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origin of
the NOE

Many of the figures in this lecture are taken from references
1,2 and 4.  The treatment mostly follows that of reference 4.

(1) Where does the NOE come from?

(2) Why does the NOE have a sign and magnitude?  Why
     does the molecular weight of the compound matter?

(3) What are the best ways to get NOE correlations?

(4) What do NOE correlations tell us?
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Origin of the NOE
Q: Where does the NOE come from?
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Consider two nuclei, I and S, which share a dipolar (through-
space) coupling.  These dipolar couplings depend on the relative
orientation of I and S.  In solution, molecular tumbling averages
these couplings, so they do not appear in typical NMR spectra.
However, magnetization can still be transfered between them.

We now consider the effect of perturbing the equilibrium
populations of spin S in some way on the intensity of the signal
from spin I.  The NOE is defined as:

S I

For simplicity, let us assume that I and S do not share a scalar
(J) coupling.  The simplest NOE experiment is the steady state
experiment.  One selectively saturates spin S, and then applies
a 90° pulse to observe the effect this has on the spin population
on spin I:

selective saturation
of spin S

90

Remember, saturation means that the population of the  and 
energy levels on spin S are equalized.  In this case, the amount
of time the saturation is applied for is the mixing time for the
experiment; in a general sense, longer mixing times allow more
time for magnetization to be transfered.

At equilibrium, the population differences between the energy
levels is determined by the Boltzmann distribution.  Let's call the
 the population difference for spin I: roughly speaking, the
number of excess nuclei in the lower energy  state.  Because
chemical shifts are much smaller than the Larmor frequency
itself,  is also the population difference for spin S (assuming, as
we are here, that I and S are both protons).

For 4N nuclei, the energy diagram is:

(Of course, there is no spectrum at equilibrium; one only sees
this spectrum if an observation pulse is applied.)  We see that
the population differences across both the I and S transitions
are both D.  Now, upon saturation of S, we have:
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To get these numbers, note that the total number of nuclei is
conserved.  The population difference across I must remain ,
but the population across S must be zero.  Energy has been
applied to the system, so now we must examine how relaxation
sends it back to the surroundings.
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So far, we have:
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Let us examine the populations of  and   What were the
populations at equilibrium, and what are they now?
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
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N + /2
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(Subtracting a little less than before means the quantity is a
little bigger than before.)  Similarly,
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Thus, relaxation must remove spins from  and put them into
 and remove spins from  and put them into .

We must now consider the relaxation processes themselves.
In a two-spin system like this, there are six possible transitions.
Every transition is labeled by the net change in spin quantum
number, M.  Single-quantum transitions (M=1) are "allowed"
and give rise to observable NMR signals, while zero- (M=0)
and double-quantum (M=2) transitions are forbidden and do
not give any signal.  Paradoxically, zero- and double-quantum
transitions still occur; they're just invisible.

On the energy diagram, we have:





 

single-quantum
transitions (W1)
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double quantum
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The W labels are the "transition probabilities" which can be
interpreted as the rate of the transitions.  The frequencies of the
W1 transitions correspond to the Larmor frequencies of the two
nuclei.  The frequency of the W0 transition is the difference in 
the chemical shifts of the two nuclei and is therefore quite small.
The frequency of the W2 transition is the sum of the chemical
shifts of the two nuclei and is therefore large and approximately
twice the Larmor frequency.

The W1 transitions will play no role in the NOE.  The W1
I

transition will not cause a change in the poplations, since the
population difference across / and / is already , its
equilibrium value.  The WI

S transition will simply reduce the
saturation of the S transition, reducing the magnitude of the
NOE, but not changing its direction.

Now, if W2 relaxation is dominant, then a positive NOE will
be observed.  Conversely, if W0 relaxation is dominant, then
a negative NOE will be observed.

