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Roy D. Henriksson and 
Robert C. Merton 
Massachusetts Institute of Technology 

On Market Timing and 
Investment Performance. 
IL. Statistical Procedures for 
Evaluating Forecasting Skills* 

I. Introduction 

In Merton (1981; hereafter referred to as Part I), 
one of us developed a basic model of market- 
timing forecasts where the forecaster predicts 
when stocks will outperform bonds and when 
bonds will outperform stocks but does not pre- 
dict the magnitude of the superior performance. 
In that analysis, it was shown that the pattern of 
returns from successful market timing has an 
isomorphic correspondence to the pattern of re- 
turns from following certain option investment 
strategies where the implicit prices paid for the 
options are less than their "fair" or market val- 
ues. This isomorphic correspondence was used 
to drive an equilibrium theory of value for 
market-timing forecasting skills. By analyzing 
how investors would use the market timer's fore- 
cast to modify their probability beliefs about 
stock returns, it was shown that the conditional 
probabilities of a correct forecast (conditional on 
the return on the market) provide both necessary 
and sufficient conditions for such forecasts to 
have a positive value. 

In the analysis presented here, we use the 

The evaluation of the 
performance of invest- 
ment managers is a 
much studied problem 
in finance. Based upon 
the model developed in 
Part I of this paper, the 
statistical framework is 
derived for both 
parametric and non- 
parametric tests of 
market-timing ability. If 
the manager's forecasts 
are observable, then the 
nonparametric test can 
be used without further 
assumptions about the 
distribution of security 
returns. If the man- 
ager's forecasts are not 
observable, then the 
parametric test can be 
used under the assump- 
tion of either a capital 
asset pricing model or 
a multifactor return 
structure. The tests 
differ from earlier work 
because they permit 
identification and sep- 
aration of the gains of 
market-timing skills 
from the gains of micro 
stock-selection skills. 

* Earlier versions of the paper were presented in semi- 
nars at Berkeley, Carnegie-Mellon, University of Chicago, 
Dartmouth, Harvard, University of Southern California, and 
Vanderbilt; we thank the participants for their comments. 
Aid from the National Science Foundation is gratefully 
acknowledged. 
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basic model of market timing derived in Part I to develop both paramet- 
ric and nonparametric statistical procedures to test for superior fore- 
casting skills. 

The evaluation of the performance of investment managers is a topic 
of considerable interest to both practitioners and academics. To the 
former, such evaluations provide a useful aid for the efficient allocation 
of investment funds among managers. To the latter, significant evi- 
dence of superior forecasting skills would violate the Efficient Markets 
Hypothesis.' Such violations, if found, would have far-reaching impli- 
cations for the theory of finance with respect to optimal portfolio 
holdings of investors, the equilibrium valuation of securities, and 
many decisions in corporate finance. With so much at stake, it is not 
surprising that much has been written on this subject. Indeed, a major 
application of modem capital market theory has been to provide a 
structural specification to measure investment performance. Within 
this structure, it is the practice to partition forecasting skills into two 
components (see Fama 1972): (1) "microforecasting," which forecasts 
price movements of individual stocks relative to stocks generally, and 
(2) "macroforecasting," which forecasts price movements of the gen- 
eral stock market relative to fixed income securities. The former is 
frequently called "security analysis" and the latter is referred to as 
"market timing." Moreover, this partitioning of forecasting skills takes 
on added significance through the work of Treynor and Black (1973), 
who have shown that investment managers can effectively separate 
actions related to security analysis from those related to market timing. 

Most of the recent empirical studies of investment performance 
focus on microforecasting and are based on a mean-variance capital 
asset pricing model (CAPM) framework' where the 1-period excess 
return on security i can be written as 

Zi(t) - R(t) = ai + fJZM(t) - R(t)] + Ei(t), (1) 

where Zi(t) is the 1-period return per dollar on security i, ai is the 
expected excess return from microforecasting, f3i is the ratio of the co- 
variance of the return on security i with the market divided by the 
variance of the return on the market, and Ei(t) has the property that its 
expectation, conditional on knowing the outcome for the market return 

1. As a tautology, superior forecasting skills must be based on information that is not 
reflected in security prices. Therefore, if such information is obtainable, then security 
prices will not reflect all available information and the market will not be efficient. Fama 
(1970) provides an excellent discussion of both the Efficient Markets Theory and various 
attempts to test it. 

