Cryptanalysis of the Bluetooth Stream Cipher

Christophe De Canniére'*, Thomas Johansson?, and Bart Preneel!

! Katholieke Universiteit Leuven, Dept. ESAT,
Kasteelpark Arenberg 10,

B-3001 Leuven-Heverlee, Belgium
{christophe.decanniere,bart.preneel}@esat.kuleuven.ac.be
2 Dept. of Information Technology,

Lund University, P.O. Box 118,

S—221 00 Lund, Sweden
thomas@it.lth.se

Abstract. Ej is a 128-bit key stream cipher that provides the link en-
cryption in the Bluetooth wireless standard. In this paper we present a
new attack on the Fy key stream generator based on a previous known
plaintext attack by Scott Fluhrer. A theoretical method to analyse and
improve this new attack is developed, yielding a final algorithm that de-
rives the internal state of the generator in 27 steps and requires 1 Mbit
of plaintext.

1 Introduction

When the Bluetooth specification [?] was published in 1999, all details regarding
the security system were made public as well. In the documents describing the
new short-range radio link solution, the developers presented a stream cipher
called Ejy, which was designed to provide the wireless connections with a strong
protection against eavesdropping while at the same time limiting the extra area
and power consumption of its implementation on silicon.

The Ey encryption system is built around a relatively simple key stream
generator which is initialised with a key of at most 128 bit. In this paper we
develop a new cryptanalytic attack against this key stream generator based on
previous work by Scott R. Fluhrer [?]. The attack is intended to recover the
internal state of the generator from a sequence of known key stream bits. For
efficient ways to use this internal state to derive the session key we refer to a
very recent paper by Scott R. Fluhrer and Stefan Lucks [?].

The paper is organized as follows. We start with a brief description of the
Ey algorithm in Section 2. In Section 3 we give an overview of previous attacks
on Ej. Section 4 presents and analyses the new attack and in Section 5 we
discuss two possible improvements. The accuracy of our theoretical predictions
is verified through simulations in Section 6 and we conclude in Section 7.

* F.W.O. Research Assistant, sponsored by the Fund for Scientific Research — Flanders
(Belgium)

COSIC internal report, 15 pages, 2001.

2 Description of the Ey Key Stream Generator

Tt
LFSR1
7
LFSR2
x3 \ 3 -
t
LFSR3
mf Ct
LFSR4
J’_

Fig. 1. Ey key stream generator.

The design of the key stream generator used in FEj is strongly inspired by
Rueppel’s summation combiner [?]. As shown in Figure 1, the generator consists
of four linear feedback shift registers (LFSR) whose outputs ¢ are combined by
a simple finite state machine.

The specifications of the LFSRs are listed in Table 1. The registers are all of
different length and contain a total of 128 delay elements. Since all four feedback
polynomials can be shown to be primitive, the LFSRs will generate maximum-
length sequences.

Table 1. Feedback polynomials of the four LFSRs.

LFSR Length Feedback polynomial
1 25 1+ D+ D24+ D™ 4 D%
9 31 1+ D2 + D6 + D24 + D31
3 33 14 D*4 D* 4+ D?» 4 D%
4 39 14 D*+4+ D® 4 D36 4 D%

COSIC internal report, 15 pages, 2001.

The state of the FSM is determined by 4 bits, which are stored in a pair of
2-bit delay elements. At each time t, the lower delay element stores the previous
value of the upper element and we can therefore refer to these two 2-bit values
as ¢;—1 and ¢; respectively. The new contents c¢;41 of the upper delay element is
computed as follows:

cerr = (ciyr,cy1) = se41 @ Ti(cr) © To(cr—1) (1)
with
ve = (i, vt y) :xtl+xt2+x§’+xf €{0,1,2,3,4} (2)
Yyt +c¢
st+1 = (3%4-178?-}-1) = \‘ L 2 tJ € {07 17233} (3)

Ty and Ty in (1) are two linear bijections over Z3 and are defined below:

Ty : 75 — 73, (x1,20) — (21, 20) (4)
T : Z% — Z%, (ml,xo) — (l‘o,xl D JJ()) (5)

Finally, the key stream bits z; are calculated by taking the exclusive-or of
the four LFSR sequences ¢ together with the output bit of the FSM ¢¥:

zt:x%@xfaémf@z?@cg (6)

The encryption is performed by taking the exclusive-or of this sequence z;
and the bit sequence of a data packet. The maximum size of such a packet is
limited to 2745 bits. When the transmission of this packet is completed, the
cipher is reinitialised. We won’t discuss the details of this initialisation as they
are not important for our attack.

