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Cardiovascular (CV) morbidity and mortality are a challenge in management of patients with systemic lupus erythematosus (SLE).
Higher risk of CV disease in SLE patients is mostly related to accelerated atherosclerosis. Nevertheless, high prevalence of
traditional cardiovascular risk factors in SLE patients does not fully explain the increased CV risk. Despite the pathological bases
of accelerated atherosclerosis are not fully understood, it is thought that this process is driven by the complex interplay between
SLE and atherosclerosis pathogenesis. Hydroxychloroquine (HCQ) is a cornerstone in treatment of SLE patients and has been
thought to exert a broad spectrum of beneficial effects on disease activity, prevention of damage accrual, and mortality.
Furthermore, HCQ is thought to protect against accelerated atherosclerosis targeting toll-like receptor signaling, cytokine
production, T-cell and monocyte activation, oxidative stress, and endothelial dysfunction. HCQ was also described to have
beneficial effects on traditional CV risk factors, such as dyslipidemia and diabetes. In conclusion, despite lacking randomized
controlled trials unambiguously proving the protection of HCQ against accelerated atherosclerosis and incidence of CV events
in SLE patients, evidence analyzed in this review is in favor of its beneficial effect.

1. Introduction

Systemic lupus erythematosus (SLE) is a chronic autoim-
mune inflammatory disease characterized by a broad range
of clinic manifestations and serologic findings [1, 2]. The
prevalence of SLE ranges between 28.3 and 149.5 cases per
100,000 people and is higher in females of childbearing
age [3]. Patients with SLE have a 2 to 3 times increased
risk of premature death. Cardiovascular disease (CVD) is
the leading cause of mortality regardless of time after diag-
nosis [4, 5]. The overall risk of myocardial infarction (MI)
in SLE patients is 10-fold higher than that in the general
population; however, it is much greater in young SLE

women aged 35–44 years old, who are over 50 times more
likely to have a MI, than in age-matched women without
SLE [6, 7]. Noteworthy, the increased awareness of the
burden of CVD in patients with SLE has not yet translated
into decreased rates of hospitalization for acute MI or
stroke [8, 9].

The higher risk of CVD in SLE patients is mostly related
to accelerated atherosclerosis, which leads to clinical symp-
toms and manifestations at an earlier age compared to the
general population [10]. Despite the pathobiological bases
of accelerated atherosclerosis are not fully understood, it
is thought that this process is driven by the complex inter-
play between autoimmunity, inflammation, vascular repair,
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traditional risk factors, and therapeutic agents [10, 11]. As
a result, not surprisingly, the traditional Framingham
cardiac risk factors do not fully explain the increased prev-
alence of CVD observed in SLE [6, 12–14]. Moreover,
multiple SLE-related features of autoimmunity have been
associated with accelerated atherosclerosis [10, 11, 15, 16].

Hydroxychloroquine (HCQ) has been used for more
than 50 years in the treatment of SLE patients. Over the last
decades, an increasing number of in vitro and in vivo studies
have highlighted the potential protective effect of HCQ
against CVD through multiple mechanisms of action. This
review discusses the role of SLE-related and SLE-unrelated
factors in the pathophysiology of accelerated atherosclerosis,
the pharmacology of HCQ, and the available evidence
regarding the effects of this agent in reducing CV risk in
SLE patients.

2. SLE and Accelerated Atherosclerosis

Roman et al. reported an increased prevalence of atheroscle-
rosis, as determined by ultrasound assessment of carotid
plaques, in patients with SLE (RR 2.4; 95% confidence inter-
val (CI), 1.7–3.6; P < 0 001), particularly in those younger
than 40 years which prevalence was 5.6 times higher than
healthy controls [17]. Similarly, Asanuma et al. found a
significantly higher prevalence of coronary calcification
(OR 9.8, 95%CI 2.5–39.0, P = 0 001) and greater coronary
artery calcium scores (P < 0 001) in SLE patients than in
healthy controls [18].

