

# **Closing gaps to CFETR Readiness**

**Jiangang Li** 

## **Institute of Plasma Physics, CAS**

IAEA TCM 3rd DEMO workshop, May11-14, 2015, Hefei, China





### **Introduction**

### **CFETR-** Phase I gaps and possible solution

- **CFETR-II gaps and possible solution**
- **Summary**

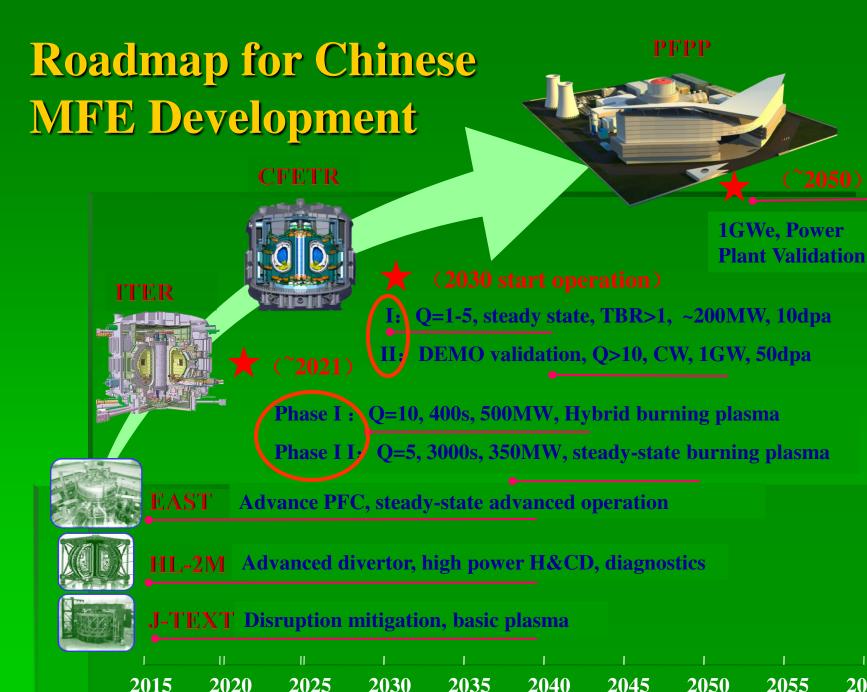


## **Mission: Bridge gaps between ITER and DEMO, realization of fusion energy application in China**

- A good complementarities with ITER
- Demonstration of full cycle of fusion energy with  $P_f = 200MW$
- Demonstration of full cycle of T self-sustained with TBR  $\geq 1.0$
- Long pulse or steady-state operation with duty cycle time  $\geq 0.3 \sim 0.5$
- Relay on the existing ITER physical (k~1.8, q>3, H~1) and technical (SC magnets, diagnostic, H&CD) bases
- Exploring options for DEMO blanket&divertor with a easy changeable core by RH
- Exploring the technical solution for licensing DEMO fusion plant
- With power plant potential by step by step approach.



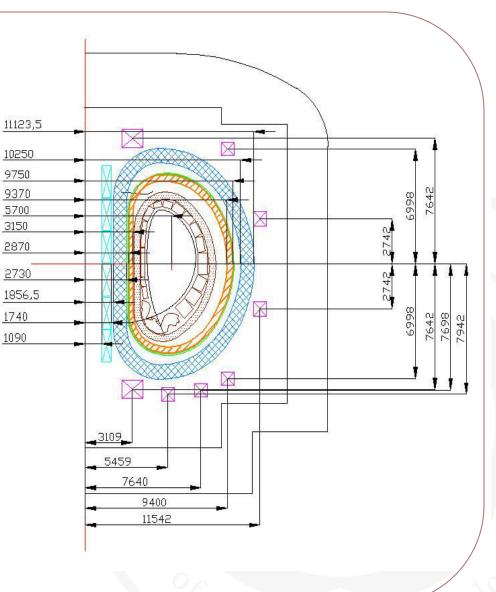
# **Targets and Challenges**


## **Physics:**

- Creating predictable, highperformance steady-state plasmas
- Demonstrating and exploring the burning plasma state
- Taming the plasma-material interface
  - Harnessing fusion power

## **Engineering:**

**Complete fusion energy cycle. Complete T fuel cycle. ≻long pulse & SSO** Material Validation **Component Validation RAMI** for power plant >Necessary date for safety & licensing of power plant.