How can one have a "negative" NOE?  In the "lightning bolt"
analogy, a positive NOE means that  "zapping" S will give a
more intense signal on I.  With a negative NOE, irradiating S
will give a weaker signal on I.  As it turns out, the sign of the
NOE is determined by molecular tumbling rates, and therefore
molecular weight.
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To see how this works, consider the first case where W2
relaxation is dominant.  From before, we know that this will
reduce the population of the  state and increase the population
of the  state:
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W2

Imagine that, a short time after saturation is stopped, W2 has
moved  nuclei from the  state to the  state ( << ):

W2

This has the simultaneous effect of increasing the population
difference between  and  from  to +.  You can see this
by doing: N + /2 +  - (N - /2) = +.  (The same goes for the
other I transition.)  Thus, the intensity of I increases and a positive
NOE is observed.

The W0 transition does the opposite:
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This decreases the population difference from  to  - .  Thus,
the signal intensity of I is reduced, and a negative NOE is
observed.

Now, of course, if you wait long enough, WI
S relaxation will

eventually return everything to its equilibrium value and the
NOE, whether positive or negative, will disappear.  In summary:

W2 relaxation - makes NOE positive
W0 relaxation - makes NOE negative
W1 relaxation - doesn't change sign, but reduces the
                          magnitude of the NOE

In the steady-state NOE experiment, saturation can be thought
of as essentially continuous.  The relative rates of the various
Ws changes as the experiment starts, and then reaches a
steady state value.  The Solomon equation describes the
sign and magnitude of the observed NOE:

IS is the "cross-relaxation" rate while IS is the "dipolar
longitudinal relaxation" rate.  Note that the ratio of the
gyromagnetic ratios is included to account for the possibility of
heteronuclear NOEs (e.g., broadband decoupling in 1D
carbon-13 spectra).

Q: What determines the relative magnitudes of W2, W0,
     and W1?

As I mentioned in earlier lectures, the principal mechanism of
relaxation in organic molecules is dipole-dipole relaxation:
the presence of fluctuating local magnetic fields induced by
the tumbling of nuclei around each other.  For relaxation to
occur, the frequency of the tumbling must match the Larmor
frequency of the nucleus.
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Correlation Time
Q: What's the relationship between the rate of tumbling and
     the rate of relaxation?

In gases, molecules are essentially isolated.  They spin around
very quickly at rates near the Larmor frequency, which is what is
required for relaxation.  In a liquid, molecules can't tumble very
far until they collide with another molecule.  The collision of
molecule A with B ends up rotating B a random amount which
will generally be small, but could be large.

The random walk is typically used to describe this scenario.
We imagine this is one dimension: the molecule starts at 0.
Every t seconds, it is buffeted by a random amount.  In the
simulation shown below, 300 time steps are taken in total.  With
every step, the position of the molecule can increase or decrease
by up to 0.04 (graph a) or 0.08 (graph b) units.  The probability
distribution is uniform--all the possible changes within the allowed
range are equally likely.  Every run is different, since this is a
random process, but there are bigger changes for the runs in
graph b.

graph a: maximum allowed change, 0.04

graph b: maximum allowed change, 0.08

If we make the unit of change radians, then we can describe
tumbling: rotational diffusion.  The correlation time is the
average amount of time a molecule takes to tumble through
one radian.  Bigger molecules tumble slower and have longer
correlation times.

How does this relate to relaxation?  The local field experienced
by every spin will vary in time.  How much does this local field
fluctuate?  The autocorrelation for a spin i is defined as:

     , i i
i local localA t B t B t  

For example, imagine that the local field for spin i is fluctuating
such that every three seconds, the local field is the same, say,
"10."  Then, A(t,3) = 100 -- big.  But if the field fluctuates in a
more or less random way every three seconds, then if we
average A(t,3) over all the times t, it will tend towards zero.

Overall, the ensemble average over all the N nuclei is:

     1, i i
local local

i

G t B t B t
N

  
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Correlation Time If all this talk of autocorrelation and periodicity gets you thinking

that this is a lot like the Fourier transform, you're right!  As it
turns out, the Weiner-Khinchin theorem tells us that the 
autocorrelation and power spectrum are conjugates--the Fourier
transform of one gives the other.  (Recall that the Fourier 
transform gives a result that is, in general, complex.  The power
spectrum is the norm of the transform.  This amounts to
squaring the real and imaginary parts for every frequency and
adding them up.)