Longer disease duration (OR 2.14, 95%CI 1.28–3.57;
P = 0 004) and higher disease-related Systemic Lupus Inter-
national Collaborating Clinics (SLICC)/damage index (SDI)
(OR 1.26 per SDI point score, 95%CI 1.03–1.55, P = 0 03)

were identified as independent predictors of carotid plaque
in SLE [17]. In some studies, lupus disease activity was
significantly associated with subclinical measures of athero-
sclerosis in univariate analysis, but its independent effect
was not confirmed in multivariate analysis [19–21].

3. Interplay between SLE and Atherogenesis

The increasing evidence that both adaptive and innate
immunity take part in the initiation and progression of
atherosclerosis suggests that the dysregulation of the immune
system of SLE could play an independent role in atherogene-
sis (Table 1) [22].

3.1. Endothelial Dysfunction. Endothelial dysfunction is
one of the earliest signs of atherosclerosis [16, 23], result-
ing in increased expression of adhesion molecules and
impaired vasodilation [24]. A recent meta-analysis, of 25
case-control studies involving 1313 SLE patients and 1012
healthy controls, confirmed that patients with SLE who are
naïve of cardiovascular disease have impaired endothelial
function as determined by brachial artery flow-mediated
dilation [25].

An imbalance between circulating apoptotic endothe-
lial cells (ECs), indicative of vascular damage, endothelial
progenitor cells (EPCs), and circulating myelomonocytic
angiogenic cells (CACs), expression of vascular repair
mechanisms, was described in SLE patients [26, 27]. Such
findings correlate with the presence of endothelial dysfunc-
tion (beta =−4.5, P < 001) assessed by brachial artery flow-
mediated dilation [26].

Both endothelial damage and the initiation of the athero-
genic process are influenced by the redox environment.

Table 1: Possible protective effects of HCQ on the interplay between atherosclerosis and SLE pathogenesis.

Features of SLE pathogenesis HCQ Features of atherosclerosis pathogenesis

Imbalance between endothelial damage
and repair mechanisms

Endothelial dysfunction

Increased oxidative stress Endothelial damage and impaired vasodilatation

Increased macrophage activation Monocyte recruitment and activation in atherosclerotic plaques

Hyperactive T-cell with increased survival T-cell recruitment and activation in atherosclerotic plaques

Dysregulation of TLR2 and TLR4 activation;
activation of TLR7 and TLR9 by anti-DNA

Overexpression and activation of TLRs (especially TLR2/TLR4)

Increased levels of IFNα
Increased activation of macrophages and foam cells

in the atherosclerotic plaques

Increased levels of TNF-α, IL-17, IL-6
Increased macrophage activation, adhesion molecule expression,

chemotaxis, and inhibition of SMC proliferation

Increased levels of IFN-γ
Increased expression of adhesion molecule expression and
inhibition of SMC proliferation and collagen production

Increased prevalence of anti-ApoA-1
antibodies and proinflammatory HDL

Decreased antiatherosclerosis HDL function

The arrows represent the interplay between SLE and atherogenesis. The crosses represent the proved (black) or potential (blank) action of HCQ in inhibiting the
proatherogenic effect of SLE.
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Patients with SLE have increased concentrations of reactive
oxygen species (ROS) and decreased antioxidant defense
mechanisms which provide a favorable environment for
oxidation of lipoproteins and atherosclerosis development
[28, 29]. Moreover, a positive correlation between SLE dis-
ease activity and oxidative stress was observed in some
studies [28, 30, 31], but not in others [32, 33].

Further potential mechanisms involved in endothelial
dysfunction in SLE include alterations in lipid profile with
increased oxidized LDL (ox-LDL) and proinflammatory
high-density lipoproteins (HDL) [11], high frequency of
low-density granulocytes (LDG) with direct toxic effect on
the endothelium [34], renal involvement, and antiphospholi-
pid antibodies [35, 36].

3.2. Monocytes and T-Cell Recruitment and Activation.
Due to the overexpression of adhesion molecules and the
increased chemokine releasing by activated ECs, mono-
cytes can migrate into the intima and differentiate into
macrophages. The uptake of ox-LDL by scavenger recep-
tors leads to a further transformation into foam cells that
secrete proinflammatory cytokines under the toll-like
receptor (TLR) stimuli [22]. Macrophage activation, as
assessed by serum neopterin measurement, was demon-
strated to be increased in SLE patients (median (IQR) serum
neopterin nmol/L: 8.0 (6.5–9.8) versus 5.7 (4.8–7.1) in SLE
and healthy controls, resp.) [37] and to correlate with
SLE disease activity [38, 39]. However, a significant associ-
ation with coronary calcium in SLE patients was not
observed [37].