2. The capital asset pricing model (CAPM) refers to the equilibrium relationships 
among security prices which result when investors have homgeneous beliefs and choose 
their portfolios based on a mean-variance criterion function. For the original derivations, 
see Sharpe (1964), Lintner (1965), and Mossin (1966). For a comprehensive review of the 
model, see Jensen (1972a). 
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ZM(t), is equal to its unconditional expectation which is zero. That is, 
E [Ei(t) I ZM(t)1 = E [Ei(t)] = 0. 

Using this specification, both Fama (1972) and Jensen (1972b) de- 
velop theoretical structures for the evaluation of micro- and macro- 
forecasting performance of investment managers where the basis for 
the evaluation is a comparison of the ex post performance of the 
manager's fund with the returns on the market. In the Jensen analysis, 
the market timer is assumed to forecast the actual return on the market 
portfolio, and the forecasted return and the actual return on the market 
are assumed to have a joint normal distribution. Jensen shows that 
under these assumptions, a market timer's forecasting ability can be 
measured by the correlation between the market timer's forecast and 
the realized return on the market.3 However, Jensen also shows that 
the separate contributions of micro- and macroforecasting cannot be 
identified using the structure of (1) unless for each period, the mar- 
ket-timing forecast, the portfolio adjustment corresponding to that 
forecast, and the expected return on the market are known. 

Grant (1977) explains how market-timing actions will affect the re- 
sults of empirical tests that focus only on microforecasting skills. He 
shows that market-timing ability will cause the regression estimate of ai 
in (1) to be a downward-biased measure of the excess returns resulting 
from microforecasting ability. 

Treynor and Mazuy (1966) add a quadratic term to (1) to test for 
market-timing ability. In the standard CAPM regression equation, a 
portfolio's return is a linear function of the return on the market 
portfolio. However, they argue that if the investment manager can 
forecast market returns, he will hold a greater proportion of the market 
portfolio when the return on the market is high and a smaller propor- 
tion when the market return is low. Thus, the portfolio return will be a 
nonlinear function of the market return. Using annual returns for 57 
open-end mutual funds, they find that for only one of the funds can the 
hypothesis of no market-timing ability be rejected with 95% confi- 
dence. 

Kon and Jen (1979) use the Quandt (1972) switching regression 
technique in a CAPM framework to examine the possibility of changing 
levels of market-related risk over time for mutual fund portfolios. 
Using a maximum likelihood test, they separate their data sample into 
different risk regimes and then run the standard regression equation for 
each such regime. They find evidence that many mutual funds do have 
discrete changes in the level of market-related risk they choose which 
is consistent with the view that managers of such funds do attempt to 
incorporate market timing into their investment strategies. 

3. See Jensen (1972b), pp. 317-18. This result is also derived in Treynor and Black 
(1973). 
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The model of market-timing forecasts presented here differs from 
those of these earlier studies in that we assume that our forecasters 
follow a more qualitative approach to market timing. Namely, we 
assume that they either forecast that ZM(t) > R (t) or forecast that ZM(t) 
< R (t). The forecasters in our model are less sophisticated than those 
hypothesized in, for example, the Jensen (1972b) formulation where 
they do forecast how much better the forecast superior investment will 
perform. However, as is shown in Part I, when this simple forecast 
information is combined with a prior distribution for returns on the 
market, a posterior distribution is derived which would permit proba- 
bility statements about the magnitudes of the superior investment's 
performance. 

A brief formal description of our forecast model is as follows: Let 
y(t) be the market timer's forecast variable where y(t) = 1 if the 
forecast, made at time t - 1, for time period t is that ZM(t) > R (t) and 
y(t) = 0 if the forecast is that ZM(t) - R (t). We define the probabilities 
for y(t) conditional upon the realized return on the market by 

pl(t) prob [y(t) = 0 ZM(t) 
- R (t)] 

1 - p,(t) = prob [y(t) = 1 IZM(t) 6 R(t)] (2a) 

and 

p2(t) prob [y(t) = 1 ZA(t) > R(t)] (2b) 

1 - p2(t) = prob [y(t) = 0 Zm(t) > R(t)]. 

Therefore, p,(t) is the conditional probability of a correct forecast 
given that ZM(t) - R(t), and p2(t) is the conditional probability of a 
correct forecast given that ZM(t) > R (t). It is assumed that p ,(t) and 
p2(t) do not depend upon the magnitude of I ZM(t) - R (t) I. Hence, the 
conditional probability of a correct forecast depends only on whether 
or not ZM(t) > R (t). Under this assumption, it was shown in Part I that 
the sum of the conditional probabilities of a correct forecast, p ,(t) + 
p 2(t), is a sufficient statistic for the evaluation of forecasting ability. 