3 Previous Attacks on Ej

As is usual in cryptanalysis, we focus on known-plaintext attacks, i.e. we assume
a situation in which the attacker is able to obtain a certain amount of decrypted
text in one way or another. The goal of a known-plaintext attack is to use this
information to recover other (unknown) parts of the plaintext. In the case of
additive stream ciphers, this problem reduces to finding a way to predict the
entire key stream z; given a limited number of key stream bits.

To derive the output bits of the key stream generator described in the pre-
vious section, at least two fundamentally different approaches are possible.

3.1 Correlation Attacks

The first method consists in separately recovering parts of the initial state of the
generator by exploiting specific correlation properties of the finite state machine.

COSIC internal report, 15 pages, 2001.

This type of statistical attack was first proposed by Miia Hermelin and Kaisa
Nyberg [?] and then improved by Patrik Ekdahl and Thomas Johansson [?]. An
important drawback of this approach, however, is that it cannot be applied to
the actual Ey algorithm, as it assumes sequences of consecutive key stream bits
which are considerably longer than the maximum packet size.

3.2 Guess and Determine Attacks

In the second approach, some parts of the initial state are guessed first and the
observed key sequence is used to derive the remaining parts in a deterministic
way afterwards. This type of guess and determine attacks on Ey was first in-
troduced by Markku-Juhani O. Saarinen [?] in a shortcut attack based on the
observation that the contents of a single LFSR, can directly be derived from the
contents of the three other LFSRs, the 4 bits of the FSM, and some known key
stream. By guessing the initial state of the FSM and the contents of the three
shortest LFSRs (4 + 25 + 31 + 33 = 93 bits), the attack succeeds in recovering
the entire internal state in 292 steps.

An improved algorithm is presented by Scott R. Fluhrer [?]. Refining Saari-
nen’s idea, he suggests an attack in which only the contents of the two shortest
LFSRs are guessed together with the initial state of the FSM. This time, the
known key stream bits do not allow the attacker to determine the bits of both
remaining LFSRs directly. Instead, a set of linear equations is collected and
checked for inconsistencies. As soon as one is found, the corresponding guess is
rejected. Fluhrer’s algorithm reduces the complexity of the attack to 28° and
requires the same amount of data as the previous attack (132 key stream bits).
Additionally, he proposes an optimisation saving processor time at the expense
of requiring considerably more key stream bits. Unlike correlation attacks, how-
ever, his algorithm allows the known key stream bits do be spread over multiple
data packets. Complexities of the order of 283, 28! and 27 are achievable given
2 kbit, 1 Mbit and 60 Mbit of data respectively.

4 Our Attack

The attack we present in this paper is, on its turn, an extension of Fluhrer’s
attack. Our starting point is to investigate whether we can obtain further im-
provements with a guess and determine attack guessing only the shortest LFSR.
The approach will be similar to the one in Fluhrer’s attack, but some additional
complications will arise.

In the following subsections, we describe the basic algorithm and develop a
method to predict its theoretical complexity.

4.1 Basic Attack

As mentioned above, the attack requires us to guess the contents of the shortest
LFSR (called LFSR1) and assume a certain initial state for the FSM. For each

COSIC internal report, 15 pages, 2001.

guess, we progressively run through the known key stream bits z; and maintain
a set S of equations in the 103 unknown state bits of the other three LFSRs:
T3 30, T8 35 and T3 5. The main problem is that we should keep track of the
current state of the FSM (¢; and ¢;—1), which depends on the integer sum of the
unknown LFSR bits. This leads us to the procedure described below:

1. Compute the exclusive-or of the current output of the FSM, the known
output of LFSR1 and the current key stream bit z;. For a correct guess, this
will be equal to the exclusive-or of the three unknown LFSRs: ¥ ®x} &z, =
:ctz S7] xi’ 57 :cf.

2. We now know the parity of the integer sum x? + 23 + 2}, but this does not
determine the sum uniquely. Both in the even and the odd situation, two
possible values will have to be considered separately, yielding two branches
of a search tree. The corresponding subset of values of 7, x} and x} can be
described by a set of equations in these variables (see Table 2). To proceed,
we select one of the two branches and add the appropriate equations to S.

3. When t > 31, t > 33 and ¢t > 39, we respectively use the tap equations of
LFSR2, LFSR3 and LFSR4 to express all variables as a linear function of
the 103 initial state bits of the three unknown shift registers.

