisons on the average. Indeed, if
we logically sort the first three elements we can compare the fourth and the fifth with the
median. If they fall on the different sides of the median then the median of the first three
is the median of five. If they fall on the same side, then we need to return max_3 or
min_3 correspondingly, depending on whether they are smaller or larger than the
median of the first three. Let us assume that the first three elements are in order:

template <typename T> inline
T& median_5_3(T& x1, T& x2, T& x3, T& x4, T& x5)
{
 assert(x1 <= x2 && x2 <= x3);
 return x4 < x2 ? x5 < x2 ? max_3(x1, x4, x5) : x2
 : x5 < x2 ? x2 : min_3(x3, x4, x5);
}

template <typename T> inline
T& median_5_2b(T& x1, T& x2, T& x3, T& x4, T& x5)
{
 assert(x1 <= x2);
 return x3 < x2 ?
 x3 < x1 ? median_5_3(x3, x1, x2, x4, x5)
 : median_5_3(x1, x3, x2, x4, x5)
 : median_5_3(x1, x2, x3, x4, x5);

 67

Alexander Stepanov Notes on Programming 10/31/2007

}

template <typename T> inline
T& median_5b(T& x1, T& x2, T& x3, T& x4, T& x5)
{
 return x2 < x1 ? median_5_2b(x2, x1, x3, x4, x5)
 : median_5_2b(x1, x2, x3, x4, x5);
}

Now let us separate the computation of the expected number of the comparisons into two
parts. First, let us find the expected number of the comparisons that is done by
median_5_3. When the fourth and fifth elements are on different sides of the median
of the first three, we do two comparisons. If they are on the same side we need two more.
So the average number of comparisons is equal to 2p+4(1- p) where p is the probability
they will be on different sides. The probability of the fifth element falling on the same
side as the fourth is 3/5, and that makes the expected number of comparisons to be 3-1/5.
The first stage of the algorithm does either 2 comparisons if the third element is larger
than the maximum of the first two or 3 comparisons otherwise. The expected number of
comparisons is 2-2/3 and that gives us the total expected number of 5-13/15. The second
algorithm is just over 2% faster on average.

Problem: Implement select_2nd_5.

Problem: Implement select_4th_5.

You can learn more about the subject if you read section 5.3.3 Minimum Comparison
Selection, in the 3rd volume of The Art of Computer Programming. We will revisit this
material several times during the course.

 68

Alexander Stepanov Notes on Programming 10/31/2007

Lecture 9. Function objects

One of the stumbling blocks facing a programmer learning C++ is the sad fact that there
are often several different mechanisms for accomplishing the task. This problem is the
result of the long evolutionary development of the language. Some features are inherited
from the C language, some result from being once positioned in a different ecological
niche, and some are dead ends. The most important of these alternative linguistic
mechanisms are, of course, inheritance and templates, which provide two different ways
to produce abstract, generalized software components. We are not yet ready to handle this
problem and will address it much later in the course. But now we need to address the
second most common problem faced by C++ programmers: when to use functions and
when to use function objects. As we shall see, it is the problem has no clear-cut solution
since both mechanisms have different advantages and disadvantages.

Let us consider several problems that we face while using components such as min, max
and median_3, or sort. We often need to use sort with a comparison object that is
different from operator<. For example, we might want to sort an array of doubles in
ascending order of absolute values. That could be accomplished by calling std::sort
with the following function:

bool less_abs_fun(double x, double y)
{
 return std::abs(x) < std::abs(y);
}

int main()
{
 double array[10000];
 std::sort(array, array + 10000, less_abs_fun);
}

This code is much slower than sorting them with operator<. The reason is that where
before we were executing a single comparison, now we are doing a function call.

Problem: How much slower is sorting with less_abs_fun than with operator< on
your computer? (Sort an array of 10000 numbers many times and see how long it takes.)

Declaring less_abs_fun to be inline is not going to help, because compilers do
not inline calls to functions passed to templates through a pointer. Compilers will
instantiate std::sort with the following argument types:
double, double, bool (*)(double, double)

and then call it, passing it a pointer to less_abs_fun. After all, templates are
instantiated for different types, not for different argument values. That was the first

 69

Alexander Stepanov Notes on Programming 10/31/2007

reason for introducing function objects: to pass snippets of code into templates for
inlining. We need to find a way to affiliate the code of less_abs_fun with a type.
We can do it by defining:

struct less_abs
{
 bool operator()(double x, double y) const {
 return std::abs(x) < std::abs(y);
 }
};

We are defining a type with no data members and will be passing instances of this class
to sort in order to force the inlining of the code inside sort:

int main()
{
 double array[10000];
 std::sort(array, array + 10000, less_abs());
}

We put parentheses after the name of less_abs to construct an unnamed or anonymous
object of the class. The object contains no data, and we pass it to the function only for its
type. (Interestingly enough, an object containing no data still has non-zero size, since in
C++ two different objects cannot have the same address. On most systems the size of an
empty object is 1 byte. Unfortunately, in many situations one byte effectively means one
word.)

When using an anonymous function object we have to remember to construct it by
appending a pair of parentheses. After all, we cannot pass a class to a function. If we
want to compare two doubles with our function objects we write:

 less_abs()(1.5, -4.7) // returns true

Also we can avoid the extra pair by creating a named object:

 less_abs my_compare;
 my_compare(1.5, -4.7);

The second reason for using function objects is that often we need to associate a datum
that is computed at run-time with a piece of code. For example, we might want to sort
our numbers based on their distance to some number a. It can, of course, be done with the
help of a function and a global variable:

double a;

bool less_distance_fun(double x, double y)

 70

Alexander Stepanov Notes on Programming 10/31/2007

{
 return std::abs(x - a) < std::abs(y - a);
}

int main()
{
 double array[10000];
 std::cin >> a;
 std::sort(array, array + 10000, less_distance_fun);

// more stuff

}

That will work, but on top of being slow, it is also quite ugly. Function objects allow us
to solve the problem more elegantly:

struct less_distance_double
{
 double a;
 less_distance_double(double a0): a(a0) {}
 bool operator<(double x, double y) {
 return std::abs(x - a) < std::abs(y - a);
 }
};

int main()
{
 double array[10000];
 double a;
 std::cin >> a;
 std::sort(array, array + 10000,
 less_distance_double(a));

// more stuff

}

This ability to combine data with code in procedural objects allows us to produce more
flexible designs and is very important for program decomposition. This style of
programming was first made popular by a remarkable undergraduate textbook by Hal
Abelson and Jerry Sussman called Structure and Interpretation of Computer Programs.
Unfortunately, they made the mistake of equating the power of function objects (they call
them procedural objects) with the rather peculiar way such objects are implemented in
the Scheme programming language: they depend on lexically scoped nested procedures
and indefinite extent (lifetime), which keeps the arguments to a procedure around for a
(potentially) long time after the procedure has terminated, which in turn depends on

 71

Alexander Stepanov Notes on Programming 10/31/2007

having garbage collection. (And, of course, they come from a tradition that considered
static typing to be a nuisance.) That led to a total disregard of this style of programming
by the mainstream programming community, which needed to ship products and could
not possibly afford writing them in a functional language. C++ allowed this style of
programming to migrate into the mainstream by actually assuring that the programs
written this way are often faster than traditional C-style programs and definitely faster
than object-oriented programs that heavily depend on calling functions through function
pointers.

Since the datum is kept inside the function object it is possible to templatize
less_distance:

template <typename T> // T models linearly ordered group
inline
T abs(const T& x)
{
 return x < T(0) ? –x : x;
}

template <typename T> // T models linearly ordered group
struct less_distance
{
 T a;
 less_distance(const T& a0): a(a0) {}
 bool operator<(const T& x, const T& y) const {
 return std::abs(x - a) < std::abs(y - a);
 }
};

(It is curious to note that the C++ powers-that-be rejected the definition of abs from the
inclusion in the standard remarking that C++ programmers do not use linearly ordered
groups. Then they proceeded to include versions of it for several additional types.)

To use our templatized code we will have to re-write our call to sort to look like:

 std::sort(array, array + 10000,
 less_distance<double>(a));

We can eliminate the need to specify the type that less_distance takes by providing
an auxiliary maker function:

template <typename T> // T models linearly ordered group
inline
less_distance<T> make_less_distance(const T& x)
{
 return less_distance<T>(x);

 72

Alexander Stepanov Notes on Programming 10/31/2007

}

Now we can do our sort with:

 std::sort(array, array + 10000,
 make_less_distance(a));

The code does not need to mention double any longer. If we decide to switch our design
to a different type we will not need to change this line of code. Automatic type inference
is often helpful. Much more significantly, however, we discovered that we can write
functions that create new function objects. This is the third important reason for using
function objects: it is possible to write maker functions that generate new function
objects out of existing ones.

I will spend some time showing you the techniques that are employed in STL to deal with
function objects. It is important to remember that these are provisional techniques that are
designed to work around language limitations. Finding ways of dealing with language
limitations is a time-honored tradition among programmers. Every language community
develops a group of specialists who find ways to overcome the shortcomings of the
language. It is important to remember that it is, nevertheless, just a distraction from the
main task of programmers: inventing algorithms and data structures. This is why I will
avoid describing Boost lambda and bind. They are very ingenious in showing how far
one can get using C++ templates, but they are examples of template meta-programming,
while I am attempting to teach programming.

STL provides us with a bunch of predefined function objects that correspond to all
relational operators: equal_to, not_equal_to, greater, less,
greater_equal, and less_equal. It also provides many arithmetic and logical
operations. It is very easy to implement them:

template <typename T> // T models Strict Totally Ordered
struct less : std::binary_function<T, T, bool>
{
 bool operator()(const T& x, const T& y) const {
 return x < y;
 }
};

(I will explain the purpose of binary_function<T, T, bool> shortly.)
Now we can pass an instance of this struct to min or sort:

std::sort(array, array + 10000, std::less<double>());

and the compiler will instantiate the template code with the right operations.

 73

Alexander Stepanov Notes on Programming 10/31/2007

Imagine the situation if we want to use a function such as std::find_if to find the
first occurrence of a number in the array that is less than a given number u. It expects a
unary predicate, but less is a binary predicate. We need to bind u to the second
argument of less. If we had a language facility for extracting the argument types out of
function objects we would be able to say something like:

template <class F> // F models a Binary Function
struct binder2nd {
 F op;
 type(F, 2) value;
 binder2nd(const F& f, type(F, 2) y)
 : op(f), value(y) {}
 type(F, 0) operator()(type(F, 1) x) const {
 return op(x, value);
 }
};

where type is a type function that returns the type of result if its second argument is 0,
the type of the first argument if its second argument is 1, and so on. (Actually, in a future
language that would be really designed for this style of programming, we would not need
to write binder2nd to bind the second argument of a binary function but a general bind
that binds several arguments of an arbitrary function. Boost bind is, of course, an
attempt to do something like that in C++ without getting proper support from the core
language.) Unfortunately, there is no such function, and we have to use some silly
machinery for accomplishing the task. That is why I introduced the
binary_function base class:

template <typename T1, typename T2, typename R>
struct binary_function
{
 typedef T1 first_argument_type;
 typedef T2 second_argument_type;
 typedef R result_type;
};

(It is interesting to note that the only examples of inheritance that remained in STL
inherit from empty classes. Originally, there were many uses of inheritance inside the
containers and even iterators, but they had to be removed because of the problems they
caused.)

The convention that allows us to write function object adaptors – classes that bind,
compose and do other transformations on function objects – relies on the fact that they
have the corresponding typedefs inside them. binary_function is a helper class
to obtain the definitions. It is not really necessary to use it (and its companion
unary_function) as long as the typedefs are inside the function object classes.
With them we can define binder2nd as:

 74

Alexander Stepanov Notes on Programming 10/31/2007

template <class F> // F models a Binary Function
struct binder2nd {
 typedef typename F::first_argument_type
 argument_type;
 typedef typename F::second_argument_type value_type;
 typedef typename F::result_type result_type;
 F op;
 value_type value;
 binder2nd(const F& f, const value_type& y)
 : op(f), value(y) {}
 result_type operator()(const argument_type& x)
 const
 {
 return op(x, value);
 }
};

Now we can call find_if:

double array[10000];
// put some data into array
double u = 1.1010010001;
double* p = find_if(array, array + 10000,
 binder2nd<less<double> >(less<double>(), u));

To make it easier to call, STL defines a useful function that saves typing the name of the
type of the binary function object twice:

template <class F, // F models binary function
 class T> // T is convertible to
 // F::second_argument_type
inline
binder2nd<F> bind2nd(const F& op, const T& x) {
 return binder2nd<F>(op,
 typename F::second_argument_type(x));
}

And now our code becomes:
double* p = find_if(array, array + 10000,
 bind2nd(less<double>(), u));

Problem: Implement binder1st and bind1st, which bind the first argument of a
binary function object.

 75

Alexander Stepanov Notes on Programming 10/31/2007

Binding is only one of several useful function object adaptors. Another useful function
object operation is composition. It takes two function objects f(x) and g(x) and
returns a function object that computes f(g(x)). It is easy to see how to make such an
adaptor:
template <class F, // F models unary function
 class G> // G models unary function
struct unary_compose {
 typedef typename G::argument_type argument_type;
 typedef typename F::result_type result_type;
 F f;
 G g;
 unary_compose(const F& f0, const G& g0) :
 f(f0), g(g0) {}
 result_type operator()(const argument_type& x) const
 {
 return f(g(x));
 }
};

template <class F, // F models unary function
 class G> // G models unary function
inline
unary_compose<F, G> compose1(const F& f, const G& g) {
 return unary_compose<F, G>(f, g);
}

Problem: Define a class binary_compose and a helper function compose2 to be
able to take a binary function object f(x, y) and two unary function objects g(x) and
h(x) and construct a binary function object that performs f(g(x), h(y)).

Both compose1 and compose2 were included in HP STL. They were not, however,
parts of the proposal and were not included in the C++ standard. I have no idea why they
were not in the proposal. It is possible that somebody on the committee objected, or, it is
possible that it was a result of my oversight.

Another adaptor that we will eventually need is f_transpose, which takes a binary
function object f(x, y) and returns a binary function object f(y, x):

template <class F> // F models a Binary Function
struct transposer {
 typedef typename F::first_argument_type
 second_argument_type;
 typedef typename F::second_argument_type
 first_argument_type;
 typedef typename F::result_type result_type;

 76

Alexander Stepanov Notes on Programming 10/31/2007

 F fun;
 transposer(const F& f) : fun(f) {}
 result_type operator()(const first_argument_type& x,
 const second_argument_type& y)
 const
 {
 return fun(y, x);
 }
};

template <typename F> // F models Binary Function
inline
transposer<F> f_transpose(const F& f)
{
 return transposer<F>(f);
}

Problem: Implement classes unary_negate and binary_negate and the helper
functions not1 and not2 that convert unary and binary predicates to their negations.

While function objects are often useful, we still use lots of functions. There are three
reasons for that:

1. The syntax for defining function objects is more cumbersome.

2. The language does not do type deduction even when it is self-evident. In general,
there is no type deduction for template parameters when objects are constructed.
For example if we write: int a, b; pair p(&a, &b), the compiler
cannot deduce the type of the pair. We need to write pair<int*,
int*>(&a, &b).

3. It is really annoying to add an extra pair of parentheses.

Hopefully, a future language will give us only one way of writing something like min
and will allow us to do all kinds of operations on it in a simple way.

 77

Alexander Stepanov Notes on Programming 10/31/2007

Lecture 10. Generic algorithms

When we dealt with max, min and other order selection operations we observed that they
are defined on types that satisfy certain requirements: namely, they provide a strict weak
ordering or, in cases when we use operator<, a strict total ordering. A collection of
types that satisfy a common set of requirements is called a concept. A common example
of a concept is the concept of Integral: a collection of all integer types in C. A type in the
collection associated with a particular concept is said to model this concept or, using a
noun instead of a verb, is a model of this concept. int is a model of Integral. An
algorithm that is defined on all the types in a concept is called a generic algorithm.

(It was an unfortunate mistake that in 1988 Dave Musser and I introduced the terms
generic algorithm and generic programming. They gave people the idea that they are
algorithms that use generic facilities of a given programming language. But using generic
facilities is a syntactic mechanism. One can have generic algorithms even in a language
without such facilities. They might require manual instantiation for each particular
model, but that is a secondary issue. In my opinion, we should have used the term
generalized algorithm and generalized programming. But what’s done is done.)

It is my belief that behind every useful line of code hides a generic algorithm. This belief
is based on a personal experience: when I see a piece of code I immediately start asking,
“What is the underlying concept that makes this code work?” It remains to be seen if this
is a psychological aberration peculiar to me and several of my friends, or if it is an
indication that there is a scientific path to programming. I, of course, believe that there is
nothing peculiar in the way I approach programming, and that’s why I hope that I can
teach something useful. It should be remembered, however, that the history of computer
science (as well as science in general) is full of self-deluded charlatans. Being sincere is
not a defense – sincerity is much overrated – after all, I told my students in the middle of
the eighties that within 5 years most code will be written in Scheme, and in the early
seventies I was equally convinced of the total victory of Algol-68 and tagged
architectures. Fortunately, I lack the abilities to be a successful charlatan, and the spread
of the ideas of generic programming is quite slow. It is, believe it or not, a good sign.

Now, let us spend some time deriving generic algorithms. The approach is quite simple.
First we need to find a useful piece of code. We can use all kinds of sources: existing
libraries, Knuth, application code. It should, however, be a useful piece. There should be
some evidence that people use it or want to use it. Secondly, we see what makes it work
and try to abstract the requirements and identify the concept on which it is really defined.

10.1. Absolute value

Let us start with something that we already encountered: the abs function. It is a good
starting example because it is so simple. Let us look at the code of abs:

 return x < 0 ? –x : x;

 78

Alexander Stepanov Notes on Programming 10/31/2007

(By the way, that is the way we will always proceed: from the inside out, from the
implementation to the interface. I know that this is not the way software engineering is
taught, but this is the only way I know how to operate.)

When does it work? It clearly works when x is int. It also works if x is short, but in
this case it relies on the fact that literal 0 is converted into short. I do not like implicit
conversions so I would rather see:

 return x < type_of(x)(0) ? –x : x;

but C++ does not allow us to find what the type of a variable or an expression is. We,
therefore, have to assume that we somehow managed to find the type of x and called it T.

 return x < T(0) ? –x : x;

There is, of course a different possibility, namely, to assume that there is an operator<
defined between the type of x and int, but let us reserve it for the total ordering relation
on a type, not on some cross-type relation. Let us keep its nice laws of irreflexivity,
transitivity and the trichotomy.

Now one could say that the concept on which this code is defined is a concept of all types
that have operator<, can be constructed from int (or, at least, can be constructed
from one particular int), and have unary operator-. This is correct in some strictly
syntactic way. Clearly the code will not compile unless these things are true. But this
piece of code has some intended meaning, and we need to figure out what it is and come
up with the semantic requirements on T. It is quite clear that there is an assumption about
the unary operator-. While this code does not use binary operator+ and binary
operator-, it is clear that anybody reading this code assumes that:

 x – y == x + (-y)
 x – x == T(0)

I remarked before that most of the human race familiar with the sign + assumes that it
signifies some commutative and associative operation. In other words, there is an
(unwritten) assumption that this code works on an additive (and, therefore, Abelian or
commutative) group. But there is more to it. They clearly expect that there is some
connection between operator+ (and both unary and binary operator-) and
operator<. For example, most people assume that abs should satisfy the triangle
inequality:

 abs(x + y) <= abs(x) + abs(y)

There is a mathematical structure that satisfies our intuitive expectations. It is called a
totally ordered abelian group. Sometimes it is also called a fully ordered abelian group
or a linearly ordered abelian group. In spite of their supposed rigor, mathematicians are

 79

Alexander Stepanov Notes on Programming 10/31/2007

much less precise in their terminology than, say, chemists. They have no central body,
like IUPAC (International Union of Pure and Applied Chemistry) to produce definitive
nomenclature. After all, very few people will be poisoned if one assumes that every ring
has a commutative multiplication or that every real closed field is archimedian. One can
usually figure out from the context what is assumed. While it is all right for
mathematicians to have a somewhat loose notion of rigor, computer science desperately
needs a fixed set of names not just for data structures and algorithms but also for
requirements on types – concepts. It is worth noting that people can die as a result of an
incorrectly specified program.

A set is called a totally ordered abelian group if it satisfies the axioms of a group and the
axioms of a totally ordered set and if there is an additional axiom that links these two
structures:
 x < y implies that x + z < y + z

And that leads us to our definition:

template <typename T>
// T models Totally Ordered Additive Group
inline
T abs(const T& x)
{
 return x < T(0) ? -x : x;
}

(An additive group is an Abelian group that uses + as its group operation.)

While we can only state our requirements on T as a comment, eventually programming
languages will start providing us with mechanisms for stating the requirements for
functions in the language and not in the comments. Even C++ is likely to get some way
of specifying concepts. It will probably be strictly syntactic (no axioms at all), but
eventually we will get to the point of specifying the semantics as well. Some people
object to semantic specifications because compilers will never be able to validate them
fully automatically. But it is my opinion that a programming language should allow me to
say everything I know about the code. Then compilers will be able to use more and more
of the knowledge as compiler technology develops further.

There are three issues that our code raises. The first is that the code is not as general as it
could be. It assumes that the group operation is operator+ (and, therefore, assumes
that the group is Abelian since it is a standard mathematical convention to assume that
additive groups are Abelian). It also assumes that there is a total ordering on the
elements. It is quite possible to relax it to be a strict weak ordering. We could define a
concept of a weakly ordered group and define abs as:

template <typename T, // T models Weakly Ordered Group
 typename I, // I models Unary Function: T -> T

 80

Alexander Stepanov Notes on Programming 10/31/2007

 typename R> // R models Binary Predicate
inline
T abs(const T& x, I inverse, R less)
{
 return less(x, identity_element(inverse)) ?
 inverse(x) :
 x;
}

If we now define:

template <typename T>
inline
T identity_element(const std::negate<T>&)
{
 return T(0);
}

we can obtain the previous definition of abs by calling:

 abs(x, std::negate<int>(), std::less<int>())

We can then use our code with the totally ordered multiplicative group of positive
rational numbers or with the weakly ordered group of non-zero rational numbers. That,
however, is something that I call excessive genericity: extending an algorithm further
than the set of known models. The new function is more general, but it is not more useful.
At present, I do not know of any useful applications. We need to develop a sense of
where to stop. Generalizing an algorithm is useful only when there are useful, known
models. I know of many useful models for a more general min that assumes only weak
ordering and takes a comparison as an argument. I have not yet seen the need to
generalize abs. In other words, I suggest that abstraction should be based on the models
we know, not just on our ability to make code more abstract. One should not multiply
abstractions without necessity.

The second problem with abs is that there is a different way of defining absolute value.
We decided to follow the notion of absolute value as a “positive” value affiliated with an
element. It assumes that the elements are either positive or negative depending on their
relation to the identity and that one can get a positive element by inverting (negating) a
negative element. There is a different way of defining it: the distance to zero. It allows us
to define abs for std::complex as

template <typename T>
inline
double abs(const complex<T>& z)
{
 return std::sqrt(double(std::norm(z)));

 81

Alexander Stepanov Notes on Programming 10/31/2007

}

where norm is defined as:

template <typename T>
inline
T norm(const complex<T>& z)
{
 T x = real(z);
 T y = imag(z);
 return x*x + y*y;
}

(The C++ standard claims that abs should always return T, but I do not know what they
mean when one deals with Gaussian integers: complex<int>.When people talk about
the absolute value of a Gaussian integer, they refer to the square root of its norm. Let us,
therefore, ignore the standard interface.)

Here we are dealing with the unfortunate legacy of poorly overloaded mathematical
terminology. The second notion of absolute value is quite useful and naturally generalizes
from complex numbers to arbitrary Euclidean spaces and eventually leads to the concept
of a normed ring. But it is a different notion because it defines a function that maps
elements into real numbers and not into themselves. While we can overload the use, I
find such overloading highly inappropriate since it is not clear which overloading should
be used when we deal with int. Should abs(3) return 3 or 3.0? Both functions are
useful. I would suggest using abs for our original function and modulus for the real-
valued function. But for the time being we are going to suffer from the ambiguity.

The third objection to the code is that, strictly speaking, no type can model a totally
ordered group. (Or, being precise, no type with a non-zero element can be such a model.)
Indeed, from the axioms we can derive that in such a group there are no elements of finite
order and therefore the group is infinite. As we all know, even with memory being cheap,
computers cannot hold infinitely many different values. A type such as int is not strictly
speaking a group under addition, since addition is not defined when we add two values
whose sum is greater than MAX_INT. Moreover, C does not seem to guarantee that
-MIN_INT is defined. There could be more negative numbers than positive numbers and
that will prevent our abs from being a total function. We need to drop the requirement
that the model implements all the operations defined in the concepts as total functions.
Operations can be implemented as partial functions, and the axioms have to hold only
when all the operations are defined. Our models are partial models.

Sometimes even using a partial model is not good enough. Sometimes even when the
basic operations are defined, the axioms do not hold. In particular, when we deal with
doubles all the equational axioms are suspect. Even such a basic law as associativity of
addition does not hold. We need to develop a notion of an approximate model but that

 82

Alexander Stepanov Notes on Programming 10/31/2007

clearly is outside of the scope of this course, since it belongs to a course on Generic
Numerical Methods which I plan to teach in the year 2016.

What we see in the case of abs is that finding the concepts underlying algorithms is
hard. Even when we consider the oldest known algorithms, their generic representation
remains difficult. Next let us consider two very ancient problems: finding the greatest
common divisor of two numbers and raising a number to a power (or, as it was known in
its historical context, multiplication). Every time I teach them I am surprised that I know
less than before about them, and I do not think that it is just a result of an approaching
senility but of my gradual realization of how complicated things are.

10.2. Greatest common divisor

10.2.1. Euclid’s algorithm

Euclid’s algorithm (which clearly predates Euclid by at least 200 years) was the central
algorithm of Greek mathematics. (See, for example, the brilliant book The Mathematics
of Plato’s Academy by David Fowler.) It was not, of course, specified for numerical
quantities but for line segments and would terminate only when two segments had
common measure, i.e. the length of each is an integral multiple of the length of some
common line segment or measure.

We can easily state it in C++:

int gcd(int a, int b)
{
 if (a == b) return a;
 if (a < b) return gcd(a, b – a);
 /* if (b < a) */ return gcd(a – b, b);
}

Euclid would have found this code satisfactory since it is identical to the algorithm that
he describes in the seventh book of his Elements. It is interesting to note that in his tenth
book he describes a more general procedure which we would have to express as:

real gcd(real a, real b)
{
 if (a == b) return a;
 if (a < b) return gcd(a, b – a);
 /* if (b < a) */ return gcd(a – b, b);
}

It is not an algorithm since it does not always terminate. Euclid actually defines two
magnitudes as incommensurable if the procedure never terminates. The time that it would
take to determine incommensurability does not seem to bother him. Note that in both
cases he was not particularly concerned about negative or zero inputs. The ancient Greeks

 83

Alexander Stepanov Notes on Programming 10/31/2007

did not have the notion of a negative number or zero. (It is possible to argue that they had
a rather modern notion of real numbers and that the Eudoxian theory of proportion is
equivalent to the 19th century theory of Dedekind cuts; it is even possible to argue that
Archimedes in his Sandreckoner demonstrated that he had a notion of zero; but I cannot
find any evidence for negative numbers among the Greeks. The first hint of negative
numbers appears 9 centuries after Euclid in the works of the Indian mathematician
Brahmagupta.) So we need to rename our function and add an assertion:

int gcd_positive_subtractive_recursive(int a, int b)
{
 assert(0 < a && 0 < b);
 if (a == b) return a;
 if (a < b) return gcd(a, b – a);
 /* if (b < a) */ return gcd(a – b, b);
}

 (We will have to deal with zero and negative inputs later on.)

It is clear why it works: we rely on the fact that if a number divides two numbers it
divides their difference. Therefore we can keep replacing the larger with the difference of
larger and the smaller. Since at every step a + b is getting smaller eventually the process
must stop. (The argument is based on a wonderful principle the Greeks were using
instead of mathematical induction: a monotonically decreasing sequence of natural
numbers is finite.)

Notice that our algorithm is tail-recursive: the recursive call returns the value that is
immediately returned. There are computer scientists who believe that it is essential that
compilers recognize tail recursion and eliminate the recursive call automatically. I belong
to a school of thought that thinks it is essential that programmers recognize tail-recursion
and learn how to transform it into iteration. It will often make the code even more
readable and will not rely on an optimization probably not supported by your production
compiler.

Problem: Test if your compiler eliminates the tail call in our gcd.

It is very easy to transform a tail-recursive algorithm into an iterative one: we need to
replace the recursive calls with assignments to the input variables and put them inside a
loop:

int gcd_positive_subtractive(int a, int b)
{
 assert(0 < a && 0 < b);
 while (a != b) {
 while (a < b) b -= a;
 while (b < a) a -= b;
 }
 return a;

 84

Alexander Stepanov Notes on Programming 10/31/2007

}

and we can easily patch it to accept zero and negative numbers:

int gcd_subtractive(int a, int b)
{
 make_abs(a);
 make_abs(b);
 assert(0 <= a && 0 <= b);
 if (a == 0) return b;
 if (b == 0) return a;
 assert(0 < a && 0 < b);
 while (a != b) {
 while (a < b) b -= a;
 while (b < a) a -= b;
 }
 return a;
}

where make_abs is a useful auxiliary function:

template <typename T>
// T models Totally Ordered Additive Group
inline
void make_abs(T& x)
{
 if (x < T(0)) x = -x;
}

(It is tempting to use x = abs(x) inside the function, but all the compilers nowadays
will punish us by generating an unnecessary assignment especially when assignment is
user-defined function. In fact, the reason that we even introduce the function is to avoid
the unnecessary assignment.)