Unlike the earlier studies of market timing, this formulation of the 
problem permits us to study market timing without assuming a CAPM 
framework. Indeed, provided that the market timer's forecasts are 
observable, we derive in Section II of this paper a nonparametric test 
of forecasting ability which does not require any assumptions about 
either the distribution of returns on the market or the way in which 
individual security prices are formed. Although the substantive context 
of the test presented there is market timing, the same test could be used 
to evaluate forecasting ability between any two securities. 

If the market timer's forecasts are not directly observable, then to 
test market timing requires further assumptions about the structure of 
equilibrium security prices. In Section III, we derive such a test using 
the assumption that the CAPM holds. However, in contrast to the 
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Jensen formulation, our parametric test permits us to identify the 
separate contributions from micro- and macroforecasting to a port- 
folio's return using as our only data set the realized excess returns 
on the portfolio and on the market. Although the test specification in 
Section III assumes a CAPM framework, it can easily be adopted to a 
multifactor pricing model as described in Merton (1973) and Ross 
(1976). 

II. A Nonparametric Test of Market Timing 

In Part I, it was shown that a necessary and sufficient condition for a 
forecaster's predictions to have no value is that p1(t) + p2(t) = 1. 
Under this condition, an investor would not modify his prior estimate 
of the distribution of returns on the market portfolio as a result of 
receiving the prediction and therefore would pay nothing for the pre- 
diction. It follows that a necessary condition for market-timing fore- 
casts to have a positive value is thatp 1(t) + p 2(t) 7 1. As shown in Part 
I, a sufficient condition for a positive value is thatp 1(t) + p 2(t) > 1. For 
example, a perfect forecaster who is always correct will have 1(t) = 1 
andp2(t) = 1; therefore, pl(t) + P2(t) = 2 > 1. Formally, forecasts with 
p1(t) + p2(t) < 1 can be shown to have a negative value because such 
forecasts are systematically incorrect. However, such forecasts are 
perverse in the sense that the contrary forecasts with p 1(t) 1 - p1(t) 
andp'(t) 1 - p2(t) would satisfyp (t) + p'(t) > 1 and therefore have 
positive value. For example, a market timer who is always wrong will 
have p 1(t) + p 2(t) = 0. However, such forecasts have all the informa- 
tional content of a forecaster who is always right because by following 
a strategy of always doing the opposite of the forecasts that are always 
wrong, one will always be right. Thus, one can reasonably argue that 
forecasts with p1(t) + p2(t) < 1 have positive value as well, provided 
one is aware that the forecasts are perverse. 

Therefore, a test of a forecaster's market-timing ability is to deter- 
mine whether or notp l(t) + p2(t) = 1. Of course, ifp l(t) andp2(t) were 
known, then such a test is trivial. However, p1(t), p2(t), or their sum, 
are rarely, if ever, observable. Generally, it will be necessary to esti- 
mate p 1(t) + p2(t), and then use these estimates to determine whether 
one can reject the natural null hypothesis of no forecasting skills. That 
is, Ho: p1(t) + p2(t) = 1 where the conditional probabilities of a correct 
forecast are not known. Essentially, this is a test of independence 
between the market timer's forecast and whether or not the return on 
the market portfolio is greater than the return from riskless securities. 

The nonparametric test constructed around this null hypothesis 
takes advantage of the fact that conditional probabilities of a correct 
forecast are sufficient statistics to measure forecasting ability and yet 
they do not depend on the distribution of returns on the market or on 
any particular model for security price valuation. The essence of the 
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test is to determine the probability that a given outcome from our 
sample came from a population that satisfies the null hypothesis. To 
determine this probability, we proceed as follows. First, we define the 
following variables: N1 number of observations where ZM S R; N2 
number of observations where ZM > R; N N1 + N2 = total number of 
observations; n1 number of successful predictions, givenZm - R; n2 

number of unsuccessful predictions, given Zm > R; n n1 + n2 
number of times forecast that ZM - R. 

By definition, E(n1/N,) = Pi and E(n2/N2) =1 - P2 where E is the 
expected value operator. From the null hypothesis, we have that 

E(n1/N1) = pi = - P2 = E(n2/N2), (3) 
Ho 

and from (3), it follows that 

E [(n1 + n2)/(N1 + N2)1 = E (n/N) P P p. (4) 
Ho 

Both n1/N1 and n2/N2 have the same expected value under our null 
hypothesis, namely, p, and both are drawn from independent subsam- 
ples. Hence, only one or the other need be estimated. 