T-cells, consisting predominately of CD4+ T helper 1,
are recruited to nascent atherosclerotic plaques similarly
to monocytes and represent approximately 7–17% of the
cells in the lesion [40]. T-cells have been shown to be
hyperactive in lupus patients, with reduced apoptosis rate
and increased survival [41–43]. In support of the role of
CD4+ T-cells in the link between SLE and atherosclerosis,
Stanic et al. demonstrated an increased infiltration of
CD4+ T-cells into the atherosclerotic lesions of LDLr−/−

mice following transfer of bone marrow from lupus-
susceptible mice [44].

3.3. Toll-Like Receptors. The toll-like receptors (TLRs), a class
of pattern recognition receptors expressed on multiple cells
involved in innate immunity, were demonstrated to be
involved in atherogenesis [45, 46]. Edfeldt et al. found that
the expression of TLR1, TLR2, and TLR4 was markedly
enhanced in human atherosclerotic plaques [47]. Miller
et al., in their in vitro experiments, reported that the binding
of TLR4 and CD14 to ox-LDL on macrophages inhibits the
phagocytosis of apoptotic cells, upregulates the expression
of the scavenger receptor, and increases the uptake of
ox-LDL [48].

Recent studies described a dysregulated activation of
TLR2 and TLR4 in SLE patients, resulting in upregulated
production of autoantibodies and cytokines [49]. Moreover,
the endogenous anti-DNA antibody immune complexes typ-
ical of SLE can bind TLR7 and TLR9 on active plasmacytoid
dendritic cells (DCs) and promote the release of IFNα. This

leads to the recruitment of activated inflammatory cells,
self-perpetuating the process of inflammation and plaque
formation [46].

3.4. Cytokines. Many cytokines are involved both in athero-
sclerosis and SLE pathogenesis. IFNα is a multifunctional
cytokine which plays a pivotal role in SLE pathogenesis. IFNα
concentrations are increased in SLE patients, associate with
disease activity [50], and seem to be involved in endothelial
dysfunction. Denny et al. demonstrated that IFNα induces
EPC and CAC apoptosis and skews myeloid cells toward
nonangiogenic phenotypes, whilst neutralization of IFN
pathways led to a normalization of the EPC/CAC phenotype
[27, 43]. Recently, IFNα has been claimed to serve as a
proatherogenic mediator through repression of endothelial
NO synthase-dependent pathways promoting the develop-
ment of endothelial dysfunction and cardiovascular disease
in SLE [51].

IFNγ, a key regulator of immune function, was demon-
strated to be highly expressed and to play a crucial role both
in SLE and in atherosclerosis [52, 53]. IFNγ participates in
atherogenesis by stimulating ECs and macrophage activa-
tion, proinflammatory mediator production, and adhesion-
molecule expression and by inhibiting smooth muscle cell
proliferation and collagen production [22, 54].

Other cytokines overexpressed in SLE, such as TNF-α,
IL-17, and IL-6, participate in the initiation and perpet-
uation of the atherosclerotic process by stimulating the
activation of macrophages, inducing the secretion of
matrix metalloproteinases, upregulating the expression
of adhesion molecules on the ECs, increasing the con-
centration of chemotactic messengers, and affecting the
proliferation of smooth muscle cells [15, 55–59]. In
SLE, serum TNF-α concentrations have been reported to
be elevated and to correlate with CVD and altered lipid
profiles [60, 61].

3.5. Reduced Protective Effect of High-Density Lipoproteins.
HDL have atheroprotective effects through the inhibition
of oxidative modification of LDL, stimulation of reverse
cholesterol transport, and attenuation of endothelial dys-
function. During the acute phase of inflammation, HDL
can be converted from anti-inflammatory to proinflamma-
tory molecules that promote LDL oxidation [62, 63].
McMahon et al. found that a higher proportion of SLE
patients had proinflammatory HDL (44.7% of SLE patients
versus 4.1% of controls, P < 0 006 between all groups), which
correlated with ox-LDL concentrations (r = 0 37, P < 0 001)
and coronary artery disease (P < 0 001) [64].