It is a really important piece of code. It is commonly known as the subtractive gcd
algorithm. It is faster than one might think. While its worst-case complexity is indeed
slow and is proportional to max(a, b), its average-case complexity is relatively low. There
is a remarkable result by Yao and Knuth that the number of iterations of the subtractive
gcd is on the average proportional to the square of the logarithm of the max(a, b). But
the square of the logarithm is not as good as the logarithm without a square, and we can
reduce the complexity of the subtractive algorithm using the modulus operator to
compute remainders. (We shall see, however, that even when the modulus operator is
available, the subtractive algorithm can give us some performance advantages when used
in combination with the remainder version. We will also find that the computational
structure of the algorithms will reappear in contexts quite removed from number theory.)

 85

Alexander Stepanov Notes on Programming 10/31/2007

It is clear how to use remainders to speed up the algorithm. Instead of relying on the fact
that the difference of a and b is divisible by any of their common divisors, we rely on the
fact that the remainder of a divided by b is divisible by any of their common divisors.
The code in question is quite simple:

int gcd_modulus(int a, int b)
{
 while (true) {
 if (b == 0) return a;
 a %= b;
 if (a == 0) return b;
 b %= a;
 }
}

Problem: Prove that the algorithm terminates by proving that the sum of the absolute
values of a and b decreases with every iteration.

It should be noted that the code that we have is going to work for negative numbers and 0
but with somewhat unexpected results: gcd_modulus(1, -1) will return -1 and
somebody might object that -1 is not the greatest common divisor of 1 and -1 since,
clearly, -1 < 1. We can, of course, do what we did in the case of the subtractive algorithm
and replace a and b with their absolute values, but it is not a good thing to do. That will
make our algorithm depend on the existence of a total ordering and while it is not an
issue for integers, it is going to be a major obstacle for generalizing it. Instead of that we
will use the definition of greatest common measure known to Euclid but frequently
forgotten now: a greatest common divisor is a divisor divisible by any other divisor. This
definition relies on the divisibility relation only to determine the greatest common
divisor. This definition, of course, allows for multiple greatest common divisors of two
elements. For example, both 2 and -2 are then the greatest common divisors of 6 and 8.
(In general, there are as many greatest common divisors as there are invertible elements
or units in our domain, since we can obtain a new greatest common divisor by
multiplying the original one by a unit.)

That insight allows us to extend our algorithm to domains where there is no total
ordering. In 1585 the great Flemish scientist Simon Stevin extended Euclid’s algorithm to
work on polynomials. Around 1830, Carl Gauss realized that he could use Euclid’s
algorithm on complex numbers x + yi with integer coefficients x and y. (These numbers
are known as Gaussian integers.) Both of these domains are not totally ordered and there
is no unique greatest common divisor.

Therefore we can generalize our algorithm:

template <typename T> // T models Weak Euclidean Domain
T gcd_euclid(T a, T b)
{

 86

Alexander Stepanov Notes on Programming 10/31/2007

 while (true) {
 if (b == T(0)) return a;
 a %= b;
 if (a == T(0)) return b;
 b %= a;
 }
}

Now our task is to find the requirements for a Weak Euclidean Domain. Abstract algebra
defines a Euclidean domain as an integral domain with a norm that satisfies certain
axioms. You can find the definition in any book on abstract algebra. We, however, will
look for a different, less restrictive definition, since the mathematical definition would
not allow us to use Euclid’s algorithm on many domains on which it is actually useful,
well-defined and was intended to work even by Euclid himself, such as rational numbers.
Till people started taking abstract algebra too seriously it was quite clear to everybody
what was the gcd of 1/3 and 1/2. And it was even clear how to use Euclid’s algorithm to
find their gcd. So let us try to restore the algorithm to its original generality.

It is clear that the only operation explicitly needed by the algorithm is operator% or,
being quite precise, operator%=. It is reasonable to assume that

 a %= b;

is equivalent (except for possibly being faster) to

 a = a % b;

(I would, of course, demand such equivalence for all such operators but, as I complained
before, C++ allows you to overload operators without any semantic constrains.)

In general, for T to be a weak Euclidean domain, we assume that there is a related
operation called quotient that will normally default to operator/ (but will be a special
function called quotient for a field such as rationals and other domains with
divisions). The following conditions should be satisfied:

1. T is a commutative semiring (a set with + and * where they are both commutative
and associative and * distributes over +) with 0.

2. a == b * (quotient(a, b)) + a % b

3. There exists a function D: T x T -> Unsigned Integers such that if
either a or b is equal to 0 then D(a, b) and D(b, a) are 0. Otherwise,
D(a%b, b) < D(a, b) or D(a, b%a) < D(a, b).

It is clear that if these conditions hold then the algorithm will terminate since at every
iteration D(a, b) is going to decrease. It is equally easy to construct a function D for all

 87

Alexander Stepanov Notes on Programming 10/31/2007

domains on which the algorithm terminates by defining it being equal to the number of
modulus operations done by the algorithm.

Problem: Define meaningful quotient, remainder and D functions for rational numbers.

One of the problems with using the remainder-based algorithm is that modulus (or integer
division) is a very expensive operation. On the Pentium 4 it takes 80 cycles. The AMD
Athlon is better by about a factor of two but is still quite slow. (See, for example,
http://swox.com/doc/x86-timing.pdf.) This is why it is often good to look for ways to
avoid doing the remainder.

One approach is to try to use subtraction whenever we can and compute remainders only
when the magnitudes of a and b are very far apart. (The idea of combining remainder-
based gcd and subtractive gcd was suggested to me by Sean Parent. I was not able to find
references to it in the published literature.) We can implement a parameterized function
that will let us set the threshold for switching from one algorithm to the other:

template <int shift>
int gcd_hybrid(int a, int b)
{
 make_abs(a);
 make_abs(b);
 assert(0 <= a && 0 <= b);
 sort_2(a, b);
 while (a != 0) {
 assert(a <= b);
 if (a < b>>shift)
 b %= a;
 else
 do
 b -= a;
 while (a <= b);
 swap(a, b);
 }
 return b;
}

Problem: What is the best value of shift on your computer for different ranges of
integers?

10.2.2. Stein’s algorithm

An interesting algorithmic development happened in 1961 when an Israeli physicist
Yosef Stein discovered a totally new way of finding the greatest common divisor. His
algorithm is based on the observation that finding if a number is even and dividing it by 2

 88

http://swox.com/doc/x86-timing.pdf

Alexander Stepanov Notes on Programming 10/31/2007

are much faster operations than the modulus operator. In particular, his algorithm is based
on the following self-evident facts:

1. gcd(a, a) = a
2. gcd(2a, 2b) = 2gcd(a, b)
3. gcd(2a, 2b+1) = gcd(a, 2b+1)
4. gcd(2a+1, 2b) = gcd(2a+1, b)
5. a < b implies gcd(a, b) = gcd(a, b-a)
6. b < a implies gcd(a, b) = gcd(a-b, b)

To simplify the problem let us look at the case of when both inputs are known to be odd
and positive. (The intuition that tells me to start with them is that it is any non-zero inputs
can be easily turned into odd input by iteratively factoring out 2.) We assume that we are
dealing with a concept of Binary Integer that provides us with fast operations for dividing
by 2 and finding if a number is even or odd.

template <typename T> // T models Binary Integer
inline
T stein_gcd_odd(T a, T b)
{
 assert(is_positive(a) && is_positive(b));

 assert(is_odd(a) && is_odd(b));

 while (a != b) {
 if (a < b) {
 b -= a;
 halve_till_odd(b);
 } else {
 a -= b;
 halve_till_odd(a);
 }
 assert(is_odd(a) && is_odd(b));
 }
 return a;
}

Where halve_till_odd is normally defined as:

template <typename T> // T models Binary Integer
inline
void halve_till_odd(T& a)
{
 assert(is_positive(a) && !is_odd(a));
 do {
 halve_non_negative(a);
 } while (!is_odd(a));

 89

Alexander Stepanov Notes on Programming 10/31/2007

}

And is_positive, halve_non_negative and is_odd are normally defined as:

template <typename T>
// T models Totally Ordered Additive Group
inline
bool is_positive(const T& a)
{
 return T(0) < a;
}

template <typename T> // T models Binary Integer
inline
void halve_non_negative(T& a)
{
 assert(is_positive(a));
 a >>= 1;
}

template <typename T> // T models Binary Integer
inline
bool is_odd(const T& a)
{
 return a & T(1);
}

In case our type has faster ways of doing these functions, we can always provide proper
specializations.

Now we can use another function that takes two positive integers, halves them until they
are odd and returns the number of trailing zeros that they have in common:

template <typename T> // T models Binary Integer
inline
int find_common_exponent(T& a, T& b)
{
 assert(0 < a && 0 < b);

 int common_trailing_zeros = 0;

 while (true) {

 if (is_odd(a)) {
 if (!is_odd(b)) halve_till_odd(b);
 return common_trailing_zeros;
 }

 90

Alexander Stepanov Notes on Programming 10/31/2007

 if (is_odd(b)) {
 assert(!is_odd(a));
 halve_till_odd(a);
 return common_trailing_zeros;
 }

 halve_non_negative(a);
 halve_non_negative(b);
 ++common_trailing_zeros;
 }
}

Now it is quite easy to implement the complete algorithm:

template <typename T> // T models Binary Integer
T stein_gcd(T a, T b)
{
 if (is_zero(a)) return b;
 if (is_zero(b)) return a;

 make_abs(a);
 make_abs(b);

 assert(is_positive(a) && is_positive(b));

 int common_trailing_zeros =
 find_common_exponent(a, b);

 assert(is_odd(a) && is_odd(b));

 return left_shift(stein_gcd_odd(a, b),
 common_trailing_zeros);
}

where is_zero and left_shift are defined as:

template <typename T> // T models Additive Monoid
inline
bool is_zero(const T& a) {
 return a == T(0);
}

template <typename T> // T models Binary Integer
inline
T left_shift(T a, int n) {

 91

Alexander Stepanov Notes on Programming 10/31/2007

 assert(0 <= n);
 assert(is_positive(a));

 return a << n;
}

All the little auxiliary functions that I used for implementing stein_gcd together with
a few others (such as is_even) belong to a header file binary_integer.h which is
frequently useful. We will use them again when we study the Russian Peasant algorithm.

Stein’s algorithm is usually faster than Euclid’s in practice. It is quite clear what its
complexity is: it shifts at least one of its arguments to the right at every iteration. That
makes the number of iterations to be not greater than the sum of the positions of the most
significant bits minus 2. But there is a remarkable result by Brigitte Vallée that for binary
encoded integers the theoretical average complexity of Stein’s algorithm in terms of bit
operations is about 60% better than Euclid’s.

Stein’s algorithm is frequently called binary gcd but does not really deal with binary
integers only. As Euclid’s algorithm was found to work on different domains, the same
thing happened to Stein’s. First people noticed that it can be used with polynomials over
a field with division by 2 being replaced by division by x. (I do not know who people are.
I discovered it independently but later on found it as an exercise 4.6.1.6 in Knuth. He
does not state who discovered it first.) In 2000 Andre Weilert realized that it could be
used on Gaussian integers if one uses the division by 1+i instead of 2. And in 2003 and
2004 Gudmund Skovbjerg Frandsen and his collaborators at Aarhus University showed
that the algorithm can be used in other rings of algebraic integers including ones where
Euclid’s algorithm does not work! It is quite clear that there is a concept underlying
Stein’s algorithm that is as interesting as the one behind Euclid’s algorithm. If we look at
what unifies the applications of Stein’s algorithm to different domain it is the notion of
division by the smallest prime. After all, 2 for integers, x for polynomials, 1 + i for
Gaussian integers share the nice property of being a smallest prime. There are, of course,
several smallest primes in each of these domains: 2 and -2 for integers, 1 + i, 1 – i,
–1 + i and –1 – i for Gaussian integers, and ax + b for polynomials. Division by the
smallest prime possesses a nice property of always giving an invertible element (a unit)
as a remainder when the remainder is not equal to 0. And that means that two elements
with non-zero remainders (odd elements) can be multiplied by units so that the
corresponding remainders could be cancelled.

We can then define a generalized Stein algorithm as:

template <typename T> // T models Stein Domain
T generalized_stein_gcd(T a, T b)
{
 if (is_zero(a)) return n;
 if (is_zero(b)) return m;

 92

Alexander Stepanov Notes on Programming 10/31/2007

 int exponent1 = find_exponent(a);
 int exponent2 = find_exponent(b);

 while (!are_associates(a, b)) {
 if (norm(a) < norm(b)) swap(a, b);
 cancel_remainder(a, b);
 do { halve(a); } while (!is_odd(a));
 }

 return shift_left(a, min(exponent1, exponent2));
}

where find_exponent is defined as:

int find_exponent(T& a) {
 int n = 0;
 while (!is_odd(a)) {
 halve(a);
 ++n;
 }
 return n;
}

In this case is_odd, halve and shift_left are extended to mean correspondingly
the same operations as the operations for binary integers but in terms of the smallest
prime of the domain. (We need to pick one in terms of which the Stein domain is
defined.) Notice, that we are now using halve and not halve_non_negative. We
need also define functions are_associates that determines if one element is equal to
the other multiplied by a unit, cancel_remainder that takes two arguments a and b
and replaces a with unit1*a - unit2*b where units are selected so that the
difference is divisible by the smallest prime and norm that maps the elements of the
domain into positive integers that decrease after the difference is divided by the smallest
prime. The tricky task happens to be finding cancel_remainder function for new
domains as well as proving the decrease of the corresponding norm. I have been
struggling for many years to prove that every Euclidean domain is a Stein domain
without much luck. In general, I do not know the relations between Euclidean domains,
weak Euclidean domains and Stein domains. It seems that Frandsen established that there
are Stein domains that are not Euclidean, but the rest is still unclear.

Problem: Define additional functions that will make generalized_stein_gcd
work for built-in signed integral types.

Problem: Measure the performance of subtractive gcd, remainder gcd, hybrid gcd (with
different shifts) and Stein gcd for different ranges of 32 and 64 bit integers.

 93

Alexander Stepanov Notes on Programming 10/31/2007

10.3. Exponentiation

The next problem we are going to look at is the problem of multiplying a repeatedly: a *
a * … * a. The Greeks knew about squares (a * a) and cubes (a * a * a). Archimedes,
who clearly was about 2000 years ahead of his time knew about higher powers, but they
were quickly forgotten. Since about 1600 the notion of raising a number or other object to
the nth power became a routine operation. Euler remarks that we can, of course, write a,
a * a, a * a * a, a * a * a* a, a * a * a * a * a, and so on, but as he says, “we soon feel
the inconvenience attending this manner of writing the powers, which consists in the
necessity of repeating the same letter very often, to express higher powers; and the reader
would have no less trouble, if he were obliged to count all the letters, to know what
power is intended to be represented. The hundredth power, for example, could not be
conveniently written in this manner; and it would be equally difficult to read it”
(Elements of Algebra, page 51). He was looking to reduce the linear-space notation into a
logarithmic-space one. We will be looking to reduce linear time to logarithmic time.

Writing a useful implementation of power is an exemplary starting point for
understanding generic programming, since it combines both algorithmic difficulties and
abstraction difficulties while remaining manageable in both dimensions. Before we
attempt to write an efficient exponentiation algorithm, let us try to write a simple-minded
inefficient one. It is usually good to do it for several reasons. First, it allows us to face the
interface design without dealing with extra algorithmic complexity. Second, it is useful to
have a different algorithm to check the correctness of the fast one. Finally, as we will
discover, sometimes fast algorithms are not as fast as they seem.

As usual, let us start with a preliminary implementation starting from the inside out:

 while (--n != 0)
 result = result * a;

 return result;

The middle of the code seems to be straightforward. We decrement the exponent and
multiply the result by a. Does it really matter that we write:

 result = result * a;

instead of writing:

 result = a * result;

 94

Alexander Stepanov Notes on Programming 10/31/2007

or, in other words, could we assume that multiplication is commutative? And if it is not
commutative which version of the statement should we pick? It seems that the
exponentiation does not really require our operation to be commutative. Indeed, people
raise matrices to nth power, and we know that matrix multiplication is not commutative.
But, in fact, even if multiplication in general is not commutative, it is in this particular
case. We should observe that while exponentiation does not require commutativity, it
does require associativity.

Notice that when Euler was talking about powers, he wrote a * a * a without putting
parentheses. (Actually, in his original text he wrote aaa, eliding the multiplication
operator, but I inserted the operators for the convenience of the modern reader. There
have been so many amazing things done for the convenience of modern readers that one
more is not going to hurt.) Therefore he assumed that (a * a) * a is equal to a * (a * a) –
quite a natural assumption in his case since he assumed that a was a real number and that
multiplication of real numbers was associative. But the associative law implies
commutativity for powers of the same element. For example, it is easy to see that (a * a *
a) * (a * a) is equal to (a * a) * (a * a * a). If we have associativity, we can drop the
parentheses and evaluate the expression in any order we like. That gives us the standard
law for powers: anam = an+m.

In other words, exponentiation is defined on a set with an associative binary operation.
Mathematicians call such a structure a semigroup. Semigroups are not necessarily
commutative. Strings are a semigroup with string concatenation being the semigroup
operation. The operation is associative but not commutative. It is important to remember
that for non-commutative semigroups the other essential law of exponentiation does not
hold: anbn is not equal to (ab)n, as one can easily observe by comparing the strings
aaabbb and ababab.

That means that we can define our generic algorithm as:

template <typename T, // T models Multiplicative Semigroup
 typename I> // I models Integer
T slow_power(T a, I n)
{
 assert(is_positive(n));

 T result = a;

 while (!is_zero(--n))
 result = result * a;

 return result;
}

It should be obvious that we might want to pass our operation as an argument to the
algorithm, and we need a more general version:

 95

Alexander Stepanov Notes on Programming 10/31/2007

template <typename T, // T models Regular
 typename I, // I models Integer
 typename Op>
 // Op models Semigroup Operation on T
T slow_power(T a, I n, Op op)
{
 assert(is_positive(n));

 T result = a;

 while (!is_zero(--n))
 result = op(result, a);

 return result;
}

In the future, when compilers conform to the 1998 C++ standard, we will unify the two
versions with:

template <typename T, // T models Regular
 typename I, // I models Integer
 typename Op = std::multiplies<T> >
 // Op models Semigroup Operation on T
T slow_power(T a, I n, Op op = Op())
{
 assert(is_positive(n));

 T result = a;

 while (!is_zero(--n))
 result = op(result, a);

 return result;
}

Notice that we do not know what to return for negative exponents or for zero. The
standard mathematical convention is that we return one when we raise a number to the
zero power. Indeed since anam = an+m is a law that we would like to keep, it implies that
ana0 = an+0 = an and that will imply that a0 behaves as a right multiplicative identity. It is
self-evident that it also behaves as a left multiplicative identity. a0, therefore, should be
defined to return the identity element. (Prove that a semigroup can have only one identity
element.) But, in general, semigroups need not have an identity element. One can easily
see it if one looks at the multiplicative semigroup of even natural numbers. So the
algorithm should work for zero exponents only if our semigroup has an identity element.
Mathematicians call such a structure a monoid. We can define such an algorithm easily
enough:

 96

Alexander Stepanov Notes on Programming 10/31/2007

template <typename T, // T models Regular
 typename I, // I models Integer
 typename Op> // Op models Monoid Operation on T
T slow_power(T a, I n, Op op)
{
 assert(is_non_negative(n));

 if (is_zero(n)) return identity_element(op);

 T result = a;

 while (!is_zero(--n))
 result = op(result, a);

 return result;
}

And we can inform the compiler that 1 is the identity element of multiplication and 0 is
the identity element of addition:

template <typename T> // T models Multiplicative Monoid
inline
T identity_element(const std::multiplies<T>&)
{
 return T(1);
}

template <typename T> // T models Additive Monoid
inline
T identity_element(const std::plus<T>&)
{
 return T(0);
}

The problem is that the new definition of slow_power conflicts with the old one for the
semigroup since our semantic constraints are expressed as comments. We can keep only
one of the definitions. Pragmatically speaking, it is better to keep the more restrictive
definition for the monoid since most common associative operations do possess identity
elements. But let us imagine for a minute that we can distinguish between different
concepts. Then we could write something like:

template <Regular T,
 Integer I,
 MonoidOperation<T> Op = std::multiplies<T> >
T slow_power(T a, I n, Op op = Op())
{
 assert(is_non_negative(n));

 97

Alexander Stepanov Notes on Programming 10/31/2007

 if (is_zero(n)) return identity_element(op);

 return slow_power(a, n, SemigroupOperation<T>(op));
}

where the parameterized concept MonoidOperation is a refinement of a
parameterized concept SemigroupOperation that provides the
identity_element function.

We will be able to deal with negative exponents also by defining them on a more refined
concept of GroupOperation that will provide an additional function
inverse_operation that by default returns negate for plus and reciprocal
for multiplies. (For those of you who forgot your abstract algebra, a group is a
monoid with the inverse operation. Every element in a group has an inverse, and applying
the group operation to an element and its inverse returns the identity element.) The
version for groups will then look something like:

template <typename T,
 Integer I,
 GroupOperation<T> Op = std::multiplies<T> >
T slow_power(T a, I n, Op op = Op())
{
 if (is_negative(n))
 return slow_power(
 inverse_operation(op)(a),
 -n,
 SemigroupOperation<T>(op)

 return slow_power(a, n, MonoidOperation<T>(op));
}

template <AdditiveGroup T>
inline
std::negate<T> inverse_operation(const std::plus<T>&)
{
 return std::negate<T>();
}

template <MultiplicativeGroup T>
inline
reciprocal<T> inverse_operation(
 const std::multiples<T>&)
{
 return reciprocal<T>();
}

 98

Alexander Stepanov Notes on Programming 10/31/2007

where reciprocal is defined as:
template <MultiplicativeGroup T>
struct reciprocal : std::unary_function<T, T>
{
 T operator()(const T& x) const {
 return identity_element(std::multiples<T>()) / x;
 }
};

And we can even provide an implementation of slow_power in terms of
left_power algorithm defined on GroupoidOperation. A groupoid, or, as my old
friend Nicolas Bourbaki calls it, a magma, is a set with a binary operation with no
associativity or any other property assumed; that is why we need to define the order of
evaluation of power. It is an interesting question why we default our power to
left_power. One of the reasons, of course, is my European habit of writing left-to-
right which makes it more natural to view (a * a) * a as a default, rather than a * (a * a).
But there is a less frivolous reason: later on in the course we will study the reduction
algorithm, and since it is natural to view slow_power as a reduction of an operation on
a sequence of n equal elements, we should use the most general kind of reduction which
happens to be left reduction.

It is a remarkable fact, but there is no programming language that allows us to write
algorithms in their proper mathematical setting. I have been hoping for one for over 25
years now. It is possible that you will live long enough to see one, but I am losing hope
that I will get to write power the way it should be written. As the Greeks used to say,
“The mills of the gods grind slowly…”

Exponentiation, when viewed as an operation, defines a multiplication operation
connecting the domain of the original semigroup operation and integers. It allows us to
“multiply” any element of a semigroup by a positive integer. For example, if we take
strings and concatenation operation, exponentiation will provide us with an ability to
multiply any string, say “foo“, by a number, say 3, and obtain a result,
“foofoofoo“. For a monoid we obtain a multiplication by non-negative integers and
for a group multiplication by any integer. In general, this multiplication does not
distribute over the semigroup operation, but it does distribute when we deal with Abelian
(or commutative) semigroups. A mathematician would say that exponentiation turns an
Abelian semigroup into a semi-module over the semi-ring of natural numbers and an
Abelian group into a module over a ring of integers. It sounds terribly complicated, but in
reality is some really trivial stuff. People are often scared away from mathematics
because of the use of unknown terms and strange symbols. It is, however, important to
remember that the real point of mathematics is to make thing clear. That is why I hope
that eventually we will be able to program with things like semigroups and groups. I am
way too stupid to be able to program well without the help of simple mathematical
structures.

 99

Alexander Stepanov Notes on Programming 10/31/2007

It is important to notice that power, if used with addition as its operation, gives us
multiplication. This is, as a matter of fact, the context in which the fast way of
exponentiation was first discovered. It is hard for us to say how far back the discovery
goes. It was already known to the Egyptian scribe Ahmes (Ahmos) who described a way
to multiply two numbers around 1650BC, but he claimed that he copied it from a text
hundreds of years earlier. (The scroll written by Ahmes is known as the Rhind papyrus
after its Scottish discoverer Alexander Henry Rhind.) Later on, the method was known to
the Greeks as Egyptian multiplication and has been practiced in Europe and among the
Arabs for thousands of years.

Ahmes used an example to describe the algorithm. (Using examples is frowned upon
nowadays; one of the people who attended my course was so disgusted with my
explanation of this algorithm from examples that he quit after letting me know that I will
turn my students into really terrible programmers. I would, however, like to know what
he would say if he ever read Diophantus, who constructed what is probably the second
most important book in the history of mathematics as a list of well-chosen examples. But,
back to Ahmes!)

Let us multiply two numbers, say, 41 and 59. Let us start with a pair (1, 59) and let us
keep doubling both elements till the second one exceeds 41.

 1 59 ◄

 2 118

 4 236

 8 472 ◄

16 944

32 1888 ◄

64 … - we do not need to bother doubling 1888.

Now we mark the rows such that the sum of the first elements in the marked rows is
equal to 41. (This shows us that the binary representation of integers has been around for
quite a while.) Ahmes relies on the fact that 41 * 59 is equal to (1 + 8 + 32) * 59 which is
equal to 59 + 472 + 1888. So if you add the second elements of the marked rows you will
get the correct answer: 2419.

The procedure survived till the 19th century in societies that relied on the abacus for
calculation, since doubling required by the procedure is easy with an abacus. In
particular, a refined version of it was apparently observed by Western travelers to Russia,
and the algorithm for exponentiation based on it is known in the West (but not in Russia!)
as Russian Peasant Algorithm. (The oldest reference I was able to find appears in the

 100

Alexander Stepanov Notes on Programming 10/31/2007

wonderful book A History of Greek Mathematics by Sir Thomas Heath published in
1921. It is interesting to note that before describing the method he writes: “I have been
told that there is a method in use to-day (some say in Russia, but I have not been able to
verify this) …” The earliest reference, therefore, leaves us with a dangling pointer.
Anybody who can provide an earlier non-dangling reference, please send it to me.) The
(unverifiable) Russian peasants proceeded like this. Starting with the same numbers 41
and 59 they would write them as a triple (41, 59, x) when x is 0 if the first number (41)
is even and equal to the first number if it is odd. Then they divide the first one by 2
(keeping the integral quotient) while doubling the second till the first one turns into 1 and
incrementing the third by the second when the first is odd:

41 59 59

20 118 59

10 236 59

5 472 531

2 944 531

1 1888 2419

And, as the peasants used to say in the old country, voilà: 2419.

Now let us try to implement the Russian Peasant algorithm. I will use the only method I
know for writing programs: first I will write bad code and then I will refine it. It is
different from Dijkstra/Wirth stepwise refinement. They start with a beautiful program
that is too abstract and then they refine it into a beautiful concrete program. I cannot do
that. I always start with a concrete and often incorrect program and then gradually re-
write it so that it becomes more abstract, correct, and, I hope, more beautiful. As I stated
before, I always start writing code from inside out. I find the central idea, and then
surround it with the rest. Let us see the process.

I first start with observing that I could name the first column of the previous example as
n, the second as a and the third as result. Then the central line of my algorithm is:

 if (is_odd(n)) result = result + a;

Since I learned about generic power while doing the slow power algorithm I can quickly
replace it with:

 if (is_odd(n)) result = op(result, a);

I know that to get to the next row I need to double a and halve n:

 101

Alexander Stepanov Notes on Programming 10/31/2007

 if (is_odd(n)) result = op(result, a);
 a = op(a, a);
 halve_non_negative(n);

And since I know that when I halve 1 I will get 0 and the inner loop is done:

 while (!is_zero(n)) {
 if (is_odd(n)) result = op(result, a);
 a = op(a, a);
 halve_non_negative(n);
 }
 return result;

Now I just need to initialize result and the algorithm is done:

template <typename T, // T models Regular
 typename I, // I models Integral
 typename Op> // Op models MonoidOperation on T
T fast_power_0(T a, I n, Op op)
{
 assert(!is_negative(n));
 T result = identity_element(op);
 while (!is_zero(n)) {
 if (is_odd(n)) result = op(result, a);
 a = op(a, a);
 halve_non_negative(n);
 }
 return result;
}

In reality, however, it is at best under-done. It does one extra operation squaring a during
the last iteration. It is not just an extra operation. It might cause an overflow or a memory
exception. The technique for fixing it is well known: we need to rotate the loop so that
the exit condition is checked before we square a. To do that we need to interchange
squaring and halving, since we need to halve before we check for exit:

template <typename T, // T models Regular
 typename I, // I models Integral
 typename Op> // Op models MonoidOperation on T
T fast_power_1(T a, I n, Op op)
{
 assert(!is_negative(n));
 T result = identity_element(op);
 if (is_zero(n)) return result;
 while (true) {
 if (is_odd(n)) result = op(result, a);
 halve_non_negative(n);

 102

Alexander Stepanov Notes on Programming 10/31/2007

 if (is_zero(n)) return result;
 a = op(a, a);
 }
}

We can also observe that if n is a non-zero even number then it is not going to become
zero after it is halved. So we only need to check for the exit if n is odd. We can
accomplish it with:

template <typename T, // T models Regular
 typename I, // I models Integral
 typename Op> // Op models MonoidOperation on T
T fast_power_2(T a, I n, Op op)
{
 assert(!is_negative(n));
 T result = identity_element(op);
 if (is_zero(n)) return result;
 while (true) {
 bool odd = is_odd(n);
 halve_non_negative(n);
 if (odd) {
 result = op(result, a);
 if (is_zero(n)) return result;
 }
 a = op(a, a);
 }
}

We could stop here and declare victory. After all, that is where Knuth stops (page 462,
vol. 2 of The Art of Computer Programming). But we could easily see that at least one
operation is done for no reason: we know the result of multiplying a by the identity.
There is a simple step that we can use: accumulating results into an extra argument. We
will assume that we need to compute ran instead of an where r is an extra argument and
we can do it without an extra operation:

template <typename T, // T models Regular
 typename I, // I models Integral
 typename Op> // Op models SemigroupOperation on T
T accumulate_power_0(T r, T a, I n, Op op)
{
 assert(!is_negative(n));
 if (is_zero(n)) return r;
 while (true) {
 bool odd = is_odd(n);
 halve_non_negative(n);
 if (odd) {
 r = op(r, a);

 103

Alexander Stepanov Notes on Programming 10/31/2007

 if (is_zero(n)) return r;
 }
 a = op(a, a);
 }
}

Notice that we did not just make a somewhat more powerful function, but weakened the
requirements on the operation. We do not need a monoid any more. Any semigroup will
do.