An integrated team for STE challenges from Uni., institutions, industries



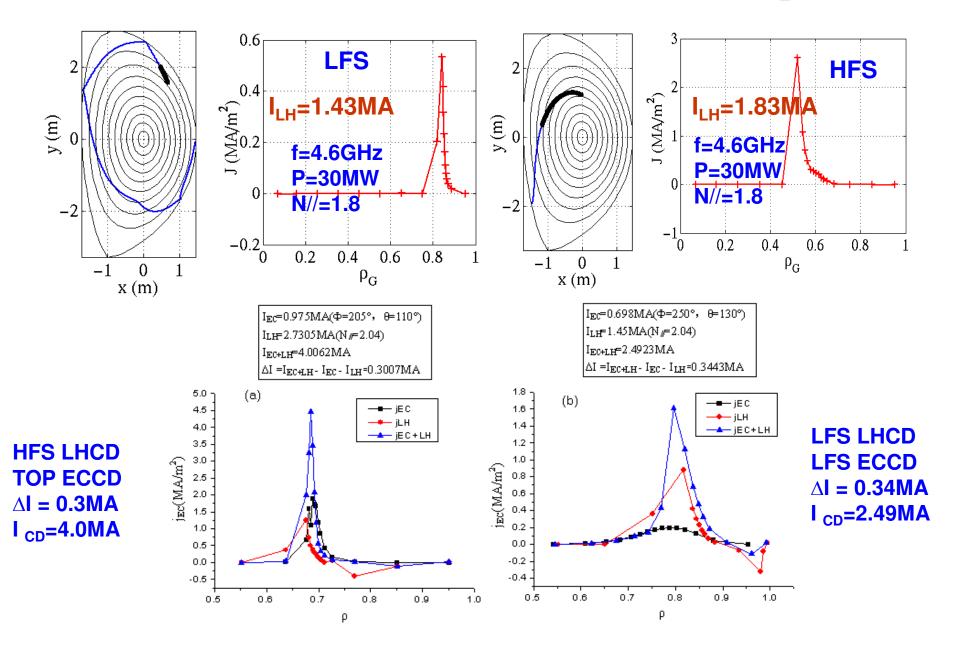


## **CFETR Machine Configuration**

- $B_t = 4.5 5T;$
- I<sub>p</sub>= 8-10MA;
- **R** = 5.7m;
- a = 1.6m;
- K= a/b=1.8~2.0;
- $\beta_N \sim 2.0$ ;  $q_{95} \ge 3$ ;
- Triangularity  $\delta = 0.4-0.8$ ;
- Single-null diverter;
- Neutron wall loading ≈0.5MW/m<sup>2</sup>;
- Duty cycle time = 0.3-0.5;
- TBR >1.0
- Possible upgrade to R~6 m, a~2 m, B<sub>t</sub>=7. 5T, I<sub>p</sub>~14 MA



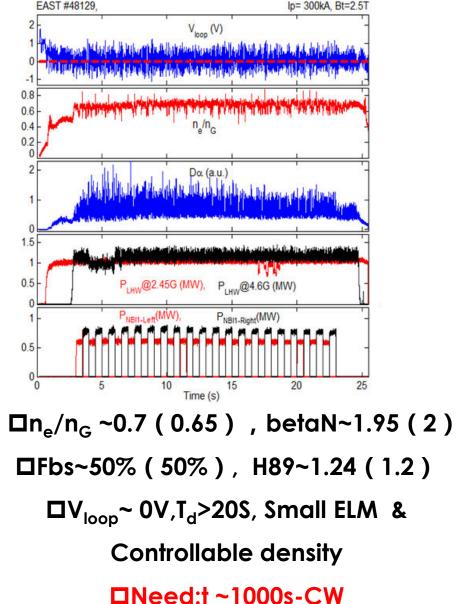



- **Steady-state operation**
- **TBR > 1 & full cycle of T breeding**
- **Characteristics** High availability by RH
- **Plasma Wall interaction for W wall**
- **Output** Ultra Low T retention under SSO