If this seems a bit too abstract, consider the picture given below
(Keeler, figure 9.8).  In (a), t = = 0.  Of course, with a lag of 0,
everything is perfectly correlated with itself.  Therefore, the
ensemble averaged autocorrelation is at a maximum here.  The
actual total value isn't shown, but you would get it by summing
up all the values in the bottom left graph.  Note that the position
of the dots on the x-axis is meaningless--this just spreads out the
values so we can look at them.  In (b), t < c, the correlation time.
This means that the dots have not moved very much, and the
autocorrelation is still big (but a little smaller than it was for =0).
In (c) t >> c, meaning that the dots have moved a lot.  In effect,
the dots don't remember where they were a long time ago.  So
the autocorrelation is much smaller, as evidenced by the many
negative dots in the bottom right graph.

g() is the Fourier transform of the autocorrelation G(w).  The
asterisk denotes the complex conjugate.  The power spectrum
is g()g*()=|g()|2.  (I have dropped the variable t from G to 
indicate that the autocorrelation is being averaged over all time.
For an ergodic or stationary process, it doesn't matter what time
interval you choose--the autocorrelation remains the same.)

What does this all mean?  The power spectrum tells us how
much energy is available at every frequency.  So if we can
determine the correlation function, we can determine the
spectral density.  The amount of energy available at the
Larmor frequency will determine the size of W1.  Similarly, we
can work out how big W0 and W2 are.

As it turns out, if you assume the molecules are hard spheres
floating about in a solvent medium of some fixed viscosity,
you find that (the bar means ensemble average):

     1 *
2

iG g g e dt  






 

   2 exp /local cG B   

The spectral density/power spectrum is given by:
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Note that the total energy (integral of J over all frequencies) is
always fixed (specifically, B2

local), regardless of c.

the autocorrelation

local fields at a later time 

local fields at time 0
(a) t =0 (b) t << c (c) t >> c
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What does this all mean?  The plot below shows the amount of
energy available at every frequency for molecules that are
tumbling slowly (large MW) and quickly (small MW).  (I set the
field strength to 1 arbitrarily):

  2 2

2
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c

c
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


Since the field strength is normalized to 1 for each plot, the area
under each curve (the total energy available) is the same.   The
vertical line represents the Larmor frequency.  So this means
that intermediate-sized molecules have the greatest amount of
energy available for relaxation at the Larmor frequency, and
therefore, the shortest relaxation times and fastest W1 rates.
Similarly, we can see that large molecules have a relatively
small amount of energy at the Larmor frequency and relax
relatively slowly.

Expressions have been derived that relate the rate constants to
the correlation time and internuclear distance.  Note that each
cross-relaxation term depends on r-6, which is why the NOE is
useful.  The magnitude of the NOE depends very strongly on
distance, so we can use it figure out which protons are near each
other.
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The parctical consequence of this is that for any particular
spectrometer frequency 0, there are certain correlation times
that will give weak or no observable NOE.  Here is a chart
showing the theoretical NOE in a proton-proton system.  For
small molecules, it is +50%; for large molecules, it is -100%.
Generally speaking, this "crossover region" occurs for
molecules that weigh 750-2000 Da, although the specific
number depends on the exact molecule.
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Since the crossover region depends on spectrometer frequency,
it is possible to change the spectrometer frequency to increase
the magnitude of the NOE.  This graph shows how the theoretical
NOE depends on the spectrometer frequency (MHz):

If 0c << 1, which is true for small, rapidly tumbling molecules,
then we are in the extreme narrowing limit.   Under these
conditions, the equations given above simplify:

This means that regardless of the internuclear separation of the
two nuclei in this two spin system, the theoretical NOE is 50%
and independent of distance!  Clearly, this is unrealistic--the
problem is that in real molecules, there are other sources of
relaxation.  However, it seems clear that the magnitude of the
steady state NOE does not relate to distance in any simple
way.