The prevalence of antibodies against apolipoprotein A1
(anti-ApoA-1), the main component of HDL, is significantly
higher in patients with acute coronary syndrome (21%) and
in patients with SLE and/or antiphospholipid syndrome
(13–32%), than in healthy subjects (1%) [65, 66]. Although
the direct demonstration of a cause-effect relationship is
needed, the high prevalence of anti-ApoA-1 autoanti-
bodies in SLE patients is supposed to play a role in
accelerated atherosclerosis.
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4. Increased Prevalence of Traditional
Cardiovascular Risk Factors in SLE

Some of the traditional risk factors for atherosclerosis,
such as dyslipidemia, diabetes, and hypertension, have an
increased prevalence in SLE patients [67].

4.1. Dyslipidemia. SLE patients exhibit an increased
incidence of proatherogenic lipid profile, consisting in low
concentrations of HDL and high concentrations of triglycer-
ides, total cholesterol, and LDL [43]. The increased preva-
lence of dyslipidemia in SLE may be due to both steroid
therapy and disease-related pathogenetic mechanisms,
including increased C-reactive protein levels, cytokine release
(e.g., TNF-alpha and IL-6), and antibodies against lipopro-
tein lipase (LPL) affecting the balance between pro- and
antiatherogenic lipoproteins [68]. In 918 SLE patients of
the Systemic Lupus International Collaborating Clinics’
cohort, the prevalence of hypercholesterolemia was 36%
at diagnosis and 60% 3 years later [69]. Moreover, in the
same cohort, hypercholesterolemia was significantly associ-
ated with CV events (OR=4.4, 95%CI 1.51–13.99) [70].

4.2. Hypertension.Hypertension is an independent risk factor
CV in SLE (OR 5.0; 95%CI 1.3–18.2) [70]. In a case-control
study, Bruce et al. reported a 2.59 RR (95%CI 1.79–3.75) of
hypertension in women with SLE [12]. In a multivariate anal-
ysis, Doria et al. found that hypertension was associated with
atherosclerosis by means of higher carotid intima-media
thickness in SLE patients [21].

4.3. Diabetes and Insulin Resistance. An increased prevalence
of insulin resistance and diabetes was reported in several
studies [70–72], but not in all [73]. Bruce et al. reported a
6.6 RR (95%CI 1.36–26.53) of diabetes, which is an estab-
lished risk factor for CVD, in SLE women [12].

An unbalance in adipokine production, consisting of
lower concentrations of adiponectin and higher concentra-
tions of leptin, was proposed as a potential cause of the
increased prevalence of insulin resistance in SLE, as well as
corticosteroid use [74]. However, neither insulin resistance
nor diabetes has been shown to independently predict CV
events in SLE cohorts [70, 72].

Dyslipidemia, hypertension, and insulin resistance can
be part of metabolic syndrome that was observed to be
more frequent in SLE patients compared with controls
(32.4% versus 10.9%; P < 0 001) and associated to an
increased risk of atherosclerosis by means of aortic pulse
wave velocity [75, 76].

5. Hydroxychloroquine Pharmacology

HCQ is an antimalarial agent that has been used for many
years in treating inflammatory rheumatic diseases, especially
SLE and rheumatoid arthritis. HCQ is administered orally as
the sulphate salt and, being a weakly basic drug, is rapidly
absorbed in the upper gastrointestinal tract with a large vol-
ume of distribution. HCQ is then dealkylated by cytochrome
P450 enzymes into its active metabolite desethyl-HCQ [77].
The systemic clearance is by renal excretion with a long tissue
half-life of 40–50 days. HCQ may take up to 4–6 weeks for
the onset of therapeutic action and 3–6 months to achieve
the maximal clinical efficacy. The recommended dose of
HCQ is 200–400mg daily or about 5mg/kg/day in a
weight-based regimen [77]. According to Durcan et al. [78],
HCQ dosing based on actual body weight, instead of ideal
weight, is appropriate for patients with SLE. Blood HCQ
concentrations can be measured with available commercial
kits, which may help in adherence monitoring and the
identification of individualized therapeutic regimens [79].