Both n1 and n2 are sums of independently and identically distributed 
random variables with binomial distributions. Therefore, the probabil- 
ity that ni - x from a subsample of Ni drawings can be written as 

P(ni= x |Nip) ( Ni)PX(I _ P)Nx; i= 1,2. (5) 

Given the null hypothesis, we can use Bayes's Theorem to determine 
the probability that n1 = x given N1, N2, and n, that is, P(n1 = 
x I N1,N2,n). Denote the event that our market timer forecasts m times 
that Zm s R (i.e., n = m) as A and the event that, of the times he 
forecasts that ZM - R, he is correct x times and incorrect m - x times 
(i.e., n1 = x and n2 =m - x) as B. Then P(n 1 = x I N1,N2,m) =P(B |A), 
and by Bayes's Theorem, we have that 

P(B I A) P(B+ A) - P(B) 
P (A) P (A) 

(N1)( N2 j)px(1 _ )Njl-xpl-x(j 
- p)N2-tn+x 

()m(l - p)N-rn 

tN,8 N2 

{N _ ~j)mA?x 
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Hence, under the null hypothesis, the probability distribution for 
n 1-the number of correct forecasts, given that ZM - R-has the form 
of a hypergeometric distribution and is independent of both p, and p 2. 
Therefore to test the null hypothesis, it is unnecessary to estimate 
either of the conditional probabilities. So, provided that the forecasts 
are known, all the variables necessary for the test are directly observ- 
able. Given N1, N2, and n, the distribution of n1 under the null hypothe- 
sis is determined by (6) where the feasible range for n, is given by: 

n, _ max(O,n - N2) - n, 
- min(N,,n) =En. (7) 

Equations (6) and (7) can be used in a straightforward fashion to 
establish confidence intervals for testing the null hypothesis of no 
forecasting ability. For a standard two-tail test with a probability 
confidence level of c, one would reject the null hypothesis if n,1 , (c) 
or if n1 , x(c), where i and x are defined to be the solutions to the 
equations4 

L- (NX )(N -)x )/(N ) = (1 - c)12 (8a) 

and 

1~f (n- )(AT) - c)12. (8b) 
However, we would argue that a one-tail test (or at least one which 

weights the right-hand tail much more heavily than the left) is more 
appropriate in this case. If forecasters are rational, then it will never 
be true that p l(t) + p 2(t) < 1, and a very small n1 would simply be the 
"luck of the draw" no matter how unlikely. It seems most unlikely to 
us that a "real world" forecaster who had the talents to generate 
significant forecasting information would not have the talent to recog- 
nize that his forecasts were systematically perverse, while at the same 
time, we as outside observers of those forecasts can clearly see the 
errors of his ways. For such a one-tail test with a probability confi- 
dence level of c, one would reject the null hypothesis if n1 ? x*(c) 
where x*(c) is defined as the solution to 

x*(IN1) (N2x) (N) = 1 - c. (9) 

By inspection of (8a) and (9), x*(c) < xY(c), and therefore, given an 
observation in the right tail, a one-tail test is, of-course, more likely to 

4. Because the hypergeometric distribution is discrete, the strict equalities of eqq. (8a) 
and (8b) will not, in general, be attainable. Therefore, in (8a), Y should be interpreted as 
the lowest value of x for which the summation does not exceed (1 - c)12. In (8b), x should 
be interpreted as the highest value of x for which the summation does not exceed (1 - 
c)12. 
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reject the null hypothesis than a two-tail one for any fixed confidence 
level c. However, this fact in no way implies a greater likelihood of 
rejecting the null hypothesis when it is true by using a one-tail test. 

Computation of the confidence intervals for either the two-tail or 
one-tail test using (8) or (9) is straightforward when the sample size is 
small. However, for large samples, the factorial or gamma function 
computations can become quite cumbersome. Fortunately, for those 
large samples where such computations become a problem, the 
hypergeometric distribution can be accurately approximated by the 
normal distributions The parameters used for this normal approxima- 
tion are the mean and variance for the hypergeometric distribution 
given in (6), which can be written as 

E(n)- nN (1Oa) 
N 

and 

r2(n 1) = [n 1N1(N - N1)(N - n)]I[N2(N - 1)]. (lOb) 