I will cheat a little bit and introduce a function here that will be needed on the next page.
Most authors do it without warning, and you assume that they possess far greater
cleverness than you. I do not possess any extra cleverness and would have discovered the
need for the function only on the next page, the same as you. But putting it here makes
the flow go better. Oh, the things we do, to improve the flow. We would not want to do
the first check for zero if we knew for sure that n was positive. Let us then factor out
such a case by defining:

template <typename T, // T models Regular
 typename I, // I models Integral
 typename Op> // Op models SemigroupOperation on T
inline
T accumulate_positive_power(T r, T a, I n, Op op)
{
 assert(is_positive(n));
 while (true) {
 bool odd = is_odd(n);
 halve_non_negative(n);
 if (odd) {
 r = op(r, a);
 if (is_zero(n)) return r;
 }
 a = op(a, a);
 }
}

(Even the name of the function is quite poetic; positive power clearly follows positive
hour and transitory power; a clear allusion to T. S. Elliot. I was once asked by an
interviewer if one could write poetry in code. The short answer is yes.)

And we can obtain a very straightforward version of accumulate_power:

template <typename T, // T models Regular
 typename I, // I models Integral
 typename Op> // Op models SemigroupOperation on T
T accumulate_power(T r, T a, I n, Op op)
{

 104

Alexander Stepanov Notes on Programming 10/31/2007

 assert(!is_negative(n));
 if (is_zero(n)) return r;
 return accumulate_positive_power(r, a, n, op);
}

We could easily obtain a version of power by accumulating n-1 elements into the first
one:

template <typename T, // T models Regular
 typename N, // N models Integral
 typename Op> // Op models SemigroupOperation on T
T fast_positive_power_0(T a, N n, Op op)
{
 assert(is_positive(n));
 if (is_one(n)) return a;
 return accumulate_positive_power(a, a, --n, op);
}

template <typename T, // T models Regular
 typename N, // N models Integral
 typename Op> // Op models MonoidOperation on T
T fast_power_3(T a, N n, Op op)
{
 assert(!is_negative(n));
 if (is_zero(n)) return identity_element(op);
 return fast_positive_power_0(a, n, op);
}

While fast_power_3 is going to do fewer operations than fast_power_2 when n
is 17 it will do many more when n is equal to 16. We need to start accumulating with the
first significant bit of the exponent. We can easily transform a and n so that the problem
is reduced to the case of an odd number:

template <typename T, // T models Regular
 typename N, // N models Integral
 typename Op> // Op models SemigroupOperation on T
inline
void square_while_even(T& a, N& n, Op op)
{
 assert(is_positive(n));
 while (!is_odd(n)) {
 halve_non_negative(n);
 a = op(a, a);
 }
}

And now we are ready for the final version:

 105

Alexander Stepanov Notes on Programming 10/31/2007

template <typename T, // T models Regular
 typename N, // N models Integral
 typename Op> // Op models SemigroupOperation on T
T fast_positive_power(T a, N n, Op op)
{
 assert(is_positive(n));
 square_while_even(a, n, op);
 halve_non_negative(n);
 if (is_zero(n)) return a;
 return accumulate_positive_power(a, op(a, a), n, op);
}

template <typename T, // T models Regular
 typename N, // N models Integral
 typename Op> // Op models MonoidOperation on T
T fast_power(T a, N n, Op op)
{
 assert(!is_negative(n));
 if (is_zero(n)) return identity_element(op);
 return fast_positive_power(a, n, op);
}

It is really easy to see the number of operations that the algorithm does: one squaring for
every significant bit but the last one, plus one accumulation for every 1 encountered after
the first one. It is pretty clear that the worst cases are the numbers with only ones in their
binary representation. The number of operations done by the Russian Peasant Algorithm
is very small, but, interestingly enough, not always optimal. The first example of the
suboptimal behavior is when the exponent is 15. According to our formula the number of
operations is going to be: (4 – 1) + (4 – 1) = 6. But we can do better by first computing
a5 which can be done with three operations and then raising it to the 3rd power with two
more operations for a total of 5. There is a complicated theory of addition chains that
deals with the optimal number of operations for exponentiation described in the second
volume of Knuth. Without going into theoretical complications, we can use minimal
addition chains to generate a little library for doing optimal exponentiation in the special
case where the exponent is known at compile time. It is also a little example of template
metaprogramming with a modicum of algorithmic substance. I give the optimal code for
n ≤ 50. The code is sufficiently trivial not to require much explanation. I use a convention
that names of function objects that depends on a compile time constant end with _k:

template <int k>
struct conditional_operation
{
 template <typename T, // T models Regular
 typename Op> // Op Models BinaryOperation(T)
 T operator()(const T& a, const T& b, Op op)

 106

Alexander Stepanov Notes on Programming 10/31/2007

 {
 return op(a, b);
 }
};

template <>
struct conditional_operation<0>
{
 template <typename T, // T models Regular
 typename Op> // Op Models BinaryOperation(T)
 T operator()(const T& a, const T&, Op)
 {
 return a;
 }
};

template <int k>
struct power_k;

template <>
struct power_k<0>
{
 template <typename T, typename Op>
 // Op Models MonoidOperation(T)
 T operator()(const T& a, Op op)
 {
 return identity_element(op);
 }
};

template <>
struct power_k<1>
{
 template <typename T, typename Op>
 // Op Models SemigroupOperation(T)
 T operator()(const T& a, Op)
 {
 return a;
 }
};

template <>
struct power_k<2>
{
 template <typename T, typename Op>
 T operator()(const T& a, Op op)
 {

 107

Alexander Stepanov Notes on Programming 10/31/2007

 return op(a, a);
 }
};

template <int k>
struct power_k
{
 template <typename T, typename Op>
 T operator()(const T& a, Op op)
 {
 return conditional_operation<k%2>()
 (power_k<2>()(power_k<k/2>()(a, op), op),
 a,
 op);
 }
};

template <>
struct power_k<15>
{
 template <typename T, typename Op>
 T operator()(const T& a, Op op)
 {
 return power_k<3>()(power_k<5>()(a, op), op);
 }
};

template <>
struct power_k<23>
{
 template <typename T, typename Op>
 T operator()(const T& a, Op op)
 {
 T p3 = power_k<3>()(a, op);
 return op(power_k<4>()(op(p3, op(a, a)), op),
 p3);
 }
};

template <>
struct power_k<27>
{
 template <typename T, typename Op>
 T operator()(const T& a, Op op)
 {
 T p3 = power_k<3>()(a, op);
 return op(power_k<8>()(p3, op), p3);

 108

Alexander Stepanov Notes on Programming 10/31/2007

 }
};

template <>
struct power_k<39>
{
 template <typename T, typename Op>
 T operator()(const T& a, Op op)
 {
 T p3 = power_k<3>()(a, op);
 return op(power_k<12>()(p3, op), p3);
 }
};

template <>
struct power_k<43>
{
 template <typename T, typename Op>
 T operator()(const T& a, Op op)
 {
 T p2 = op(a, a);
 T p3 = op(p2, a);
 return op(power_k<8>()(op(p3, p2), op), p3);
 }
};

template <>
struct power_k<45>
{
 template <typename T, typename Op>
 T operator()(const T& a, Op op)
 {
 return power_k<3>()(power_k<15>()(a, op), op);
 }
};

Problem: Extend power_k all the way to 100.

 109

Alexander Stepanov Notes on Programming 10/31/2007

Lecture 11. Locations and addresses

In the previous lecture we discovered that we can think about algorithms as being defined
on mathematical structures, such as total ordering, Euclidean rings, monoids, semigroups,
etc. It is a wonderful discovery since it allows us to view our activity as a continuation of
a great mathematical tradition. It should not be particularly surprising, since computer
science was discovered by mathematicians such as Alan Turing and John von Neumann.
The perception that we are pre-occupied with routine tasks that are less glamorous than
the job of a mathematician is an illusion. The great mathematicians of the past such as
Archimedes, Euler and Gauss were not at all averse to solving practical problems. The
disdain for solving practical problems is usually an indication of the decline of a
particular science.

But are we just repeating the path of mathematics? Are we rediscovering anew a set of
well-known basic abstractions? Or is there something in our discipline that adds to the set
of abstractions discovered by mathematicians? My answer is an emphatic yes to the last
question and no to the others. The great discovery of Turing and von Neumann that set us
on a new path was the discovery of memory. We are not just dealing with numbers: we
are storing them in different locations.

As computer science developed, the notion of memory developed with it. At first Turing
introduced memory as a (potentially) infinite tape. I say “potentially” since at any
moment of computation only a finite amount of tape is actually used. Then it became
clear that the model that we really need is a model of a random-access machine that uses
natural numbers as its addresses and can retrieve or store data from a location in a
“constant” amount of time. (“Constant” is sometimes logarithmic, but we have to
remember that logarithms are constant for all practical purposes.) Then there was the
amazing discovery that we can model different behavior of memory by creating different
data structures. The problem is that in the last 40 years the number of different individual
data structures that control our access to locations grew up dramatically. We need to use
the well-tested method of abstraction to handle them. The challenge that we face is to
develop abstract concepts that deal with locations. If traditional mathematics deals with
sets of values and operations on them, value algebras, we have to deal with sets of
locations and operations on them: location algebras. A location algebra is not a data
structure but an abstraction of a particular set of operations on locations.

Let us quickly give several important definitions of different classes of location algebras.

A location algebra is called homogeneous if all of the locations in the algebra contain
values of the same type. In this course we will deal mostly with homogeneous algebras.

A location algebra is free if there are no constraints on the values contained in the
locations. A linked list is free. If we guarantee that it is sorted, it is not free.

 110

Alexander Stepanov Notes on Programming 10/31/2007

While it is possible to keep providing more and more definitions, it is not the correct
approach to building a theory. We often get the idea that a mathematical theory is built in
a logical way starting from definitions and axioms. This is not the case. The definitions
and axioms appear at the very end of the development of a good theory. It invariably
starts with simple facts that later on are generalized into theorems, and only at the very
end the formal definitions and axioms are developed. Sadly enough, many people who try
to apply mathematics to programming start with axioms and then end up criticizing the
real programs for not corresponding to their “beautiful” axioms. To build a theory of data
structures we need to start with simple algorithms operating on data structures and only
when we have looked at many specific algorithms can we come up with satisfactory
theories.

It is almost impossible to capture the process in my lectures. After all, I already know the
answers and, willy-nilly, present the conclusions in a more deductive way than they have
really been derived. The inductive process that is central to the discovery is lost. But let
us try the best we can by using my favorite “inside-out” way of design. We will start with
the simplest possible location-based algorithm – linear search – and attempt to derive a
theory of iterators – or objects that define locations.

I have to admit that I have grave misgivings about the term iterator. I did not use it
originally and used interchangeably the terms position and coordinate. I was very
familiar with the notion of iterators in Clu and knew that it was not what I needed.
Unfortunately, the C++ community borrowed the notion of iterators from Clu and when I
started explaining my ideas they insisted that they already had a term for things like my
coordinates and they should be called iterators. Of course, random access iterators have
no relation to Clu-like iterators used in C++ before STL, but the name stuck and I have to
use it now. The name is especially inappropriate for the most basic kind of iterators,
trivial iterators, since they do not iterate!

A type is called a trivial iterator to some class T if it is a regular type that provides an
(amortized) constant-time dereferencing operation that returns a reference to T. We refer
to T as the value type of the iterator and the reference to T as the reference type of the
iterator. There are serious complications in precisely defining what reference types in
C++ are. It is possible to create proxy classes that behave almost like references.
Unfortunately, almost is not good enough. I suggest that you stay away from them, and in
this course we will deal only with plain references: T& and const T&. The notion of
reference is hardwired into the language and all attempts to extend it I have seen were not
very convincing. Since I was probably one of the first if not the first person to attempt to
introduce such proxy references in vector<bool>, I have earned the right to be
skeptical of them.

The concept of a trivial iterator is important theoretically, but is much less so in practice
for the simple reason that there are not many algorithms that use trivial iterators. While
STL uses unary operator* for dereference I will use a function deref to designate
such an operation. It will make certain things more consistent and will make my code less
dependent on the peculiarities of the C++ syntax. In particular, that will enable us to

 111

Alexander Stepanov Notes on Programming 10/31/2007

assure that any regular type that does not serve as an iterator to another type is a trivial
iterator to itself:

template <typename T> // T models Regular
inline
T& deref(T& x)
{
 return x;
}

template <typename T> // T models Regular
inline
const T& deref(const T& x)
{
 return x;
}

In other words, the object that does not designate something else designates itself. Now
we will refer to objects that designate something else as proper iterators and will usually
assume that iterators are proper. As we shall see, however, the fact that any regular type
could be viewed as an iterator to itself is algorithmically useful. We now need to assure
that the most frequent type of iterator – a pointer – has dereferencing defined:

template <typename T>
inline
T& deref(T* x)
{
 return *x;
}

template <typename T> // T models Regular
inline
const T& deref(const T* x)
{
 return *x;
}

To do something interesting we need the ability to move from one position to the next. It
is clearly necessary to do so if we are to implement linear search. After all, the simplest
description of linear search is this: keep going till you find it. So we need to be able to go
to the next position. We need to combine our notion of iterator with the concept of
incrementable. In reality, incrementable types are interesting by themselves. They allow
us to create many fundamental algorithms, and they possess an interesting taxonomy that
is inherited by iterators. Therefore it is worthwhile to spend some time looking at them.

 112

Alexander Stepanov Notes on Programming 10/31/2007

Lecture 12. Actions and their orbits

The concept of an incrementable type is tied to an operator++ defined on the type that
mutates the object and sets its value to the next value of the type. In reality we need a
more general concept of a type with an action – a function or a function object that
mutates the value of an object. After all, there are many different increment-like
operations on a type. For example, in the case of integers we could have a function object
that does x += c or x = x * c % m for constants c and m. An action is called total
if it is defined for any value of the type. In programming we often deal with non-total or
partial actions. An action of type A on type T is called explicitly defined if there is a
function:

bool is_defined(A a, T x)

that returns true if action a is defined on x and false otherwise. (As a matter of fact, such
a function always exists as an implicit function. An implicit function is a function on a
type that is mathematically well-defined but might not have an explicit implementation. It
is often essential to introduce implicit functions to be able to express the semantics of a
concept.) An object for which action a is not defined is called a bottom of a, or, if it is
clear which action is discussed, simply a bottom.

We can provide a default for total actions:

template <typename T, // T models Regular
 <typename A> // A models Action on T
inline
bool is_defined(const A&, const T&)
{
 return true;
}

An explicitly defined action of type A is called regular if, for two actions a and b and
two distinct objects x and y of type T, the following holds true:

 assert(is_defined(a, x) && a == b && x == y);
 assert(is_defined(b, y));

In other words, the action is defined on equal values. Also the following holds true:

 assert(is_defined(a, x));
 assert(&x != &y && x == y && a == b);
 a(x); b(y);
 assert(x == y);

 113

Alexander Stepanov Notes on Programming 10/31/2007

In other words, applying equal actions to equal but not identical objects maintains the
equality. (Actions take their argument by reference and return void.)

Sometimes we want to apply the action several times:

template <typename T, // T models Regular
 typename A, // A models Action on T
 typename I> // I models Integer
inline
void advance(T& x, I n, A a)
{
 while (n > Integer(0)) {
 assert(is_defined(a, x));
 a(x);
 --n;
 }
}

We can easily make a version of it that will behave as the STL version of advance by
defining:

template <typename T> // T models Incrementable
struct increment
{
 void operator()(T& x) { ++x; }
};

template <typename T, // T models Incrementable
 typename I> // I models Integer
inline
void advance(T& x, I n)
{
 advance(x, n, increment<T>());
}

Often we can use functional versions of advance:

template <typename T,
 typename A, // A models Action on T
 typename I> // I models Integer
inline
T successor_n(T x, I n, A a)
{
 advance(x, n, a);
 return x;
}

 114

Alexander Stepanov Notes on Programming 10/31/2007

template <typename T,
 typename I> // I models Integer
inline
T successor_n(T x, I n)
{
 return successor_n(x, n, increment<T>());
}

template <typename T>
inline
T successor(T x)
{
 increment<T>()(x);
 return x;
}

Problem: Define function_objects advance_k and successor_k that take a template
integer argument. (Hint: look at the code for power_k.)

Sometimes we cannot be sure that we can advance all the way; we can then use a version
that will advance as much as it can and then return the number of advances remaining to
be done:

template <typename T, // T models Regular
 typename A, // A models Action on T
 typename I> // I models Integer
I guarded_advance(T& x, I n, A action)
{
 while (n > I(0) && is_defined(action, x)) {
 action(x);
 --n;
 }
 return n;
}

Problem: Implement guarded versions of successor and successor_n.

Now we can define an algorithmic inverse of advance: a function distance that
counts the number of applications it takes to reach one value from another. The code is
practically indistinguishable from advance, but we face the problem of determining the
type we should use for counting. Let us introduce a type function COUNT_TYPE that for
every type returns an integer type big enough to count the number of distinct values that
the original type may have. In some future language we will have special facilities for
type functions. In C++ we use the standard convention of implementing type functions
through type traits:

 115

Alexander Stepanov Notes on Programming 10/31/2007

template <typename T> // T models Countable
struct count_type_traits
{
 typedef size_t type;
};

#define COUNT_TYPE(T) typename count_type_traits<T>::type

This code establishes a default that returns size_t as COUNT_TYPE(T) for most
types. If something else is needed we can partially specialize count_type_traits
for our type or a parameterized family of types:

template <>
struct count_type_traits<short>
{
 typedef unsigned short type;
};

or,

template <typename T>
struct count_type_traits<vector<T> >
{
 typedef uint32 type;
 // the number of different vectors is less than 2^32
};

We will call a type on which COUNT_TYPE is defined a countable type. Now it is easy to
define the distance function:

template <typename T, // T models Regular
 typename A> // A models Action on T
COUNT_TYPE(T) distance(T first,
 T last,
 A action)
{
 COUNT_TYPE(T) n(0);
 while (first != last) {
 action(first);
 ++n;
 }
 return n;
}

From now on we will assume that actions are partial, explicitly defined and regular unless
otherwise specified.

 116

Alexander Stepanov Notes on Programming 10/31/2007

Every object x of type T under the action a of type A goes through a sequence of values.
We call this sequence the orbit of x under a. Let us assume that all orbits are of finite
length. Then every orbit is either bottom-terminating or cycle-terminating.

It should be observed that a value in a cycle-terminated orbit belongs either to the cycle
itself or to the handle that leads to the cycle.

For example, if we have an orbit:
x1 => x2 => x3 => x1

x1 is in the cycle.

If, however, we have an orbit:
x1 => x2 => x3 => x2

x1 is on the handle.

The first value on a cycle-terminating orbit that it is not on the handle is called the initial
cycle value of the orbit.

The last value of bottom-terminating orbits is called the final value of the cycle.

There is a remarkable algorithm that allows us to find if an orbit is cycle-terminating or
bottom-terminating2. It relies on the following observation: let us send two cars down a
path, a fast car and a slow car; if the path terminates, then the fast car will reach it, and if
it cycles then the fast car will catch up with the slow car. It is important to observe that if
the speed of the fast car is at least twice that of the slow car, then the slow car will travel
less than one full cycle. Indeed, when the slow car enters the cycle it either meets the fast
one, or the fast one is somewhere in the cycle ahead of it. Since the relative speed of the
fast car and the slow car is not less than that of the absolute speed of the slow car, and the
distance between them is less than the length of the cycle, the fast car will catch up with
the slow car before the slow car completes a cycle.

The following algorithm does just that:
template <typename T, // T models Regular
 typename A> // A models Regular Action on T
pair<T, T>
detect_cycle(T x, A a)
{

 if (!is_defined(a, x)) return pair<T, T>(x, x);

 T fast(x);
 T slow(x);

 do {
 a(fast);
 if (!is_defined(a, fast)) break;

2 Knuth attributes it to Robert Floyd without, however, providing any references.

 117

Alexander Stepanov Notes on Programming 10/31/2007

 a(slow);

 a(fast);
 if (!is_defined(a, fast)) break;

 } while (fast != slow);

 // slow == fast iff orbit of x is cyclic

 // in such case fast moved exactly
 // twice as many steps as slow

 return pair<T, T>(slow, fast);
}

We have to assume that T is regular since we need equality. We also need our assumption
that A is a regular action. We return a pair of the slow and the fast values. If we return a
pair of equal values and the action is defined on them, then the orbit is cycle-terminating,
if not then the first element of the pair points to the middle value of the orbit.

Problem: Define what the middle value of a bottom-terminating orbit is.

Sometimes we can benefit from keeping the count and returning a triple with the second
and third elements being slow and fast and the first being the count of the number of
actions applied to fast.

template <typename T, // T models Regular and Countable
 typename A> // A models Action on T
triple<COUNT_TYPE(T), T, T>
detect_count_cycle(T x, A a)
{
 typedef COUNT_TYPE(T) I;

 if (!is_defined(a, x))
 return triple<I, T, T>(I(0), x, x);

 I n(0);
 T fast(x);
 T slow(x);

 do {
 a(fast); ++n;
 if (!is_defined(a, fast)) break;

 a(slow);

 118

Alexander Stepanov Notes on Programming 10/31/2007

 a(fast); ++n;
 if (!is_defined(a, fast)) break;

 } while (fast != slow);

 // slow == fast iff orbit of x is cyclic

 // in such case fast moved exactly
 // twice as many steps as slow

 return triple<I, T, T>(n, slow, fast);
}

Now we know how to distinguish bottom-terminating and cycle-terminating orbits. This,
however, is not quite enough. The full characterization of a cycle-terminating orbit
includes the initial cycle value, the length of the cycle and the length of the handle.

Finding the length of the cycle is trivial. Since the cycle detection algorithm returns a
value in the cycle we can easily compute the cycle length by first moving one step
forward and then computing the distance between the successor and that value. This
distance plus one gives us the cycle length:

template <typename T, // T models Regular
 typename A> // A models Action on T
inline
COUNT_TYPE(T)
cycle_length(const T& x, A a)
{
 // precondition: x is part of a cycle
 return distance(successor_n(x, 1, a), x, a) +
 COUNT_TYPE(T)(1);
}

Now if we know the cycle length we can find the initial cycle value using the following
observations. (I will resort to our two-car analogy again.) If we drive two cars separated
by the cycle length at the same speed, then they will meet at the beginning of the cycle.
Indeed, when the second car reaches the beginning of the cycle, the first one will be
exactly one cycle length ahead of it. We can use the following auxiliary function to
implement the two cars going at the same speed till they meet:

template <typename T, // T models Regular
 typename A> // A models Action on T
T convergence_point(T first, T second, A a)
{
 while (first != second) {
 a(first);

 119

Alexander Stepanov Notes on Programming 10/31/2007

 a(second);
 }

 return first;
}

And we can find when two cars, going the same speed while one is n steps ahead, will
catch up with each other with the help of:

template <typename T, // T models Regular
 typename I, // I models Integer
 typename A> // A models Action on T
inline
T initial_cycle_value(T x, I n, A a)
{
 return convergence_point(x, successor_n(x, n, a));
}

We can also find the handle length of the orbit if we keep the count:

template <typename T, // T models Regular
 typename A> // A models Action on T
pair<COUNT_TYPE(T), T>
convergence_distance(T first, T second, A a)
{
 typedef COUNT_TYPE(T) I;

 I n(0);

 while (first != second) {
 a(first);
 a(second);
 ++n;
 }

 return pair<I, T>(n, first);
}

Now we can define a function that gives us full information about the orbit:

template <typename T, // T models Regular
 typename A> // A models Action on T
triple<COUNT_TYPE(T), COUNT_TYPE(T), T>
orbit_structure_0(const T& x, A a)
{
 typedef COUNT_TYPE(T) I;

 120

Alexander Stepanov Notes on Programming 10/31/2007

 triple<I, T, T> t = detect_count_cycle(x, a);

 if (!is_defined(a, t.third))
// bottom-terminated orbit:
 return triple<I, I, T> (t.first, 0, t.third);

// cycle-terminated orbit:

 I n = cycle_length(t.third);

 T y = successor_n(x, n, a);
 // y is a full cycle length ahead of x

 pair<I, T> q = convergence_distance(x, y, a);
 // q contains the handle length and the initial
 // cycle value

 return triple<I, I, T> (q.first, n, q.second);
}

What is the number of action applications done by the algorithm? If we denote c as our
cycle length and h as the handle length, then the call to detect_count_cycle is
going to do at most 3(c+h) actions when the orbit is cycle-terminating. (In case of the
bottom-terminating orbit the number is 1.5h.) Computing the cycle length adds c actions.
Computing the handle length and the initial cycle value adds 2h+c actions. That gives us
a bound on the total number of actions of 5(c+h) or 5 times the number of values in the
orbit. We can reduce the total number of actions by c if we change our code to:

template <typename T, // T models Regular
 typename A> // A models Action on T
triple<COUNT_TYPE(T), COUNT_TYPE(T), T>
orbit_structure(const T& x, A a)
{
 typedef COUNT_TYPE(T) I;

 triple<I, T, T> t = detect_count_cycle(x, a);

 if (!is_defined(a, t.third))
// bottom-terminated orbit:
 return triple<I, I, T> (t.first, 0, t.third);

// cycle-terminated orbit:

 I n = cycle_length(t.third);

 pair<I, T> q = convergence_distance(x, t.third, a);

 121

Alexander Stepanov Notes on Programming 10/31/2007

 return triple<I, I, T> (q.first, n, q.second);
}

Problem: Explain why the above code works.

Problem: It is possible to reduce the number of advances even further by (almost
always) not walking the full cycle to compute its length as it is done with the call to
cycle_length in the code above. Find the way to do it.

In 1981 Leon Levy published a paper containing the following algorithm that computes
the orbit structure in a different way:

template <typename T, // T models Regular
 typename A> // A models Action on T
triple<COUNT_TYPE(T), COUNT_TYPE(T), T>
orbit_structure_1(T x, A a)
{
 typedef COUNT_TYPE(T) I;

 triple<I, I, T> t = orbit_cycle_length(x, I(1), a);

 if (!is_defined(a, t.third)) return t;

 T y = successor(x, t.second, a);
 pair<I, T> q = convergence_distance(x, y, a);

 return triple<I, I, T> (q.first, n, q.second);
}

Where orbit_cycle_length is defined in the following way using a helper function
orbit_length_bounded:

template <typename T, // T models Regular
 typename I, // I models Integer
 typename A> // A models Action on T
triple<I, I, T>
orbit_length_bounded(T first, I bound, A a)
{
 typedef triple<I, I, T> result_t;
 T last(first);
 I n(0);
 while (n < bound) {
 if (!is_defined(a, first))
 return result_t(n + bound, 0, first);
 a(first);

 122

Alexander Stepanov Notes on Programming 10/31/2007

 ++n;
 if (first == last)
 return result_t(n + bound, n, first);
 }
 return triple<I, I, T>(n + n, n + n, first);
}

template <typename T, // T models Regular
 typename I, // I models Integer
 typename A> // A models Action on T
triple<I, I, T>
orbit_cycle_length(T first, I n, A a)
{
 assert (n > 0);
 while (true) {
 triple<I, I, T> t =
 orbit_length_bounded(first, n, a);
 if (t.first != t.second) return t;
 n = t.first;
 first = t.third;
 }
}

Problem: Figure out how Levy’s algorithm works.

Problem: Analyze its complexity.

Problem: Create a benchmark that compares three different versions of
orbit_structure.

Finding orbits is an important task when we deal with linked structures. It is also
important when analyzing periods of random number generators.

In general, the notion of action on a type is quite fundamental, and just about any
algorithm can be represented as an action working on a type representing its state. We
can, for example, represent Euclid’s algorithm with the help of an action that takes a pair
of elements from a Euclidean domain and replaces it with a pair representing the next
state of the algorithm:

template <typename T> // T models Euclidean Domain
struct euclidean_action
{
 void operator() (pair<T, T>& x) {
 T tmp = x.first % x.second;
 x.first = x.second;
 x.second = tmp;
 }

 123

Alexander Stepanov Notes on Programming 10/31/2007

};

It is clear that the action is not defined when the second component of the pair is equal to
zero:

template <typename T> // T models Euclidean Domain
inline
bool is_defined(euclidean_action<T>, const pair<T, T>& x) {
 return x.second != T(0);
}

Now we need to have a function that will keep applying an action till it is undefined:

template <typename T, // T models Regular
 typename A> // A models Action on T
inline
void advance_while_defined(T& x, A a)
{
 while (is_defined(a, x)) a(x);
}

And we can obtain our old friend with:

template <typename T> // T models Euclidean Domain
T gcd_action_based(T a, T b)
{
 pair<T, T> p(a, b);
 advance_while_defined(p, euclidean_action<T>());
 return p.first;
}

While in some cases we need to apply an action till it becomes undefined, it is often the
case that we want to do the application up to a certain point on the orbit. The sequence of
values in an orbit is called a range. There are three common ways to specify a range:

1. by end value,
2. by the number of values,
3. by predicate.

That gives us two additional versions of advance:

template <typename T, // T models Regular
 typename A> // A models Action on T
inline
void advance_till_last(T& first, const T& last, A a)
{
 while (first != last) {

 124

Alexander Stepanov Notes on Programming 10/31/2007

 assert(is_defined(a, first));
 a(first);
 }
}

template <typename T, // T models Regular
 typename A, // A models Action on T
 typename P> // P models Predicate on T
inline
void advance_till_predicate(T& x, P p, A a)
{
 while (!p(x)) {
 assert(is_defined(a, x));
 a(x);
 }
}

It is easy to observe that the versions of advance we encountered do not require that the
action is regular.

