Another Synthetic Proof of Dao's Generalization of the Simson Line Theorem

Nguyen Van Linh

Abstract

We give a synthetic proof of Dao's generalization of the Simson line theorem.

In [3], Dao Thanh Oai published without proof a remarkable generalization of the Simson line theorem.

Theorem 1 (Dao). Let ABC be a triangle with its orthocenter H, let P be an arbitrary point on the circumcircle. Let l be a line through the circumcenter and AP, $B P, C P$ meet l at A_{1}, B_{1}, C_{1}, respectively. Denote A_{2}, B_{2}, C_{2} the orthogonal projections of A_{1}, B_{1}, C_{1} onto $B C, C A, A B$, respectively. Then A_{2}, B_{2}, C_{2} are collinear and the line passing through A_{2}, B_{2}, C_{2} bisects $P H$.

Figure 1. Dao's generalization of Simson line theorem
Note that when l passes through P, the line coincides with the simson line of P with respect to triangle $A B C$. Two proofs, by Telv Cohl and Luis Gonzalez, can be found in [2]. Nguyen Le Phuoc and Nguyen Chuong Chi have given a synthetic proof in [4]. In this note we give another synthetic proof of Theorem 1 by considering the reformulation.

Theorem $\mathbf{1}^{\prime}$ Let $A B C D$ be a quadrilateral inscribed in circle (O). An arbitrary line l through O intersects the lines $A B, B C, C D, D A, A C, B D$ at X, Y, Z, T,

Publication Date: March 13, 2016. Communicating Editor: Paul Yiu.
U, V, respectively. Denote by $X_{1}, Y_{1}, Z_{1}, T_{1}, U_{1}, V_{1}$ the orthogonal projections of X, Y, Z, T, U, V onto $C D, A D, A B, B C, B D, A C$ respectively.
(a) The six points $X_{1}, Y_{1}, Z_{1}, T_{1}, U_{1}, V_{1}$ all lie on a line \mathcal{L}.
(b) If $H_{a}, H_{b}, H_{c}, H_{d}$ are the orthocenters of triangles $B C D, C D A, D A B, A B C$ respectively, then $A H_{a}, B H_{b}, C H_{c}, D H_{d}$ share a common midpoint K which lies on the line \mathcal{L}.

We shall make use of two lemmas.
Lemma 2 ([1, Theorem 475]). The locus of a point the ratio of whose powers with respect to two given circles is constant, both in magnitude and in sign, is a circle coaxal with the given circles.

Lemma 3. Let M, N, P, Q be the midpoints of $A B, B C, C D, D A$ respectively, and $d_{M}, d_{N}, d_{P}, d_{Q}$ the perpendiculars from M, N, P, Q to $C D, D A, A B$, $B C$ respectively. The eight lines $A H_{a}, B H_{b}, C H_{c}, D H_{d}, d_{M}, d_{N}, d_{P}, d_{Q}$ are concurrent.

Figure 2. Lemma 3

Proof. Since the distance between one vertex of a triangle and its orthocenter is twice the one between circumcenter and the opposite side, we have $A H_{b}=2 O P=$ $B H_{a}$. But $A H_{b} \| B H_{a}$ then $A H_{b} H_{a} B$ is a parallelogram. This means $A H_{a}$ and $B H_{b}$ share a common midpoint K. The actually applies to every pair among the four segments $A H_{a}, B H_{b}, C H_{c}$ and $D H_{d}$. Therefore, K is the common midpoint of the four segments. Moreover, $M K$ is a midline of triangle $A B H_{a}$ then $M K \|$ $B H_{a}$, and is perpendicular to $C D$. It is the line d_{M}. Similarly, d_{N}, d_{P}, d_{Q} are the lines $N K, P K, Q K$ respectively.

Proof of Theorem 1^{\prime}

Denote $Z_{1}^{\prime}, X_{1}^{\prime}$ the intersections of $Y_{1} T_{1}$ with $A B, C D$, respectively.
We will show that the ratios of powers of four points $Z_{1}^{\prime}, X, X_{1}^{\prime}, Z$ with respect to (O) and the circle with diameter $Y T$ are equal.

Figure 3. Proof of Theorem $1^{\prime}(a)$
By simple angle chasing, we have
(i) $\angle Z_{1}^{\prime} Y_{1} A=\angle T Y_{1} T_{1}=\angle T Y T_{1}=\angle B Y X$,
(ii) $\angle Z_{1}^{\prime} A Y_{1}+\angle X A T=180^{\circ}$,
(iii) $\angle Z_{1}^{\prime} T_{1} B=\angle A T X$,
(iv) $\angle Z_{1}^{\prime} B T_{1}+\angle Y B X=180^{\circ}$.