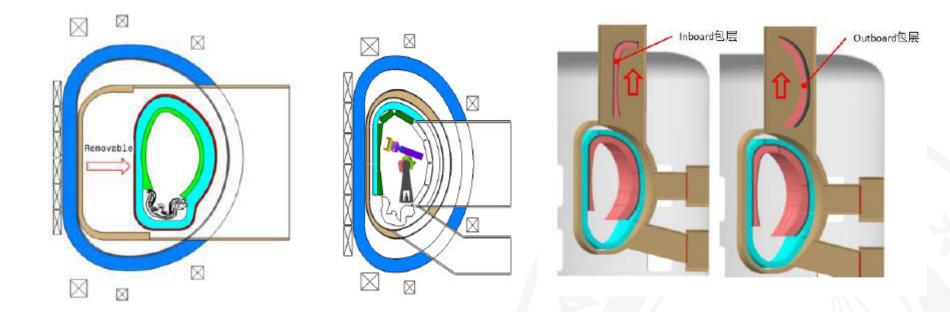


## **Key parameter investigation**

| Operation<br>mode                                   | А         | В    | С                        | D         | Е    | ITER<br>-SS | Upgra<br>de |
|-----------------------------------------------------|-----------|------|--------------------------|-----------|------|-------------|-------------|
| I <sub>p</sub> (MA)                                 | 10        | 10   | 10                       | 8         | 8    | 9           | 15          |
| P <sub>aux</sub> (MW)                               | 65        | 65   | 65                       | 65~70     | 65   | 59          | 65          |
| <b>q</b> <sub>95</sub>                              | 3.9       | 3.9  | 3.9                      | 4.9       | 4.9  | 5.2         | 3.9         |
| W(MJ)                                               | 171~174   | 193  | 270~278                  | 171       | 255  | 287         | 540         |
| P <sub>Fus</sub> (MW)                               | 197~230   | 209  | 468~553                  | 187~21    | 409  | 356         | 1000        |
| Q <sub>pl</sub>                                     | 3.0~3.5   | 3.2  | 7.2~8.5                  | 2.7~3.2   | 6.3  | 6.0         | 15          |
| T <sub>i0</sub> (keV)                               | 17.8~18.5 | 29   | 19.8~20 <mark>.</mark> 8 | 20.6~21   | 21   | 19          | 25          |
| N <sub>el</sub> (10 <sup>20</sup> /m <sup>3</sup> ) | 0.75      | 0.52 | 1.06                     | 0.65      | 0.94 |             | 1           |
| n <sub>GR</sub>                                     | 0.6       | 0.42 | 0.85                     | 0.65      | 0.95 | 0.82        | 0.85        |
| β <sub>N</sub>                                      | 1.59~1.62 | 1.8  | 2.51~2.59                | 2         | 2.97 | 3.0         | 2.7         |
| β <sub>T</sub> (%)                                  | ~2.0      | 2.3  | 3.1~3.25                 | 2         | 2.97 | 2.8         | 4.2         |
| f <sub>bs</sub> (%)                                 | 31.7~32.3 | 35.8 | 50~51.5                  | 50        | 73.9 | 48          | 47          |
| τ <sub>98Y2</sub> (S)                               | 1.82~1.74 | 1.55 | 1.57~1.47                | 1.37      | 1.29 | 1.94        | 1.88        |
| P <sub>N</sub> /A(MW/m <sup>2</sup> )               | 0.35~0.41 | 0.37 | 0.98                     | 0.33~0.37 | 0.73 | 0.5         | 1.38        |
| I <sub>CD</sub> (MA)                                | 3.0~3.1   | 7.0  | 2.45                     | 4.0       | 2.76 |             | 3.0         |
| H <sub>98</sub>                                     | 1         | 1.3  | 1.2                      | 1.2       | 1.5  | 1.57        | 1.2         |
| T <sub>burning</sub> (S)                            | 1250      | SS   | 2200                     | M/SS      | SS   |             | ??          |


### **More effective current drive –HFS LHCD+Top ECCD**

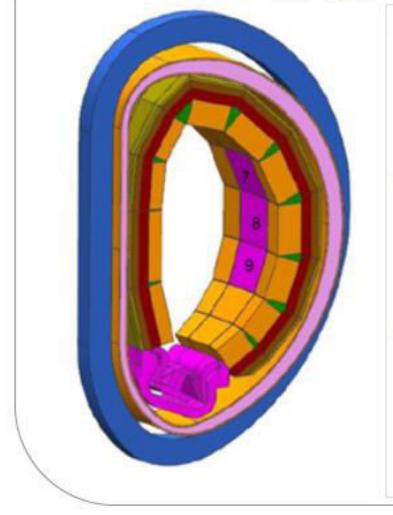



### **EAST will be a good test bench for CFETR-I during next 5 years** Paut > 30MW CW, ~80 diagnostics, W-divertor, VS&ELM coils












- Availability for change of components inside VV has been studied, 3 approaches have been carried out.
- Servical remove has been selected as premier approach.



### Three groups are working on the concept design of CFETR blanket



#### Group I:

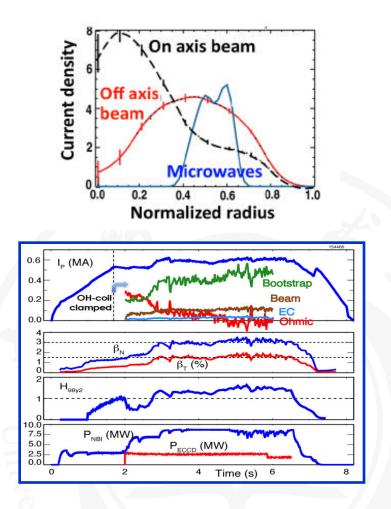
1) HC (8MPa, 300/500°C),

```
Li<sub>4</sub>SiO<sub>4</sub> (Li<sub>2</sub>TiO<sub>3</sub>), Be, RAFM
```