Tables 1, 2, and 3 give values of n1 for a one-tail test that reject the 
null hypothesis at the 99% confidence level for different values of N1, 
N2, and n. As would be expected, the required estimated value of p l(t) 
+ p2(t) decreases as the size of the total sample increases. Tables 1-3 
also demonstrate that the normal distribution can be an excellent 
approximation for determining the confidence intervals for the 
hypergeometric distribution, even for observation samples as small as 
50.6 

By focusing on the conditional frequencies of correct forecasts, the 
test procedure described in (6)-(10) takes into account the possibility 
that the market timer may not have the same skill in forecasting up 
markets as down markets. That is, pQ(t) need not be equal to p2(t). 
However, if one knows that the forecaster whose predictions are being 
tested has equal ability with respect to both types of markets, then the 
conditional probabilities of a correct forecast, p(t) andp2(t), are equal 
to each other, and therefore, each is equal to the unconditional proba- 
bility of a correct forecast, p (t). That is, p 1(t) = p2(t) = p (t). In that 
case, one need only measure the unconditional frequency of a correct 
forecast to test for market-timing ability where the null hypothesis of 

5. The large-sample cases where direct computation of the confidence intervals using 
(8) or (9) are most cumbersome are when N1 N2 or n N12. In these cases, the normal 
approximation will be quite good for even moderately large samples. See Lehmann 
(1975, theorem 19) for a general proof. The normal approximation will not be a good one 
even for quite large samples in those cases where there are substantial differences 
between N1 and N2 or between n and N/2. However, it is precisely in these latter cases 
where direct computation using (8) or (9) is not cumbersome even for very large samples. 

6. As discussed in 5, this excellent approximation should only be expected to obtain 
when N1 N2 and n N/2. 
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no forecasting skills is that p (t) = .5. The distribution of outcomes 
drawn from a population that satisfies this null hypothesis is the bino- 
mial distribution which can be written as 

P(k I N,p) = (NP k ( p)N(k 

= (N (.5)N, 

k 

where k is the number of correct predictions and N is the total number 
of observations. One can use (11) in an analogous fashion to (6) to 
construct either one-tail or two-tail confidence intervals for rejecting 
the null hypothesis. While the simplicity of this test may be attractive, 
the reader should be warned that a test which uses (11) instead of (6) is 
only appropriate if there is strong reason to believe that p 1(t) = p2(t). 

As is discussed at length in Part I, the unconditional probability of a 
correct forecast cannot, in general, be used as a measure of market- 
timing ability. Specifically, it is shown that an unconditional probability 
of a correct forecast greater than one-half, p(t) > .5, is neither a 
necessary nor a sufficient condition for a forecaster's market-timing 
ability to have positive value. To see why it is not sufficient, consider 
the case of a forecaster who always predicts that the return on the 
market will exceed the return on riskless securities. Such completely 
predictable forecasts, like a stopped clock, clearly have no value. 
However, if the historical frequency with which the returns on the 
market exceeded the returns on riskless securities were significantly 
greater than one-half, then this forecaster's unconditional probability 
of a correct forecast would exceed one-half, and the null hypothesis 
would be rejected. Indeed, if a two-tail test were used, then all that 
would be required to reject the null hypothesis is that the historical 
frequency of up markets versus down markets be significantly different 
than one-half. However, if this "stopped clock" forecaster were eval- 
uated by the test procedure described in (6)-(10), then, independent of 
the relative frequencies of up and down markets, the null hypothesis of 
no forecasting ability would not be rejected because for any sample of 
observations, p1(t) = 0 and p2(t) = 1, and hence, p1(t) + p2(t) = 1. 
Therefore, by using the unconditional probability procedure in (11), 
one is actually testing the joint null hypothesis of no market-timing 
ability and p 1(t) = p2(t). 

In summary, we have derived a nonparametric procedure for testing 
market-timing ability which takes into account the possibility that 
forecasting skills are different for up markets than for down markets. 
Because the critical statistic for the test is p1(t) + p2(t), it is not 
essential that the individual conditional probabilities be stationary 
through time. Rather, the critical stationarity property for the validity 
of equation (6) is that their sum, p 1(t) + p2(t), be stationary, which is, 
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of course, true under the null hypothesis of no market-forecasting 
ability. Moreover, it is straightforward to show that this same proce- 
dure can be used to test forecasters who have more confidence in their 
predictions during some periods than they do in other periods. One 
such application can be found in Lessard, Henriksson, and Majd 
(1981), where the predictions of some foreign-exchange forecasters are 
tested using our procedure. However, it is essential to our test proce- 
dure that the forecasts of market-timing be observable. We will there- 
fore turn to the development of a procedure to test market-timing 
ability when such forecasts cannot be observed. 