Problem: Design guarded versions of the two previous functions.

So far the action was moving the value of objects in one direction. There is no easy way
to reverse the direction of the traversal. It is, however, often the case that actions are
invertible. There is, for example, an operator-- that is the inverse of operator++.
It is easy to see that only actions that correspond to one-to-one mappings (injections is
the term introduced by Bourbaki) can have inverse actions.

A regular action of type A on type T is called invertible if there is an action type B on
type T and a function inverse with the signatures:

B inverse(A);
A inverse(B);

such that for any action a of type A and two equal objects x and y on which a is defined
after we perform a(x) followed by inverse(a)(x), x and y remain equal; the same
condition holds for action b of type B. We also expect that the complexity of the inverse
action is the same as the original action.

A few pages back we introduced a function object increment:

template <typename T> // T models Incrementable
struct increment
{
 void operator()(T& x) { ++x; }
};

 125

Alexander Stepanov Notes on Programming 10/31/2007

We can now introduce:

template <typename T> // T models Decrementable
struct decrement
{
 void operator()(T& x) { --x; }
};

and

template <typename T>
inline
decrement<T> inverse(const increment<T>&)
{
 return decrement<T>();
}

template <typename T>
inline
increment<T> inverse(const decrement <T>&)
{
 return increment <T>();
}

We often need to obtain a type of the inverse action. In order to do that we introduce a
type-function INVERSE_ACTION_TYPE:

template <typename T> // T models Invertible Action
struct inverse_action_type_traits;

#define INVERSE_ACTION_TYPE(T) \
 typename inverse_action_type_traits<T>::type

template <typename T> // T models Regular
struct inverse_action_type_traits<increment<T> >
{
 typedef decrement<T> type;
};

template <typename T> // T models Regular
struct inverse_action_type_traits<decrement<T> >
{
 typedef increment<T> type;
};

 126

Alexander Stepanov Notes on Programming 10/31/2007

Now we can construct the following algorithm that traverses a range from both
directions:

template <typename T, // T models Regular
 typename A, // A models Invertible Action on T
 typename U, // U models Binary Function on T,T
 typename V> // V models Function on T
inline
triple<U, V, bool>
bidirectional_traversal(T& first, T& last, A a, U u, V v)
{
 INVERSE_ACTION_TYPE(A) b(inverse(a));

 while (first != last) {
 b(last);
 if (first == last) {
 v(first);
 return triple<U, V, bool>(u, v, true);
 }
 u(first, last);
 a(first);
 }
 return triple<U, V, bool>(u, v, false);
}

Problem: Justify the interface of the above function.

Let us introduce a couple of little (but generally useful) function objects:

template <typename T>
struct null_action
{
 void operator()(const T&){}
};

template <typename I> // I models TrivialIterator
struct iterator_swapper
{
 void operator()(I x, I y) {
 swap(*x, *y);
 }
};

(In case of such function objects the best way of documenting or specifying them is by
giving the code. I do not believe that saying “// null_action does nothing”
does more than just clutter the code. Ditto for iterator_swapper.)

 127

Alexander Stepanov Notes on Programming 10/31/2007

It is now easy to implement a function that reverses a sequence. (I will write it in terms of
iterators – which we will study next; but it should not be difficult to figure out what it
does.)

template <typename I> // I models BidirectionalIterator
void reverse(I first, I last)
{
 bidirectional_traversal(first, last,
 increment<I>(),
 iterator_swapper<I>(),
 null_action<I>());
}

Later we will study reverse in the context of iterator-based algorithms. It is interesting to
note that behind every iterator-based algorithm lurks one or more even more basic
algorithmic abstractions. Behind bidirectional iterators we found invertible actions. It is
possible to generalize random access iterators to indexed actions, that is, actions that
allow us to move from a given state of an object to the nth consecutive state faster than by
doing n actions on the object. They require a specialized version of advance, complexity
of which is bounded by some power of log(n). (It seems that polylogarithmic bound is a
natural requirement for indexed acceleration.) They also require a specialized version of
distance with a similar complexity bound.

It is an interesting research project to analyze all STL algorithms and find the underlying
action-based algorithms. I, however, will only occasionally allude to them while we study
iterator-based algorithms. The reason for that is that I do not quite know how far to carry
the process of algorithmic abstraction. In general, finding the right balance between
abstract and concrete algorithms is very hard. Is there a good reason for abstracting from
reverse to bidirectional_traversal? Or is it overkill? This is a question that
I am not able to answer. It will take some time before we discover a set of canonical
abstractions and make them an integral part of programming. Part of the difficulty of
teaching this course is that I do not really know where to stop. There are all kinds of
tempting directions; the program of algorithmic generalization can be carried further so
that we unify not only iterations over different data structures but over arbitrary values.
We can discover some amazing foundational structures. But does it make sense for a
programmer to know them? Aren’t they already too confused with iterators? Could
abstract software interfaces and laws governing them be taught to practical programmers,
or am I fighting a hopeless battle? The future will tell.

 128

Alexander Stepanov Notes on Programming 10/31/2007

Lecture 13. Iterators

It might be surprising to you, but I find the subject of iterators extremely hard to teach.
The main reason is that I find the notion self-evident and all the fundamental design
decision non-negotiable. But I also know that somehow even those people who are very
enthusiastic about iterators, the STL “specialists,” often demonstrate that their
understanding of iterator fundamentals is quite shaky. The fact that I find the concept so
self-evident is the result of many years of trying alternatives and finding that they do not
work. In some sense the only way for someone to fully understand why they have to be
the way they are is by trying hundreds of different algorithms and finding the abstraction
that allows the most beautiful and efficient representation of them. As a matter of fact,
the only way of finding a useful abstraction is by trying to write code in terms of it. Sadly
enough, people tend to define abstractions faster than they try them. There is even a
pernicious idea of having “architects,” which are often people who produce abstractions
without writing code. It is a worthwhile thing to remember that the most successful
abstraction ever introduced in computer science – an abstraction of a file as a sequence of
bytes with the help of which Ken Thompson revolutionized systems design – did not
originate as an abstraction at all, but as a specific data structure for implementing files.
Good abstractions come from efficient algorithms and data structures and not from
“architectural” considerations. The problem with teaching, however, is that I cannot show
you 20 wrong ways that I tried first before I show you the right way. I have to cheat and
present something that became self-evident to me only after multiple wrong tries as the
first and only alternative. I would, nevertheless, attempt to show you a step-by-step
approach to iterators by considering the simplest and most fundamental problem that can
be expressed with the help of iterators, linear search.

We often need to find a piece of data. Later in the course we will study clever ways of
doing it that speed things up considerably. But first let us look at the problem of finding
things by looking at them one at a time. Our first attempt could be done even with the
most basic category of iterators, trivial iterators. Since they do not provide a way of
moving from one position to the next (and thus do not iterate at all), the only way of
finding something is by explicitly giving all the positions to our function. It seems that it
is really easy to find something if only one position is given:

template <typename I> // I models TrivialIterator
 // VALUE_TYPE(I) models Regular
inline
bool find_trivial_0(I i, VALUE_TYPE(I) a)
{
 return deref(i) == a;
}

The problem with this design is that it does not generalize to the case when we are given
several different trivial iterators. It is not enough to return a Boolean value indicating that
we found the right value after dereferencing one of them. (It is, of course, a useful

 129

Alexander Stepanov Notes on Programming 10/31/2007

function, but it is not finding.) We need to return the first position where the value was
found. For example, if we are searching through a sequence with two positions i1 and
i2, we clearly want to have something like this in our code:

 if (deref(i1) == a) return i1;
 if (deref(i2) == a) return i2;

The problem is that we need to return something in case we do not find the value. And
there is nothing to return. We are only given two possible positions. Here we see one of
the real difficulties many people have with iterators. It is important to understand that
algorithms that deal with sequences of n elements usually require n+1 different positions
to describe the result or the input. If we have an extra position limit that does not
belong to the ones through which we search, we can have our find:

template <typename I> // I models TrivialIterator
 // VALUE_TYPE(I) models Regular
inline
I find_trivial(I i1, I i2, I limit,
 const VALUE_TYPE(I)& a)
{
 if (deref(i1) == a) return i1;
 if (deref(i2) == a) return i2;
 return limit;
}

We can define several versions of find_trivial for different number of arguments:

template <typename I> // I models TrivialIterator
 // VALUE_TYPE(I) models Regular
inline
I find_trivial(I i1, I i2, I i3, I limit,
 const VALUE_TYPE(I)& a)
{
 if (deref(i1) == a) return i1;
 if (deref(i2) == a) return i2;
 if (deref(i3) == a) return i3;
 return limit;
}

template <typename I> // I models TrivialIterator
 // VALUE_TYPE(I) models Regular
inline
I find_trivial(I i1, I i2, I i3, I i4, I limit,
 const VALUE_TYPE(I)& a)
{
 if (deref(i1) == a) return i1;
 if (deref(i2) == a) return i2;

 130

Alexander Stepanov Notes on Programming 10/31/2007

 if (deref(i3) == a) return i3;
 if (deref(i4) == a) return i4;
 return limit;
}

We can even fix the definition for the case with one position:

template <typename I> // I models TrivialIterator
 // VALUE_TYPE(I) models Regular
inline
I find_trivial(I i1, I limit,
 const VALUE_TYPE(I)& a)
{
 if (deref(i1) == a) return i1;
 return limit;
}

Sadly enough, C++ does not provide us with a useful way of defining a family of
functions that take different numbers of arguments. Such a facility would often be
important. When we defined max_3 and max_4 we were doing it out of desperation.
What we need would be one max that takes as many arguments as a user has and returns
the largest. The same applies to cycle_left that we encountered in our section on
swap. The same, of course, applies to find_trivial.

(I would like to remark that it is possible to use a Boolean flag instead of an extra value
of the iterator to signal that the search was not successful, but it makes the interface
uglier. I used such an interface in my unsuccessful attempt to introduce an iterator-like
abstraction in Ada. Ada compilers failed to compile my code, most of my experimental
library perished without a trace except for one algorithm that Dave Musser and I used for
one of our papers, and I had to wait for C++ templates. It was quite fortunate since the
notion of iterator that I developed – called coordinate at the time – was much less elegant
than the one that I developed for C++.)

We can often combine the concept of trivial iterator with the concept of incrementable –
a type that has an action that is performed by operator++. The combined concept is
called forward iterator when the action is regular and input iterator when it is not. The
simple way of thinking about the difference between the two is that forward iterators
allow us to move forward from a given position as many times as we need. Input iterators
cannot guarantee that if we increment equal positions we will get to equal positions. They
are good only for single pass algorithms. Fortunately, finding is a single pass algorithm.

We can use the range idiom that we studied in the previous chapter to define a generic
find:

template <typename I> // I models InputIterator
 // VALUE_TYPE(I) models Regular

 131

Alexander Stepanov Notes on Programming 10/31/2007

I find(I first, I limit, VALUE_TYPE(I) a)
{
 while (first != limit && deref(first) != a)
 ++first;
 return first;
}

Problem: In find_trivial I passed a by constant reference. In find, I pass it by
value. Is there a reason for that?

Here we can make a stop and discuss the type function VALUE_TYPE and its use in
find. First, it is important to notice that when STL was originally designed, there was
no way at all to implement a type function in C++. That led to many “interesting” design
decisions. Some interfaces had to be relaxed. Instead of specifying the exact type of
elements to which iterators point, I had to allow an arbitrary element type. The STL
find is defined as:

template <typename I, // I models InputIterator
 typename A>
I find(I first, I limit, const A& a)
{
 while (first != limit && deref(first) != a)
 ++first;
 return first;
}

Sadly enough, even now this interface is safer than the one that attempts to exactly
specify the value type. If, for example, we try to find 100000 in an array of short (I
assume that short is a two byte quantity) containing a 0, we will unfortunately succeed
with the code that takes VALUE_TYPE, since the C++ compiler will introduce a
narrowing conversion that will make 100000 into 0 and find it in our sequence. The STL
code, while theoretically unsound, will spare us this particular bug since instead of
narrowing implicit conversion on entry, compiler will generate a widening conversion
from short to int inside the body of the function. It is a design nightmare to write
generic programs in a language that contains implicit conversions since any attempt to
specify exact relationships among types is defeated by the fact that a random type
conversion can be inserted at any point in the code. (As a matter of fact, it is a design
nightmare to write any code, generic or not, in a language with implicit conversions. It is
astonishing that in 2006 I have to argue that strong typing is good.)

We use the end of our range as a limit. That allows us to have an extra value of the
iterator.

(Let us again emphasize that we need one extra value for many other sequence
operations. For example, if we want to insert an element into a sequence of n elements, it
is quite easy to see that there are n+1 insertion points.)

 132

Alexander Stepanov Notes on Programming 10/31/2007

How general is this code? Is it possible to develop a more general version of it?

When we look at the code of find, we see that comparing the value with the result of
dereferencing could be done using any binary predicate and not just equality. Therefore,
we can generalize to:

template <typename I, // I models InputIterator
 typename A, // A models Regular
 typename P> // P models
 // BinaryPredicate(VALUE_TYPE(I), A)
I find(I first, I limit, A a, P p)
{
 while (first != limit && !p(deref(first), a)) ++first;
 return first;
}

Now we can find a value in a sequence that is, for example, smaller than the given value.

Sometimes we need a version that takes a unary predicate and finds a satisfying value:

template <typename I, // I models InputIterator
 typename P> // P models Predicate(VALUE_TYPE(I))
I find_if(I first, I limit, P p)
{
 while (first != limit && !p(deref(first))) ++first;
 return first;
}

It is also convenient to define a range by giving the first element and the length. We will
distinguish the corresponding functions by ending their names with _n. They also have a
slightly different interface. To understand why let us look at the following code:

template <typename I, // I models InputIterator
 typename N, // N models Integer
 typename A, // A models Regular
 typename P> // P models
 // BinaryPredicate(VALUE_TYPE(I), A)
I find_n_0(I first, N n, A a, P p)
{
 while (n != N(0) && !p(deref(first), a)) {
 ++first;
 --n;
 }
 return first;
}

 133

Alexander Stepanov Notes on Programming 10/31/2007

This interface does not, however, allow us to know if we found something or not. While
in find we can determine it by comparing the returned value with limit, now we have
no way of knowing if we exited the loop because the predicate was satisfied or because
we counted down to zero. Notice that testing if the value pointed to by the returned
iterator satisfies the predicate is not an option since the iterator might be the “limit”
iterator and not point to any value.

Also when we use find it is easy to restart our search. We can use it once and, provided
that we did not get back the limit, increment the return value and try it again. We can, for
example, implement a function:

template <typename I, // I models InputIterator
 typename P> // P models Predicate(VALUE_TYPE(I))
void print_when_satisfies(I first, I limit, P p)
{
 while (true) {
 first = find_if(first, limit, p);
 if (first == limit) return;
 std::cout << deref(first) << std::endl;
 ++first;
 }
}

(Of course, an STL expert will be able to write the function as a one-line call to an STL
algorithm.)

It is, however, impossible to do the same with find_n. To do the next find_n we need
to know many steps into the sequence we did while doing the previous one. Or, even
more precisely, we do not know how many steps are left in the range. But notice that the
needed information is computed by the code. We could have returned it without doing
extra work. Here let me state a very important principle: an algorithm should return all
the information it computed. Throwing away useful information (or returning
redundant information) usually indicates a poorly designed interface. The corrected
version of find_n is:

template <typename I, // I models InputIterator
 typename N, // N models Integer
 typename A, // A models Regular
 typename P> // P models
 // BinaryPredicate(VALUE_TYPE(I), A)
pair<I, N> find_n(I first, N n, A a, P p)
{
 while (n != N(0) && !p(deref(first), a)) {
 ++first;
 --n;
 }

 134

Alexander Stepanov Notes on Programming 10/31/2007

 return pair<I, N>(first, n);
}

Now it is easy to restart. After all, the algorithm returns a pair that represents the
remaining range. (We could do the same with find and return a pair of iterators first
and limit. It is not particularly interesting, however, since the client already knows the
limit.)

When both the length and the limit of the range are known, it is potentially faster to use
find_n than find, since compilers sometimes unroll the loop. And in the next section
we will spend some time learning to unroll loops like that by hand.

In general the code of find contains only one potentially extra operation, namely the
test for the end of the range. In some sense the application of the predicate and
incrementing the iterator represent real work; the checking for the end of the range is
overhead. There are cases when do not need to do this check: we might know that the
value for which we are searching is in the range. We can then use the following
algorithm:

template <typename I> // I models InputIterator
 // VALUE_TYPE(I) models Regular
I find_unguarded(I first, VALUE_TYPE(I) a)
{
 while (deref(first) != a)) ++first;
 return first;
}

If the binary predicate is equality, our iterators point to modifiable locations, and there is
a way to get to the last location that needs to be checked, we can use
find_unguarded even when we do not know that the sequence contains the element
we are searching for:

template <typename I> // I models ForwardIterator
 // VALUE_TYPE(I) models Regular
 // REFERENCE_TYPE(I) models Modifiable
I find_with_sentinel(I first, I last, I limit,
 VALUE_TYPE(I) a)
{
 if (first == limit) return first;
 VALUE_TYPE(I) tmp(deref(last));
 deref(last) = a;
 first = find_unguarded(first, a);
 deref(last) = tmp;
 if (first != last) return first;
 if (tmp == a) return last;
 return limit;

 135

Alexander Stepanov Notes on Programming 10/31/2007

}

And if we have iterators that provide the inverse of ++ as -- (we call such iterators
bidirectional), we can easily obtain last:

template <typename I> // I models BidirectionalIterator
 // VALUE_TYPE(I) models Regular
 // REFERENCE_TYPE(I) models Modifiable
I find_with_sentinel(I first, I limit, VALUE_TYPE(I) a)
{
 if (first == limit) return first;
 I last(limit);
 --last;
 return find_with_sentinel(first, last, limit, a);
}

(Here we see that we do a repeated check for the empty range. If I were building a library
for myself and nobody could throw away functions I defined, then for every algorithm
foo that takes a range, I would define an algorithm foo_non_empty and then define
foo in terms of foo_non_empty. Then in those cases when I already know that the
range is not empty I would be able to call foo_non_empty and save a few
nanoseconds. In general, I like to have as many different versions of the same algorithm
as I can possibly need. If they are organized well, they are easy to find.)

Problem: It is possible to design a version of find_if_with_sentinel when we
are using an arbitrary predicate instead of equality. Implement such a version. (Hint: use
functions satisfiable_element and unsatisfiable_element that the client
must provide for the predicates.)

Lecture 14. Elementary optimizations

How optimal is a piece of code? Could we do better? Are there other versions of the code
that we need? We have to learn to ask these questions every time we come up with an
interface. It is often the case that we are so excited with finding a generic solution that we
stop our search for other, less generic but potentially faster solutions.

First of all, we may often benefit when a range is defined not by the beginning and the
limit but by the beginning and the length. Sometimes that is the interface we need; always
it is the interface that allow us to improve the performance. If we know the length of the
range at compile time and if the range is relatively small (say, less than 16), we can
eliminate the loop all together and replace it with the straight line code:

 136

Alexander Stepanov Notes on Programming 10/31/2007

template <int K>
struct find_k;

template <>
struct find_k<0>
{
 template <typename I, // I models InputIterator
 typename A, // A models Regular
 typename P> // P models
 // BinaryPredicate(VALUE_TYPE(I), A)
 pair<I, int> operator()(I i, A, P) {
 return pair<I, int>(i, 0);
 }

};

template <int k>
struct find_k
{
 template <typename I, // I models InputIterator
 typename A, // A models Regular
 typename P> // P models
 // BinaryPredicate(VALUE_TYPE(I), A)
 pair<I, int> operator()(I i, A a, P p) {
 if (p(deref(i), a))
 return pair<I, int>(i, k);
 ++i;
 return find_k<k-1>()(i, a, p);
 }
};

Sometimes we do not know the length of the sequence at compile time, but we know that
it is small (not greater than 16). We can come up with a relatively good implementation:

template <typename I, // I models InputIterator
 typename A, // A models Regular
 typename P> // P models
 // BinaryPredicate(VALUE_TYPE(I), A)
inline
pair<I, int> find_small_n(I i, int n, A a, P p)
{
 assert (n <= 16);
 switch (16 – n) {
 case 0: if (p(deref(i), a))
 return pair<I, int>(i, 16);
 ++i;
 case 1: if (p(deref(i), a))

 137

Alexander Stepanov Notes on Programming 10/31/2007

 return pair<I, int>(i, 15);
 ++i;
 case 2: if (p(deref(i), a))
 return pair<I, int>(i, 14);
 ++i;
 case 3: if (p(deref(i), a))
 return pair<I, int>(i, 13);
 ++i;
 case 4: if (p(deref(i), a))
 return pair<I, int>(i, 12);
 ++i;
 case 5: if (p(deref(i), a))
 return pair<I, int>(i, 11);
 ++i;
 case 6: if (p(deref(i), a))
 return pair<I, int>(i, 10);
 ++i;
 case 7: if (p(deref(i), a))
 return pair<I, int>(i, 9);
 ++i;
 case 8: if (p(deref(i), a))
 return pair<I, int>(i, 8);
 ++i;
 case 9: if (p(deref(i), a))
 return pair<I, int>(i, 7);
 ++i;
 case 10: if (p(deref(i), a))
 return pair<I, int>(i, 6);
 ++i;
 case 11: if (p(deref(i), a))
 return pair<I, int>(i, 5);
 ++i;
 case 12: if (p(deref(i), a))
 return pair<I, int>(i, 4);
 ++i;
 case 13: if (p(deref(i), a))
 return pair<I, int>(i, 3);
 ++i;
 case 14: if (p(deref(i), a))
 return pair<I, int>(i, 2);
 ++i;
 case 15: if (p(deref(i), a))
 return pair<I, int>(i, 1);
 ++i;
 default: return pair<I, int>(i, 0);
 }
}

 138

Alexander Stepanov Notes on Programming 10/31/2007

<< more on unrolling; Duff’s device; software pipelining and the need for special control
structure indicating that there are no dependencies between iterations: do_parallel,
the need for the language to be able to express all the information necessary for the
compiler to generate efficient code, intrinsics to find out the exact cache/memory
structure, adequate handling of arithmetic operations: intrinsics for multiplication
returning full result and division/remainder pair; language interface to vector
operations>>

Lecture 15. Iterator type-functions

<< Dealing with type-functions in the original STL; count and count_if; nested
typedefs in containers and function objects; no support for built-in types; partial
specialization and traits classes; the need for real type-functions>>

Lecture 16. Equality of ranges and copying
algorithms

<<different versions of mismatch; equality of ranges; copy and output iterators;
semantics of copy; copy_parallel for non-intersecting ranges; copy_n;
copy_backward>>

Lecture 17. Permutation algorithms

In the previous lecture we have seen how to copy objects from one range into another.
(Actually, it is quite amazing how much time computers spend moving data from one
place to another without doing any meaningful modifications of them. It would be
interesting to find out how many times characters that I type now are copied before you
read them.) There is, fortunately, more to computing than copy. One of the most basic
things we can do with data is to rearrange it. I call the algorithms that do such
rearrangements permutation algorithms. To me they appear as a rich and wonderful
toolset that every programmer should know and love.

A range of objects [f1, l1) is called a permutation of a range [f0, l0) if there is a
one-to-one correspondence between the objects in the ranges and the corresponding
objects are equal. While this definition sounds “mathematical” since it talks of “one-to-
one correspondence,” it is quite useless for finding out if two sequences are permutations
of each other. What are we supposed to do when given two ranges? Should we go
through all n! possible one-to-one mappings checking if the corresponding elements are
equal? A definition that requires an exponential number of steps to check is called

 139

Alexander Stepanov Notes on Programming 10/31/2007

intractable. We need to find something better. The remarkable fact is that if the only
operation on objects available to us is equality, the best definition that is known to me
still requires a quadratic number of operations:

template <typename I0, // I0 models Forward Iterator
 typename I1> // I1 models Forward Iterator
bool is_permutation_0(I0 f0, I0 l0, I1 f1, I1 l1)
{

 I0 n0 = f0;

 while (n0 != l0) {
 if (count(f0, l0, *n0) != count(f1, l1, *n0))
 return false;
 ++n0;
 }

 I1 n1 = f1;

 while (n1 != l1) {
 if (count(f0, l0, *n1) != count(f1, l1, *n1))
 return false;
 ++n1;
 }

 return true;
}

In other words two sequences are permutations of each other when they contain the same
number of equal elements. (We can somewhat optimize the code by checking if two
ranges are of the same length first.)

Problem: Prove that any algorithm that determines that one range is a permutation of
another using equality only is at best quadratic. (Very hard.)

It is, however, much easier to determine if two ranges are permutations of each other if
we have a total ordering defined on the objects. Then we can sort them and obtain an
nlog(n) algorithm. We might look at the problem when we reach sorting.

Before we start looking at individual algorithms, let us spend some time trying to come
up with a taxonomy of them. (Of course, I did not start with a taxonomy, but with
individual algorithms, and only gradually observed some patterns that allowed me to
develop a taxonomy. But I follow a long established tradition of presenting the abstract
classification in the beginning.) We will observe that such a taxonomy has many
dimensions. Let us enumerate them.

 140

Alexander Stepanov Notes on Programming 10/31/2007

An algorithm is called mutative if it replaces the original sequence of objects with its
permutation. An algorithm is called copying if it places the resulting permutation in a
different range. We will often need both versions and will use a standard suffix _copy to
name a copying version of a permutation algorithm. For example, it is quite useful to
have both reverse and reverse_copy algorithms. One can, of course, implement
reverse_copy as copy followed by reverse, but there are ways to construct faster
copying versions of mutative algorithms.

While it is not strictly necessary, we usually assume that mutative algorithms do not use
much extra storage. An algorithm is called in-place or in-situ if it uses extra storage
which is at most logarithmic in the size of the original range. We shall introduce also a
class of algorithms that while not in-place are practically very important: memory
adaptive algorithms that use an additional buffer that is linear in the size of the range.
They are important since they often give a better performance than in-place algorithms
while using a buffer that is 1% to 10% of the original range. Theoreticians prefer
logarithmic (or polylogarithmic) extra storage to linear extra storage with a small
coefficient. In practice, however, finding a buffer of size 0.01N is not really difficult.

The second dimension of our classification depends on what kind of information
algorithms use. There are some algorithms that move objects around without looking at
them. Their final destinations depend only on their original positions. I call such
algorithms position-based permutation algorithms. Algorithms for reversing a range or
randomly shuffling it are examples. Sometimes we look at the individual values and the
final position depends on the value of a predicate on an object. For example we might
want to put the even numbers before the odd numbers. I call such algorithms predicate-
based algorithms. In addition to the range they take a predicate (or a multi-valued
predicate) that determines the relative position of the objects. And, finally, sometimes we
rearrange objects depending on their mutual relations. We might want, for example, to
move the smallest element up front. I call such algorithms comparison-based permutation
algorithms. (The comparisons they use are ordering relations. As with max and min we
will assume that all the ordering relations are strict.)

It should be noted that it is possible that eventually people will discover other categories
of algorithms. It is possible that there are some permutations that are determined not by a
single value or binary comparison but by a function that compares three objects in some
interesting way. But so far, I have not found any such operations.

Problem: Try to come with several examples of different position-based, predicate-
based and comparison-based operations.

Finally, often we permute values in a range by assigning or swapping them. But
sometimes we can obtain similar effect by changing the relative positions of the iterators.
Indeed, there are data structures that allow us to modify which location follows a given
location. I call such data structures linked structures and permutation algorithms that
modify the links I call link-modifying algorithms. As we shall see there are subtle

 141

Alexander Stepanov Notes on Programming 10/31/2007

differences in the semantics of regular permutation operations and their link-modifying
equivalents.

It is important for us to understand how many assignments we need to do when we are
implementing a mutative permutation algorithm. Actually, it should be self-evident that
we do not really need full-blown assignment. A permutation involves no net construction
or destructions of objects, just moving existing ones around, whereas assignment
constructs a new value. We can, therefore, use the same primitives that we discovered
when we were studying swap: namely, UNDERLYING_TYPE and raw_move. After all,
swap is a permutation algorithm and any other permutation algorithm is just a more
elaborate version of swap and cycle_left.

For any permutation of a range there is a (usually implicit) permutation action defined on
iterators in the range: if as a result of a permutation an object pointed to by an iterator
from ends up in a location pointed by an iterator to, then the action when applied to an
object containing a value to will make it equal to the value from. (A permutation action
moves along the iterator values in the order opposite to the movement of the objects in
the permutation.) It is easy to see that all the iterators in the range on which the
permutation is acting fall into one or more cycles generated by the permutation action.

Now if we can define a function object that performs the permutation action we can move
objects in one of the cycles with the help of the following function:

template <typename I, // I models Forward Iterator
 typename A> // A models Action on I
void do_cycle(I i, A a)
{

 I next = i;
 a(next);

 if (next == i) return;

 UNDERLYING_TYPE(VALUE_TYPE(I)) tmp;
 move_raw(deref(i), tmp);

 I first = i;

 do {
 move_raw(deref(next), deref(first));
 first = next;
 a(next);
 } while (next != i);

 move_raw(tmp, deref(first));
}

 142

Alexander Stepanov Notes on Programming 10/31/2007

Now if we can determine a sequence of first elements of cycles, we can obtain our
permutation by applying do_cycle to the first elements of each cycle. (As a matter of
fact, we do not really need to have first elements; if we can obtain some iterator from
every cycle, we are done.) While it is not always easy to do that, we now obtain a firm
bound on the number of moves that a permutation needs: : N + Cnontrivial – Ctrivial, where
N is the number of elements in the range, Cnontrivial is the number of cycles in the
permutation with more than one element and Ctrivial is the number of cycles containing a
single element.

Problem: Show that the minimal number of moves is never less than N – Ctrivial + 1 and
never greater than 3N/2.

Lecture 18. Reverse

It is easy to see that in terms of the number of moves, the permutations requiring the most
work are those containing N/2 cycles of length 2.

Problem: How many different permutations like that are there for a range with N
elements?