4. The consistency of S is checked and if we get contradictions, we backtrack
in our exploration and consider the next branch. If all branches have been
examined, we reject the current guess. On the other hand, if we still have
a consistent S for ¢ > 132, we can assume that we found the correct initial
state. The argument for this is that the 132 internal state bits of the cipher
are likely to be uniquely determined by any sequence of 132 key stream bits.

5. Using z} and the integer sum chosen in step 2, we calculate the next FSM
state and proceed with ¢ + 1.

Apart from the fact that the algorithm branches into two separate cases after
each step, the procedure above looks very similar to Fluhrer’s base algorithm.
An important difference, however, is that we will have to deal with nonlinear
equations in S (see Table 2). As it is not immediately clear how to efficiently
check the consistency of such a system, we will split up the system S in a linear
set of equations £ and a nonlinear set A, and start with the analysis of an
attack which simply ignores the nonlinear equations. Afterwards, we will try to
use these equations in one way or another to improve the attack.

4.2 Analysis of the Search Tree

It is clear from the description of the algorithm in the previous subsection that
the attacker needs to traverse an entire search tree in order to eliminate a single
guess. Consequently, the size of this tree will be a determining factor for the
complexity of the attack. To get a clear picture of the algorithm, the typical
topology of the traversed tree is drawn in Figure 2 (the meaning of n is explained
below).

In order to estimate the number of nodes in such a tree, we make a couple
of assumptions about the linear equations collected in L:

COSIC internal report, 15 pages, 2001.

Table 2. Equations in S.

Sum zZzxt Equations
Even
z; =0
0 000 =0
xsz
011
2 101 T O i =
o (i ®1)- (2} 91)=0
Odd
100
1 010 T Oz i =
001 7w =0
xle
3 111 =1
wf:l
xf(n=
v
Xpn=0
X ¥ X ¥ XFAFirirxpn=1
(Y ERYERVERY!
X n=2
LI T T n=3

| VA U

Fig. 2. Typical search tree for n = 8.

COSIC internal report, 15 pages, 2001.

1. As long as L contains less equations than unknowns, these equations are
independent.
2. L is inconsistent as soon as it contains more equations than unknowns.

Most of the time, we can safely make both assumptions, but when the number
of unknowns and equations are almost equal, we might make errors. As both
types of errors have a tendency to compensate each other, we do not expect
these assumptions to influence the accuracy of our estimation too much. On the
other hand, they will considerably simplify our analysis.

In our simplified model, each additional equation is independent of the pre-
vious ones and can thus be used to eliminate an unknown. Let n denote the
number of independent unknowns in £ at a certain point in the tree. The ex-
pected number of nodes N arising from that point can be expressed recursively
by looking at its two immediate successor nodes, which correspond to the two
cases that are checked individually at each level of the algorithm in order to get a
unique value for 22 + 3 4+ x¢. These two cases are highly asymmetric, though. As
shown in Table 2, the first one inserts three new linear equations in £, whereas
the second one adds only one linear equation (and one nonlinear equation, which
we disregard in this first attack). Using each equation to eliminate one of the n
unknowns, we obtain the following recursive relation:

N(n)=14N(n—-1)+ N(n —3) n>3 (7)

This relation is also valid for n = 0,1 and 2 if we set N(—1) = N(-2) =
N(—=3) = 0. Negative values of n can be interpreted as nodes where the number
of equations exceeds the number of unknowns, and hence L is inconsistent by
assumption 2. The branches to such nodes are indicated with dashed lines in
Figure 2. Solving the recursion of (7) for n > 0, we get:

N(n)~1.92-1.47" (8)
Since the contents of the three longest LFSRs have to be determined, we

start the algorithm with a total of 31 4+ 33 4+ 39 = 103 independent unknowns.
Accordingly, the expected number of nodes in the tree is given by:

N(103) = 2577 (9)

We now have an estimation of the complexity of rejecting a single guess.
Taking into account that we should repeat this procedure for about half of all
the possible states of LFSR1 and the FSM (25 + 4 bits), we can easily calculate
the total estimated amount of work required to reconstruct the initial state of
the cipher:

1 L94+25 _ 985.7
: (103) =2 (10)

When we compare this result with the complexity of Fluhrer’s attack (25°),
we must conclude that the basic version of our new attack is not likely to provide
any gain at all. However, there is quite some room for improvement.

COSIC internal report, 15 pages, 2001.