III. Parametric Tests of Market Timing 

To use the nonparametric procedures to test investment performance, 
the predictions of the forecaster must be observable. However, it is 
frequently the case when measuring managed portfolio performance 
that the examiner only has access to the time series of realized returns 
on the portfolio and does not have the investment manager's market- 
timing forecasts themselves. While under certain conditions it is possi- 
ble to infer from the portfolio return series alone what the manager's 
forecasts were, such inferences will, in general, provide noisy esti- 
mates of the forecasts. These estimates will be especially noisy if the 
manager's portfolio positions are influenced by his microforecasts for 
individual securities. In this section, we derive procedures which 
permit the testing of timing ability using return data alone. Of course, 
there is a "cost" of not having the time series of forecasts, which is 
that these test procedures require the assumption of a specific gen- 
erating process for returns on securities. Thus, these procedures are 
parametric tests of the joint hypothesis of no market-timing ability and 
the assumed process for the returns on securities. 

As noted earlier, most of the recent empirical studies of investment 
performance assume a pattern of equilibrium security returns which is 
consistent with the Security Market Line of the CAPM in addition to 
some assumptions about the market-timing behavior. The standard- 
regression-equation specification for portfolio returns used in these 
studies can be written as 

Zp(t) - R(t) = a+ ?X (t) + E(t), (12) 

where Zp(t) is the realized return on the portfolio, x(t) ZM(t) - R (t) is 
the realized excess return on the market, and E(t) is a residual random 
term which is assumed to satisfy the conditions 

E[E(t)] = 0 

E[E(t) x(t)] = 0 (13) 

E[E(t) j E(t - i)] = 0, i = 1,2,3. 
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Provided that the investment manager does not attempt (or, at least, 
is unsuccessful at) forecasting market returns, the standard least- 
squares estimation of (12) can be used to test for microforecasting 
skills. However, Jensen (1972b) shows that it is impossible to use this 
structural specification to separate the incremental performance due to 
stock selection from the increment due to market timing when the 
return data alone are used. The tests derived here do permit such a 
separation. 

As in the earlier studies, we also assume that securities are priced 
according to the CAPM, although the tests can easily be adapted to 
accommodate a multifactor model provided that the factors are known. 
We further assume that as a function of his forecast, discretely differ- 
ent systematic risk levels for the portfolio are chosen by the forecaster. 
For example, in the case we analyze in detail here, it is assumed that 
there are two target risk levels which depend on whether or not the 
return on the market portfolio is forecast to exceed the return on 
riskless securities. That is, the investment manager is assumed to have 
one target beta when he predicts ZM(t) > R (t) and another target beta 
when he predicts that ZM(t) - R(t). In Section IV, we indicate how 
the test procedures can be adapted to the more general case of multiple 
target risk levels. 

Let vj, denote the target beta chosen for the portfolio by the manager 
when his forecast is that ZM(t) - R (t) and let j2 denote the target beta 
chosen when his forecast is that ZM(t) >R(t). If /3(t) denotes the beta of 
the portfolio at time t, then p3(t) = vjl for a down-market forecast and 
,8(t) = -r,2 for an up-market forecast. If the forecaster is rational, then 
7)2 > vl. Of course, if/3(t) were observable at each point in time, then, 
as discussed in Fama (1972), the market-timing forecast is observable, 
and one could simply apply the nonparametric tests of the previous 
section. However, if beta is not observable, then /(t) is a random 
variable. Under the assumption that beta is not observable, let b denote 
the unconditional (on the forecast) expected value of /3(t). Then 

b = q[p 11 + (1 - P 1)q2] + (1 - q)[P27)2 + (1 - P2)>1], (14) 

where q is equal to the unconditional (on the forecast) probability that 
ZM(t) - R (t). In Part I, the distribution from which q is computed was 
called the prior distribution. If we define the random variable 0(t) as 
equal to [/3(t) - b], then 0(t) is the unanticipated component of beta, 
and its distribution, conditional on the realized excess return on the 
market, x(t), can be written as: 

conditional on x(t) - 0: 

= 8 where 

=1 
= (7)i - 2)[1 - qp1 - (1 - q)(1 - P2)] with prob = pi (l5a) 

= (q2 -i1)[qpI + (1 -q)(1 -p2)]withprob = 1 -p1 
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and 

conditional on x(t) > 0: 

_= _02 where 

02 = (62 - 7,l)[qP 1 + (1 - q)(1 - P2)] with prob = P2 (15b) 

- (n1 - 70)L1 - qpI - (1 - q)(l - pa)] with prob = 1 -P 2 

From (15), it follows that the conditional (onx[t]) expected value of 0 
can be written as 

E(0 I x) 01 (16a) 

= (1 - q)(p1 +P2 - 1)Qq1 - 72), forx(t) S 0 

and 

E(0 X) = 
02 (16b) 

= q(p1 + P2 - 1)(72 - 1), forx(t) > 0. 