Multispin Systems
So what is the effect of other relaxation pathways?  These
introduce a new source of W1 relaxation, which tend to decrease
the magnitude of the steady state NOE.  Here is a graph
showing the expected NOE with (solid line) and without (dashed
line) external relaxation:

These external pathways could be dissolved oxygen (para-
magnetic), paramagnetic ions, quadrupolar nuclei, the solvent
(although deuteration means this is less important), etc.  The
graph shows that this is most serious for small molecules,
where IS is relatively small compread to I*.

However, we are ignoring a major source of undesired dipolar
relaxation: other spins!  Here, N is a neighboring spin:

irradiate
S I

IS
(NOE)

N

I* (leakage)
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Here's where you can get a negative NOE, even if you have a
small molecule with a short correlation time.  Remember,
saturation decreases the population difference across spin S,
leading to an increase in the population difference across spin I,
leading to a positive NOE.  If a neighboring spin N is near spin I,
then the increase in the population difference across N will lead,
through the same reasoning, to a negative NOE on spin N.

Here, are some figures from Claridge to show you what's going
on.  Here, the numbers between the bars indicate the inter-
nuclear distances in angstroms.  If we irradiate B, then
regardless of how close spin C is to B, we still get roughly a 50%
NOE at A (although if C is closer, this is reduced a bit).  This
analysis assumes there's no dipolar coupling between A and C:

Multispin Systems

But when A is irradiated, you get a positive NOE at B, but a
negative NOE at C:

With a four spin system, things get more complicated:

So negative NOEs can be a sign of these so-called relay effects.
In a real molecule, there are a lot of spins, so over the steady
state saturation period, one has a complicated series of "spin
diffusions":

Negative NOEs can also arise from saturation transfer/chemical
exchange.  You can think of chemical exchange as a shuttle
that can take saturated nuclei and put them at other sites, even
though they haven't been selectively irradiated.
Transient NOEs
Q: If steady state NOEs are not related to internuclear
     distance in any simple way, then what good is the NOE?

The key here is that, in the buildup to the steady state, NOEs
between nuclei that are far apart take longer to develop than
NOEs between nuclei that are closer together.  This gives rise
to the idea of transient NOE experiments.  Here, what we do is
selectively invert spin S, wait a mixing time m, and then observe
the longitudinal populations:

In the old days, people used steady state NOE experiments in
the form of "NOE difference" experiments.  Nowadays, people
use transient NOE experiments in the form of 1D-NOESY and
2D-NOESY.  I'll consider them in detail in a bit.

The key question here now: how does the transient NOE
intensity depend on internuclear separation?
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Transient NOEs
The clever thing is that the NOE starts growing linearly (the
initial rate approximation), reaches a maximum, and then
decreases back to equilibrium as the equilibrium population
differences are restored:

As it turns out (there's factor of 2 because the population of S is
initially inverted, rather than equalized):

Note that the maximum homonuclear enhancement is now 38%,
rather than 50% as in a steady state experiment.  (For larger
molecules, it is still -100%.)  So if you want to measure
internuclear separations, you can measure two transient NOEs
in the initial linear growth region.  If the internuclear distance is
known in one case, then the distance for the other case can be
inferred.

Here it is mathematically.  In the linear growth region:
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This means that we can consider the ratio of the NOEs for two
pairs A-B and X-Y:
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Now, in practice, this is more complicated.  Molecules often
have more than one conformation, and the NOE will see an
averaged structure which more heavily weights the conformers
that have small internuclear separations (because of the heavy
r-6 dependence).  Typically, people use this for proteins, rather
than small molecules, although in principle the ideas are the
same.  In a protein, one can measure a large number of NOEs
to generate "distance constraints" on the various internuclear
separations in the molecule.  Computer modeling can then
provide a picture of the solution state conformation of the
molecule.

In conclusion, one can take NOEs and turn them into a
quantitative measure of solution state distance by measuring a
series of NOEs with different mixing times.  The initial rates
correspond to the distances:

Q: What about molecules in the crossover region?