While there is a huge number of different permutations with N/2 cycles of length 2, the
number of useful algorithms is very small. While reverse is the one we are going to
study in this section, there is at least one more commonly useful one. In my opinion, it is
a worthwhile thing to look at something even simpler than reverse to see what we can
learn.

The algorithm I have in mind could be called adjacent_swap. It takes a sequence
ababab and makes it into a sequence bababa. In case there is an odd element at the end, it
leaves it in place.

The code is relatively straightforward (I got it right on the third try):

template <typename I> // I models Forward Iterator
 // with modifiable reference type
void adjacent_swap_0(I first, I limit)
{
 while (true) {
 if (first == limit) return;
 I next = successor(first);
 if (next == limit) return;
 iterator_swap(first, next);
 first = successor(next);
 }

 143

Alexander Stepanov Notes on Programming 10/31/2007

}

where iterator_swap is defined as:

template <typename I1, // I1 models Forward Iterator
 // with modifiable reference type
 typename I2> // I2 models Forward Iterator
 // with modifiable reference type
inline
void iterator_swap(I i, I j)
{
 swap(deref(i), deref(j));
}

The problem, of course, is that our adjacent_swap_0 loses useful information.
Without doing any extra work we can determine if there is an odd element at the end of
the range. In general, when our exit condition is a disjunction of several simpler
conditions it is often useful to return the information indicating which one was satisfied.
We can do it simply:

template <typename I> // I models Forward Iterator
 // with modifiable reference type
int adjacent_swap(I first, I limit)
{
 while (true) {
 if (first == limit) return 0;
 I next = successor(first);
 if (next == limit) return 1;
 iterator_swap(first, next);
 first = successor(next);
 }
}

Notice that I decided to return an integer and not a Boolean. The reason for that is that I
am returning even/odd parity and it is more natural for me to think of the result as the
remainder of dividing the length of the range by 2 than as a logical value. (And it
generalizes better to similar algorithms where instead of swap we use cycle_left
with three or more arguments.) In general, I do not particularly like the bool type in
C++. A type that occupies at least 8 bits to store 1 bit of information is a pedantic
invention. After a brave but unsuccessful attempt to provide bit addressable architecture
in the IBM Stretch project3 designed in the late 50s, we have to deal with bytes as our
smallest unit of addressability. (It is interesting that the design team of Stretch reads like
a Who’s Who of computer architecture research: Gene Amdahl, Gerrit Blaauw, Fred
Brooks, Werner Buchholz, and John Cocke. It would be the list of the greatest architects
who ever lived if it were not for the fact that it did not contain the name of their even

3 IBM 7030 – see: http://www.bitsavers.org/pdf/ibm/7030/Planning_A_Computer_System.pdf

 144

Alexander Stepanov Notes on Programming 10/31/2007

greater contemporary Seymour Cray. By the way, if you do not recognize the names,
google them! One of them invented the term byte. Who?)

Notice that if we have random access iterators, it is possible to speed things up a bit:

template <typename I> // I models Random Access Iterator
 // with modifiable reference type
void adjacent_swap_random_access(I first, I limit)
{
 DISTANCE_TYPE(I) n = limit – first;
 while (n > 1) {
 iterator_swap(first, first + 1);
 first += 2;
 n -= 2;
 }
}

Problem: Explain why I changed the interface to return void.

Implementing a copying version of adjacent_swap is instructive as well:

template <typename I, // I models Input Iterator
 typename O> // O models Output Iterator
pair<O, int> adjacent_swap_copy(I first, I limit, O result)
{
 while (first != limit) {
 VALUE_TYPE(I) tmp = deref(first);
 ++first;
 if (first == limit) {
 deref(result) = tmp;
 ++result;
 return pair<O, int>(result, 1);
 }
 deref(result) = deref(first);
 ++result;
 ++first;
 deref(result) = tmp;
 ++result;
 }
 return pair<O, int>(result, 0);
}

Now let us look at reversing a range. The basic idea is quite clear: we need to swap the
first with the last. It is a fairly straightforward thing to do when we have ability to go
backwards:

template <typename I> // I models Bidirectional Iterator

 145

Alexander Stepanov Notes on Programming 10/31/2007

void reverse0(I first, I limit)
{
 while (true) {
 if (first == limit) return;
 --limit;
 if (first == limit) return;
 iterator_swap(first, limit);
 ++first;
 }
}

We need to think about the return type. (STL returns void, which is yet another
indication how inattentive its designer was to the finer details of programming.) It is clear
that without doing any extra work in the main loop we can find the middle of the range
and also determine its parity. We can do it by returning a range of elements that were not
swapped:

template <typename I> // I models Bidirectional Iterator
pair<I, I> reverse(I first, I limit)
{
 while (true) {
 if (first == limit)
 return pair<I, I>(first, limit);
 --limit;
 if (first == limit)
 return pair<I, I>(first, successor(limit));
 iterator_swap(first, limit);
 ++first;
 }
}

Now if we know the length of the range, we can reduce the number of tests in the loop:

template <typename I, // I models Bidirectional Iterator
 typename N> // N models Integer
// N should be DIFFERENCE_TYPE(I) but for C++
// implicit conversions
pair<I, I> reverse_n(I first, I limit, N n)
{
 assert(distance(first, limit) <= n);
 while (n > N(1)) {
 --limit;
 iterator_swap(first, limit);
 ++first;
 n -= 2;
 }
 return pair<I,I>(first, limit);

 146

Alexander Stepanov Notes on Programming 10/31/2007

}

It is easy to produce a version of reverse that will dispatch on iterator category and
call reverse_n in for random access iterators.

When we look at the sequence of swaps inside reverse and reverse_n, we can see
that they do not alias. Every element is swapped only once. This is a specific instance of
a more general fact that different cycles in a permutation do not intersect. The fact that
different swaps do not touch the same locations depends on the precondition that the
input range is a valid range. If we do something like:

int a[4];
reverse_n(a, a + 4, 8);

every location will be an argument to two different swaps. But when our algorithm is
called with a valid range – and it is clearly written only for such a case – there is no
aliasing. It should be clear that it is hard for the compiler to figure that out. It is important
that we should communicate our intent to it. It is clear that any attempt to deal with that
through an abuse of a type system4 is not going to work since first and limit point
into the same range and do alias each other at the termination point. In general, no-
aliasing is a property of iterators that depends on the properties of the algorithm and is
not something that a type system could handle. But it is important that the knowledge that
the programmer has can be communicated to the compiler and eventually to other
programmers. I believe that the solution can be obtained with the introduction of a new
language construct initiate(statement) that indicates that the enclosed statement
does not need to complete and that the execution of the program can continue till the next
completion point is reached. We can then write:

while (n > N(1)) {
 --limit;
 initiate(iterator_swap(first, limit));
 ++first;
 n -= 2;
} // completion point

That expresses our assurance that iterator_swaps from different iteration can
proceed in parallel without affecting the validity of the algorithm. It is very tempting to
develop a mechanism that will allow us to describe arbitrarily complex execution threads,
but I suspect that the correct solution is to have a very simple semantics of completion
points by inserting them at the end of every while, for and do/while statements and
also at the end of stand-alone compound statements. That seems to assure a reasonable
exception semantics by assuring that every exception completes all outstanding
incomplete statements. The restriction of potential re-ordering to what compiler writers

4 as noalias proponents attempted to do – see Dennis Ritchie’s famous rebuttal at
http://www.astro.princeton.edu/~rhl/dmr-on-noalias.html

 147

http://www.astro.princeton.edu/%7Erhl/dmr-on-noalias.html

Alexander Stepanov Notes on Programming 10/31/2007

call basic blocks seems to allow aggressive use of software pipelining and speculative
load/stores.

Before we look at the problem of doing reverse for forward iterators, let us look at the
copying versions of reverse. There are four useful versions of it. (STL has only one as a
result of pruning during the standardization process.) They are:

template <typename I, // I models Bidirectional Iterator
 typename O> // O models Output Iterator
O reverse_copy(I first, I limit, O result)
{
 while (first != limit) {
 --limit;
 deref(result) = deref(limit);
 ++result;
 }
 return result;
}

template <typename I, // I models Bidirectional Iterator
 typename N, // N modles Integer
 typename O> // O models Output Iterator
pair<I, O> reverse_copy_n(I limit, N n, O result)
{
 while (n > N(0)) {
 --limit;
 deref(result) = deref(limit);
 ++result;
 --n;
 }
 return pair<I, O>(limit, result);
}

template <typename I, // I models Input Iterator
 typename B> // B models Bidirectional Iterator
B copy_reverse(I first, I limit, B result)
{
 while (first != limit) {
 --result;
 deref(result) = deref(first);
 ++first;
 }
 return result;
}

template <typename I, // I models Input Iterator

 148

Alexander Stepanov Notes on Programming 10/31/2007

 typename N, // N modles Integer
 typename B> // B models Bidirectional Iterator
pair<I, B> copy_reverse_n(I first, N n, B result)
{
 while (n > N(0)) {
 --result;
 deref(result) = deref(first);
 ++first;
 --n;
 }
 return pair<I, B>(first, result);
}

Problem: How is copy_reverse different from reverse_copy?

Problem: Explain the return types of the algorithms.

It is much harder to reverse a range if the iterator to our range is only a forward iterator.
If we have additional storage that is large enough to contain the entire range we can
easily implement the following useful algorithm:

template <typename I, // I models Forward Iterator
 typename B> // B models Bidirectional Iterator
// to UNDERLYING_TYPE(VALUE_TYPE(I))
void reverse_with_buffer(I first, I limit, B buffer)
{
 I current = first;

 while (current != limit) {
 move_raw(deref(current), deref(buffer));
 ++current;
 ++buffer;
 }

 while (first != limit) {
 --buffer;
 move_raw(deref(buffer), deref(first));
 ++first;
 }
}

Problem: Implement reverse_n_with_buffer.

Problem: Prove that there is no linear time, in-place algorithm that reverses a forward
iterator range. (Very hard.)

 149

Alexander Stepanov Notes on Programming 10/31/2007

The previous problem tells you that I do not know how to reverse a forward iterator range
in-place and using linear time. As I just said, it is trivial to do it with an extra buffer using
reverse_with_buffer. A quadratic algorithm is quite simple as well.

Problem: Implement a quadratic in-place reverse for forward iterators.

It is often possible to find an N log N algorithm by using divide and conquer. Indeed, if
we can reverse both halves of the sequence abcdefgh and obtain the sequence dcbahgfe
we can easily obtain the final result with the help of the very useful function
swap_ranges. There are three useful versions of it, with only one included in the
standard:

template <typename I1, // I1 models Forward Iterator
 typename I2> // I2 models Forward Iterator
I2 swap_ranges(I1 first1, I1 limit1, I2 first2)
{
 while (first1 != limit1) {
 iterator_swap(first1, first2);
 ++first1;
 ++first2;
 }
 return first2;
}

template <typename I1, // I1 models Forward Iterator
 typename I2> // I2 models Forward Iterator
pair<I1, I2> swap_ranges(I1 first1, I1 limit1,
 I2 first2, I2 limit2)
{
 while (first1 != limit1 && first2 != limit2) {
 iterator_swap(first1, first2);
 ++first1;
 ++first2;
 }
 return pair<I1, I2>(first1, first2);
}

template <typename I1, // I1 models Forward Iterator
 typename N, // N models Integer
 typename I2> // I2 models Forward Iterator
pair<I1, I2> swap_ranges_n(I1 first1, N n, I2 first2)
{
 while (n > N(0)) {
 iterator_swap(first1, first2);
 ++first1;
 ++first2;
 --n;

 150

Alexander Stepanov Notes on Programming 10/31/2007

 }
 return pair<I1, I2>(first1, first2);
}

Problem: Explain why we do not need to have a version of swap_ranges that takes
both lengths.

Now we can produce a version of reverse for forward iterators. A naïve version will look
something like:

template <typename I> // I models Forward Iterator
void naive_reverse(I first, I limit)
{
 DIFFERENCE_TYPE(I) n = distance(first, limit);

 if (n < 2) return;

 I middle = successor(first, n/2);
 naive_reverse(first, middle);

 if (is_odd(n)) ++middle;

 naive_reverse(middle, last);

 swap_ranges(middle, last, first);
}

Notice that we are not just recursing down but at every recursive level we traverse the
range once to find its distance and then traverse it to the middle. We can avoid both of
these traversals by making our recursive procedure take the length of the range as its
argument – that will eliminate the call to distance, and then return the limit of the range it
reversed – and that will eliminate the need for finding the middle:

template <typename I, // I models Forward Iterator
 typename N> // N models Integer
I reverse_n_in_place(I first, N n)
{
 if (n == N(0)) return first;
 if (n == N(1)) return successor(first);

 I middle = reverse_n_in_place(first, n/2);

 if (is_odd(n)) ++middle;

 I limit = reverse_n_in_place(middle, n/2);

 swap_ranges_n(first, middle, n/2);

 151

Alexander Stepanov Notes on Programming 10/31/2007

 return limit;
}

Problem: Unlike reverse, reverse_n returns does not return a range of non-
swapped elements from the middle. Design a version of reverse for forward iterators that
has the same interface as reverse for bidirectional iterators. (Hint: see if you can make
reverse_n return more information.)

Now we have two versions of reverse for forward iterators: one with a buffer and one
in-place. But in reality we need something in between: we need an algorithm that can use
as much extra room as is available. The dichotomy between algorithms that use only
polylogarithmic extra storage (in-place or in-situ) and algorithms that can use as much as
needed is useful to the inner world of the algorithmists, but it is of little practical utility.
If we need to stably partition a million records it is more than likely that an extra buffer
containing 10000 records is always available. Even a buffer containing 100000 records is
usually not going to change the application performance. In other words, 1% is always
available and 10% is frequently available even in the situations when memory is limited.
It is, therefore, useful to introduce a different class of algorithms, memory-adaptive
algorithms, that improve their performance if more memory is available.

Our reverse_n_in_place algorithm is an ideal candidate for a memory-adaptive
algorithm. If the data fits into a buffer, call reverse_n_with_buffer , otherwise
use divide and conquer till it fits:
template <typename I, // I models Forward Iterator
 typename N, // N models Integer
 typename B> // B models Bidirectional Iterator
// to UNDERLYING_TYPE(VALUE_TYPE(I))
I reverse_n_adaptive(I first, N n, B b, N m)
{
 if (n == N(0)) return first;
 if (n == N(1)) return successor(first);
 if (n <= m)
 return reverse_n_with_buffer(first, n, b);

 I middle = reverse_n_adaptive(first, n/2, b, m);

 if (is_odd(n)) ++middle;

 I limit = reverse_n_adaptive(middle, n/2, b, m);

 swap_ranges_n(first, middle, n/2);

 return limit;
}

 152

Alexander Stepanov Notes on Programming 10/31/2007

In time-critical applications it is important for the programmer to be able to do a careful
allocation of memory resources and it is, therefore, important to provide an interface that
allows for manual selection of the buffer. It is, however, often possible for a memory
management system to figure out what is a proper buffer size for a given job. To enable
programmers to obtain such temporary buffers STL defined a pair of template functions:
template <typename T>
pair<T*, ptrdiff_t> get_temporary_buffer(ptrdiff_t);

template <typename T>
void return_temporary_buffer(T*);

The first function returns an optimal amount of memory now available which is not
greater than the parameter to the function. The second function de-allocates the memory.
It was my intention that system vendors would provide a carefully tuned function that
will take into account the size of the physical memory, the memory available on the
stack, etc. I provided a temporary version that calls malloc with a given argument and,
if malloc returns 0, recursively calls it with half the size, etc. I assumed that nobody
would keep such stupid code, but that is what the major vendors ship in 2006. I have been
trying to convince vendors and standard committees for quite some time now that it is
essential to provide standard hooks to memory: cache structure, cache sizes, cache line
sizes, physical memory size available to the process, stack size, size of the available
stack, etc. So far I have had no success. From all of that it follows that it was a mistake
to include algorithms using a temporary buffer into the standard. I should have insisted
that the adaptive versions taking an explicit buffer were included. The present day
wrappers we are going to see next are useless. In any case, most serious applications do
their own memory management, and it would have been much more useful, for example,
to provide stable_sort_adaptive to them instead of hiding the buffer inside
stable_sort.

With a temporary buffer we can produce the following version of reverse_n:
template <typename I, // I models Forward Iterator
 typename N, // N models Integer
I reverse_n(I first, N n)
{
 typedef UNDERLYING_TYPE(VALUE_TYPE(I)) UT;
 pair<UT, ptrdiff_t> tmp = get_temporary_buffer(n);
 I limit = reverse_n_adaptive(first, n,
 tmp.first, tmp.second);
 return_temporary_buffer(tmp.first);
 return limit;
}

Unfortunately, as I just remarked it is a useless piece of code since it relies on a pair of
functions that are not properly implemented by system vendors. I will not, therefore,
provide them for the rest of the memory-adaptive functions in the notes.

 153

Alexander Stepanov Notes on Programming 10/31/2007

Lecture 19. Rotate

It is quite surprising how few people know about rotate and how few know why and
how to use it. Partially it is a result of the ever-growing “architectural” approach to
software engineering. Somehow people got convinced that what matters are some high-
level strategic decisions and not knowing fundamental algorithms and data structures.
When I joined SGI in 1995 I was told by the manager of their C++ group: “At SGI we
do not do algorithms…” I was astonished since I always believed in Niklaus Wirth’s
dictum that Algorithms + Data Structures = Programs5. But it seems to be a common
attitude nowadays. Somehow people believe that you can design major applications
without knowing the basic building blocks out of which these applications are
constructed. I disagree. A programmer is only as good as his or her algorithmic tool
chest. And a programmer without rotate is like a handyman without a screwdriver.

Let us see what rotate does. Let us assume that we have a sequence abcdef and we
want to form the sequence efabcd. That is an example of a rotation. A typical example of
the use of rotate is when we need to insert some number of items – not known ahead
of time – at the front of a vector. Insertion one-by-one is a terrible waste, since insertion
in front requires us to move all the items one step backward. The correct way of doing it
is by inserting them in the back and then rotating the vector. A few years back I was
astonished when a leading STL expert told me that they discovered that they could use
rotate to speed up a quadratic implementation of the insert member function. I assumed
that it was self-evident. There was, however, a peculiar fact that the original STL
specification assumed that it is quadratic as well. I cannot imagine making such a silly
mistake, but, apparently, I did. (If I ever start behaving as if I know how to program, just
whisper in my ear: quadratic insert…) One can, for example, implement the following
STL-like function:

template <typename T,
 typename I> // I models Input Iterator to T
void insert(std::vector<T>& v,
 typename std::vector<T>::iterator
 insertion_point,
 I first, I limit)
{
 typename
 std::iterator_traits
 <typename std::vector<T>::iterator>
 ::difference_type n(v.end() - v.begin());

// My apologies but this is the “idiomatic” way of

5 His book with this title is a classic and it is very sad that it is out of print. It is a great introductory text for
programming, something which is totally missing now. The problem is that we do not have a programming
language that comes close to Pascal as a language for instruction. It is sad that most schools abandoned
Pascal for Java, C++ or Scheme.

 154

Alexander Stepanov Notes on Programming 10/31/2007

// doing the type-functions in C++
// if we had first-class type functions it would look like:
// difference_type(iterator(vector(T)))

 while (first != limit) {
 v.push_back(*first);
 ++first;
 }
 std::rotate(insertion_point, v.begin() + n, v.end());
}

(It is possible to make insertion somewhat faster if we know the length of the range we
are inserting and if we are allowed to break certain invariants in a vector.)

We shall see later in the course that rotate is a very useful component for other
algorithms.

There are three different algorithms for doing in-place rotate. It so happens that they
have different iterator requirements: the first requires forward iterators, the second
requires bidirectional iterators and the third requires random-access iterators.

I will start with the second one: the bidirectional iterator version. The algorithm is based
on this simple observation: to rotate the elements around the rotation point, we need to
put all the elements before the rotation point after the elements after the rotation point
while not changing the order between the elements on the same side of the rotation point.
Now if we reverse a sequence that will definitely put the elements before the rotation
point after the elements after it. For example, if we want to rotate elements abcdef around
e, by reversing it we get fedcab, which moves the before and after group to the right
position, but, unfortunately, reverses the order inside the groups. That we can easily fix
by first reversing both subsequences:

 abcdef -> dcbaef -> dcbafe -> efabcd

That gives us a straightforward implementation:

template <typename I> // I models Bidirectional Iterator
void rotate_0(I f, I m, I l)
// f – first, m – rotation point, l – limit
// [f, l) is valid and m is in [f, l)
{
 reverse(f, m);
 reverse(m, l);
 reverse(f, l);
}

(In the course, I will usually use m to designate an iterator inside the range where m stands
for middle.)

 155

Alexander Stepanov Notes on Programming 10/31/2007

The algorithm is commonly known as three-reverses rotate algorithm. It is not clear who
invented it. Don Knuth once told me that it was invented by Vaughan Pratt but I was not
able to validate his claim. It is easy to see that it usually does around N swaps where N is
the size of the range. More precisely, it does N swaps when all three ranges contain even
numbers of elements and N - 2 swaps in every other case.

Problem: What is the expected number of swaps?

Assuming that swap is equivalent to three moves (a dubious claim in practice) we need
3N moves. (We need to know the number of moves because one of the algorithms will
not use swaps, but moves and we need to compare apples only with other apples.)

Here we come to a difficult problem: what should rotate return? The original STL
rotate – the one in the standard – returns void. I actually suspected that it was the
wrong thing to return, but I could not find an easy way of returning the right result. It is
possible to return a triple of pairs which are returned by the three reverses, but it is not
what we really want. That shows that the principle of not throwing away information
needs to be supplemented by another, even more important principle: look at how a
function is used. This tells us that any design requires at least two passes: one to develop
interfaces and the one to see how they are used and adjust them accordingly. For us
mortals, it usually takes much more than two passes – as we shall see even a relatively
trivial function like rotate has been giving me headaches for about 20 years. The first
rotate I actually shipped was a part of AT&T USL Standard Components. I wrote it in
1987 and it looked roughly like this:

void rotate(ptrdiff_t number,
 TYPE *begin,
 TYPE *end)
{
 if (begin >= end)
 return;

 number %= end - begin;

 if (number == 0)
 return;

 if (number < 0)
 number += (end - begin);

 reverse(begin, end);
 reverse(begin, begin + number);
 reverse(begin + number, end);
}

 156

Alexander Stepanov Notes on Programming 10/31/2007

It is written, basically, in C. C++ did not have templates and I tried to use as little of the
non-C compatible parts of C++ as possible. It only handled pointers – I knew about
iterators but found it impossible to handle them with the help of the preprocessor. I did
not know that the interface with three iterators and without the integral shift (number)
was much more elegant and was much easier to generalize to the case of non-random
access iterators. Only by the early 90’s (1991?) I saw that passing in three iterators makes
life much easier. I also observed that in many cases when I used rotate I would
immediately need to compute the position of the new rotation point, that is, the position
where the beginning of the first sub-range ended. Assuming that we are dealing with
random-access iterators, after rotate(f, m, l), I would frequently need f + (l
– m). Computing it for random-access iterators is trivial, but it is really slow for linked
structures. By the way, if we return such an iterator we obtain that
rotate(f, rotate(f, m, l), l) is an identity permutation. While we cannot
use it as a definite proof, the existence of such a property makes me comfortable that we
are on the right path. Because of this property, I will call m the old rotation point and the
result of rotate – the new rotation point.

The problem was that while I knew what was needed, I did not know how to implement it
without incurring a performance penalty for the three-reverses rotate. This is why
when I wrote the specification of rotate for STL in 1994, it was returning void. It
was only in 1997 while I was teaching this course at SGI that a couple of my students6
suggested a very elegant solution:

template <typename I> // I models Bidirectional Iterator
pair<I, I> reverse_until(I f, I m, I l)
{
 while (f != m && m != l) {
 --l;
 iterator_swap(f, l);
 ++f;
 }
 return pair<I, I>(f, l);
}

template <typename I> // I models Bidirectional Iterator
pair<I, I> rotate(I f, I m, I l,
 bidirectional_iterator_tag)
{
 reverse(f, m);
 reverse(m, l);
 pair<I, I> p = reverse_until(f, m, l);
 reverse(p.first, p.second);
 return p;
}

6 Raymond Lo and Wilson Ho.

 157

Alexander Stepanov Notes on Programming 10/31/2007

It is astonishing that reverse_until is a simpler function than reverse. It does the
same two iterator comparisons per swap as regular reverse, but the loop is much more
elegant (please compare them side by side and think about why one is simpler than the
other). Splitting the third reverse into two parts – until we reach the rotation point and
then from rotation point to the new rotation point that we will return, (and we do not
know which one of them is before the other) – allows us to find the return value without
doing extra work.

Notice that I sneaked a different return value: instead of an iterator I returned a pair. As a
matter of fact, I was returning an iterator till 2006 when a student in my course7 observed
that I violated the principle of not throwing away useful information. If I return the pair,
the caller can find out the relative positions of the old and the new rotation points,
something which can be quite handy. And it also simplified the code since I do not need
to do the test to check if the new rotation point is before or after the old one.

Now, before we discuss two other algorithms, let us develop a little framework to put
them in:

template <typename I> // I models Forward Iterator
inline
I rotate(I f, I m, I l)
{
 pair<I, I> p = rotate_basic(f, m, l);
 return (m != p.first) ? p.first : p.second;
}

template <typename I> // I models Forward Iterator
inline
pair<I, I> rotate_basic(I f, I m, I l)
{
 if (f == m || m == l) return pair<I, I>(f, l);
 return rotate(f, m, l, ITERATOR_CATEGORY(I));
}

We do not want to do anything in the case of trivial rotation. We dispatch on the category
of the iterator to pick the right algorithm. We provide the public interface which returns a
pair (rotate_basic) and the main interface which returns the new rotation point.
Now let us develop an algorithm for forward iterators8. We were able to implement
rotation with the help of reverse. We can now consider implementing it with the help of
another primitive we already defined: swap_ranges. After all, at least in one case it is

7 Joe Tighe.
8 The algorithm in question was first discovered by David Gries and Harlan Mills. See David Gries and
Harlan Mills, Swapping Sections, Tech. Report TR81-452, Cornell University Library, 1981. There is an
informative discussion of it on pages 222 - 225 of David Gries, Science of Programming, Springer-Verlag,
1981. This book is a classic, and any programmer who will work through it will benefit greatly.

 158

Alexander Stepanov Notes on Programming 10/31/2007

possible to do rotate with a single call to swap_ranges. Such is the case when the
distance from the beginning to the rotation point is equal to the distance from the rotation
point to the end. While it is seldom the case, let us take a look at what happens when we
call swap_ranges(f, m, m, l). (Notice that we are using the version of
swap_ranges that takes two ranges and returns a pair indicating where it stopped in
both ranges when at least one of them became exhausted.)

 pair<I, I> p = swap_ranges(f, m, m, l);
 I u = p.first;
 I v = p.second;
 assert(u == m || v == l);

There are three possibilities:

1. u == m && v == l
2. u == m && v != l
3. u != m && v == l

Now in the first case we are done:

 abcdef defabc
 ^ ^ ^ => ^ ^
 f m l u v

In the second case we know that the elements from f to m reached their final destination
but we need to rotate the range [m, l) around v:

 abcdef cdabef
 ^ ^ ^ => ^ ^
 f m l u v

In the third case we know that the elements from f to u reached their final destination but
we need to rotate the range [u, l) around m:

 abcdef efcdab
 ^ ^ ^ => ^ ^
 f m l u v

That gives us a simple recursive implementation (I will ignore the return value for now):

template <typename I> // I models Forward Iterator
void rotate_recursive(I f, I m, I l)
{
 pair<I, I> p = swap_ranges(f, m, m, l);
 I u = p.first;

 159

Alexander Stepanov Notes on Programming 10/31/2007

 I v = p.second;
 if (v != l) {
 rotate_recursive(u, v, l);
 } else if (u != m) {
 rotate_recursive(u, m, l);
 }

}

Since the recursive calls are tail-recursive we can easily transform it into an iterative
program:

template <typename I> // I models Forward Iterator
void rotate_iterative_0(I f, I m, I l)
{
 while (true) {
 pair<I, I> p = swap_ranges(f, m, m, l);
 I u = p.first;
 I v = p.second;

 if (v != l) {
 f = u;
 m = v;
 } else if (u != m) {
 f = u;
 } else {
 return;
 }
}

}

To understand things better let us track the sizes of the ranges that we swap:

template <typename I> // I models Forward Iterator
void rotate_iterative_annotated(I f, I m, I l)
{
 DISTANCE_TYPE(I) a = distance(f, m);
 DISTANCE_TYPE(I) b = distance(m, l);
 while (true) {
 pair<I, I> p = swap_ranges(f, m, m, l);
 I u = p.first;
 I v = p.second;

 if (v != l) {
 assert(a < b);
 f = m;
 m = v;
 b = b – a;
 assert(b == distance(m, l));
 } else if (u != m) {

 160

Alexander Stepanov Notes on Programming 10/31/2007

 assert (b < a);
 f = u;
 a = a – b;
 assert (a == distance(f, m));
 } else {
 assert(a == b);
 return;
 }
}

}

You might already see it, but to make it even more clear let us track only the code dealing
with distances:

 while (true) {
 if (b < a) {
 a = a – b;
 } else if (b > a) {
 b = b – a;
 } else
 break;
 }

Euclid strikes again! We see that when we exit a and b are both equal to each other and
they are equal to the greatest common divisor of the original lengths. (There are
remarkable connections between gcd and rotate. Not only this algorithm but the one for
random-access iterators are intimately connected to gcd. For years I have been searching
for the connection between the three-reverses rotation algorithms and gcd, but, so far, the
connection escapes me.) In some sense, this algorithm is doing subtractive gcd except
that it is doing subtraction with the help of swap_ranges.

Now to figure out the number of operations we – fortunately – do not need to analyze the
complexity of subtractive gcd. We can observe the following two simple facts:

1. the last call to swap_ranges puts two elements into their final destination
with every swap it makes;

2. every other call to swap_ranges puts only one element into its final
destination with every swap.