The per period return on the forecaster's portfolio can be written as 

Zp(t) = R(t) + [b + 0(t)]x (t) + X + Ev(t), (17) 

where A is the expected increment to the return on the portfolio from 
microforecasting or security analysis and E.(t) is assumed to satisfy the 
standard CAPM conditions given in (13). 

Under the posited return process for the portfolio given in (17), a 
least-squares regression analysis can be used to identify the separate 
increments to performance from microforecasting and macroforecast- 
ing. The regression specification can be written as 

Zp(t) - R(t) = a + 3 Jx(t) + 2y(t) + e(t) (18) 

where y(t) max[OR(t) - ZM(t)] = max[0,-x(t)]. 
The motivation behind the specification given in (18) comes from the 

analysis of the value of market timing presented in Section IV of Part I. 
There it was shown that up to an additive noise term, the returns per 
dollar invested in a portfolio using the market-timing strategy described 
here will be the same as those that would be generated by pursuing a 
partial "protective put" option investment strategy where for each 
dollar invested in this strategy, [P2-q2 + (1 - P2)7)1] dollars are invested 
in the market; (p1 + P2 - 1)(n2 - -rp) put options on the market 
portfolio are purchased with an exercise price (per dollar of the market) 
equal to R(t); and the balance is invested in riskless securities. The 
value of the market timing (per dollar of assets managed) is that the (p 1 
+ P2 - 1)(X2 - ijl) puts are obtained, in effect, for no cost. Note that 
y(t) as defined in (18) is exactly the return on one such put option. 

From (17), the expected return on the portfolio, conditional onx > 0, 
can be written as 
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E(Zp x>O)=R+(b+02)E(xIx>0)+ X, (19a) 

and the expected return, conditional on x - 0, can be written as 

E(Zp I x - O) = R + (b + 01)E(x I x - O) + X, (19b) 

where bars over random variables denote expected values. 
For the analysis of the regression coefficients and error term in (18), 

it will be convenient to express the relevant variances and covariances 
of the regression variables in terms of the expected values and vari- 
ances of the random variables xl(t) and x2(t) which are defined by 

x1(t) min[Ox(t)] 

x2(t) max[O,x(t)]. (20) 

If var[xi(t)] o-4, i = 1,2, then we can write the variances and 
covariances of the regression variables as 

var[y (t)] = U2 = U2 

var[x(t)] = 2 r2o + o-2 - 2x-lx-2 (21) 

cov[x (t) ,y (t)]0 = X1X2 -cr 

cov[Zp(t),x(t)] , = (b + 1)(o2 -X X2 + (b + 02)(o2 - X-1X2) 

cov[Zp(t),y]- ary= (b + 02)X1X2 - (b + 6l)o-~. 

From (18) and (21), it follows that the large sample least-squares 
estimates of ,1 and /32 can be written as 

plim /a = PX0Y -r 
PYOXY 

2 O2... 2 

= b + 02 (22) 

= P2172 + (1 -P2)nl 

and 

plim , - "-pY- x rPX - XY 

=02 -01 (23) 

= (P1 + P2 - 1)()2- 7) 

From (22), plim E = E[,B(t) I x(t) > 0], and it is also equal to the 
fraction invested in the market portfolio in the option strategy used in 
Section IV of Part I to replicate the market-timing strategy. The in- 
vestment manager's market-timing ability is expressed as /2' The true 
/2 will equal zero if either the forecaster has no timing ability-that is, 
ifp1(t) + p2(t) = 1-or he does not act on his forecasts-that is, if q2 = 

r%. With reference to the replicating option investment strategy, from 
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(23), plim 82 is equal to the number of "free" put options on the market 
provided by the manager's market-timing skills. Indeed, as shown in 
Part I, the value of market-timing skills per dollar of assets managed is 
equal to (p1 + P2 - 1)(-q2 - Tj1)g(t) where g(t) is the market price of 
such a put. Thus, ,/2g (t) is an estimate of the value of the market-timing 
ability of the manager. 