Group II:

1) SLL (~150°C), CLAM

2) DLL(~700 °C), CLAM


Group III :

1) HC, Li<sub>4</sub>SiO<sub>4</sub> , Be , RAFM

2) WC, Li2TiO3, Be12Ti, RAFM



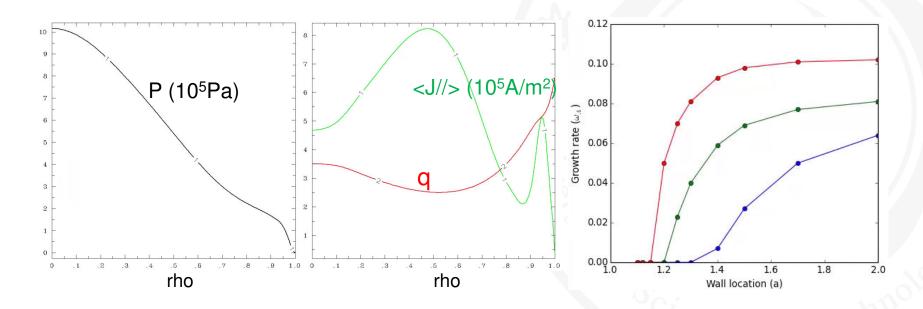
- **Phase 2: AT H-mode (DT-2, 10y)**
- ➡ Ip=11-16MA; Bt=7.5T, BetaN=3.0
- **c** R=6.0m, a=2.0m, K=2.0, Advanced TMB
- **Advanced diagnostics (DEMO-relevant)**
- **Solution Sector States and State**
- Explore possibility for higher Ini =1.0
- DEMO relevant H&CD
- **Constitution of the set of the s**



Joint DIII-D /EAST efforts at  $\beta_N \sim 3.5$ ,  $f_{NI} \sim 1$ ,  $ne_{GW} \sim 0.8$ 



## **Operation parameters with high B\_T**


#### A: B=6T, Ip=11.5MA, betaN=3, q<sub>95</sub>=5.5, Q=15, P<sub>fusion</sub>=1.24GW, Pnet =340MW

| CFETR Phase 2        |          | Case A | Case C | Case D  | field on axis       | Во       | 6.03  | 7.33  | 8.14  |
|----------------------|----------|--------|--------|---------|---------------------|----------|-------|-------|-------|
| Scenarios            |          |        |        |         | field at conductor  | Bc       | 11.42 | 13.87 | 15.41 |
| aspect ratio         | AR       | 3.2    | 3.2    | 3.2     | Ion Temperature     | Ti(0)    | 22.60 | 22.60 | 22.60 |
| plasma minor radius  | а        | 1.87   | 1.87   | 1.87    | TeTemperature       | Te(0)    | 22.60 | 22.60 | 22.60 |
| plasma major radius  | Ro       | 5.98   | 5.98   | 5.98    | Electron Density    | n(0)     | 1.55  | 2.29  | 2.82  |
| plasma elongation    | κ        | 2.00   | 2.00   | 2.00    | Ratio to Greenwald  | nbar/nGR | 0.99  | 1.20  | 1.33  |
| fusion power         | Pf       | 1240.6 | 2699.3 | 4114.1  | Zeff                | Zeff     | 2.45  | 2.45  | 2.45  |
| power dissipated     | Pc       | 400.3  | 590.4  | 728.9   | Stored Energy       | W        | 550   | 812   | 1002  |
| power to run plant   | Pi       | 245.79 | 455.02 | 636.84  | Total Aux. Power    | Paux     | 81.9  | 146.7 | 201.2 |
| gain for whole plant | Qplant   | 2.39   | 2.77   | 3.00    | TauE                | TauE     | 1.67  | 1.18  | 0.98  |
| Pfusion/Paux         | Qplasma  | 15.15  | 18.40  | 20.44   | H over ELMY H       | HITER98  | 1.50  | 1.22  | 1.09  |
| net electric power   | Pnetelec | 341.01 | 806.01 | 1273.99 | Power per unit R    | P/R      | 26.73 | 55.23 | 82.15 |
| Neutron at Blanket   | Pn/Awall | 1.80   | 3.92   | 5.97    | Neutron wall load   | Pn/Awall | 1.35  | 2.94  | 4.49  |
| normalized beta      | BetaN    | 3.07   | 3.07   | 3.07    | Total Heating Power | Pheat    | 330   | 687   | 1024  |
| bootstrap fraction   | fbs      | 0.74   | 0.74   | 0.74    | Fusion/Elect_pow    | Qelect   | 5.05  | 5.93  | 6.46  |
| plasma current       | lp       | 11.48  | 13.95  | 15.50   | q95 Iter            | q95_iter | 5.45  | 5.45  | 5.45  |
| l.                   |          |        |        |         |                     | -        |       |       |       |