That gives us the total number of swaps to be equal to N – gcd(N, K) where K is the
length of the first segment. In reality gcd(N, K) is quite small on the average. In about
60% of the cases it is actually equal to 1. For most practical sequences we might safely
assume that the expected value of gcd is less than 32. So in terms of the number of swaps
the Gries-Mills algorithm is practically indistinguishable from the three-reverses
algorithm.

 161

Alexander Stepanov Notes on Programming 10/31/2007

We can now apply some simple transformations to optimize our algorithm:

template <typename I> // I models Forward Iterator
void rotate_iterative_1(I f, I m, I l)
{
 while (true) {
 pair<I, I> p = swap_ranges(f, m, m, l);

 if (p.second != l) {
 m = p.second;
 } else if (p.first == m) {
 return;
 }

 f = p.first;
}

}

If we inline swap_ranges, we can obtain the following:

template <class I>
void rotate_returning_void(I f, I m, I l) {
 assert (f != m && m != l);
 I i = m;
 while (true) {
 iterator_swap(f, i);
 ++f;
 ++i;
 if (f == m) {
 if (i == l) return;
 m = i;
 } else if (i == l) {
 i = m;
 }
 }
}

Now we need to spend some time developing a final version of the algorithm. After all,
we know that returning void was not a right thing to do. We need to develop a version
that will return the new rotation point. To do so we need to observe that the new rotation
point is found the first time when swap_ranges returns a pair with the second
component equal to the end of the range and only when it happens after the first call of
swap_ranges the new rotation point is before the old one:

template <typename I> // I models Forward Iterator
pair<I, I> rotate(I f, I m, I l, forward_iterator_tag)
{
 I old = m;
 pair<I, I> p = swap_ranges(f, m, m, l);

 162

Alexander Stepanov Notes on Programming 10/31/2007

 if (p.second == l) {
 if (p.first != m)
 rotate_returning_void(p.first, m, l);
 return pair<I, I>(p.first, old);

 }
 while (true) {
 f = p.first;
 m = p.second;
 p = swap_ranges(f, m, m, l);

 if (p.second == l) {
 if (p.first != m)
 rotate_returning_void(p.first, m, l);
 return pair<I, I>(old, p.first);
 }
}

}

Problem: Produce a version of the previous routine with inlined swap_ranges and
rotate_returning_void. Try to make it pretty.

The next algorithm – the one which is specific to random access iterators is based on the
do_cycle algorithm that I introduced in the lecture “Permutation Algorithms.” In order
to use it we need to do two things: first, to figure out what is the action that transforms an
iterator to move around the cycle; secondly, we need to figure out how many cycles does
rotate generate and how we can find the beginnings of them.

Let us start with the first task. We know that if we have an iterator i in the range [f,
l) which we are rotating around the iterator m, then there are two possibilities:

 i < f + (l – m) then i is going to get an element from i + (m – f)
 i >= f + (l – m) then i is going to get an element from i + (m – l)

It is self-evident, and, therefore, I always have to stop and think for a few minutes to
convince myself that it is so. The implementation is truly easy:

template <typename I> // I models Random Access Iterator
class rotate_iterator_action
{
private:
 DISTANCE_TYPE(I) forward;
 DISTANCE_TYPE(I) backward;
 I new_rotation_point;
public:
 rotate_iterator_action(I f, I m, I l) :
 forward(m – f),
 backward(m – l),

 163

Alexander Stepanov Notes on Programming 10/31/2007

 new_rotation_point(f + (l – m)){}
 void operator()(&I i) {
 i += i < new_rotation_point ? forward : backward;
 }
};

The key to the number of cycles lies in the structure of the previous algorithm (Gries-
Mills). Every time we swap two elements they belong to the same cycle. That means that
only the elements in the last pass of the algorithm – the one that puts two elements into
the final destination – belong to distinct cycles. So the last gcd(l – m, m – f) elements
belong to distinct cycles. And so do first gcd(l – m, m – f) elements. That gives us the
third algorithm9:

template <typename I> // I models Forward Iterator
pair<I, I> rotate(I f, I m, I l,
 random_access_iterator_tag)
{
 DISTANCE_TYPE(I) n = gcd(m – f, l – m);
 rotate_iterator_action<I> action(f, m, l);
 while (n > 0) {
 --n;
 do_cycle(f + n, action);
 }
 I n_m = f + (l – m);
 return (n_m < m) ?
 pair<I, I>(n_m, m) :
 pair<I, I>(m, n_m);
}

It is clear that the number of moves made by the algorithm is equal to N + gcd which is
pretty close to N on the average. It seems that it should easily outperform the other two
algorithms which do close to N swaps. (Even if swap does not translate into three moves,
it is not faster than two moves: two loads and two stores.) It has, however, a major flaw
that is particularly significant on modern computers: no locality of reference. We jump all
over our sequence and for large sequences could have lots of cache misses. There is a
technique that might help somewhat. It is called loop fusion10. The idea is that when we
have several cycles we can try doing several of them together and staying in the same
locality for a little while longer. Unfortunately, we already know that in about 60% of the
cases there will be only one cycle and fusion is not going to help. It is, nevertheless, an
important technique that is worth demonstrating. It is often assumed that compilers can

9 William Fletcher and Roland Silver, ACM Algorithm 284, Interchange of two blocks of data,
Communications of ACM, Volume 9 , Issue 5 (May 1966), Page: 326. (Unfortunately, the inventors of the
algorithm used swap to rotate elements along the cycles making it slower than both preceding algorithms.)
10 The technique was introduced by Andrei Ershov in ALPHA -- An Automatic Programming System of
High Efficiency. Journal of ACM, 13, 1 (Jan. 1966), pages 17-24. Ershov was one of the founders of
Russian computer science; his notion of Lexicon of Programming was a major inspiration for generic
programming.

 164

Alexander Stepanov Notes on Programming 10/31/2007

do loop fusion for us, but this only happens in relatively simple cases. So let us see how
we can do it.

template <typename I, // I models Random Access Iterator
 int size>
struct cycle_rotator
{
private:
 typedef DISTANCE_TYPE(I) N;
 N forward;
 N backward;
 I n_m;
public:
 cycle_rotator(N fw, N bk, I nm) : forward(fw),
 backward(bk), n_m(nm) {}
 I operator()(I i)
 {
 UNDERLYING_TYPE(VALUE_TYPE(I)) tmp[size];
 raw_move_k<size>()(i, tmp);

 I hole = i;
 I next = i + forward;

 while (true) {
 raw_move_k<size>()(next, hole);
 hole = next;
 if (hole < n_m)
 next += forward;
 else {
 next += backward;
 if (next == i) break;
 }
 }
 raw_move_k <size>()(tmp, hole);
 return i + size;
 }
};

Problem: Implement raw_move_k.

Problem: Notice that we are testing for the end of the cycle 50% less than when we
were using generic do_cycle11. Design a different version of generic do_cycle that
will eliminate the redundant test.

template <typename I> // I models Random Access Iterator

11 The optimization was suggested by John Wilkinson.

 165

Alexander Stepanov Notes on Programming 10/31/2007

inline
I rotate_cycle_fused(I i,
 I nrp,
 DISTANCE_TYPE(I) fw,
 DISTANCE_TYPE(I) bk,
 DISTANCE_TYPE(I) fusion_factor)
{
 switch (fusion_factor) {
 case 1: return cycle_rotator<I, 1>(fw, bk, nrp)(i);
 case 2: return cycle_rotator<I, 2>(fw, bk, nrp)(i);
 case 3: return cycle_rotator<I, 3>(fw, bk, nrp)(i);
 case 4: return cycle_rotator<I, 4>(fw, bk, nrp)(i);
 case 5: return cycle_rotator<I, 5>(fw, bk, nrp)(i);
 case 6: return cycle_rotator<I, 6>(fw, bk, nrp)(i);
 case 7: return cycle_rotator<I, 7>(fw, bk, nrp)(i);
 default: return cycle_rotator<I, 8>(fw, bk, nrp)(i);
 }
}

template <typename I> // I models Random Access Iterator
pair<I, I> rotate_fused(I f, I m, I l)
{
 if (f == m) return l;
 if (m == l) return f;

 typedef DISTANCE_TYPE(I) N;

 N fw = m - f;
 N bk = m - l;

 I n_m = l - fw;
 I end = f + gcd(fw, -bk);

 while (f < end)
 f = rotate_cycle_fused(f, n_m, fw, bk, end - f);

 return (n_m < m) ?
 pair<I, I>(n_m, m) :
 pair<I, I>(m, n_m);
}
Problem: Design a version of rotate that uses a temporary buffer when it is available. It
could be useful when rotate is used in the context of memory adaptive algorithms when
the buffer is available anyways.

Project: Measure the performance of the four rotate algorithms described in this chapter
plus the one from the previous problem. Vary the value type from simple built-ins such as

 166

Alexander Stepanov Notes on Programming 10/31/2007

char, int and double to structures containing arrays of several of built-in types. Try
to see if you can tune the algorithms to improve the results.

Lecture 20. Partition

Reverse, rotate and random shuffle are the most important examples of index-based
permutations, that is, permutations that rearrange a sequence according to the original
position of the elements without any consideration for their values. Now we are going to
study a different class of permutation algorithms, predicate-based permutations. The
positions into which these algorithms move elements in a sequence depend primarily on
whether they satisfy a given condition, not only on their original position.

Most of the algorithms in this section are based on the notion of partition: separating
elements in a range according to a predicate. I will be able to demonstrate many different
techniques looking at this problem. We will find use for many of the functions that we
studied before, such as find, reduce and rotate. We will discover many techniques and
interfaces that will serve us well.

It took me 20 years to come up with the reasonable rule for deciding whether to put
elements satisfying the predicate first or last. In 1986 I wrote my first library
implementation of partition for a part of Ada Generic Library work12. I had to decide
which way the partition is going to place the results: the elements satisfying the predicate
before the elements not satisfying it, or the other way around. It appeared to me that it is
“self-evident” that the elements satisfying the predicate are “good” and should come first.
In any case, I could not see any particular reason for the opposite and both possible
solutions seemed to be equivalent. When I was defining partition for STL in 1993, I did
not question my prior reasoning and partition, again, moved elements satisfying the
predicate in front. It took another 10 years for me to see that I was wrong. When I started
considering algorithms for 3-way, 4-way and n-way partitioning, I realized that it is really
important that partition assures that the result is sorted according to partition key – the
result of the key function. And all of the STL sorting algorithms assumed ascending
order. Moreover, it would have allowed the following nice property to hold:
partition_3way would have worked just like regular partition if given a two-valued
key function returning {0, 1}. Moreover, sort with a comparison based on key-compare
would have done partitioning – which is not true now for regular 2-way partition. The
problem will become even more visible when we define partition_n_way. I knew
about the connection between sorting and partitioning but was not able to assure that the
interfaces are consistent. I will now do it the right way – putting elements that do not
satisfy the predicate first – but you need to remember that the standard
std::partition is doing it in the opposite order. It is very instructive to see how

12 The code for partition appears in David R. Musser and Alexander A. Stepanov, Generic Programming,
ISSAC 1988, pages 13-25. It is available at: http://www.stepanovpapers.com/genprog.pdf It could not be a
part of the library since no compiler was able to handle deeply nested generics.

 167

http://www.stepanovpapers.com/genprog.pdf

Alexander Stepanov Notes on Programming 10/31/2007

often I made wrong decisions. It is not only other programmer who make mistakes. It is
us. Programming is really hard.

Let us introduce a couple of definitions:

1. A range is partitioned according to a given predicate if every element in the range that
does not satisfy the predicate precedes every element that does satisfy the predicate.

2. An iterator m into a partitioned range [f, l) is called a partition point if every
element in the range [f, m) does not satisfy the predicate and every element in the
range [m, l) satisfies it.

For example, if T stands for true (satisfying), F for false (unsatisfying) elements then the
following range [f, l) is partitioned and m is its partition point:

FFFFFTTT
^ ^ ^
f m l

Notice, that as we have seen in cases of other algorithms, partition requires N + 1
different values of iterators to describe all possible partition points of a sequence of N
elements. Indeed, if we have N elements in a sequence the number of good elements in it
varies between 0 and N, having, therefore, N + 1 distinct values.

We can check if a range is partitioned using the following function:

template <typename I, // I models Input Iterator
 typename P> // P models Unary Predicate
bool is_partitioned_0(I f, I l, P p)
{
 return l == find_if_not(find_if(f, l, p), l, p);
}

The function checks that there are no false elements that follow a true element.

If we know the partition point m we can verify the partitioning with:

template <typename I, // I models Input Iterator
 typename P> // P models Unary Predicate
bool is_partitioned(I f, I m, I l, P p)
{
 return none(f, m, p) && all(m, l, p);
}

 168

Alexander Stepanov Notes on Programming 10/31/2007

If a range is partitioned according to some predicate we can easily find its partition point
by calling:

find_if(f, l, p)

Later we shall see that it is often possible to find the partition point much faster.

Quiz: How is it possible to find the partition point faster?

There could be many different permutations of a range that give us a partitioned range. If
we have a range with U true elements and V false elements the number of different
partitioned permutations is equal to U!V!.

Problem: How large must a range be to have different partitioned permutations
irrespective of the number of true and false elements in it?

In order to partition a range [f, l) in place we start with an inductive assumption:

Let us assume that we managed to partition a range up to some point n and the present
partition point is m. We can illustrate the current state with the picture:

 FFFFFFFFTTTTTTT??????
 ^ ^ ^ ^
 f m n l

where T stands for “true” (unsatisfying), F for “false”(satisfying) and ? stands for
“untested”. Then we know that:

 assert(none(f, m, p) && all(m, n, p)); // invariant

We do not know anything about the value at n. Before we check if it satisfies the
predicate we need to assure that we have not reached the end of the range. But if
somehow we did, we are done. Indeed if n is equal to l then our loop invariant becomes
equivalent to the second version of is_partitioned which happens to be the
postcondition of the function that we are trying to implement. It is evident that we should
return the partition point. Indeed, we have it available and it might be – and in reality
almost invariably is – useful to the caller.

Now we have the innermost part of our program:

 assert(none(f, m, p) && all(m, n, p)); // invariant
 if (n == l) return m;

Since we have not reached the end of the range we can test the next element.

 169

Alexander Stepanov Notes on Programming 10/31/2007

If the element to which n points satisfies the predicate, we can simply advance n and our
invariant still holds. Otherwise, we swap a good element pointed to by n with a (usually)
bad element pointed to by m and we can advance both m and n with our invariant holding.

Quiz: Can there ever be the case that m points to a good element? Would the invariant
still hold if it does?

Since we know that eventually n will reach l our program is almost done:

while (true) {
 assert(none(f, m, p) && all(m, n, p)); // invariant
 if (n == l) return m;
 if (!p(deref(n))) {

iterator_swap(n, m);
++m;

 }
 ++n;
}

We observe that for any range [f, l) we can find our inductive base by starting with
both m and n being equal to f. Or, stating it differently, it is really easy to partition an
empty range and find its partition point. And since now we have both the starting point
for our induction and the inductive step, we obtain:

template <typename I, // I models Forward Iterator
 typename P> // P models Unary Predicate
I partition_forward_unoptimized(I f, I l, P p)
{
 I m = f;
 I n = f;
 while (n != l) {
 if (!p(deref(n))) {

iterator_swap(n, m);
++m;

 }
 ++n;
 }
 assert(is_partitioned(f, m, l, p));
 return m;
}

It is interesting that this excellent algorithm is not in the C++ standard which requires
bidirectional iterators for partition. I had known, implemented, and taught this algorithm
for quite some time – since I first read about it in Jon Bentley’s column in CACM in the
mid-eighties. But my original STL proposal does, somehow, specify bidirectional
iterators for both partition and stable_partition. Both of them were corrected

 170

Alexander Stepanov Notes on Programming 10/31/2007

in SGI STL, but most vendors are still behind. This little thing has been bothering me for
over 10 years now; the most bothersome part being the fact of omission. How did it
happen? I suspect that the explanation is quite simple: while in the early 90s I already
understood the idea of reducing every algorithm to its minimal requirements, and I also
knew that the same operation could be implemented using better algorithms when we
know more about the data to which they are applied, I was not yet fully aware of the need
to provide an algorithm for the weakest case, if such an algorithm is available. It took
several more years to understand the importance of “filling the algorithmic space.”

How many operations does the algorithm perform? The number of the applications of the
predicate is exactly equal to the length of the range. And that is, indeed, the minimal
number possible.

Problem: Prove that it is not possible to partition a range and to find its partition point
with fewer than N predicate applications where N is the length of the range.

Problem: Prove that if it is not required to return a partition point then it is possible to
partition a non-empty range with fewer than N predicate applications. [Jon Brandt]

Problem: Prove that even without returning a partition point it is not possible to
partition a range with fewer than N - 1 predicate applications.

While the algorithm is optimal in terms of the number of application of the predicate it
clearly does more swaps than necessary. Indeed, it does one swap for every good element
in the sequence. But it is absolutely unnecessary to do it when there is no preceding bad
element. We can, therefore, produce an optimized version of the algorithm that skips over
all the good elements in the beginning of the range. We can also optimize away one of
the iterator variables:

template <typename I, // I models Forward Iterator
 typename P> // P models Unary Predicate
I partition_forward_1(I f, I l, P p)
{
 f = find_if(f, l, p);
 if (f == l) return f;
 I n = f;
 while (++n != l) {
 if (!p(deref(n))) {

iterator_swap(n, f);
++f;

 }
 }
 return f;
}

 171

Alexander Stepanov Notes on Programming 10/31/2007

While it seems to be a worthwhile optimization, in reality it is not very useful since the
average number of false elements in front of the first true element is going to be very
small. We are, therefore, saving just a constant number of operations in a linear
algorithm, which, in general, is not a very useful optimization. The main reason for doing
it is esthetic: the optimized version is not going to do any swaps if a range is already
partitioned, which is a “nice” but not a practically useful property.

Problem: What is the average number of good elements in front of the first bad
element?

Now the number of swaps is going to be equal to the number of the false elements that
appear in the range after the first true element. While it is “optimal” for this algorithm, it
is clearly excessive. For example, if we have a sequence of one bad element followed by
four good elements:

TFFFF

our program is going to perform four swaps, while a partitioned sequence can be obtained
with a single swap of the first and the fifth elements. It is easy to see that on the average
there will be approximately N/2 good elements after a true element and, therefore, on the
average the algorithm will do N/2 swaps.

What is the minimal number of swaps that are needed for partition? Well, as a matter of
fact the question is not particularly interesting. In terms of minimal number of moving
operations we should ask about what is the minimal number of moves that are needed to
partition a given range. The answer is simple: if we have a range with U false elements
and V true elements and there are K true elements amongst the first U elements of the
range, then we need 2K + 1 moves to partition the range (assuming, of course, that K is
not equal to 0). Indeed, K bad elements are out of place and so there are K false elements
that are originally positioned outside of their final destination. To move these 2K
elements we need at least 2K moves and we need one extra location where we need to
save one of the elements to enable us to initiate the sequence of moves.

Problem: Design a partition algorithm that does 2K + 1 moves. You do not have to
assume that iterators are forward iterators. [Solution will be given later.]

What is the number of iterator operations performed by partition_forward? It is
clear that we need to do N iterator comparisons to watch for the end. Our present
implementation will do an extra one, since it will compare an iterator returned by find
which would not have been necessary if we decided to hand-inline find and obtained the
following code sequence:

template <typename I, // I models Forward Iterator
 typename P> // P models Unary Predicate
I partition_forward(I f, I l, P p)
{

 172

Alexander Stepanov Notes on Programming 10/31/2007

 while (true) {
if (f == l) return f;

 if (p(deref(f))) break;
 ++f;
 }

 I n = f;
 ++f;

 // I changed f and n to make the more symmetric code

 while (true) {

if (f == l) return f;
 if (!p(deref(f))) {

iterator_swap(n, f);
++n;

 }
 ++f;
 }
}

In this context the optimization is not particularly useful since a single extra comparison
does not really affect the performance (a small constant added to a linear function), but
we encounter the same transformation in the next algorithm where the extra comparison
appears in the inner loop. The transformation starts with the loop of find_if:

while (f != l && !p(deref(f))) ++f;

and provides two different exits depending on which part of the conjunction holds. The
total number of iterator increments is equal to N + W where W is the number of false
elements that follow the first true element. As we remarked before, on the average it is
going to be approximately N + U – 2 where U is the number of false elements in the
range.

The forward partition algorithm is due to Nico Lomuto who was looking for a simpler
way to implement the quicksort inner loop13. Its main advantages are, firstly, that it
works for forward iterators and, secondly, that it preserves the relative ordering of the
elements that satisfy the predicate (see the discussion of stable partition). Its
disadvantages are that it does more swaps on the average than the next algorithm but
especially that it cannot be modified to split the range containing equal elements into two
equal parts, which makes it utterly unsuitable for being used in quicksort – for which
purpose it is, nevertheless, frequently recommended by supposedly reputable textbooks.
As is the case with many algorithms, it has its place but not where its

 inventor thought it

as.

w

13 Jon Bentley, Programming Pearls. Communications of the ACM, Vol 27, No 4. April 1984. pp. 287-29

 173

Alexander Stepanov Notes on Programming 10/31/2007

I do not know a partition algorithm that is more effective for forward iterators than the
one we just described. I believe that in some fundamental sense it is optimal, but I do not
even know how to state the problem in a rigorous way. We typically analyze the
algorithmic performance by counting one kind of operation. In reality we are dealing with
several different operations. For partition we need predicate application and move (both
of which depend on the type of elements) and iterator increment and equality (both of
which depend on the iterator type). I have a general feeling – (Feeling Oriented
Programming?) – that element operations (predicate) are potentially costlier than iterator
operations (++, ==, deref), since elements could be large while iterators are small.
Such vague considerations usually allow us to produce algorithms that are satisfactory in
practice, but there is something profoundly unsatisfying about it. It is possible that one
can come up with axioms on the complexity measures of different operations that will
allow us to prove optimality of certain algorithms. So far, I have not been able either to
design such axioms or to interest others in designing them.

All the code in the rest of this and the next lectures is based on the remarkable paper by
C.A.R. Hoare14. He introduces the algorithm for partition with the minimal number of
moves and partition with sentinels which we will study in the next lecture. This paper, in
my opinion, is a serious contender for the title of the best ever paper in Computer
Science. I wish that every textbook writer before they attempt to implement quicksort
would spend some time studying the original paper and not the (usually) inferior
secondary sources. It is, unfortunately not easily available and mostly overshadowed by
his brief note in the Communications of ACM.

While, as we shall see later, it is possible to implement a partition algorithm with a
minimal number of moves, in practice it is usually sufficient to replace 2K + 1 moves
with K swaps, namely, discover all the K misplaced bad elements and swap them with K
misplaced good elements. Our goal is to assure that every swap puts both the false
element and the true element in their final destination. If we take the rightmost true
element and the leftmost false element we can be sure that if they are out of place we can
put both in acceptable positions by swapping them. Indeed, we know that all the elements
to the left of the leftmost true element have to be false and are in their final destination;
and similarly for the rightmost false element. So if they are out of place – the leftmost
true element is before the rightmost false element, then swapping them is putting both
into acceptable locations. Finding the rightmost false element efficiently requires that we
move from the right and that requires bidirectional iterators.

The idea of the algorithm can be illustrated by the following picture:

 GGGGGGGGT??????FTTTTT
 ^ ^ ^ ^
 f0 f l l0

14 C.A.R. Hoare, Quicksort, The Computer Journal 1962, 5(1), pp.10-16

 174

Alexander Stepanov Notes on Programming 10/31/2007

Interchanging the elements pointed to by f and l will put them in the correct subranges:
the true element to the right of the partition point and the false element to the left of it. It
is worthwhile to observe that the partition point is located somewhere in the range
[f, l).

We can start our implementation by first finding the new f, then finding the new l and
then swapping them or returning whichever one is appropriate:

// use find_if to find the first true element
// use find_backward_if_not to find the last false element
// check if the iterators crossed and return
// swap the true and false elements which were just found

Before we try to figure out how it works let us have a detour and learn about
find_backward.

I did not discuss finding backward in the chapter on find. The main reason was that our
design for its interface might be better understood next to the first example of its use. But
we might eventually decide to move it there.

It is often important to find elements in a range while traversing it backwards. It seems to
be an easy task; just take find and replace ++ with --:

template <typename I, // I models Bidirectional Iterator
 typename P> // P models Unary Predicate
I buggy_find_backward_if_not_1(I f, I l, P p)
{
 while (f != l && !p(deref(l))) -–l;

 return l;
}

This, of course, will not work since the first time around we will be dereferencing a past-
the-end iterator. We should remember that our ranges are semi-open intervals and the end
iterator is not symmetrical with the begin iterator. It seems that we can compensate for it
by writing:

template <typename I, // I models Bidirectional Iterator
 typename P> // P models Unary Predicate
I buggy_find_backward_if_not_2(I f, I l, P p)
{
 while (true) {
 if (f == l) return l;
 --l;
 if (p(deref(l))) return l;
 }

 175

Alexander Stepanov Notes on Programming 10/31/2007

}

The problem now is that we cannot distinguish between finding a false element in the
very beginning of the range – but at the end of our search – and not finding a false
element at all. We can, of course find out which one is the case by re-testing the first
element, but it would require an extra test and would not be symmetric with the ordinary
find_if. It would be terribly nice if we could transform a semi-open range [f, l)
into a semi-open range [l, f). And we can do it if we just slightly modify our code by
incrementing l before returning it when we find a false element:

template <typename I, // I models Bidirectional Iterator
 typename P> // P models Unary Predicate
I find_backward_if_not(I f, I l, P p)
{
 do {
 if (f == l) return l;
 --l;
 } while (p(deref(l)));

 return successor(l);
}

We return f if we do not find a false element; otherwise, we return the successor to the
iterator pointing to the first false element from the right. (We assume that ranges grow
from left to right.)

Now it is easy to see our program:

template <typename I, // I models Bidirectional Iterator
 typename P> // P models Unary Predicate
I partition_bidirectional_1(I f, I l, P p)
{
 while (true) {
 f = find_if(f, l, p);
 l = find_backward_if_not(f, l, p);

 if (f == l) return f;

 --l;
 iterator_swap(f, l);
 ++f;
 }
}

The above code looks so elegant, so perfect that it makes me sad that we have to muck it
up. But muck it we shall. The present code does several extra operations. As far as the

 176

Alexander Stepanov Notes on Programming 10/31/2007

number of swaps goes, it does the promised K of them. However it should be clear that it
often does more than the necessary predicate applications.

Problem: How many extra predicate applications does the algorithm do?

While one or two extra application of the predicate usually do not matter – and as we
shall see soon a few extra application could in reality speed up the algorithm by allowing
us to trade a linear number of iterator comparisons for an extra predicate call – sometimes
it is important to assure that the algorithm does not do any extra predicate applications. It
usually happens when the predicate is not strictly functional and applying the predicate to
the same element twice might not yield the same results. The useful example of using
partition with such a predicate comes up in an attempt to design an algorithm for
randomly shuffling a forward iterator range. I do not know of an in-place linear time
algorithm for random shuffle unless the range provides us with random access iterators.
There is, however, an NlogN algorithm that randomly shuffles a range with forward
iterators only which is based on using partition with a coin-tossing predicate – a predicate
which returns a uniformly random sequence of true and false when applied to any
element. Such an algorithm requires that predicate is applied only once to every element
of the sequence.

Problem: Prove that there is no in-place linear time random shuffle algorithm for
forward and bidirectional iterators. (Hard.)

Problem: Implement a function that uses partition on a range to randomly shuffle it
[Raymond Lo and Wilson Ho].

Problem: Prove that your implementation of random shuffle does, indeed, produce a
uniformly random shuffle [Raymond Lo and Wilson Ho].

In addition to extra predicate applications our partition_bidirectional_1
function does more than the necessary iterator comparisons. We could patch all these
minor problems by inlining our finds and doing the different exit transformation that we
first introduced in the previous section:

template <typename I, // I models Bidirectional Iterator
 typename P> // P models Unary Predicate
I partition_bidirectional(I f, I l, P p)
{
 while (true) {
 while (true) {
 if (f == l) return f;

if (p(deref(f))) break;
++f;

}
while (true) {

 177

Alexander Stepanov Notes on Programming 10/31/2007

 --l;
 if (f == l) return successor(f);
 if (!p(deref(l))) break;
 }
 iterator_swap(f, l);
 ++f;
 }
}

Problem: Prove the program correct by carefully writing asserts.

As a matter of fact, we did not muck it up too badly. It still looks very symmetric, very
elegant, but as we shall see soon the mucking is not over.

As far as the number of operations goes, the present code does N predicate applications
(prove it!) and N + 1 iterator comparisons and N + 1 iterator increments and decrements.
It also – as promised – does K swaps.

Lecture 21. Optimizing partition

Sometimes we need to study an optimization technique even if at the end we find out that
it has few benefits for the algorithm which we used to illustrate the technique.
Implementing partition with the minimal number of moves is one such subject. As we
have seen earlier in the section, the minimal number of moves necessary for partitioning
a range is equal to 2K + 1 where K is the number of true elements that precede the
(eventual) partition point. While we have an algorithm that does K swaps, it does not
appear to be optimal since we usually consider a swap to be equivalent to 3 moves and
3K is greater than 2K + 1 for most positive integers. (It is optimal, indeed, when K is 1
and we are going to do a single swap.)

Now let us see how we can produce a version with the minimal number of moves. The
idea is quite simple we save the first misplaced element and then move other misplaced
elements into the holes formed by the first save and the subsequent moves. When we
reach the end, we move the saved element into the last hole. In other words, we re-
organize our partition permutation from one with K cycles to one with one cycle. Note
that implementing this algorithm we demonstrate an interesting property: any sequence
can be partitioned with a single cycle.

It should be noted that the result of the algorithm is going to be different from the result
of our partition_bidirectional which generates a somewhat different
permutation.