I already mentioned that you can adjust the spectrometer
frequency, but in many cases, this is not a satisfactor solution.
As it turns out, one can perform a different kind of NOE called
the rotating frame NOE (ROESY).
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Rotating Frame NOE: ROESY
The idea is that this experiment has a different kind of intrinsic
cross-relaxation rate which is given by:

For all realistic values of correlation time, this remains positive.
Hence, the ROE is always positive.  It has a maximum of +68%
for large molecules, but it never crosses zero:
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The growth rate of the NOE and ROE are similar for small
molecules, but the ROE grows twice as fast as the NOE for
large molecules.

How does it work?  The pulse sequence involves selective
inversion of the target peak, and then rotation of all resonances
into the xy plane:

The experiment is analogous to the NOE.  In the NOE, 
magnetization is transfered from an inverted resonance along
-z to upright resonances along +z (thus, one doesn't have to
worry about chemical shift offsets).  Magnetization is under the
influence of the large applied B0 field.

In the ROE, magnetization is transfered from a source along -y
to other resonances along +y.  Magnetization is under the
influence of the relatively small spin-locking field B1, which
serves to refocus chemical shifts continually.  Because B1 << B0,
the relevant "Larmor frequency" is much smaller, and therefore,
there is a lot of energy at this smaller frequency, regardless of
how large the molecules are.

Artifacts and Peak Phase
Like many other NMR experiments, NOESY and ROESY
spectra suffer from artifacts, which must be recognized if a
spectrum is to be interpreted correctly.  In general, whether 1D
or 2D experiments are being run, experiments are presented
in phase-sensitive mode.  By convention, diagonal peaks are
always phased up.

For NOESY:

diagonal: up
positive NOE: down            chemical exchange: up
negative NOE: up                COSY: antiphase



As it turns out, the COSY and NOESY (and EXSY) pulse
sequences are basically the same.  In COSY, we are interested
in magnetization transfer through bonds; in NOESY, we are
interested in magnetization transfer through space.  COSY
correlations arise from zero-quantum coherence, which we will
discuss in detail later in the course.  These cannot be removed
by gradients or phase-cycling, but some special methods like
"z-filtration" have been developed to get rid of them.  (I'll tell
you about that later, too.)  The point is that COSY crosspeaks
are easy to identify because they have an "up-down" phase.
They are particularly common when J is large; for example,
between two trans-diaxial protons in a cyclohexane.

Here's a NOESY spectrum without any removal of zero-
quantum artifacts:

Artifacts and Peak Phase
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Here, a sophisticated method called "swept-frequency inversion"
was used to remove the antiphase COSY signals:

ROESY spectra aren't immune to artifacts, either.  Instead of
COSY artifacts, they have TOCSY artifacts.  Clever people like
AJ Shaka (JACS 1992 114 2157) have figured out that the
"transverse ROESY" experiment, or t-ROESY can get rid of
most of these annoying TOCSY crosspeaks.  The price is that
there is some sensitivity loss (none for small molecules, 2x for
intermediate molecules, and 4x for very large molecules).  It
works by alternating the phase of the spin-locking train:



The fact that you can have TOCSY transfer means that you can
have potential confusion because of sequential TOCSY/ROE
or ROE/TOCSY transfers:

Artifacts and Peak Phase
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Thus, everybody uses t-ROESY in the crossover region, even if
there's some loss in sensitivity.  For small or very large
molecules, NOESY is preferred.  Finally, I should mention that
chemical exchange peaks are also positive in ROESY spectra,
so this can be a useful way to identify OH protons.

The bottom line: if your molecule has a MW between 750
and 2000 Da, and NOESY gives weak correlations, use
t-ROESY instead.

You don't have to believe just my words.  Here are some spectra
from Professor Reynolds showing that for small molecules,
NOESY and ROESY look quite similar, but for large molecules,
ROESY performs a lot better.  These first spectra were taken
with at+d1=1.8 s, ni=256 with linear prediction to 1024, and are
presented at the same scale in phase-sensitive mode.

NOESY (a small molecule)

ROESY (the same molecule and conditions)
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NOESY (an intermediate-sized, crossover region molecule)

ROESY (the same molecule and conditions)

For historical reasons, I'm going to talk a little bit about NOE
difference experiments.  The idea is to take pairs of scans, one
where the selective presaturation is applied on resonance, and
one where it isn't.  The presaturation is not just turned off in the
control experiment so as to have conditions that are as similar
as possible.  The more non-NOE related differences there are,
the more noise.  The off-resonance presaturation is typically
applied at the edge of the spectrum.