B: B=7.3T, Ip=14MA, betaN=3, q<sub>95</sub>=5.5, Q=18.4, P<sub>fusion</sub>=2.7GW, Pnet =800MW

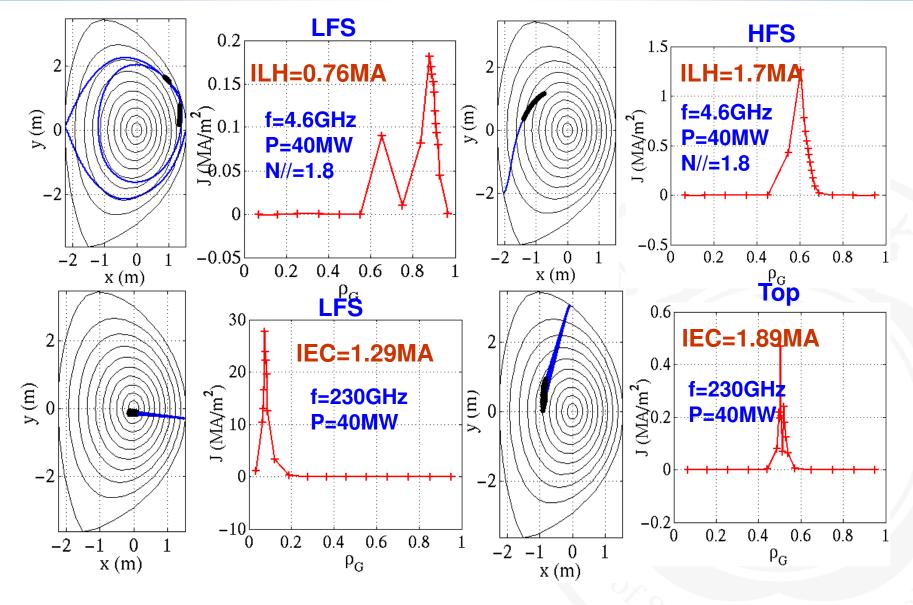


- **Plasma parameters of phase II case A:** 
  - ☞ Bt0=6.0 T, BetaN=3.0, Ip=10.5 MA, q95=5.34, li(1)=0.72
- **Characteristic States and States**
- The ideal wall at ~1.15a could stabilize the n=1,2,3 instabilities.
- **CASE B**, Reversed q profile with qmin~3.2, 2/1, 3/1, 3/2 NTMs could be avoid
- Must find a way to stabilize the RWMs





- Advanced steady-state operation scenario for maximum next electricity (Maximum Pfusion and minimum Pau)
- **•** High Bt Magnets
- Self Consistent DEMO relevant H&CD
- Heat&Particle exhaust ( Divertor, Cryo-pump)
- High available RH
- Advanced Blanket (TBR >1.1, high electricity gain)
- Materials



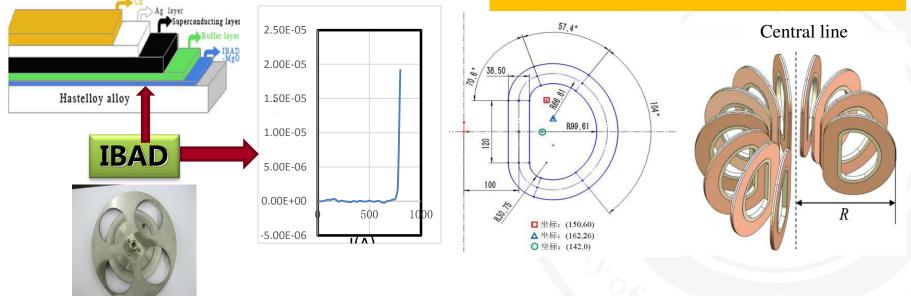

### ≻ H&CD:

- off-aix NBI (0.5MeV) + ECRH(top, 170-230GHz)
- LHCD (HF, 4.6, 8.2GHz) +ECRH(top, 230GHz)
- ≻ High BT (7.5-8 T)
- CS (2212 CICC, YBCO tape, Nb3Al)
- Hybrid TF ( 2212 CICC+Nb3Sb)
- > Heat exhaust (Divertor)
- > Advanced Blanket
- ≻ T-Plant
- > Materials



## HFS LHCD+Top ECCD(gaps for high Ip)






• On IBAD substrate, 50 m YBCO film

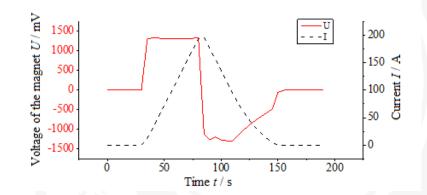
 $I_c = 780 \text{A/cm}$  (77K, self-field)

