

Another Synthetic Proof of Dao's Generalization of the Simson Line Theorem

Nguyen Van Linh

Abstract. We give a synthetic proof of Dao's generalization of the Simson line theorem.

In [3], Dao Thanh Oai published without proof a remarkable generalization of the Simson line theorem.

Theorem 1 (Dao). Let ABC be a triangle with its orthocenter H, let P be an arbitrary point on the circumcircle. Let l be a line through the circumcenter and AP, BP, CP meet l at A_1 , B_1 , C_1 , respectively. Denote A_2 , B_2 , C_2 the orthogonal projections of A_1 , B_1 , C_1 onto BC, CA, AB, respectively. Then A_2 , B_2 , C_2 are collinear and the line passing through A_2 , B_2 , C_2 bisects PH.

Figure 1. Dao's generalization of Simson line theorem

Note that when l passes through P, the line coincides with the simson line of P with respect to triangle ABC. Two proofs, by Telv Cohl and Luis Gonzalez, can be found in [2]. Nguyen Le Phuoc and Nguyen Chuong Chi have given a synthetic proof in [4]. In this note we give another synthetic proof of Theorem 1 by considering the reformulation.

Theorem 1' Let ABCD be a quadrilateral inscribed in circle (O). An arbitrary line l through O intersects the lines AB, BC, CD, DA, AC, BD at X, Y, Z, T,

Publication Date: March 13, 2016. Communicating Editor: Paul Yiu.

U, V, respectively. Denote by X₁, Y₁, Z₁, T₁, U₁, V₁ the orthogonal projections of X, Y, Z, T, U, V onto CD, AD, AB, BC, BD, AC respectively.
(a) The six points X₁, Y₁, Z₁, T₁, U₁, V₁ all lie on a line L.
(b) If H_a, H_b, H_c, H_d are the orthocenters of triangles BCD, CDA, DAB, ABC respectively, then AH_a, BH_b, CH_c, DH_d share a common midpoint K which lies on the line L.

We shall make use of two lemmas.

Lemma 2 ([1, Theorem 475]). *The locus of a point the ratio of whose powers with respect to two given circles is constant, both in magnitude and in sign, is a circle coaxal with the given circles.*

Lemma 3. Let M, N, P, Q be the midpoints of AB, BC, CD, DA respectively, and d_M , d_N , d_P , d_Q the perpendiculars from M, N, P, Q to CD, DA, AB, BC respectively. The eight lines AH_a , BH_b , CH_c , DH_d , d_M , d_N , d_P , d_Q are concurrent.

Figure 2. Lemma 3

Proof. Since the distance between one vertex of a triangle and its orthocenter is twice the one between circumcenter and the opposite side, we have $AH_b = 2OP = BH_a$. But $AH_b \parallel BH_a$ then AH_bH_aB is a parallelogram. This means AH_a and BH_b share a common midpoint K. The actually applies to every pair among the four segments AH_a , BH_b , CH_c and DH_d . Therefore, K is the common midpoint of the four segments. Moreover, MK is a midline of triangle ABH_a then $MK \parallel BH_a$, and is perpendicular to CD. It is the line d_M . Similarly, d_N , d_P , d_Q are the lines NK, PK, QK respectively.

Proof of Theorem 1'

Denote Z'_1, X'_1 the intersections of Y_1T_1 with AB, CD, respectively.

We will show that the ratios of powers of four points Z'_1 , X, X'_1 , Z with respect to (O) and the circle with diameter YT are equal.

Figure 3. Proof of Theorem 1'(a)

By simple angle chasing, we have (i) $\angle Z'_1 Y_1 A = \angle T Y_1 T_1 = \angle T Y T_1 = \angle B Y X$, (ii) $\angle Z'_1 A Y_1 + \angle X A T = 180^\circ$, (iii) $\angle Z'_1 T_1 B = \angle A T X$, (iv) $\angle Z'_1 B T_1 + \angle Y B X = 180^\circ$. From these, $iii = \langle Z' X A = iii = \langle Z' T B = -iii = \langle X T A = -iii = \langle Z' T B = -iii = \langle X T A = -iii = \langle Z' T B = -iii = \langle X T A = -iii = \langle Z' T B = -iii = \langle X T A = -iii = \langle Z' T B = -iii = \langle X T A = -iii = \langle Z' T B = -iii = \langle X T A = -iii = \langle Z' T B = -iii = \langle X T A = -iii = \langle Z' T B = -iii = \langle X T A = -iii = -iii = \langle X T A = -iii = -iii = \langle X T A = -iii = -i$