1D NOE Experiments

Here are a few spectra (top: NOE diff., bottom: regular 1D):

Here, it seems NOE was used to assign the 2,5-cis geometry
in this five-membered ring.  I don't know the specifics of this
case, but in general, using NOE to assign the relative
configuraiton in five-membered rings is dangerous since they
are so conformationally flexible.
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The results don't look as good when there are some instabilities
in the spectrum between scans.  Here, true NOEs are marked
with Ns and difference artifacts are marked with asterisks:

1D NOE Experiments

Short-term instabilities are removed by signal averaging; long-
term instabilities are removed by interleaving the control and
NOE scans.  "Steady state" scans are also required at the
beginning, since the repetition delay is usually much less than
5T1.

There are a lot of details about how to optimize the pre-
saturation period, off-resonance effects, saturation transfer, etc.
but I won't get into them.  The bottom line is NOE difference
experiments take a long time to do because you need to
supress the non-NOE peaks, and even then, they might not
be supressed very well.

Is there a better way?  Why, yes: the 1D-NOESY sequence.
The basic form is shown below:

Note that this is a transient experiment, as opposed to the steady
state NOE difference experiments I just mentioned.  Now, it turns
out this is not the experiment people use.  Instead, they use the
"DPFGSE-1D-NOESY" sequence:

This stands for "double pulsed field gradient spin echo."  Aside
from being a mouthful, this is by far the most robust experiment
to date, and gives absolutely beautiful results in a much shorter
time period.  From Professor Reynolds again:

NOE difference DPFGSE-NOESY

Clearly, the DPFGSE-NOESY is much cleaner (total acquisition
times were held constant).  So how does it work?  We must
understand what pulsed field gradients do...
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Developed in the 1990s, PFGs revolutionized NMR.  The idea
is to apply a magnetic field on top of the B0 field that is not
uniform, but instead varies over the sample.  Typically, when
we talk about PFGs, we mean z-gradients:

Pulsed Field Gradients

  0g zB z B G z 

This says that the field now depends linearly on the z-position in
the tube.  Graphically:

From our prior discussions of the spin echo, you should realize
that this is a tremendous amount of magnetic field inhomog-
eneity, and consequently, T2* dephasing is extreemly fast and
no signal is observed.  Were we to look at the chemical shifts of
the same nucleus across different z-slices of the tube, we would
find they vary linearly with the gradient.

The picture, then, is of a coherence helix.  Imagine applying a
90 degree pulse, followed by a gradient.  The vectors dephase
in a helical way, depending on their z-position in the tube:

If we then apply a negative gradient of the same magnitude for
the same period of time, the coherence helix gets unwound, and 
therefore, the peak comes back.  This is a gradient echo.

Q: How can gradients be used for selective excitation?

Why is selective excitation advantageous?  Remember, in an 
NOE difference experiment, the peaks that are not related to
NOE enhancment still appear, but are cancelled on alternate
scans.  The desired signal is the difference between two signals 
of essentially maximum height.  So this is getting the difference
between two big numbers (105 - 100 = 5).  In 1D-NOESY, only
the irradiated peak and any NOE crosspeaks appear, so every 
scan essentially collects useful information.  This means we see 
the "5" signal directly, giving better signal to noise.
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Recall from our discussion of the Fourier transform that peaks
that are narrow in the time domain correspond to broad peaks
in the frequency domain--this is a manifestation of the
uncertainty principle.  The visual representation is as follows.

Suppose I give you two waves and I ask you tell me what
frequency ranges they cover:

Soft Pulses and PFGs

In the first one, you observe the pulse for quite a long time, and
you can with pretty good certainty that it has a frequency of 2
rad/s.  But in the second one, you only see one crest, so you're
not really as sure what frequency it is--its representation in the
frequency domain is braoder to reflect this uncertainty.