- $I_c = 200 \text{A/cm} (77 \text{K}, 1.5 \text{T} \perp \text{C})$
- 100 m long YBCO tape, I<sub>c</sub>=500 A/cm,
   I<sub>c</sub> is uniform along the length

Target: E=15kJ , I≥400A @20K HTS tapes: YBCO (AMSC) Cooling method: conduction cooling Operating temperature: 20K The No. of coils: 14 (D-shaped coils) Total usage of tapes: 2100 m Bt =0.75T at 20K

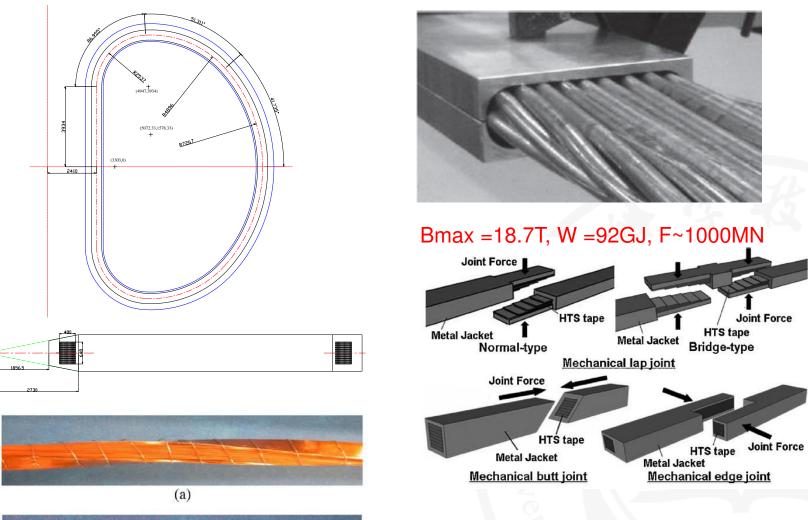





### MCF HTS Tokamak Oriented Researches






#### ✓ Conclusions:

1) I<sub>max</sub>=300A, E<sub>max</sub>=15kJ, @ 20K
 2) Magnetic field in the center of the coil is 0.75T
 3) Temperature rise in various experiments is less than 0.3K

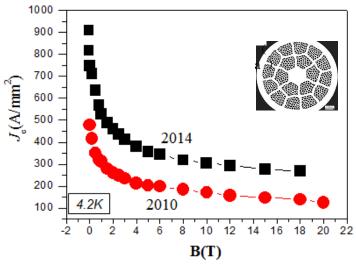




## High B<sub>T</sub> — HTC YBCO



⇒ Ic=750A @ 8T, Io =400A

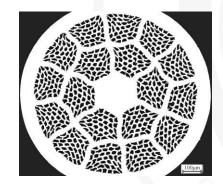

Joint is challenge

### **Development of Bi-2212 Superconducting Wires in NIN**



Multi-Die Deformation

Partial Melting Process Bi-2212 Round Wires

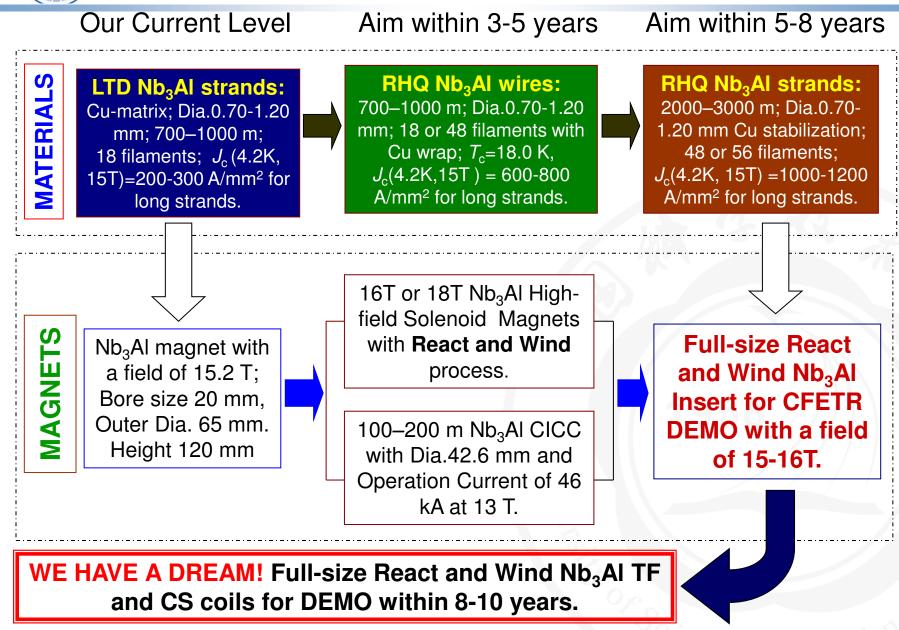



*Jce-B* curves at 4.2 K

Batch production ability for 200-m long Φ1.0mm wires 4.2K, 0T: Jce > 920A/mm<sup>2</sup>, Jc ~ 4400A/mm<sup>2</sup>. 4.2K, 20T: Jce > 285A/mm<sup>2</sup>, Jc ~ 1200A/mm<sup>2</sup>.
Study of the high pressure sintering process is on the way, Jc-B property may be increased for 2~3 times. Target: long wires, 4.2K, 20T, Jce>600A/mm<sup>2</sup>