From these,

$$
\begin{aligned}
& \frac{\sin \angle Z_{1}^{\prime} Y_{1} A}{\sin \angle Z_{1}^{\prime} A Y_{1}} \cdot \frac{\sin \angle Z_{1}^{\prime} T_{1} B}{\sin \angle Z_{1}^{\prime} B T_{1}}=\frac{\sin \angle X T A}{\sin \angle X A T} \cdot \frac{\sin \angle X Y B}{\sin \angle X B Y} \\
\Longrightarrow & \frac{Z_{1}^{\prime} A \cdot Z_{1}^{\prime} B}{Z_{1}^{\prime} Y_{1} \cdot Z_{1}^{\prime} T_{1}}=\frac{X A \cdot X B}{X Y \cdot X T} \\
\Longrightarrow & \frac{\mathscr{P}_{(O)}\left(Z_{1}^{\prime}\right)}{\mathscr{P}_{(Y T)}\left(Z_{1}^{\prime}\right)}=\frac{\mathscr{P}_{(O)}(X)}{\mathscr{P}_{(Y T)}(X)} .
\end{aligned}
$$

The same reasoning actually gives

$$
\frac{\mathscr{P}_{(O)}\left(Z_{1}^{\prime}\right)}{\mathscr{P}_{(Y T)}\left(Z_{1}^{\prime}\right)}=\frac{\mathscr{P}_{(O)}(X)}{\mathscr{P}_{(Y T)}(X)}=\frac{\mathscr{P}_{(O)}\left(X_{1}^{\prime}\right)}{\mathscr{P}_{(Y T)}\left(X_{1}^{\prime}\right)}=\frac{\mathscr{P}_{(O)}(Z)}{\mathscr{P}_{(Y T)}(Z)} .
$$

By Lemma 2, the four points $X, Z, X_{1}^{\prime}, Z_{1}^{\prime}$ lie on a circle ω which is coaxal with (O) and the circle with diameter $Y T$. The center of ω obviously lies on l. Therefore, $X Z$ is a diameter of ω. It follows that Z_{1}^{\prime} and X_{1}^{\prime} are the orthogonal projections of Z, X onto $A B$ and $C D$ respectively. This means X_{1}^{\prime} and Z_{1}^{\prime} coincide with X_{1} and Z_{1} respectively. Hence, $X_{1}, Y_{1}, Z_{1}, T_{1}$ are collinear on a line \mathcal{L}. By a similar reasoning the same line \mathcal{L} also contains U_{1} and V_{1}.

Figure 4. Proof of Theorem 1'(b)
On the other hand, by Lemma 3, $Q K$ is parallel to $O N$, and $N K$ is parallel to $O Q$. Thus, $O N K Q$ is a parallelogram. From this, $\frac{K N}{Y_{1} Y}=\frac{O Q}{Y_{1} Y}=\frac{O T}{T Y}=\frac{T_{1} N}{T_{1} Y}$. By Thales' theorem, T_{1}, K, Y_{1} are collinear. Therefore, the line \mathcal{L} containing the six points $X_{1}, Y_{1}, Z_{1}, T_{1}, U_{1}, V_{1}$ also passes through K. This completes the proof of Theorem 1'.

The Simson line theorem has a well-known property which states that the angle between the Simson lines of two point P and P^{\prime} is half the angle of the arc $P P^{\prime}$. In Theorem 1, if we choose another point P^{\prime} on (O) and define $A_{2}^{\prime}, B_{2}^{\prime}, C_{2}^{\prime}$ analogously to A_{2}, B_{2}, C_{2} respectively, then the angle between the lines through A_{2}, B_{2}, C_{2} and $A_{2}^{\prime}, B_{2}^{\prime}, C_{2}^{\prime}$ is also half the angle of the arc $P P^{\prime}$.

Figure 5. Another property of the generalization of Simson line

Proof. Let Y be the intersection of l and $A C, Y_{1}, Y_{1}^{\prime}$ be the orthogonal projections of Y onto $P B, P^{\prime} B$, respectively; d and d^{\prime} the lines through A_{2}, B_{2}, C_{2} and $A_{2}^{\prime}, B_{2}^{\prime}, C_{2}^{\prime}$, respectively. Let d meets d^{\prime} at L.

From the second form of Theorem 1, Y_{1} lies on d and Y_{1}^{\prime} lies on d^{\prime}.
We have the directed angle between the lines d and d^{\prime} given by

$$
\begin{aligned}
\left(d, d^{\prime}\right) & =\angle B_{2}^{\prime} L B_{2} \\
& =180^{\circ}-\angle L B_{2} B_{2}^{\prime}-\angle L B_{2}^{\prime} B_{2} \\
& =\angle Y_{1}^{\prime} B_{1}^{\prime} B_{1}-\angle Y_{1} B_{2} Y \\
& =\angle Y_{1}^{\prime} B_{1}^{\prime} B_{1}-\angle Y_{1} B_{1} Y \\
& =\angle B_{1}^{\prime} B B_{1} \\
& =\angle P^{\prime} B P,
\end{aligned}
$$

which is half the angle of the arc $P P^{\prime}$.

References

[1] Nathan Altshiller-Court, College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle, Dover Publications, New York, (2007) p.211-213.
[2] A. Bogomolny, A Generalization of Simson line, available at http://www.cut-the-knot.org/m/Geometry/GeneralizationSimson.shtml
[3] T. O. Dao, Advanced Plane Geometry, message 1781, September 20, 2014.
[4] L. P. Nguyen and C. C. Nguyen, A synthetic proof of Dao's generalization of the Simson line theorem, to appear in Math. Gazette.
[5] P. Yiu, Advanced Plane Geometry, message 1783, September 21, 2014.
Nguyen Van Linh: 22 Ba Chua Kho street, Bac Ninh city, Vietnam.
E-mail address: lovemathforever@gmail.com