5 Improving the Attack

In this section, we will try to improve our attack by simplifying the search tree
in two different ways. The first improvement consists in cutting out less ‘cost-
effective’ branches. The second subsection describes a way to gain efficiency by
trimming the top of the tree.

5.1 Skipping Branches

When we discussed the different situations of Table 2, we already mentioned the
strong asymmetry between the two possible values of x? + x3 + x}, examined
separately at each step in the algorithm. Using (7) and (8), we find that, at any
given node, the branch corresponding with the single linear equation x? @ 23 @
r} = a contains 1.472 = 2.15 as many nodes as the other branch. As a result,
the algorithm will spend a factor 2.15 more time on this possibility than on the
other one. On the other hand, it is considerably more likely that this choice will
correspond with the correct values of z2, 3 and z}. Indeed, when we take a look
at the second column of Table 2, we see that the case with the single equation
covers % of the possible values.

Let us now define the efficiency of a branch as the ratio between the proba-
bility of being correct and the amount of work required to check this correctness.
According to this definition, the single equation case is 3/2.15 = 1.4 times more

efficient than the case with the three linear equations.

The basic idea behind our optimization is to retain the most efficient branches
only. The consequence of this, however, is that we introduce a certain probabilty
of rejecting the correct guess and if this happens, the attack will fail. To com-
pensate for this, we take the same approach as Fluhrer and restart the attack
for other sequences of 132 consecutive known key stream bits until the attack
succeeds. The most economical way of doing this, is by using bit sequences ob-
tained by repeatedly shifting the starting position in the known key stream by
one bit. When we reach the end of a data packet, we simply proceed with the
first 132 bits of the next one.

When making our choice of which branches to examine, we must take the
following two criteria into account:

1. Make the examined branches as efficient as possible.

2. Minimise the average number of times the attack needs to be restarted in
order for the correct internal state to be located somewhere on the examined
part of the tree.

To analyse the effect of focusing on a particular set of branches, we introduce

a new sequence ¢q; determined by the three unknown LFSR streams as defined
below:

@ = o ® x} © x} © xia} © iy © wpa] (11)

COSIC internal report, 15 pages, 2001.

The right-hand side of this equation is nothing but a function which returns
3

a 0 when 27 = 23 =z}, i.e. in % of the cases. Assuming that the initial contents
of LFSR1 and the FSM were correctly guessed, the sequence ¢; indicates for each
t on which side of the tree the correct state is located (g; = 1 corresponds to the
single equation case). Consequently, if we choose to examine a particular branch
consisting of a given sequence of efficient and less efficient choices, we will only
succeed in detecting a correct guess when the corresponding pattern of 1’s and
0’s is found in ¢;.

In terms of this new sequence ¢, the two criteria above come down to finding

a set of branches such that:

1. The patterns corresponding with the branches contain as many 1’s as possi-
ble.

2. The expected distance to the first occurrence of one of those patterns in g
is as short as possible.

Guided by the considerations above, we choose to examine the set of branches
determined by patterns given by:

(m —1) I'sand [(01)’s
(00)111(01)11...1(01)11

m + 1 + 2 bits

By allowing the patterns to contain a limited number of 0’s, we dramatically
increase the number of possible patterns, which augments the probability of
finding a match in ¢;. The two leading 0’s, on the other hand, assure that no pair
of patterns ever overlap. As a result, their occurrences will be equally dispersed
in q; and the expected distance between two consecutive occurrences is kept
small'.

Figure 3 illustrates the reduced search tree for the four patterns correspond-
ing to m = 4 and [= 1. Bold lines indicate efficient transitions (corresponding
to right branches in Figure 2).

To calculate the complexity of the tree, we must make a distinction between the
lower (t < m + 1+ 2) and the upper part (¢t > m + [+ 2). The lower part can
once again be described recursively. Guided by Figure 3, we derive? the following
relation for the number of nodes M:

2-143 m=102>0
Mm,)=<{m+3 m>1=0 (12)
Mm—-1,1-1)+Mm-1,1) m>0>0

The solution of this recursive equation is found to be:

! Indeed, we don’t want to optimize the probability of finding a pattern in g, but the
expected distance to its first occurrence.

2 To make clear how the recursion was derived, we should write the equation like this:
Mm,)=2+1+1+Mm-1,1-1)=2)+ (M(m —1,1) — 2).

COSIC internal report, 15 pages, 2001.

10

M(m,1) = (mf 1) + (?:f) (13)

t=m+1+2 —f—-

t=0 -+

Fig.3. Tree for m =4 and [= 1.