HCQ has numerous and complex mechanisms of
action (Figure 1). The increasing pH in the intracellular
compartments (“lysosomotropic action”) favors HCQ-
mediated interference with phagocytosis, receptor recycling,
antibody production, and selective presentation of self-
antigens [67]. Moreover, HCQ blocks T-cell and monocyte
proliferation, inhibits TLR signaling, and downregulates
cytokine production including TNF-alpha, IL-17, IL-6, IFNα,
and IFNγ [77].

6. Hydroxychloroquine Clinical Benefits in SLE

6.1. Disease Activity. The first study on HCQ clinical efficacy
in SLE randomized 25 patients to continue HCQ on
stable dose therapy and 22 patients to switch to placebo for
24 weeks. A lower rate of flare (36% versus 73%, P = 0 02;

T-cell proliferation TLR activation cytokines production (TNF�훼, IFN�훼, and IL-6) 

self-antigen presentation

antibody production

prostaglandin production

platelet aggregation

oxidative stress insulin clearance lipids level

Hydroxychloroquine
mechanisms of action

Figure 1: HCQ mechanisms of action.
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RR 2.5 95%CI 1.1–5.6) was observed in the HCQ group [80].
More recently, Ruiz-Irastorza et al. systematically reviewed
the effect of HCQ on lupus activity and identified 8 studies,
of which 3 were randomized controlled trials [81]. All studies
were of high quality and consistently found lupus disease
activity and flares to be significantly reduced in patients
treated with HCQ [81, 82].

6.2. Atherosclerosis. Some studies did not find any effect
of current [20, 83] or past [84–87] treatment with HCQ
on the presence of atherosclerosis. On the other hand,
Roman et al., in multivariate analysis, found a borderline-
independent effect of current or former treatment with
HCQ (adjusted OR 0.49; 95%CI 0.21–1.12; P = 0 09) in
reducing plaque burden, on carotid ultrasound, of SLE
patients [17]. Moreover, the current use of HCQ was associ-
ated with significantly lower (partial R2 0.025; P = 0 032)
aortic stiffness, measured by pulse wave velocity, in premen-
opausal SLE women [88]. Noteworthy, the only study
specifically designed to analyze the effect of treatment with
HCQ on atherosclerosis, albeit conducted in a relatively
small population (n = 41), found increased large artery
elasticity (13.7 versus 8.3mmHg×ml× 10; P = 0 006) and
reduced systemic vascular resistance (14.4 versus 18.4
dyne× sec× 10−3; P = 0 05) among patients treated with
HCQ compared with those receiving corticosteroids only
[89]. Overall, the available evidence is inconclusive, mainly
as a result of poor study quality and design [81].

6.3. Irreversible Target Organ Damage and Survival. The
beneficial effects of HCQ on target organ damage and
survival in SLE patients have been demonstrated by several
high-quality evidence studies [81, 90–93]. For example,
HCQ was protective (HR 0.73; 95%CI 0.52 to 1.00) against
damage accrual, calculated using the SLICC damage index,
in the prospective LUMINA (Lupus in Minorities: nature
versus nurture) study cohort, particularly in those patients
without damage at baseline (HR 0.55, 95%CI 0.34 to 0.87)
(94). In the same cohort, 17% of patients not taking HCQ
died during the follow-up versus 5% of those treated with
HCQ (P < 0 001), accounting for a 0.28 unadjusted OR
(95%CI 0.05 to 0.30) and 0.32 adjusted OR (95%CI 0.12 to
0.86) [94]. Moreover, HCQ use was associated with less
cerebrovascular damage on brain MRI of SLE patients (OR
0.08; 95%CI 0.01–0.73) [95], less thrombosis (OR 0.31,
95%CI 0.13–0.71) [96], less CV events (HR 0.04, 95%CI
0.004–0.48) [97], and less, albeit not statistically significant,
cardiovascular mortality (0% versus 36.8%) [98].