Typical pulses are rectangular, "hard" pulses that excite a

range of frequencies.  As it turns out, the rectangular pulse
excites a range of frequencies like sin()/--the "sinc" function:

Notice that the shorter the rectangular pulse, the wider the sinc.
So one way to get a selective excitation is to use a time-domain
Gaussian (I'll discuss this in more detail in the next lecture):
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Now, this is pretty good, but it's not perfect.  Here's a spectrum:
Soft Pulses and PFGs

In the case of 1D-NOESY, this is just not good enough.  A more
poignant demonstration is to show the "excitation profile."  To
make one, you take a sample with one resonance, and move
the center of the spectral window around (a standard Gaussian
pulse excites maximally at the center of the spectral window).
Typically, people use HDO for this purpose.  Here are the
excitation profiles for some Gaussians:

We need a way to get rid of the undesired signals.  Remember,
signals arise from phase coherence in the xy-plane, which can
be destroyed by a gradient.  The "PFGSE" procedure is:

Consider the effect of this sequence on any peaks that are not
inverted by the selective pulse in the middle.  Just consider one
resonance frequency.  The first 90° pulse puts the vector into
the xy plane.  Then, a gradient is applied, creating a helix.  The
xy phase of every vector depends on its position in the tube, so
a coherence helix is created.  Applying the same gradient again
simply twists the helix around twice.  The net result is no signal:
the phases of the vectors in the x-y plane are distributed in a
uniform way; signal requires phase coherence.



Now, let's look at what happens to a resonance that does get
inverted.  The 180° pulse reverses the handedness of the helix
such that application of the second gradient (identical to the
first) causes the reversed helix to unwind.  Thus, at the end,
coherence returns in a gradient echo:
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Soft Pulses and PFGs This strategy, known as excitation sculpting was developed by

A.J. Shaka.  Now, as it turns out, the phase properties of the
selective excitation are sometimes problematic (see Lecture 13).
The application of a second PFGSE will cancel these errors.
The gradient strength is set to a different number, so as to avoid
accidentally refocusing any of the previous dephased signals.
This is the DPFGSE-1D-NOESY sequence:

The results are very good: notice that the very strong signals
are more or less removed.

Now, of course, nothing is perfect.  You can see that there are
still a few "wiggles" from incomplete suppression.  However,
this is still a huge improvement from NOE difference.

Bottom line: 1D-NOESY is awesome--use it.

If you do this experiment in real life, you will find that you get
much better results if the number of scans is a multiple of 4.
Why is that?



The usual answer to questions like that is that interrupting a
phase cycle will produce incomplete cancellation.  Since phase
cycles need blocks of four scans to work, not using a multiple of
four for the total number of scans will result in an incomplete
block at the end of the experiment.  This gives rise to all sorts of
"weirdness" in the spectrum.

In spin-echo sequences like DPFGSE-1D-NOESY, these
artifacts are referred to as "ghosts" or "phantoms."  These can
arise from imperfections in the 180° refocusing pulse or more
insidious effects from the cooperativity of errors in both the 90°
and 180° pulses.  The solution is to use the EXORCYCLE
phase cycle, which is the analog of CYCLOPS for spin echo
sequences.

The strategy is to increment the phase of the 180° pulse and the
receiver phase by 90° in each step:
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EXORCYCLE

90y

 

180

increment phase
with receiver phase

The phase cycle is:

180°: x, y, -x, -y; receiver: x, -x, x, -x

This gives alternately positive and negative echoes (from the
perspective of someone at +x).  Let's take a look at the vector
diagrams.  For this, I will consider two vectors of different
chemical shift and place the rotating frame reference
frequency at the average of their offsets.  Let us assume there
is no J-coupling.  The big dot below indicates the position of the
receiver (i.e., its phase).

For step 1 of the phase cycle, we have 180°: x, receiver: x.
This gives a positive echo:

Mz, then
90°y gives: x

y

x

y



x

y

180x


x

y
receiver and
vectors are both
at +x, so the
echo is positive

In step 2, you get a negative echo, but since the receiver phase
has been incremented as well, the signal is positive again:

Mz, then
90°y gives: x

y

x

y



x

y

180y


x

y

echo is negative
but signal is
positive

Steps 3 and 4 mirror 1 and 2, respectively.  Now, any unwanted
signals will be alternately inverted by the 180° pulse, so on
adding up the data from the four scans, they will cancel.  The
desired signals will add up constructively.