When the algorithm reaches ¢t = m + [+ 2 (the number of bits in the selected
patterns), it starts exploring all possible branches for each of the (T) patterns.
Since m+3 - (I+2) variables will have been eliminated at that point, we conclude
that the number of nodes in the upper tree must equal:

l
By adding both parts, we obtain the complexity of the entire tree:

<m>-(NﬂOS—nr—3(k+m)—l) (14)

C = M(m,1) + (7)-(N(103—m—3-(l+2))—1)

m m+1 m+1+3
l l+1 m-1+1

(15)

+<N(103m3-(l+2))1)]

COSIC internal report, 15 pages, 2001.

11

The next thing to examine is the minimum amount of known key stream bits
required for this attack. The algorithm should be repeated at different starting
positions until the sequence ¢; matches one of the (T) presupposed patterns.
Bearing in mind that the occurrences in g; are equally dispersed and that the
probabilities to find a 1 or a 0 in this sequence are 3 versus i, we expect a match

1 1
after about:

1 _ 133 4142

3\m /1 1+2 - m

()" @) (%)
We are now able to make an estimation of the total complexity. Note that the
entire tree should be traversed for each new starting position and for all possible

values for the initial state of the FSM and LFSR1 (4 + 25 bits). This leads to
the final expression:

bits (16)

m+1 m+1+3
I+1 m—1+1
, m+1 m+1+3
I+l m—l+1

C =2%.1.33m.4112.

+<N(103m3~(l+2))1>]

~ 2%9.1.33m .41t

+2%9.1.107™ . 1.27'2 . N(103)
(17)

The last remaining step is to choose adequate values for the parameters m
and [. After evaluating (16) and (17) for different combinations of m and I,
we retain the case m = 66 and [= 4, which seems to achieve a reasonable
trade-off between efficiency and data requirements. For this choice, the resulting
complexity is found to be 23° for 1 Mbit of known key stream. By cutting out the
less efficient branches, we clearly improved our basic attack (complexity 286), but
again, we don’t obtain a significantly better result than Fluhrer’s own optimised
attack (28! steps for 1 Mbit).

5.2 Trimming at the Top

After having simplified the base of the search tree, we now try to reduce the
complexity of the upper part by taking advantage of the nonlinear equations,
collected at each state in a set A/ but disregarded thus far.

Let us return to the base algorithm of Subsection 4.1 and assume that, at a
certain point, 103 — n variables have been eliminated. In order to find out what
equations N typically consists of at this stage, we need to describe the average
path leading to such points. Keeping in mind that an efficient branch gives rise
to 2.15 as many nodes as the less efficient one and given the fact that they
eliminate 1 and 3 variables respectively, we may expect that an average path
reaching this level will consist of k transitions of the efficient type and k/2.15 of
the other type with:

k

COSIC internal report, 15 pages, 2001.

12

o 103
—n
k=215 —2 " 1
> 31215 (19)

At the same time, we will have collected k£ nonlinear equations relating the
remaining n variables. Considering the fact that each individual nonlinear equa-
tion has a probability of 2 to be fulfilled (see Table 2), we can say that a single
equation contains —log, § = 0.42 bits of information about the n variables. Un-
der the assumption that these equations are independent, we expect that this
nonlinear system N will contain inconsistencies as soon as:

—log2%k>n (20)

If we solve this equation after substitution of (19), we obtain that inconsis-
tencies start appearing when n < 15. Suppose now that we have a way to detect
these inconsistencies. This would mean that we only need to explore the tree
until we reach n = 15. Consequently, the number of nodes to check would be
reduced with a factor 1.47'% = 283 as derived from (8).

Of course, the essential problem still to be resolved, is the detection of in-
consistencies in . Obviously, we don’t want to solve this by simply examining
all possible values for the n variables and making sure that no solution exists.
This approach would require going over 2! possibilities, which would actually
increase the total number of nodes to check. In the subsequent paragraphs, we
will describe a method which only exploits a fraction of the information deliv-
ered by the nonlinear equations, but has the advantage that its implementation
is very simple.