Now it is fairly straightforward to obtain its implementation:

template <typename I, // I models Bidirectional Iterator

 178

Alexander Stepanov Notes on Programming 10/31/2007

 typename P> // P models Unary Predicate
I partition_bidirectional_minimal_moves (I f, I l, P p)
{

while (true) {
 if (f == l) return f;
 if (p (deref(f))) break;
 ++f;
 } // f points to true
 do {
 --l;
 if (f == l) return f;
 } while (p(deref(l))); // l points to false

 UNDERLYING_TYPE(VALUE_TYPE(I)) tmp;

move_raw(*f, tmp);

while (true) {
 // hole at f needs false
 move_raw(deref(l), deref(f));

// fill the hole at f with false at l
// the hole is at l and needs true

 do {
 ++f;
 if (f == l) goto exit;
 } while (!p(deref(f)));
 // f points to true

move_raw(deref(f), deref(l));
// fill the hole at l with true at f
// the hole is at f and needs false
do {
 --l;

 if (f == l) goto exit;
 } while (p(deref(l)));
 // l points to false

}
exit:
 // both f and l are equal and point to a hole

move_raw(tmp, deref(f));
 return f;
}

This piece of code is “optimal” in terms of many operations: it does the minimal number
of comparisons, the (almost) minimal number of moves, the minimal number of iterator
increments and iterator comparisons.

Problem: Find a case when the “optimal” algorithm would do one extra move [Joseph
Tighe].

 179

Alexander Stepanov Notes on Programming 10/31/2007

Problem: Find a way of avoiding an extra move [keep explicit track of the hole].

Problem: Use the same techniques to reduce the number of moves in
partition_forward.

It should be noted, however, that in practice – or at least in practice as it is in 2006 –
optimizing the number of moves does not significantly speed up the code for most types
of elements. While we consider swap to be equivalent to three moves, for most modern
computers it appears to be more accurate to consider swap to be equivalent to two loads
followed by two stores, while move to be equivalent to one load and one store. If we
switch to this system of accounting, we observe that partition_bidirectional
does (almost) the same number of memory operations as
partition_bidirectional_minimal_moves. It is a worthwhile thing to
learn many of the optimization techniques, because of the twofold reason:

- optimization techniques are based on fundamental properties of algorithms that
we study and allow us to understand the algorithms better;
- optimizations that are not applicable now in some domain will often become
applicable again in a different domain.

If we look at the code of the partition_bidirectional_2 we observe that we do
one iterator comparison for every predicate application – or almost one since the last
iterator comparison during the running of the algorithm is not followed by a predicate
application. If we know that our range contains both true and false elements we can
implement a function that will be trading an extra predicate call for a linear number of
extra comparisons. If there is a true element in the range we can always look for the first
true element from the left by writing:

while (!p(deref(f))) ++f;

and be certain that after we stop none of the elements in the range [f0, f) are going to
satisfy the predicate and f will point to a true element. We can now look for the false
element from the right:

do --l; while (p(deref(l)));

and be equally certain that we will stop at a good element. It is very easy to see that the
only way they can cross is by one position only. That is, if they crossed then f is going to
be the successor of l. (That, of course, presupposes that the predicate is truly functional
and returns the same value when applied to the same element twice.)

That allows us to eliminate an iterator comparison from the inner loops:

template <typename I, // I models Bidirectional Iterator
 typename P> // P models Unary Predicate
I partition_bidirectional_unguarded(I f, I l, P p)

 180

Alexander Stepanov Notes on Programming 10/31/2007

{
 assert(!all(f, l, p) && !none(f, l, p));

while(true) {
 while (!p(deref(f))) ++f;

 do --l; while (p(deref(l)));

 if (successor(l) == f) return f;

 iterator_swap(f, l);
 ++f;
}

}

And that allows us to construct a new version of partition that first finds guards or
sentinels on both sides and then calls the unguarded partition:

template <typename I, // I models Bidirectional Iterator
 typename P> // P models Unary Predicate
I partition_bidirectional_optimized(I f, I l, P p)
{

f = find_if(f, l, p);
l = find_backward_if_not(f, l, p);
if (f == l) return f;
--l;
iterator_swap(f, l);
++f;
return partition_bidirectional_unguarded(f, l, p);

}

It is possible to eliminate extra iterator comparisons by also inlining finds and using the
sentinel technique to trade a couple of applications of predicate for (potentially) linear
number of iterator comparisons. It is, however, not an urgent optimization since if we
assume that both good and bad elements are equally probable and that our input
sequences are uniformly distributed then the number of extra iterator comparisons is
going to be small.

Problem: What is the worst case number of the extra iterator comparisons in
partition_bidirectional_optimized?

Problem: What is the average number of the extra iterator comparisons in
partition_bidirectional_optimized?

Problem: Re-implement partition_bidirectional_optimized to minimize
the number of iterator comparisons.

 181

Alexander Stepanov Notes on Programming 10/31/2007

Problem: Combine the sentinel technique and the minimal moves optimization in a
single algorithm.

Project: Measure the performance of all the partition algorithms that we have studied so
far. Vary the element sizes from 32 bit integers and doubles all the way to structures with
64 byte size. Also use two different predicates: one which is inlined and very simple and
the other one which is passed as a pointer to function. Come up with a recommendation
on which of the algorithms are worth keeping in a library.

Project: Write a simple guide that will tell a user how to select a correct partition
algorithm for the job.

Project: Write a library function that will correctly choose which of the partition
algorithms to use depending on iterator requirements and, potentially, element size and
properties of the predicate.

While it is often important to be able to partition a range in place, it is sometimes equally
important to partition elements while copying them into a new place. It is, of course,
often possible to accomplish it by first doing copy and then partition. There are two
problems with this approach: the performance and the generality.

As far as the performance goes, we will need more than N moves. It would be terribly
nice if we can accomplish our task with N moves only. The second problem is that in
order to do copy first and partition afterwards we need to be able to traverse the resulting
range again. And that means that we cannot use output iterators as a requirement for the
destination. As a matter of fact the algorithm that is both minimal in terms of number of
operations and absolutely minimal in terms of the requirements on the iterators for the
result is so simple that it does not need any explanations. Go through the input range
element by element sending good elements to one destination stream and the bad ones to
a different one.

It is obvious how to start writing the algorithm:
if (p(*f)) {
 deref(r_b) = deref(f); // bad result
 ++r_b;
} else {
 deref(r_g) = deref(f); // good result
 ++r_g;
}
++f;

 The only remaining problem is to figure out what to return. And since the destinations of
good and bad elements are different we have to return the final state of both:

template <typename I, // I models Input Iterator
 typename O1, // O1 models Output Iterator
 typename O2, // O2 models Output Iterator

 182

Alexander Stepanov Notes on Programming 10/31/2007

 typename P> // P models Unary Predicate
pair<O1, O2> partition_copy(I f, I l, O1 r_g, O2 r_b, P p)
{
 while (f != l) {
 if (p(*f)) {
 deref(r_b) = deref(f);
 ++r_b;
 } else {
 deref(r_g) = deref(f);
 ++r_g;
 }
 ++f;
 }
 return pair<O1, O2>(r_g, r_b);
}15

When we treat the stable partition algorithm we will rely on the fact that partition_copy is
stable, that is, the relative order of among good elements is preserve and so is the relative
order among the bad elements.

Lecture 22. Algorithms on Linked Iterators

Up till now we assumed that every iterator has the same successor for at least as long as
we use the algorithm. (The assumption, of course, does not hold for input iterators since
they do not allow us to advance through the same iterator twice. But even for them we
assumed that for as long as advance is possible, we will advance to the same place every
time we advance form a given iterator.) There was no way to change the successor of an
iterator. But while this is a good assumption to have since we want to develop as many
algorithms as possible working with as few assumptions as possible, we should always
remember that every theory is limited and be ready to extend it to account for reality.
And in reality there are data structures that allow us to change the relationships between
their locations. They are known as linked data structures. Singly-linked lists and doubly-
linked lists are the most common examples of such structures. It is quite clear how to
reverse a linked list: reverse all the links. One way of doing it is by requiring the iterators
to the linked structures to provide a set_successor function that guarantees that for
any dereferenceable iterator i and any iterator j the following holds:

 set_successor(i, j);
 assert(successor(i) == j);

15 It is worth noting that the self-evident interface to a copying version of partition escaped me till 1996
when it was suggested to me by T.K. Lakshman. This is the reason the algorithm is not in the standard.

 183

Alexander Stepanov Notes on Programming 10/31/2007

If our iterator is bidirectional, we need to strengthen it to:

 set_successor(i, j);
 assert(successor(i) == j);
 assert(predecessor(j) == i);

since we usually want the standard axiom predecessor(successor(i)) == i to
remain valid. (We shall see shortly that occasionally it is good to ignore this axiom.) It
also needs to support a set_predecessor function with an obvious corresponding
axiom. It is, however, an interesting fact that most algorithms for linked iterators do not
benefit from a set_predecessor function. The main advantage of having doubly
linked structures seems to be that it allows us to remove an element from a list through an
iterator to the element. But I digress…

The algorithm for reversing the linked structure is fairly trivial:

template <typename I> // I models Linked Iterator
I reverse_linked_0(I first, I limit)
{
 I result = limit;
 while (first != limit) {
 I old_successor = successor(first);
 set_successor(first, result);
 result = first;
 first = old_successor;
 }
 return result;
}

The only thing to remember is that you need to save the old successor before you change
it.

The first observation is that this algorithm could be easily generalized by passing in the
result instead of initializing it to limit:

template <typename I> // I models Linked Iterator
I reverse_append(I first, I limit, I result)
{
 while (first != limit) {
 I old_successor = successor(first);
 set_successor(first, result);
 result = first;
 first = old_successor;
 }
 return result;
}

 184

Alexander Stepanov Notes on Programming 10/31/2007

(As a general rule, it is often possible to obtain a more general and quite useful function
by replacing a local variable that initializes some computation with an extra parameter.)

It is now trivial to obtain reverse_linked as:

template <typename I> // I models Linked Iterator
inline
I reverse_linked(I first, I limit)
{
 return reverse_append(first, limit, limit);
}

It seems that we are done. We extended the iterator interface to account for the ability to
re-link, and we wrote a nice and practically useful algorithm. We can declare victory. The
problem is that it is premature to declare victory till we have seen all the consequences of
our design. In other words, it is hard to find a right abstraction till we really look deep
into the field. As we progress through the course we will discover more and more linked
iterator versions of STL algorithms: partition, merge, set_union,
set_intersection, etc. The abstraction that we just created is going to hold up quite
well. As a matter of fact, it is going to hold up quite well for any one-pass algorithm. It is
only when we start doing set_successor many times over for the same iterator that
we will notice a problem. Indeed, when we implement sort_linked we will notice
that for doubly-linked lists it will start doing a lot of unnecessary work. It is going to call
merge_linked and that will re-link the nodes by re-setting both forward and backward
pointers. The problem is that it will do twice as much work as necessary to maintain an
invariant that is not needed, since while we are sorting and merging our doubly linked list
backward pointers and backward traversal are not needed. It is perfectly all right to break
our invariant (predecessor(successor(i)) == i) as long as we fix it at the end
of the algorithm. (It is a strange idea to require that all invariants are maintained all the
time. It does not make programs safe, but it does make them slow. In general, we need to
teach programmers to find invariants and to maintain them when necessary and not try to
design a fool-proof way of programming. As long as programmers have access to
something like the while statement, all our dreams of a finding safe subset of the
language are doomed to failure. But theoretical limitations have no relation to what
software vendors do, so brace yourself for more and more bizarre error messages
complaining that your perfectly safe code is unsafe.)

To handle this problem, we need to have a function set_successor_unsafe
defined for all linked iterators. For linked forward iterators it will be equivalent to
set_successor while for linked bidirectional iterators it will not repair back links
and will just leave them in an undetermined state. We will also need
set_predecessor_unsafe that will allow us to patch broken back links with the
help of a function:

template <typename I> // I models Linked Iterator
inline

 185

Alexander Stepanov Notes on Programming 10/31/2007

void patch_back_links(I first, I limit,
 forward_iterator_tag)
{
 // no need to patch links
}

template <typename I> // I models Linked Iterator
inline
void patch_back_links(I first, I limit,
 bidirectional_iterator_tag)
{
 while (first != limit) {
 set_predecessor_unsafe(successor(first), first);
 ++first;
 }
}

template <typename I> // I models Linked Iterator
inline
void patch_back_links(I first, I limit)
{
 patch_back_links(first, last, ITERATOR_CATEGORY(I));
}

Now we will need to use merge_linked with both the regular set_successor
when it is used in a stand-alone merge_linked function or with
set_successor_unsafe when we need to use it within sort_linked. (There
will be some other interesting variations but we do not need to deal with them now since
they have no relevance to the design of the interface to reverse_append.) That leads
us to a conclusion that we want to parameterize our linked algorithms with a function
object that determines what kind of linking is done:

template <typename I, // I models Linked Iterator
 typename S>
 // S models a function object from I x I -> void
 // S s; s(i, j); assert(successor(i) == j);
I reverse_append(I first, I limit, I result, S setter)
{
 while (first != limit) {
 I old_successor = successor(first) ;
 setter(first, result);
 result = first;
 first = old_successor;
 }
 return result;
}

 186

Alexander Stepanov Notes on Programming 10/31/2007

While my compiler does not allow me to do it now (isn’t it fun to program in a language
for which standard conformance is optional?), eventually we will provide a default for
type S as successor_setter<I> where it is defined as:

template <typename I> // I models Linked Iterator
struct successor_setter
{
 void operator()(I i, I j) {
 set_successor(i, j);
 }
};

along with a companion function object that calls set_successor_unsafe.
(One assumes that constant linked iterators do not allow one to set_successor. That
is, however, an interesting example of the limitations of constness. One can imagine a list
which allows you to sort it or reverse it but not to change its elements.)

As was the case with reverse it is sometimes desirable to have a different paritition
algorithm for linked structures. If we transform the structure so that every node keeps its
value, but all the nodes with correspondingly true or false elements are linked together,
then old linked iterators will maintain their element, but they will be re-linked,
correspondingly, into two different linked structures.

There is a standard technique for dealing with accumulating nodes: accumulating them in
reverse order. Let us assume that r_f points to the all false nodes that we have already
accumulated and r_t to all the true ones. And we also know that f points to a node that
we have not yet examined. Then we can see the inner part of our algorithm:
if(p(deref(f))) {
 setter(f, r_g);
 r_f = f;
else {
 setter(f, r_b);
 r_t = f;
}

Now, we added one more element to the appropriate structure. The problem is that we
cannot get to the “old” successor of first. Well, that problem can be easily solved by
saving it first. And that gives us the following implementation:

template <typename I, // I models Linked Iterator
 typename P, // P models Unary Predicate
 typename S> // S models Link Setter of I
pair<I, I> partition_node_reversed(I f, I l, P p, S setter)
{
 I r_f = l;
 I r_t = l;

 187

Alexander Stepanov Notes on Programming 10/31/2007

 while (f != l) {
 I n = successor(f);
 if(p(deref(f))) {
 setter(f, r_f);
 r_f = f;
 else {
 setter(f, r_t);
 r_t = f;
 }
 f = n;
 }
 return pair<I, I>(r_f, r_t);
}

It does N predicate applications, N setter applications and N successor operations:
clearly minimal for predicate application and successor. And N setter applications is
only one greater than the worst case.

Problem: What is the worst case input for any algorithm for partitioning nodes
structures if we count only setter applications?

Problem: What is the minimal expected number of setter applications that any
algorithm for partitioning node structures will need assuming that true and false elements
are equally likely and distributed uniformly?

Now let us try to address the issue of minimizing the number of setter applications.
(While solving this problem we will also solve the problem of making node partition
stable, that is, assuring that good elements and bad elements are linked in the same order
as they were in the original range.) It is pretty clear that we only need to change successor
of a false element if the successor is true and the other way around.

As a first step to construct the middle of such an algorithm, let us assume that somehow
we obtained two iterators to the tail ends of true and false elements called t_t and t_f.
We can the proceed to construct both structures in the right order:
while (f != l) {
 if (p(deref(f))) {
 setter(t_f, f);
 t_f = f;
 } else {
 setter(t_t, f);
 t_t = f;
 }
 ++f;
}

Now let us observe that we are doing too many setter applications. For all we know,
t_f might already point to f; after all we came to f either from it or from t_t. The

 188

Alexander Stepanov Notes on Programming 10/31/2007

problems can be solved if we keep a flag was_false that indicates if the previous
element we examined was true or false:
while (f != l) {
 if (p(deref(f))) { // true
 if (was_false) {
 setter(t_t, f);
 was_false = false;
 }
 t_t = f;
 } else { // false
 if (!was_false) {
 setter(t_f, f);
 was_false = true;
 }
 t_f = f;
 }
 ++f;
}

Now we are re-linking only the nodes that have successors of different “polarity”; if the
successor of a true element is true the element keeps its successor and the same for false
elements. Note that we do not need to save the successor of f, since instead of f pointing
to the appropriate substructure, the substructure gets to point to it.

There is an alternative to using a flag. We can duplicate the code for the loop one section
for the case when the previous element was good and one for the case when the previous
element was bad and then jump to the other section if the predicate value changes:
current_false:

do { t_f = f;
 ++f;

if (f == l) goto exit;
 } while (!p(deref(f)));

setter(t_t, f);
goto current_true; // makes it symmetric

current_true:
do { t_t = f;
 ++f;

if (f == l) goto exit;
 } while (p(deref(f)));
 setter(t_f, f);
 goto current_false;
exit:

Now there are only two questions left: what to put after this code and what to put before.
Let us start with the somewhat easier question of what to put after this code. Now we
know that all the nodes are properly linked. We could also surmise that the tail end

 189

Alexander Stepanov Notes on Programming 10/31/2007

elements t_f and t_t correspond to some head elements h_f and h_t. So as a first
approximation we can assume that our program ends with:
return pair<I, I>(h_f, h_t);

But there is a little glitch with this ending: we just threw away the tail ends of both linked
structures. And the client of our program may want to add more things to the tails. That,
of course, is easily fixable, by replacing return statement with:
return pair<pair<I, I>, pair<I, I> >
 (pair<I, I>(h_f, t_f), pair<I, I>(h_t, t_t));

It should be noted that if there are no false elements in the sequence the first pair will be
[l, l), if there are no true elements the second pair will be [l, l), and, finally, if
the tail of either good or bad elements is not equal to l, the successor of the tail is not
defined. We could have opted for always setting successor of such tails to last, but
decided against it, since usually the head and tail nodes will have to be connected to a list
header or spiced into a list.

Now we know what should be the beginning of our algorithm. Before we get into the
main loop, we should find h_f and h_t: the head nodes of the false list and the true list.
It is obvious that either one of them (or even both of them) might not exist. That raises a
question what to return in such a case. The answer is self-evident: we can return a pair
make_pair(make_pair(l, l),make_pair(l, l)). What we need to do is to
find h_f, h_t, t_f, and t_t.

Now we can write the whole algorithm:
template <typename I, // I models Forward Node Iterator
 typename P> // P models Unary Predicate
 typename S> // S models Link Setter of I
pair<pair<I, I>, pair<I, I> >
partition_node(I f, I l, P p, S setter)
{

I h_t = l;
I h_f = l;
I t_t = l;
I t_f = l;

 if (f == l) goto exit;
if (!p(deref(f))) goto first_false;

// else goto first_true;
first_true:
 h_t = f;
 do { t_t = f;
 ++f;
 if (f == l) goto exit;
 } while (p(deref(f)));
 h_f = f;
 goto current_false;

 190

Alexander Stepanov Notes on Programming 10/31/2007

first_false:
h_f = f;

 do { t_f = f;
 ++f;
 if (f == l) goto exit;
 } while(!p(deref(f)));
 h_t = f;
// goto current_true;
current_true:

do { t_t = f;
 ++f;

if (f == l) goto exit;
 } while (p(deref(f)));

setter(t_f, f);
// goto current_false;
current_false:

do { t_b = f;
 ++f;

if (f == l) goto exit;
 } while (!p(deref(f)));
 setter(t_t, f);

goto current_true;
exit:

return make_pair(make_pair(h_f, t_f),
 make_pair(h_t, t_t));
}

I am fully aware of Dijksra’s strictures against using goto statement16. For years I
dutifully followed his dictum. Eventually, I discovered that on rare occasions I could
write more elegant and efficient code if I used goto. I maintain that goto is a very
useful statement and should not be avoided if it helps to make the code cleaner. When I
look at the previous piece of code, I find it beautiful. (Notice that I even added an
unnecessary label first_good to make the code more symmetric, more
understandable, and, yes, more beautiful. And I even added three unnecessary goto
statements for the same reasons – but, not being sure that all the modern compilers
eliminate goto from one address to the next, commented them out.)
It is easier to understand the algorithm if you view every label as a state and the goto-s
as state transitions. In general, state machines are often easier to represent as labeled code
sections with goto-s being the transitions.

Modern processors with their instruction level parallelism and predicated execution might
not benefit at all from eliminating the flag. While we are certain of the pedagogical
value of learning this transformation, it might not benefit the performance. But, again, the

16 Edsger W. Dijkstra, Go To Statement Considered Harmful, Communications of the ACM, Vol. 11, No.
3, March 1968, pp. 147-148. See, however, a more careful analysis of the problem in Donald E. Knuth.
Structured Programming with Go To Statements. Computing Surveys, 6:261- 301, 1974.

 191

Alexander Stepanov Notes on Programming 10/31/2007

optimizations of yesterday while not relevant today will be relevant tomorrow. Also, I
find any attempt to produce good code through the means of syntactic restrains utterly
misguided. We need to produce different high level abstractions to match our problems.
Unfortunately, to implement them we need basic building blocks such as goto statements
and addresses pointing to programs and data. The only way to convince me that they are
not needed is building a computer system without them. So far, I have not seen a
successful attempt to do so. And if they are needed at a machine level, they will
occasionally be needed at a software level. It is actually sad that C does not allow us to
store labels in data structures. While it is not often needed, sometimes – as when we want
to implement a generic state-machine it could be very useful. In other words, I would like
to be able to implement my own version of switch statement that will store labels in the
appropriate data structure.

Problem: Implement partition_node using the flag and avoiding goto. Compare
its performance with our version.

Problem: Implement a function unique_node that takes two iterators to a node
structure and a binary predicate (defaulting to equality) and returning a structure with
unique elements and a structure with “duplicates.”

Lecture 23. Stable partition

When people use both forward and bidirectional versions of partition algorithm they are
sometimes surprised with the results. Let us consider a simple example of partitioning a
sequence of integers:
0 1 2 3 4 5 6 7 8 9

with is_odd as the predicate.

If we run partition_forward on this input we obtain:
0 2 4 6 8 5 3 7 1 9

While even numbers are in the same order as they were in the original sequence, the odd
numbers are in total disarray.

In case of partition_bidirectional we see that neither even nor odd elements
preserve their original order:
0 8 2 6 4 5 3 7 1 9

It is often important to preserve the original order of the good and bad elements. For
example, imagine that a company is keeping a list of employees sorted by their last name.
If they decide to partition them into two groups: US employees and non-US employees it
would be important to keep both parts sorted; otherwise an expensive operation of sorting
would be required.

 192

Alexander Stepanov Notes on Programming 10/31/2007

Definition: The partitioning that preserves the relative ordering of both true and false
elements is called stable partitioning.

One of the important properties of stable partitioning is that it allows for multipass
processing. Indeed, to partition a range [f, l) with a predicate p1 and then partition
the resulting sub-ranges with a predicate p2 using a non-stable partition we need to write:
I m = partition(f, l, p1);
partition(f, m, p2);
partition(m, l, p2);

If, however, stable_partition is available the same goal can be accomplished
with:

stable_partition(f, l, p2); // p2 before p1!
stable_partition(f, l, p1);

This property is very important when many passes are needed and the overhead of
keeping track of small sub-ranges becomes difficult and expensive to manage. This
property is used with remarkable effect in radix sorting.

Problem: Prove that stable partitioning of a given sequence with a given predicate is
unique; that is, prove that there is only one permutation of a range that gives stable
partitioning.

It is clear that we cannot implement is_stably_partitioned for an arbitrary type
of elements the way we implemented is_partitioned. Indeed if somebody shows us
a sequence:
0 4 2 1 3 5

we do not know if it is stable or not because we do not know what was the original order
of the elements. It is, however, much easier to determine that one range is the stable
partition of the second range than it is to determine if one range is a partition of the
second range: uniqueness helps.

Indeed, in order for us to assure that an algorithm for partition works, we need to
compare two sequences – the original one and the partitioned one. In order for the
partition algorithm to be correct we need to assure two things: first, that the resulting
sequence is partitioned and that is easy to test by applying is_partitioned function,
and, second, that the resulting sequence is a permutation of the original one. And finding
out if a sequence is a permutation of another sequence is difficult unless elements are
totally ordered and we can reduce both sequences to a canonical form by sorting them. If
the only operation on the elements is equality, we do not know of an efficient way of
determining if two sequences are permutations of each other.

Problem: Prove that determining if a sequence is a permutation of another requires
O(N2) operations if only equality of elements is available.

For small sequences we can determine if one is a permutation of the other with the help
of a useful algorithm that goes through one range and attempts to find the equal element

 193

Alexander Stepanov Notes on Programming 10/31/2007

in the other. If elements are found they are moved up front. The algorithm returns if the
first range is exhausted or when there is not an equal element in the second:
template <typename I1, // I1 models Input Iterator
 typename I2, // I2 models Forward Iterator
 typename Eqv> // Eqv models Binary Predicate
pair<I1, I2> mismatch_permuted(I1 f1, I1 l1,

 I2 f2, I2 l2,
Eqv eqv = equal<VALUE_TYPE(I1)>())

{
 while (f1 != l1) {
 I2 n = find_if(f2, l2, bind1st(eqv, deref(f1)));
 if (n == l2) break;
 iterator_swap(f2, n);
 ++f1;
 ++f2;
 }
 return make_pair(f1, f2);
}

(It should be noted that the second range is re-ordered to match the first. We should also
remember not to use the algorithm for long ranges – it is quadratic.)

To determine if one range is a permutation of another we call mismatch_permuted
and check if both ranges are exhausted:

template <typename I1, // I1 models Input Iterator
 typename I2> // I2 models Forward Iterator
inline
bool is_permutation(I1 f1, I1 l1, I2 f2, I2 l2)
{
 return mismatch_permuted(f1, l1, f2, l2) ==
 make_pair(l1, l2);
}

Problem: Assume that the elements in the range have a total ordering defined with
operator< and implement a faster version of is_permutation.

Now we can produce a function that tests if the first range is a partitioning of the second:
template <typename I1, // I1 models Forward Iterator
 typename I2, // I2 models Forward Iterator
 typename P> // P models a Unary Predicate
bool is_partitioning(I1 f1, I1 l1, I2 f2, I2 l2, P p)
{
 return is_partitioned(f1, l1, p) &&
 is_permutation(f1, l1, f2, l2);
}

 194

Alexander Stepanov Notes on Programming 10/31/2007

Now, in case of stable partition the testing is much easier to do. We need to go through
the original range and check every element for equality with the corresponding element
in the sub-range of the good elements if the original element is good and with the
corresponding element from the sub-range of the bad elements otherwise. We can use a
close analogue of the mismatch algorithm:
template <typename I1, // I1 models Input Iterator
 typename I2, // I2 models Input Iterator
 typename I3, // I3 models Input Iterator
 typename P, // P models a Unary Predicate
 typename Eqv> // Eqv models Binary Predicate
triple<I1, I2, I3> mismatch_partitioned(I1 f, I1 l,
 I2 f_f, I2 l_f,
 I3 f_t, I3 l_t,
 P p,

Eqv eqv = equal<VALUE_TYPE(I1)>())
{
 while (f != l) {
 if (!p(deref(f))) {
 if (f_f == l_f ||
 !eqv(deref(f, deref(f_f))) break;
 ++f_f;
 } else {

if (f_t == l_t ||
 !eqv(deref(f, deref(f_t))) break;

 ++f_t;
 }
 ++f;
 }

 return make_triple(f, f_f, f_t);
}

Now we can determine if a range is the stable partitioning of another range with the help
of:
template <typename I1, // I1 models Forward Iterator
 typename I2, // I2 models Forward Iterator
 typename P> // P models a Unary Predicate
bool is_stable_partitioning(I1 f1, I1 l1,

 I2 f2, I2 l2, P p)
{
 I1 m1 = find_if(f1, l1, p);
 return find_if_not(m1, l1, p) == l1 &&

mismatch_partitioned(f2, l2, f1,
m1, m1, l1, p) ==

 make_triple(l2, m1, l1)

 195

Alexander Stepanov Notes on Programming 10/31/2007

}

After we build all the machinery for testing stable partition, let us see what algorithms are
available.

Problem: Define stable_partition_with_buffer – a function that partitions a
range by first copying elements into a buffer.

While stable_partition_with_buffer is often sufficient in practice, in some
cases there is not enough memory to accommodate the extra buffer of the same size as
the range. To be able to handle cases like that we need to have an in-place algorithm that
could partition the data while preserving stablity.

The easiest way for deriving such an algorithm for stable partition is to look again at the
loop of the forward partition algorithm:
while (n != l) {
 if (!p(deref(n))) {

iterator_swap(n, f);
++f;

 }
++n;

}

The algorithm preserves the ordering of false elements. Every time we encounter a false
element we put it right after the false elements encountered before. The algorithm could
be called semi-stable. It is not so, however for true elements. When we swap, the first
true element in the section of the true elements encountered so far becomes the last true
element. Stability is lost. For example:

0 2 4 1 3 5 6
 ^ ^ ^
 f n l

and we swap 1 and 6. We need to preserve the run 1 3 5 in that order. Now, we spent
quite some time studying a function that does just that. Instead of swapping we can
rotate. rotate(f, n, l) will give us the desirable result:

0 2 4 6 1 3 5

That gives us a first draft of our stable partition:

template <typename I, // I models Forward Iterator
 typename P> // P models Unary Predicate
I stable_partition_slow(I f, I l, P p)
{
 I n = f;
 while (n != l) {

 196

Alexander Stepanov Notes on Programming 10/31/2007

 if (!p(deref(n))) {
rotate(f, n, successor(n));
++f;

 }
 ++n;
 }
 return f;
}

Since rotate is a linear time operation and it can be performed as many times as we
encounter a good element, the complexity of the algorithm is quadratic. It is possible to
modify the algorithm to find consecutive runs of good elements before doing rotate and
reduce the number of operations by a constant, but it is not going to reduce complexity
from quadratic to either linear or at least NlogN.