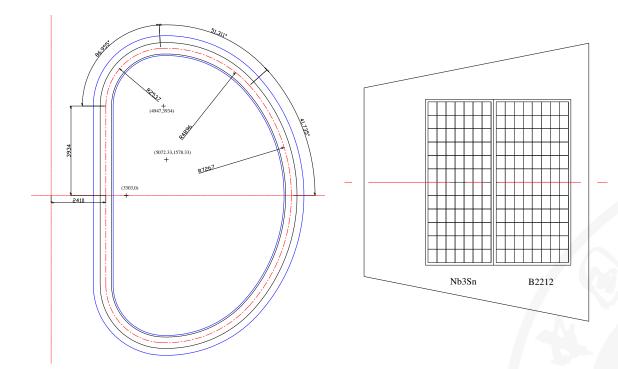


#### **Bi-2212** wires




**Cross section of wires** 

**Bi-2212** cables




### **Present State and Future Plan for Nb<sub>3</sub>Al Superconductor**





## High B<sub>T</sub> – Hybrid (Nb<sub>3</sub>Sn+2212) TF

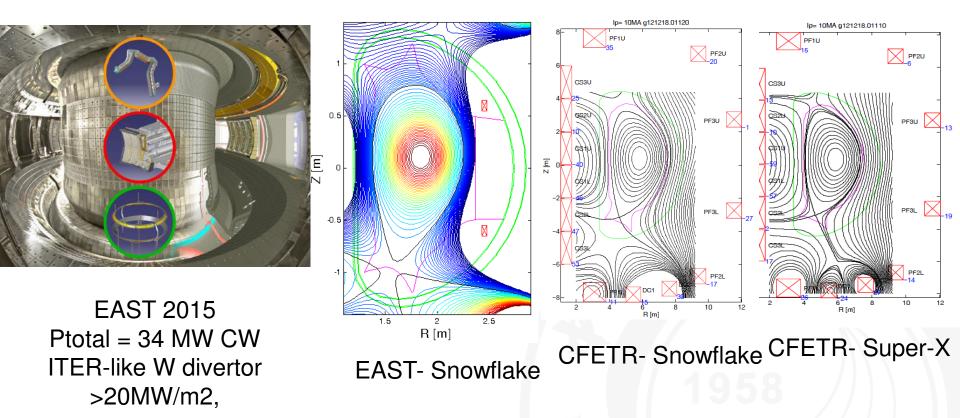


wire: 
\$\overline\$=1.0mm
Cable: 3×4×6×6=432
Porosity: 30%
Cable size: 15mm×32mm
Jacket thickness: 8mm
conductor: 31mm×48mm
Isolation thickness: 2mm
Full size: 35mm×52mm

 $\begin{array}{c} Nb_{3}Sn \ or \ Nb_{3}AI: \\ Jce>1200A/mm^{2} \ (lc>942A) \\ Conductor \ I = 190 \times 432 = 82kA \\ 245mm \times 624mm \\ Turn: \ 7 \times 12 \\ Bmax = 8.2T \end{array}$ 

#### **Bi2212:**

 Jce>380A/mm² (lc>300A)


 A
 Conductor I =190×432=82kA

 280mm×624mm

 Turn:
 8×12

 Maybe possible
 Bmax=19.1





EAST: snowflake experiments Vs EFIT+TSC+B2, Radiation+detache CFETR: Snowflake, Super-x, Snowflake+Super-x, adding D1+D2 coils new concept exploration

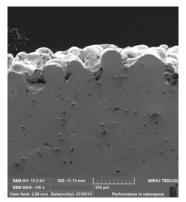


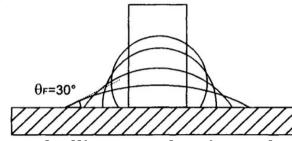
**Integrated efforts will be made under guidance of Roadmap** 

Code&simulation, Fabrication, validation (involve industry from very beginning)

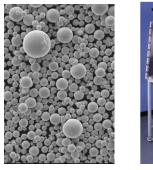
Multi-scale&integration, PFC&blancket, neutron sources

**Ourgent:** W for divertor (W alloy, nano scale, fib, 3D)


**Phase I: Divertor (water), blacked (water, He gas), T91** 


**Phase II: materials? SiC/SiC, ODS FS,** 

neutron sources ( two fission reactors + fusion source)