Pulse imperfections are not the only source of problems that
require some phase cycling.  To see this, we have to consider
the disposition of the other spins in the DPFGSE-1D-NOESY
sequence.



Here's Figure 8.27 from Jacobsen:
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Relaxation Artifacts

(To make life simpler here, let's just imagine there's only one
spin echo.)  At the end of the spin echo, the selectively
refocused vectors lie along the x-axis.  The subsequent 90°
pulse moves the "source" nuclei to the -z axis, where they can
begin to transfer coherence through the NOE and eventually
come back to equilibrium.at +z.

The trouble is with the other, non-refocused spins.  At the start
of the mixing period, they are alternately disposed with +z and
-z components.  An immediate 90° read pulse will show that
these have been fully dephased.  However, after a finite mixing
time, the -z components will begin to recover towards the +z
direction, whereas the +z components, already being at
equilibrium, will not.  Thus, the unwanted signals will start to
"grow back."

Additionally, since on average half of the undesired peaks are
inverted to some degree (even though this is made invisible by
the lack of phase coherence), they will start to develop NOEs as
well.  Thus, we can have a whole host of NOEs from the
undesired signals, even though they are apparently invisible!

The solution is to alternate the phase of the middle 90° pulse--
the one after the PFGSE.  For the desired peak, this means
that alternate scans will be control experiments.  The phase will
alternate between -z (which does give NOEs) and +z (which
doesn't).  For the undesired peaks, this means that the helix
just gets flipped over, so that for both pulse phases, the same
artifacts appear.  This basically means that every other scan
(those where the desired peaks are along +z) is a control
experiment which produces only artifacts.  The other half of the
scans produce artifacts and NOE.  By subtracting the former
from the latter, we can get rid of the artifacts.

So in some sense, PFGSE-NOESY experiments are also
difference experiments.  However, the dynamic range of the
signals being subtracted is much smaller than in the NOE
difference experiment.  So the experiment is still much better
Applications of the NOE
Here are some of the common applications of the NOE in
organic chemistry.

Olefin Geometry:
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Applications of the NOE
1,3-Relationships in Cyclohexanes:
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Resonance Assignment:

You can use NOESY as a complementary tool to things like
COSY or HMBC.  However, this may be dangerous because you
don't yet know what all the peaks represent.

Endo vs. Exo (Diels-Alder):
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vs. O
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i, i+1 Assignments in Peptides:

Solution State Conformations:

The presence of different NOEs can help narrow down the
conformation of a molecule.  In J-based analysis, NOEs can
help distinguish between two relative configurations that
otherwise give the same couplings.

In protein work, NOEs are used to create constaints on intra-
molecular distances.  These constraints can then be used in
molecular mechanics optimizations to provide a picture of the
solution state conformation of the protein:

What This Means in the Lab
(1) Use 1D-NOESY if you have a specific correlation you're
     looking for.  Use 2D-NOESY if you want to look at all the
     correlations at once.  Pay attention to the mixing time (mix)
     and recycle delay (at+d1).  mix should be about T1; at + d1
     should be about 2T1.  (These are for natural products.)

(2) Switch from NOESY to t-ROESY if your compound is in
     the crossover region (750-2000 Da).

(3) COSY artifacts are common in NOESY spectra and have an
     anti-phase appearance.  Exchange peaks are negative.

(4) Use DPFGSE-1D-NOESY, not NOE difference, since this
     gives much better results.

(5) For either steady state or transient NOEs, the percentage
     NOE is, in the absence of calibration, not quantitatively
     related to distance.  For most work, it suffices to call a
     crosspeak

(6) NOESY peaks are not symmetric because of spin diffusion.
     That means the crosspeak from A to B is not necessarily
     the same intensity as a crosspeak from B to A.  (!)