There is, however, a standard way to reduce the complexity by applying divide and
conquer technique. If we split a range [f, l) into two equal (or almost equal) parts
[f, m) and [m, l) and somehow manage to partition them in a stable manner:
F...FT...TF...FT...T
^ ^ ^ ^ ^
f m1 m m2 l
we can partition the whole range by rotating the range [m1, m2) formed by the
partition points of the sub-ranges around the splitting point m.

And it is quite easy to stably partition an empty sequence or a sequence with one element.

That gives us the following algorithm:

template <typename I, // I models Forward Iterator
 typename N, // N models Integer
 typename P> // P models Unary Predicate
pair<I, I> stable_partition_inplace_n(I f, N n, P p)
{
 if (n == N(0)) return make_pair(f, f);

 if (n == N(1)) {
 I l = successor(f);
 if (p(deref(f)))
 return make_pair(f, l);
 else
 return make_pair(l, l);
 }

 N half = n/N(2);

 pair<I, I> i = stable_partition_inplace_n(
 f, half, p);

 197

Alexander Stepanov Notes on Programming 10/31/2007

 pair<I, I> j = stable_partition_inplace_n(
 i.second, n - half, p);
 return make_pair(rotate(i.first, i.second, j.first),
 j.second);
}

Note how we use the divide and conquer not just to compute the partition point, but also
to compute the mid-point – a potentially expensive operation for forward iterators. The
first recursive call returns a partition point of a sub-problem and the beginning iterator of
the second sub-problem. The second recursive call returns a partition point of a second
sub-problem and the end of the range iterator for the problem itself.

And we can obtain a regular range interface by first computing the length of the range:
template <typename I, // I models Forward Iterator
 typename P> // P models Unary Predicate
inline
I stable_partition_inplace(I f, I l, P p)
{
 return stable_partition_inplace_n(f,
 distance(f, l),
 p).first;
}

It is clear that the algorithm has ceiling(log(N)) levels and that only the bottom
level does N predicate applications. Every other level does rotate N/2 elements on the
average, and, therefore, does somewhere between N/2 and 3N/2 moves on the average
depending on the iterator category. The total number of moves is going to be NlogN/2 for
random access iterators and 3NlogN/2 for forward and bidirectional iterators.

Problem: How many moves will the algorithm perform in the worst case?

Our stable partition algorithm is an ideal candidate for making it into a memory-adaptive
algorithm. If the data fits into a buffer, call stable_partition_with_buffer ,
otherwise use divide and conquer till it fits.

Problem: Implement stable_partition_adaptive.

Problem: Measure the performance of stable_partition_adaptive when it is
given a buffer of 1% , 10%, or 25% of the range size and compare it with performance of
stable_partition_inplace.

 198

Alexander Stepanov Notes on Programming 10/31/2007

Lecture 24. Reduction and balanced reduction

When we implemented stable_partition we had to use the divide-and-conquer
recursion. While it is often fine to use such recursion, we will now spend some time
learning a general technique for eliminating it. While in practice it is needed only when
the function call overhead caused by recursion starts effecting performance, the
machinery for solving the problem is quite beautiful and needs to be learned irrespective
of its utility.

One of the most important, most common loops in programming is a loop that adds a
range of things together. The abstraction of such loop – it was introduced by Ken Iverson
in 196217 – is called reduction. In general, reduction can be performed with any binary
operation, but it is usually used with associative operations. Indeed, while

((...((a1 – a2) – a3)...) – an)

is a well defined expression, we seldom find a use for things like that. In any case, if an
operation is not associative, we need to specify the order of evaluation. It is assumed that
the default order of evaluation is the left-most reduction. (It is a natural assumption, since
it allows us to reduce ranges with the weakest kind of iterators. Input iterators are
sufficient.) It is an obvious loop to write. We set the result to the first element of the
range and then accumulate elements into it:

 assert (f != l);
 VALUE_TYPE(I) result = deref(f);
 ++f;
 while (f != l) {
 result = op(result, deref(f));
 ++f;
 }
 return result;

The only problem is to figure out what to do for the empty range. One, and often useful
solution, is to provide a version of reduction that assumes that the range is not empty:
template <typename I, // I models Input Iterator
 typename Op> // Op model Binary Operation
VALUE_TYPE(I) reduce_non_empty(I f, I l, Op op)
{
 assert (f != l);
 VALUE_TYPE(I) result = deref(f);

17 K. E. Iverson, A Programming Language, John Wiley & Sons, Inc., New York (1962). There are two
papers by Iverson that influenced me and which I strongly recommend: Notation as a tool of thought,
Communications of the ACM, 23(8), 444-465, 1980 and Operators, ACM Transactions on Programming
Languages and Systems (TOPLAS), 1(2):161-176, 1979. While I do not like the syntax of APL, I find his
ideas compelling.

 199

Alexander Stepanov Notes on Programming 10/31/2007

 ++f;
 while (f != l) {
 result = op(result, deref(f));
 ++f;
 }
 return result;
}

But a general question remains. What is the appropriate value to return for an empty
range? In case of an associative operation such as + it is commonly assumed that the right
value to return is the identity element of the operation (0 in case of +). Indeed, such a
convention allows the following nice property to hold. For any range [f, l), for any
iterator m inside the range and for any associative operation op on the elements of the
range the following is true:
op(reduce(f, m, op), reduce(m, l, op)) == reduce(f, l, op)

In order for this to hold when m is equal to either f or l, we need reduce to return the
identity element of the operation.

We can accomplish it quite easily with:

template <typename I, // I models Input Iterator
 typename Op> // Op model Binary Operation
inline
VALUE_TYPE(I) reduce(I f, I l, Op op,

VALUE_TYPE(I) z = identity_element(op))
{
 if (f == l) return z;
 return reduce_non_empty(f, l, op);
}

Clients of the code need to provide either an explicit element to be returned for the empty
range or the operation has to provide a way of obtaining its identity element. As we
observed when we studied power algorithms some common cases we can provide
standard solutions:

template <typename T>
inline
T identity_element(const plus<T>&) {
 return T(0);
}

A natural default for an additive identity element is a result of casting 0 into the element
type. When the default does not work and it is easy to define a particular version of
identity_element.

 200

Alexander Stepanov Notes on Programming 10/31/2007

Problem: Define appropriate default identity_element for:

struct min_int : binary_function<int, int, int>
{
 int operator()(int a, int b) const {
 return min(a, b);
 }
};

If the reduction knows what the identity element is, it can do a standard optimization by
skipping the identity elements in the range since combining the result with an identity
element is not going to change it. This gives us a useful variation of reduce:

template <typename I, // I models Input Iterator
 typename Op> // Op model Binary Operation
VALUE_TYPE(I) reduce_nonzeros(I f, I l, Op op,

VALUE_TYPE(I) z = identity_element(op))
{
 f = find_not(f, l, z); // skip zeros

 if (f == l) return z;

 VALUE_TYPE(I) result = deref(f);
 ++f;

 while (f != l) {
 if (deref(f) != z)
 result = op(result, deref(f));
 ++f;
 }
 return result;
}

This version should be used when we want to avoid tests for identity elements inside the
operation. In the cases when we have the code for the operation that handles only non-
identity element cases, we do not then need to surround the code inside with two checks
for identity (for the left and the right argument).

Now we can tackle the stable partition. First let us observe that if we have two sub-ranges
[f1, l1) and [f2, l2) of a range [f, l) such that for some predicate p:

- distance(f, l1) <= distance(f, f2) – first sub-range is before
the second

- all(f1, l1, p) && all(f2, l2, p) – both sub-ranges contain
only true elements

- none(l1, f2, p) – and there are no true elements in between them

 201

Alexander Stepanov Notes on Programming 10/31/2007

then we can stably partition the combined range [f1, l2) by doing
 rotate(f1, l1, f2)
and the result returned by the rotate is the partition point of the combined range. The
following function object class performs the operation on such ranges:

template <typename I> // I models Forward Iterator
struct combine_ranges
 : binary_function<pair<I, I>, pair<I, I>, pair<I, I> >
{

pair<I, I> operator()(const pair<I, I>& x,
 const pair<I, I>& y) const
{
 return make_pair(

rotate(x.first, x.second, y.first),
y.second);

 }
};

It is interesting to observe that we need to worry only about the sub-ranges containing
true elements. While we are combining the ranges of true elements, the false elements
bubble down to the front of the main range.

Problem: Prove that combine_ranges is associative.

We have an object to combine the ranges. It is a very simple to generate a sequence of
trivial ranges containing “bad” elements. For every dereferenceable iterator in the main
range we can produce a trivial sub-range with the help of the following:

template <typename I, // I models Forward Iterator
 typename P> // P models Unary Predicate
struct partition_trivial
 : unary_function<I, pair<I, I> >
{
 P p;
 partition_trivial(const P & x) : p(x) {}

 pair<I, I> operator()(I i) {
 if (p(deref(i)))
 return make_pair(i, i);
 else
 return make_pair(i, successor(i));
 }
};

The only remaining problem is transforming a range of iterators to elements into a range
of trivial ranges to be combined by reduce using combine_ranges. And that we can
accomplish with the help of the following iterator-adaptor. It is constructed out of an

 202

Alexander Stepanov Notes on Programming 10/31/2007

incrementable object (an object with ++ defined on it) and a function object. When
incremented, it increments the incrementable object. When dereferenced, it returns the
result of an application of the function object to the incrementable object. It is a generally
useful adapter:

template <typename I, // I models Incrementable
 typename F = identity<I> >
 // F models Unary Function
class value_iterator
{
public:
 typedef typename F::result_type value_type;
 typedef ptrdiff_t difference_type;
 typedef forward_iterator_tag iterator_category;
private:
 I i;
 F f;
public:
 value_iterator() {}
 value_iterator(const I& x, const F& y)
 : i(x), f(y) {}
 value_iterator& operator++() {
 ++i;
 return *this;
 }
 value_iterator operator++(int) {
 value_iterator tmp = *this;
 ++*this;
 return tmp;
 }
 value_type operator*() const {
 return f(i);
 }
 friend bool operator==(const self& a, const self& b) {
 assert(a.f == b.f);
 return a.i == b.i;
 }
 friend bool operator!=(const self& a, const self& b) {
 return !(a == b);
 }
};

Problem: Generalize value_iterator further by allowing a user to specify the
meaning of ++ and providing a natural default for ++;

We can now obtain a slow version of stable partitioning by calling reduce_nonzeros
with identity element equal the pair that is made of the last element of the range. (After

 203

Alexander Stepanov Notes on Programming 10/31/2007

all, the only place so far where it is going to be used is to be returned when the original
range is empty. It is the right result in such a case. It is important to observe that for no
dereferenceable iterator partition trivial will return such a range. Indeed, the empty ranges
of true elements returned by it are not identity elements!)

template <typename I, // I models Forward Iterator
 typename P> // P models Unary Predicate
I stable_partition_slow_iterative(I f, I l, P p)
{
 typedef partition_trivial<I, P> fun_t;
 typedef value_iterator<I, fun_t> val_iter;
 fun_t fun(p);
 pair<I, I> z(l, l);
 combine_ranges<I> op;
 val_iter f1(f, fun);
 val_iter l1(l, fun);

return reduce_nonzeros(f1, l1, op, z).first;
}

Now, since we know that combine_ranges is associative, it is possible to replace left-
most reduction with a balanced reduction that will apply the operation constructing a
balanced tree.

That is, a tree that adds 4 elements like this:

 /\
 /\
/\

will be transformed into a tree that combines the same elements like that:

 /\
/\/\

The number of operations will remain the same, but the number of levels in the tree is
going to be reduced. While reducing n elements with the left-most reduction requires
n-1 levels, doing it with the balanced reduction requires only ceiling(log(n))
levels. And our combine_ranges belongs to a class of operation that work much
better with the balanced reduction, namely, linear-additive operations. We will call an
operation linear-additive if its cost is a linear function of the sizes of its arguments and
the size of the result is the sum of the sizes of the arguments. It is easy to see that
performing the left-most reduction with a linear-additive operation to a sequence of
elements of the same size will require a O(N2) cost while the balanced reduction will
require O(NlogN). It is important to develop a generic version of the balanced reduction
since there are many algorithms where it can be useful.

 204

Alexander Stepanov Notes on Programming 10/31/2007

Problem: Prove that combine_ranges is a linear-additive operation.

In order to implement the balanced reduction we need to observe that it needs to store up
to logN intermediate results. The results can be stored in a simple counter where the k-th
“bit” represents the sub-result of the balanced tree that resulted from reducing 2k
elements. The following procedure adds a new element to such a counter:

template <typename I, // I models Forward Iterator
 typename Op> // Op models Binary Operation
VALUE_TYPE(I) add_to_counter(I f, I l, Op op,
 VALUE_TYPE(I) x,
 VALUE_TYPE(I) z = identity_element(op))
{
 if (x == z) return z;

 while (f != l) {
 if (deref(f) != z) {
 x = op(deref(f), x);18
 deref(f) = z;
 } else {
 deref(f) = x;
 return z;
 }
 ++f;
 }
 return x;
}

The procedure returns “zero” if the was a room in the counter to accommodate a new
element or it returns an “overflow bit” if the last “bit” of the counter was combined into a
new bit representing the reduction of 2^n elements where n is number of “bits” in the
counter.

Now it is easy to produce an implementation of the balanced reduction. First we put all
the elements from the input range into our counter. If the range size is a power of 2, we
can obtain the result from the corresponding “bit” of the counter. If not, we need to
reduce the counter. To minimize the amount of work we need to do a left-most reduction
so that to combine “smaller” bits first, and we need to transpose the operation since when
we combine two bits, the left one resulted from the elements that got into the counter
after the elements which contributed to the right one and, therefore, their order needs to
be exchanged:

template <typename I, // I models Input Iterator
 typename Op> // Op models Binary Operation

18 op(deref(f), x) and not op(x, deref(f)) because the partial result pointed to by f is the
result of adding elements earlier in the sequence.

 205

Alexander Stepanov Notes on Programming 10/31/2007

void reduce_balanced(I f, I l, Op op,
 VALUE_TYPE(I) z = identity_element(op))
{
 vector<VALUE_TYPE(I)> v;
 while (f != l) {
 VALUE_TYPE(I) tmp = add_to_counter(
 v.begin(), v.end(), op, deref(f), z);
 if (tmp != z) v.push_back(tmp);
 ++f;
 }
 return reduce_nonzeros(
 v.begin(),v.end(), f_transpose(op), z);
}

Note that the reduce_balanced is not going to apply the operation to the identity
element so that we do not need reduce_non_zero_balanced.

Finally we can now trivially obtain the balanced non-recursive implementation of
stable_partition_inplace by replacing the call to the left-most reduction with
the call to the balanced reduction:

template <typename I, // I models Forward Iterator
 typename P> // P models Unary Predicate
I stable_partition_inplace_iterative(I f, I l, P p)
{
 typedef partition_trivial<I, P> fun_t;
 typedef value_iterator<I, fun_t> val_iter;
 fun_t fun(p);
 pair<I, I> z(l, l);
 combine_ranges<I> op;
 val_iter f1(f, fun);
 val_iter l1(l, fun);

return reduce_balanced(f1, l1, op, z).first;
}

Problem: Compare the performance of stable_partition_inplace with the
performance of stable_partition_inplace_iterative. Explain the results.

Problem: Implement an iterative version of stable_partition_adaptive using
reduce_balanced.

 206

Alexander Stepanov Notes on Programming 10/31/2007

Lecture 25. 3-partition

Some times the sequences with which we deal are divided into more than two kinds of
elements. Before we address a problem of partitioning a range into an arbitrary number of
buckets, let us spend some time on a very important case of partition, partition into three
categories.

The algorithm for the three-way partitioning is commonly known a Dutch National Flag
algorithm for the three colors: red, white and blue of the flag of the Kingdom of
Netherlands. I do not know who introduced it first; I – as well as most other people –
learned about it from an important book of Edsger Dijkstra Discipline of Programming19.
In it Dijkstra acknowledges his indebtedness for the problem to W. H. J. Feijen.

Instead of colors we are going to use integers; in particular, we assume that instead of a
predicate returning a Boolean value – as in partition – we are given a key function that
returns three values: {0, 1, 2} known as keys. Now we consider the range to be
partitioned 3-ways if it contains no elements with keys 1 and 2 before elements with key
0, and no elements with key 2 before elements with key 1. It is very easy to implement a
function to check if a range is partitioned:

template <typename I, // I models Forward Iterator
 typename F> // F models Unary Function
bool is_partitioned_3way(I f, I l, F key)
{
 equal_to<int> eq;

f = find_if_not(f, l, compose1(bind2nd(eq, 0), key));
f = find_if_not(f, l, compose1(bind2nd(eq, 1), key));
f = find_if_not(f, l, compose1(bind2nd(eq, 2), key));

 return f == l;
}

Problem: Prove that is_partitioned_3way does what it claims to do.

It is important to observe that a different way of stating that a range is partitioned 3-way
is by saying that the key function will return non-decreasing sequence of values or that if
we assume that we have a function is_sorted we can check the range for being
partitioned 3-way by the following simple function:

template <typename I, // I models Forward Iterator

19 Dijkstra, E.W.: A Discipline of Programming, Prentice Hall (1976). It is a sad fact that the work of
Dijkstra is becoming totally unknown to a modern programmer. While some of Dijkstra’s opinions are
extreme and one should occasionally take his pronouncements with a grain of salt, his work is central to
programming as a scientific discipline and I would urge every young programmer to study his work. We
should be grateful to the Computer Science Department of the University of Texas, Austin for creating the
Internet archive of Dijkstra’s works: http://www.cs.utexas.edu/users/EWD/.

 207

http://www.cs.utexas.edu/users/EWD/

Alexander Stepanov Notes on Programming 10/31/2007

 typename F> // F models Unary Function
bool is_partitioned_3way_1(I f, I l, F key)
{
 return is_sorted(

f, l, compose2(less<int>(), key, key));
}

As a matter of fact, we can use the same code to verify n-way partitioning:

template <typename I, // I models Forward Iterator
 typename F> // F models Unary Function
bool is_partitioned_n_way(I f, I l, F key)
{
 return is_sorted(

f, l, compose2(less<int>(), key, key));
}

That shows us that there is a connection between sorting and partitioning. Indeed we can
always implement an n-way partition by implementing:

template <typename I, // I models Forward Iterator
 typename F> // F models Unary Function
void partition_n_way_0(I f, I l, F key) {
 sort(f, l, compose2(less<int>(), key, key);
}

(That, of course, requires a sort that works for forward iterators: something that you will
not find in the present standard library.

As a matter of fact, this piece of code with a different name would make a very useful
library function:

template <typename I, // I models Random Access Iterator
 typename F> // F models Unary Function
void sort_by_key(I f, I l, F key) {
 sort(f, l, compose2(less<int>(), key, key);
}
)

It is, of course, not a very interesting thing to do for small value of n since it is an NlogN
algorithm for a linear time problem. It is much better, as is done in quicksort, to
implement sorting in terms of partitioning.

Now, let us get back to 3-way partition and Dijkstra’s algorithm. Let us assume that
somehow we managed to solve the problem up to some middle point s:

 208

Alexander Stepanov Notes on Programming 10/31/2007

0000001111?????22222222
 ^ ^ ^
 f s l (first, second, last)

If s points to an element with key 1 we just advance s. If it is 0 we swap it with an
element pointed at by f and advance both f and s. If it is 2 we decrement l; swap
elements pointed by l and s and increment s. This algorithm works exactly like
Lomuto’s partitition_forward for 0 and 1, but sends 2 to the other end of the
range.

The code looks like:

template <typename I, // I models Bidirectional Iterator
 typename F> // F models Unary Function
pair<I , I> partition_3way_bidirectional(I f, I l, F fun)
{
 I s = f;

while (s != l) {
int key = fun(deref(s));

if (key == 0) {

 iterator_swap(f, s);
 ++f;
 } else if (key == 2) {
 --l;
 iterator_swap(l, s);
 }

 ++s;
 }
 return make_pair(f, l);
}

It is clear that the algorithm does N predicate application and N swaps in the worst case
and 2N/3 swaps on average.

Now, let us find an algorithm that allows us to do the 3way partition with forward
iterators. Such an algorithm can be easily obtained using our standard inductive
technique. Let us assume that somehow we managed to solve the problem up to some
middle point:

000000111122222????????
 ^ ^ ^ ^
 f s t l (first, second, third, last)

Then we can partition it with:

 209

Alexander Stepanov Notes on Programming 10/31/2007

template <typename I, // I models Forward Iterator
 typename F> // F models Unary Function
pair<I , I> partition_3way_forward(I f, I l, F fun)
{

I t = f;
 I s = f;

while (t != l) {
int key = fun(deref(t));

 if (key == 0) {
cycle_left(deref(t), deref(s), deref(f));
++s;
++f;

 } else if (key == 1) {
iterator_swap(s, t);
++s;

 }

 ++t;
 }
 return make_pair(f, s);
}

Problem: Compare the number of operation of
partition_3way_bidirectional and partition_3way_forward.

Project: Measure the performance of partition_3way_forward and
partition_3way_bidirectional for different integral types (char, short,
int, long long, etc) with a 3-way predicate that return a remainder of an integer
divided by 3.

Problem: Implement partition_4way_forward.

Problem: Implement partition_4way_bidirectional.

Problem: What is the number of operation performed by
partition_4way_forward and partition_4way_bidirectional in the
worst case and on average?

Problem: Implement partiotion_copy_3way.

Problem: Implement stable_partiotion_3way.

 210

Alexander Stepanov Notes on Programming 10/31/2007

Lecture 26. Finding the partition point

We already discussed a problem of finding the partition point of an already partitioned
range. There is an obvious solution:

find_if_not(f, l, p)

will definitely return the partition point of a partitioned range. The problem is that we
will need to retest all good elements again.

It is easy to observe the following fundamental property of a partitioned range [f, l):
if an iterator m inside the range points at a good element then the partition point of [f,
l) is located in the range [successor(m), l); if m points at a bad element then the
partition point is in the range [f, m).

As far as an empty range goes, its beginning and its end both happen to be the partition
points.

Let us assume for the moment that we are dealing with random access iterators and,
therefore, can get to any element inside the range in constant time. If we have range
represented as a pair of an iterator and an integer (the length of the range) and if we have
a function choose that returns some non-negative integer less than the length of the
range for any non-empty range, then for any such function choose there is a simple
recursive algorithm for finding partition point:

template <typename I, // I models Random Access Iterator
 typename P> // P models Unary Predicate
I partition_point_recursive(I f, DIFFERENCE_TYPE(I) n, P p)
{
 if (n == 0) return f;
 N m = choose(n);
 if (p(deref(f + m)))
 return partition_point_recursive(f + (m + 1),
 n – (m + 1));
 else
 return partition_point_recursive(f, m);
}

Since 0 ≤ m < n we can be sure that both n – m – 1 and m are less than n and not
less than 0; and, therefore, we can be sure that our program terminates. It is also obvious
that a way of assuring that (no matter which path of the if-statement happens to be true)
is by picking the choose function that for any positive n returns n/2.

Problem: Prove that picking n/2 is indeed the best course.

If you are wondering if we are describing binary search, you are correct. It is essential to
understand the interface and the implementation of the partition point finding algorithm

 211

Alexander Stepanov Notes on Programming 10/31/2007

to be able to define binary search correctly. In particular, while it is self-evident what
partition_point should return, it is far from self-evident what binary search should
return. And even reputable computer scientists often stumble defining it. This is why I
believe that it is essential to deal thoroughly with predicate-based operations such as
partition before attacking much more treacherous comparison-based operations.

Since our recursive calls are properly tail-recursive we can immediately obtain the
following algorithm by resetting the variables in a loop instead of making a recursive
call:

template <typename I, // I models Random Access Iterator
 typename P> // P models Unary Predicate
I partition_point_n_random_access

(I f, DIFFERENCE_TYPE(I) n, P p)
{
 while (n != 0) {
 if (p(deref(f + n/2))) {
 f = (f + n/2) + 1;
 n = n – (n/2 + 1);
 } else {
 // f = f;
 n = n/2;
 }
 }
 return f;
}

The algorithm does ceiling(log(n)) + 1 predicate applications since we are
reducing the length by dividing by 2 at every step.

What can we do if iterators which are given to us are less powerful than random access?
While the efficiency of the algorithm will degrade dramatically, it is still quite useful in
those cases when the predicate application is more expensive than the operation ++ on
the iterators. If we use find_if to find partition point then the expected cost of finding
the partition point in a range of length n is

c_linear = (n/2) * c_p + (n/2) * c_i

where c_p is the cost of the predicate application and c_i is the cost of the iterator
increment. (In other words, while doing linear search we expect to travel half of the way
on the average.) If we use the partition_point_n algorithm the expected cost is going to be

 c_binary_best = (log(n) + 1) * c_p + n * c_i

since we are going to advance by n/2, n/4, n/8, etc. In those cases when the linked
structure changes its size frequently we need to do another n increments and the cost
becomes

 c_binary_worst = (log(n) + 1) * c_p + 2 * n * c_i

 212

Alexander Stepanov Notes on Programming 10/31/2007

With large N we can safely ignore logarithmic terms and the binary algorithm wins
against linear one when c_p > c_i if linked structure does not change its size and
when c_p > 3 * c_i if its size needs to be computed anew every time.

In practice, the cost of predicate application should be more than 4 times as expensive as
iterator increment to really justify using binary search like algorithms on linked lists.
Otherwise, it is usually better to use linear search. It usually means that if your predicate
is a small inlined function object then using find is better; if it is a non-inlined function
call then binary search is better.

It is perfectly straightforward to modify our algorithm to work with forward iterators and
we can do a few little optimizations as well:
template <typename I, // I models Forward Iterator
 typename P> // P models Unary Predicate
I partition_point_n(I f, DIFFERENCE_TYPE(I) n, P p)
{
 while (n != 0) {
 N h = n >> 1;
 I m = successor(f, h);
 if (p(*m)) {
 f = successor(m);
 n -= h + 1;
 } else {
 n = h;
 }
 }
 return f;
}

Problem: Implement a partition_point function that takes two iterators [f, l)
as its arguments.

partition_3way returns a pair of iterators which are two partition points. It is
obvious that if a range is already partitioned we can find the partition points with the help
of partition_point_n:

template <typename I, // I models Forward Iterator

 typename F> // F models Unary Function

pair<I , I> partition_point_3way_simple_minded

(I f, DIFFERENCE_TYPE(I) n, F fun)

{

 less<int> comp;

 213

Alexander Stepanov Notes on Programming 10/31/2007

 return make_pair(partition_point_n(f, n,

 compose1(bind2nd(comp, 1), fun)),

 partition_point_n(f, n,

 compose1(bind2nd(comp, 2), fun)));

}

The problem is that we are doing some extra work since both calls will repeat at least the
first test of the middle element.

Problem: What is the largest number of duplicated tests?

We can easily fix that:

template <typename I, // I models Forward Iterator
 typename F> // F models Unary Function
pair<I , I> partition_point_3way

(I f, DIFFERENCE_TYPE(I) n, F fun)
{
 equal_to<int> eq;
 while (n > 0) {
 DIFFERENCE_TYPE(I) h = n>>1;
 I m = successor(f, h);
 switch (fun(*m++)) {

case 0:
f = m;
n = n – h - 1;

 break;
case 1:

 I i = partition_point_n(f, n – h - 1,
compose1(bind2nd(eq, 0), fun)),

I j = partition_point_n(m, h,
compose1(bind2nd(eq, 1), fun));

 return make_pair(i, j);
 case 2:

n = h;
 }
 }
 return make_pair(f, f);
}

 214

Alexander Stepanov Notes on Programming 10/31/2007

 215

Lecture 27. Conclusions

In 1968 Doug McIlroy gave a remarkable presentation on the state of software
engineering20. Starting with an observation of a dismal state of the software engineering,
he called for the creation “of a software components industry is that it will offer families
of routines for any given job. No user of a particular member of a family should pay a
penalty, in unwanted generality, for the fact that he is employing a standard model
routine. In other words, the purchaser of a component from a family will choose one
tailored to his exact needs. He will consult a catalogue offering routines in varying
degrees of precision, robustness, time-space performance, and generality. He will be
confident that each routine in the family is of high quality – reliable and efficient. …He
will expect families of routines to be constructed on rational principles so that families fit
together as building blocks. In short, he should be able safely to regard components as
black boxes.”

20 M. D. McIlroy, Mass produced software components, Proc. NATO Software Eng. Conf., Garmisch,
Germany (1968), pages 138-155. The text can be found at
http://www.cs.dartmouth.edu/~doug/components.txt. You must read it!

http://homepages.cs.ncl.ac.uk/brian.randell/NATO
http://www.cs.dartmouth.edu/%7Edoug/components.txt

	Preface
	Lecture 1. Introduction
	Lecture 2. Designing fvector_int
	Lecture 3. Continuing with fvector_int
	Lecture 4. Implementing swap
	Lecture 5. Types and type functions
	Lecture 6. Regular types and equality
	Lecture 7. Ordering and related algorithms
	Lecture 8. Order selection of up to 5 objects
	Lecture 9. Function objects
	Lecture 10. Generic algorithms
	10.1. Absolute value
	10.2. Greatest common divisor
	10.2.1. Euclid’s algorithm
	10.2.2. Stein’s algorithm

	10.3. Exponentiation

	Lecture 11. Locations and addresses
	Lecture 12. Actions and their orbits
	Lecture 13. Iterators
	Lecture 14. Elementary optimizations
	Lecture 15. Iterator type-functions
	Lecture 16. Equality of ranges and copying algorithms
	Lecture 17. Permutation algorithms
	Lecture 18. Reverse
	Lecture 19. Rotate
	Lecture 20. Partition
	Lecture 21. Optimizing partition
	Lecture 22. Algorithms on Linked Iterators
	Lecture 23. Stable partition
	Lecture 24. Reduction and balanced reduction
	Lecture 25. 3-partition
	Lecture 26. Finding the partition point
	Lecture 27. Conclusions