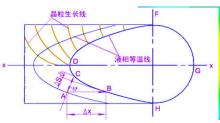


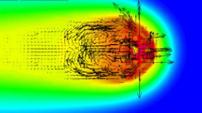

### Selective Laser Melting of Pure Tungsten



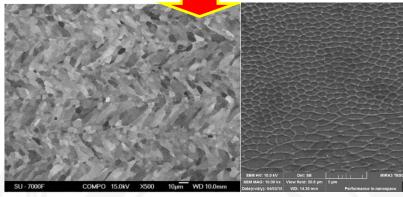


balling mechanism: the competitive processes of spreading and solidification



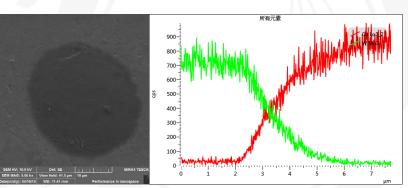




**Target: 4-5 years DEMO full W block** 


#### 30MW/m<sup>2</sup>Tmax: 1700C

| 水流速<br>m/s | 20MW/m <sup>2</sup> | 30MW/m <sup>2</sup> |
|------------|---------------------|---------------------|
| 8          | 1130℃               | 1680°C              |
| 10         | 1070℃               | 1600°C              |
| 12         | 1040°C              | 1540℃               |






Heat,mass and momentum transfer in turbulence melt flow, homogenization



Surface texture

#### Sub-grain Cell



W-Cu dissimilar welding Inter-diffusion



## **CMIF: Compact Neutron Source**

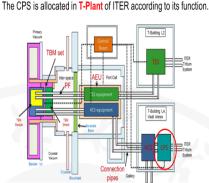
| The Materials Irradiation Facility in China(CMIF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                          |  | energy (MeV)                                                                     | 20                                  | 50                                 |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|----------------------------------------------------------------------------------|-------------------------------------|------------------------------------|--|--|--|
| Target                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | High Neutron Flux<br>Low Neutron Yield<br>Small Sample Size<br>~1MW granular Be/C Target |  | <b>Flux (D+Be)</b><br>Y (n·cm <sup>-2</sup> ·mA <sup>-1</sup> ·s <sup>-1</sup> ) | <b>3.6*10<sup>13</sup></b><br>*5 mA | <b>2*10<sup>14</sup></b><br>*10 mA |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                          |  | <b>Flux (D+Be)</b><br>Y (n·cm <sup>-2</sup> ·mA <sup>-1</sup> ·s <sup>-1</sup> ) | <b>9.81*10<sup>14</sup></b> *20mA   | <b>2*10<sup>15</sup></b><br>*30 mA |  |  |  |
| Beam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50~100MeV@(5~30)mA (CW)                                                                  |  |                                                                                  |                                     |                                    |  |  |  |
| Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Low                                                                                      |  |                                                                                  |                                     |                                    |  |  |  |
| Superconductor LINPAC<br>LEBT NET<br>REQ<br>MET<br>Conconductor<br>DT<br>Conconductor<br>DT<br>Conconductor<br>DT<br>Conconductor<br>DT<br>Conconductor<br>DT<br>Conconductor<br>DT<br>Conconductor<br>DT<br>Conconductor<br>DT<br>Conconductor<br>DT<br>Conconductor<br>DT<br>Conconductor<br>DT<br>Conconductor<br>DT<br>Conconductor<br>DT<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conconductor<br>Conco |                                                                                          |  |                                                                                  |                                     |                                    |  |  |  |



## **Tritium cycling technologies**

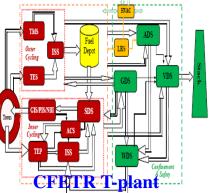
•Tritium extraction/ determination systems developed for China helium cooled tritium breeding test blanket module (CN HCCB-TBM) to be tested in ITER machine (Cadarache, France).

#### •Tritium plants design for China fusion test engineering reactor (CFETR):


- Conceptual design of tritium fuel cycling and tritium safely handling systems (T-plant) for China next generation of fusion reactor
- Key technologies on large scale of tritium handling like tritium isotopic separation (Cryogenic GC) and tritium recovery were developed

#### Allocation of the TES

- The TES primary function is to extract the tritium generated in the ceramic lithium orthosilicate breeder during ITER pulses.
- TES is allocated in Port Cell and T-Plant building of ITER according to its function.








Allocation of CPS











- Integrated Design and R&D of CFETR are in progress
  CFETR is moving towards Phase II design with emphasis for high BT option
- There are gaps to CFETR Readiness, especially for phase II.
  Challenges and risks are remained which need tremendous joint efforts, your helps are valuable.
  Moving forward is important.
- •Learning by failures