Our approach will take advantage of the particular form of the nonlinear
equations in A/. Moreover, instead of trying to solve these nonlinear equations
directly, we will wait until we can use £ to turn them into linear equations. As
shown in Table 2, the general form for the nonlinear equations is

(x? ®a) (22 ®a)=0 (21)

In step 3 of our basic algorithm, the variables x? and z are replaced by linear
combinations of 22 ... 22, and 23 ... x3,. As we climb up in the tree and process
more linear equations, an increasing part of these 31+ 33 variables are eliminated
on their turn. Let {z1,z2,...,2,} denote the set of n remaining independent
variables in £ at some point in the tree. Rewriting the k equations in N as a
function of these n unknowns, we obtain expressions of the form:

(@ @alr; @...0ax,) W @blo &...&blx,)=0 for0<i<k (22)

Suppose now that at a certain point we find that af = 1 and a} = ... =
a? = 0 for some 4. In this case, the nonlinear equation would be reduced to the
linear equation 1- (b? @ blxy @ ... ® bPx,) = 0, which we can simply add to L.
The same effect would occur when b? = 1 and bg =0 for 1 <j <n. It is quite
unreasonable to hope to find such a reduced equation at the bottom of the tree,

COSIC internal report, 15 pages, 2001.

13

but as n decreases and the number of nonlinear equations k augments, so does
the probability of being able to exploit one of them. Assuming that the binary
values a and b! are balanced and independent, we expect that at least one of
the k equations in N will be reduced when:

2.k >2ontt (23)

Once we have found such an equation, removed it from N and used it to
eliminate a variable, it is likely that a chain reaction will be triggered. This can
be explained by the fact that the inequality (23) will still be fulfilled when both
the number of nonlinear equations k and the number of independent variables n
are decremented. We can therefore expect that the elimination of the additional
variable will in turn cause the reduction of another nonlinear equation in N.
This goes on until we run into an inconsistency.

As demonstrated above, we now have a method to detect inconsistencies as
soon as (23) is satisfied. Combining this inequality with (19), we find that the
method can be applied when n < 5. This result shows that inconsistencies will
be detected much later than theoretically possible, but the total number of nodes
is still reduced with a modest factor 1.47° = 228,

This last result, together with the complexity calculated in the previous sub-
section, leads to the conclusion that our final attack should be capable of re-
covering the internal state of the cipher after about 277 steps, given 1 Mbit of
known key stream bits.

6 Simulations

When we estimated the number of nodes N(n) in the basic search tree in Sub-
section 4.2, we made a number of assumptions. In this section we will perform
some simulations to verify the accuracy of our theoretical results.

As computed in (9), traversing a full tree requires the inspection of about
258 2 10'7 nodes. This far exceeds the capacity of our computer. To get a good
estimation of the real complexity anyway, we note that, due to the assumptions
we made, the difference between the theoretical model and the simulation will
most likely be determined by the shape of the tree for small values of n. We will
therefore only explore the upper part of the tree. More precisely, our simulation
will randomly select one of the two possible branches for the first 34 steps of the
algorithm, and start scanning the full tree from that point on. This is repeated
32 times to obtain average values for N(n). The number of nodes checked during
one run appears to fluctuate between 3-10' and 8- 107, depending on where we
end up after the first random steps. This is not surprising, considering the tree’s
asymmetric structure, shown in Figure 2.

The simulated values of N(n) for our basic algorithm are plotted in Figure 4.
When we compare these results to the theoretical calculations indicated by the
dashed curve, we see that the error is very small and that the difference between
the two curves is, as predicted, mainly due to an offset for small values of n.

COSIC internal report, 15 pages, 2001.

14

log, N(n)

25 +

Fig. 4. Theoretical and simulated number of nodes IV as a function of n.

COSIC internal report, 15 pages, 2001.

15

In order to verify the theoretical predictions made in Subsection 5.2, we
restart the simulation, but this time we try to check the consistency of the non-
linear equations by looking for reduced equations as described earlier. The results
plotted in Figure 4 clearly show that the number of nodes drop to zero around
n = 5. This confirms the statements made in Subsection 5.2. Moreover, the gain
induced by performing this trimming appears to be slightly larger than expected,
which, by extrapolation, reduces the total complexity of our final attack to 276.

7 Conclusions

We have derived a new attack based on a previous guess and determine attack
by Scott Fluhrer, capable of recovering the internal state of the Ey key stream
generator in fewer steps (276 vs. 281), given the same amount of known key
stream bits (1 Mbit). The operations in our algorithm are more complicated,
however, and their exact implementation should be further examined in order
to conclude whether or not the attack is faster in practice.

Either way, it is clear that both attacks remain theoretical, in the sense that
the obtained complexities are still enormous compared to the computational
power available in a practical attack. Nevertheless, the algorithms are much
more efficient than an exhaustive key search and may indicate that the Bluetooth
encryption engine does not make use of its 128 secret key bits in the most optimal
way.

COSIC internal report, 15 pages, 2001.