In a multinational Latin American inception cohort, a
lower mortality rate was observed in antimalarial users
compared with nonusers (4.4% versus 11.5%; P < 0 001),
and, after adjustment for potential confounders in a Cox
regression model, antimalarial use was associated with a
38% reduction in the mortality rate (hazard ratio 0.62,
95%CI 0.39–0.99) [99].

It remains to be established whether HCQ exerts its
protective effects on damage accrual and survival in SLE
patients through lowering disease activity, preventing
atherosclerosis, or both.

7. Hydroxychloroquine and SLE-Related Risk
Factors for Atherosclerosis

7.1. Endothelial Dysfunction. Endothelial dysfunction (ED)
is a potentially reversible alteration thus representing an
attractive target for CVD prevention and treatment.
Gómez-Guzmán et al. [100] found that short-term treat-
ment with HCQ in advanced disease stages is able to
reverse large artery ED in a murine model of SLE. This
effect was mediated by a reduction of nicotinamide ade-
nine dinucleotide phosphate (NAD(P)H) oxidase activity,
which is a major ROS source. Recently, Virdis et al. con-
firmed that early treatment with HCQ exerts protective effect
by decreasing vascular oxidative stress and improving
endothelium-dependent relaxation, essentially by preserving
the NO-mediated component [101].

7.2. Toll-Like Receptor Signaling and Cytokine Production.
Evidence that HCQ acts by blocking the nucleic acid-
sensing TLRs (TLR3, TLR7, TLR8, and TLR9) is the most
important advance in our understanding of its mechanism
of action. Nucleic-sensing TLRs, located in intracellular com-
partments, are activated when interacting with foreign
nuclear material presented by specialized molecules such as
FC-gamma receptor on DCs or B-cell receptor on the surface
of B-cells. HCQ interferes with the TLR7 and TLR9 signaling
pathways, reducing the production of IFNα, IL-6, and TNF-α
[102]. It has been postulated that, by altering the lysosomal
pH, HCQ prevents TLR functional transformation and
activation [103]. However, it is also possible that, by binding
nucleic acids, HCQ masks their TLR-binding epitope
preventing TLR activation [104].

Beyond the inhibition of TLR signaling, experimental
evidence showed that HCQ reduces the concentration of
proatherogenic cytokines, such as IFNα, IL6, TNF-α, IL17,
and IL22, in SLE patients through different mechanisms
[105, 106]. The observation that HCQ reduces the expression
of miR155 in NZB/NZWmice, a SLE animal model, suggests
additional therapeutic effects through an epigenetic control
of cytokine gene expression [107].

7.3. Actions on Immune System Cells and Autoantibody
Production. T-cell and B-cell activities may be directly or
indirectly affected by HCQ [103]. The HCQ “lysosomotropic
action” is responsible for altering the process of self-antigen
presentation, whilst preserving that of exogenous antigens,
and may also inhibit the intracellular calcium signals after
T-cell-receptor stimulation, preventing T-cell activation
and proliferation [103, 108]. Furthermore, the inhibition
of IFNα, IL6, IL17, and TNF-α production affects B-cell
activation and autoantibody production and favors the dif-
ferentiation of endothelial cells [103].

The reported HCQ-mediated effects may theoretically
reduce the initiation and progression of atherosclerosis by
inhibiting the monocyte adhesion to endothelial cells, reduc-
ing smooth cell proliferation and favoring vascular repair.
However, to date, no study has investigated whether the
described effects of HCQ may have a direct benefit in
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preventing atherosclerosis in SLE patients. More research is
warranted to confirm, or refute, this hypothesis.