$$\frac{\sin \angle Z_1' Y_1 A}{\sin \angle Z_1' A Y_1} \cdot \frac{\sin \angle Z_1' T_1 B}{\sin \angle Z_1' B T_1} = \frac{\sin \angle X T A}{\sin \angle X A T} \cdot \frac{\sin \angle X Y B}{\sin \angle X B Y}$$
$$\Longrightarrow \frac{Z_1' A \cdot Z_1' B}{Z_1' Y_1 \cdot Z_1' T_1} = \frac{X A \cdot X B}{X Y \cdot X T}$$
$$\Longrightarrow \frac{\mathscr{P}_{(O)}(Z_1')}{\mathscr{P}_{(YT)}(Z_1')} = \frac{\mathscr{P}_{(O)}(X)}{\mathscr{P}_{(YT)}(X)}.$$

The same reasoning actually gives

$$\frac{\mathscr{P}_{(O)}(Z_1')}{\mathscr{P}_{(YT)}(Z_1')} = \frac{\mathscr{P}_{(O)}(X)}{\mathscr{P}_{(YT)}(X)} = \frac{\mathscr{P}_{(O)}(X_1')}{\mathscr{P}_{(YT)}(X_1')} = \frac{\mathscr{P}_{(O)}(Z)}{\mathscr{P}_{(YT)}(Z)}.$$

By Lemma 2, the four points X, Z, X'_1 , Z'_1 lie on a circle ω which is coaxal with (O) and the circle with diameter YT. The center of ω obviously lies on l. Therefore, XZ is a diameter of ω . It follows that Z'_1 and X'_1 are the orthogonal projections of Z, X onto AB and CD respectively. This means X'_1 and Z'_1 coincide with X_1 and Z_1 respectively. Hence, X_1 , Y_1 , Z_1 , T_1 are collinear on a line \mathcal{L} . By a similar reasoning the same line \mathcal{L} also contains U_1 and V_1 .

Figure 4. Proof of Theorem 1'(b)

On the other hand, by Lemma 3, QK is parallel to ON, and NK is parallel to OQ. Thus, ONKQ is a parallelogram. From this, $\frac{KN}{Y_1Y} = \frac{OQ}{Y_1Y} = \frac{T_1N}{T_Y}$. By Thales' theorem, T_1 , K, Y_1 are collinear. Therefore, the line \mathcal{L} containing the six points X_1 , Y_1 , Z_1 , T_1 , U_1 , V_1 also passes through K. This completes the proof of Theorem 1'.

The Simson line theorem has a well-known property which states that *the angle* between the Simson lines of two point P and P' is half the angle of the arc PP'. In Theorem 1, if we choose another point P' on (O) and define A'_2 , B'_2 , C'_2 analogously to A_2 , B_2 , C_2 respectively, then the angle between the lines through A_2 , B_2 , C_2 and A'_2 , B'_2 , C'_2 is also half the angle of the arc PP'.

Figure 5. Another property of the generalization of Simson line

Proof. Let Y be the intersection of l and AC, Y_1, Y'_1 be the orthogonal projections of Y onto PB, P'B, respectively; d and d' the lines through A_2, B_2, C_2 and A'_2, B'_2, C'_2 , respectively. Let d meets d' at L.

From the second form of Theorem 1, Y_1 lies on d and Y'_1 lies on d'.

We have the directed angle between the lines d and d' given by

$$(d, d') = \angle B'_2 L B_2$$

= $180^\circ - \angle L B_2 B'_2 - \angle L B'_2 B_2$
= $\angle Y'_1 B'_1 B_1 - \angle Y_1 B_2 Y$
= $\angle Y'_1 B'_1 B_1 - \angle Y_1 B_1 Y$
= $\angle B'_1 B B_1$
= $\angle P' B P$,

which is half the angle of the arc PP'.

References

- [1] Nathan Altshiller-Court, *College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle*, Dover Publications, New York, (2007) p.211-213.
- [2] A. Bogomolny, A Generalization of Simson line, available at http://www.cut-the-knot.org/m/Geometry/GeneralizationSimson.shtml
- [3] T. O. Dao, Advanced Plane Geometry, message 1781, September 20, 2014.
- [4] L. P. Nguyen and C. C. Nguyen, A synthetic proof of Dao's generalization of the Simson line theorem, to appear in *Math. Gazette*.
- [5] P. Yiu, Advanced Plane Geometry, message 1783, September 21, 2014.

Nguyen Van Linh: 22 Ba Chua Kho street, Bac Ninh city, Vietnam. *E-mail address*: lovemathforever@gmail.com