8. Hydroxychloroquine and Traditional
Atherosclerosis Risk Factor

8.1. Effects on Lipid Profile. The beneficial effect of HCQ on
dyslipidemia in patients with SLE has been known for some
time. Potential mechanism underlying the beneficial effect
of antimalarials on dyslipidemia may be represented by
upregulation of LDL receptors with an enhancement of the
plasma removal of this lipoprotein [109]. This potential
effect of antimalarials would minimize the increased lipo-
protein hepatic synthesis induced by steroids [110]. Petri
et al. [111] found that HCQ treatment was independently
associated with lower serum cholesterol concentrations in
multivariate analysis (effect on mg% −8.94; P = 0 009). In
a cohort of 815 patients, Rahman et al. [13] showed that
the lipid lowering effect of antimalarials (mainly HCQ)
was higher in patients on a stable dose of steroids and
consisted of a reduction in total cholesterol concentrations
of 11.3% at 3 months (P = 0 0002) and 9.4% at 6 months
(P = 0 004). Contrasting results have been reported on the
different lipoprotein profiles [112–114]. However, two recent
prospective studies specifically designed to analyze the effect
of HCQ on lipoprotein concentrations, after correction for
the confounding effect of other variables, found lower
LDL (P = 0 036) [113], VLDL (P = 0 002), and triglyceride
concentrations (P = 0 043) and higher HDL concentrations
(P = 0 03) [114] in patients treated with HCQ.

8.2. Effects on Glucose Level.Hypoglycemia has been reported
in patients treated with antimalarials. In vitro and animal
studies, antimalarials affected insulin metabolism, increasing
insulin binding to its receptor, altering hepatic insulin
metabolism, potentiating insulin action, and reducing the
insulin clearance [115–117]. A small randomized study in
decompensated diabetic patients showed that HCQ signifi-
cantly lowered glycated hemoglobin A1c (3.3%; 95%CI,
−3.9 to −2.7, P = 0 001) when added to insulin therapy,
possibly by improving insulin secretion and peripheral
sensitivity [118].

Recently, the use of HCQ has been associated with lower
concentrations of serum glucose (85.9 versus 89.3mg/dl,
P = 0 04) [119] and a lower incidence of diabetes mellitus
in SLE patients, in a dose-dependent manner (HR 0.26;
95%CI 0.18–0.37; P < 0 001) [120].

8.3. Effects on Thrombosis. HCQ has a protective effect
against thrombosis both in SLE patients with and without
antiphospholipid antibodies [86]. Such an effect seems
mediated by reduced platelet aggregation and protection of
the annexin A5 anticoagulant shield from disruption by
aPL antibodies [121].

9. Discussion

There is good evidence from prospective studies of an
increased CV risk in SLE patients [4–7]. Accelerated

atherosclerosis, in the presence of traditional risk factors,
may explain at least in part this enhanced risk. However,
SLE-related factors, as endothelial dysfunction and inflam-
mation, autoantibodies, damage accrual, and disease activity
are equally or even more important [10–14]. Such a complex
interplay of pathogenetic mechanisms presents clinical chal-
lenges, particularly because of the lack of data on the effects
of the modification of traditional and SLE-specific CVD risk
factors. Presently, in order to lower the CV risk in SLE, the
main objectives should be treating the disease targeting
remission or low disease activity [122] and sparing cortico-
steroids when possible, whilst monitoring traditional CVD
risk factors at least once a year [123].

HCQ should be an essential part of SLE treatment
strategy and should be started as soon as the diagnosis has
been made and maintained for an indefinite period if toxicity
does not occur [81]. Although for a long time it has been
considered a minor component in the management of SLE,
in fact, increasing evidence demonstrates that HCQ has a
broad spectrum of beneficial effects on disease activity,
prevention of damage accrual, and mortality [124]. Further-
more, HCQ is thought to protect against accelerated athero-
sclerosis by means of several mechanisms of action targeting
both SLE-related and traditional CV risk factors.

One of the main limitations to be considered, when
interpreting the available data, is the lack of a direct
demonstration of the cause-effect relationship between
HCQ treatment and atheroprotection from randomized
controlled trials. On the other hand, given the many evi-
dences of beneficial effects on HCQ in SLE patients, a
placebo-controlled trial would be probably not ethically
sustainable. Studies addressing the potential effect of HCQ
on CV risk in patients with no existing rheumatic disease
with a very high risk of a recurrent CV event, such as
the OXI trial (NCT02648464), may shed some light on
mechanistic insights regarding the cardioprotective effect
of HCQ [125].

In conclusion, despite the lack of randomized controlled
trials, the available evidence strongly suggests that HCQ
exerts beneficial effects against atherosclerosis and CVD in
SLE patients.
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