Formally interpreted, a negative value for the regression estimate /2 

would imply a negative value for market timing. However, a true 
negative value for /32 would violate the rationality assumptions of p,(t) 
+p2(t) W 1 andq 2 : -r1. Hence, as was discussed for the nonparametric 
tests in Section II, the reader should consider the relative merits of a 
one-tail versus the standard two-tail test of significance with respect to 
rejecting the null hypothesis that /2 = 0. 

The increment to portfolio performance from microforecasting can 
also be measured using regression equation (18). The large sample 
least-squares estimate of a can be written as7 

plim a = E(Z,) - R - plim f1x - plim A7= A. (24) 

Hence, from (23) and (24), regression equation (18) can be used to 
identify and estimate the separate contributions of microforecasting 
and macroforecasting to overall portfolio performance. 

To complete the analysis of (18), we now investigate the properties 
of the error term E(t) being careful to take into account the differences 
between the actual betas and their estimates. That is, if the forecaster 
strictly follows the posited behavior of two discrete risk levels 7rn and 
7q2, then the actual ,B(t) of the fund will never be equal to the estimated 
,8 unless, of course, he is a perfect forecaster. 

Let us define the following variables: A1 = 1 if x - 0 and the market 
timer's forecast is incorrect, A1 = 0 otherwise; V1 = 1 if x - 0 and 
the market timer's forecast is correct, V1 = 0 otherwise; A2 = 1 if 
x > 0 and the market timer's forecast is incorrect, A2 = 0 otherwise; 
V2 = 1 if x > 0 and the market timer's forecast is correct, V2 = 0 
otherwise. It follows immediately that: 

E(Al) =PI E(V1)= 1 -Pi (25) 

E(A2) = 1 P2 E(V2) =P 2 

From (18), each period's estimation error E can be written as: 

E = A 1(-P 1)(q1 - -2)X1-V -P 11712)X1 + A2P2(71 - 2)X2 

- V2(1 - P2)(71l - v2)X2 + E1, (26) 

7. When testing for forecasting ability, the relevant portfolio returns are those earned 
before any deduction for management fees. If one uses the returns earned after the 
deduction of management fees and if the fees charged can be expressed as a fixed 
percentage of assets, m, then plim a' = A - m. 
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where E, includes any error term resulting from microforecasting. 
Since, by definition, microforecasting is independent of x, Ep is inde- 
pendent of x. It follows by the Law of Large Numbers that as the 
number of observations, N, gets large, 

Y. Y. Y. 2, and V N 

will all approach their expectation. Therefore, from (26), 

lim I N l - [Pi(l - P I)(l - O2) - (1 - Pi)P1(fl - XI 
N-~ Nj 

+ [(1- P2)P72(71- P2)-P2(0 - P2)(fll - 72)]X2 (27) 

+ lim lEpIN 

- lim [ P] = 0. 
N-oo N 

Thus, for large samples, the coefficient from least-squares estimation 
of (18), plus the realized excess return on the market, will give us an 
unbiased estimate of the portfolio return.8 

As discussed, the motivation behind the regression specification (18) 
was the analysis in Part I which showed the correspondence between 
market-timing investment strategies and certain option investment 
strategies. However, there is alternative, but equivalent, specification 
which some may find to be more intuitive. Namely, by a linear trans- 
formation of (18), we can write this alternative regression equation as 

Zp(t) - R(t) = a' + fI1XA(t) + 3x2(t) + E, (28) 

where x1(t) andx2(t) are as defined in (20). Because x1(t) = 0 andx2(t) = 

x(t) if x(t) > 0 f32 has a rather intuitive interpretation as the "up- 
market" beta of the portfolio. Similarly, because x1(t) = x (t) and x2(t) 
= 0 if x(t) - 0, p8 can be interpreted as the "down-market" beta of the 
portfolio. Indeed, the large sample properties of the regression es- 
timators / and f3" fit these intuitive interpretations (at least in the sense 
of expected values). That is, 

plim ,8 = E[f3(t) I x(t) S 0] 

-P 171 + (1 -P1)f2 
(29a) 

8. Although unbiased, ordinary least squares estimation is not efficient because p(t) is 
not stationary, and therefore the standard deviation of the error term is an increasing 
function of I x(t) l. To improve the efficiency of the estimates, one could use generalized 
least squares estimation to correct for this heteroscedasticity. 
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and 

plim /2 = E [,3(t) | x(t) > ] 

=P272 +2(1 P2)77l, (29b) 

where E[E3(t) x(t) > 0] =b + 02Iand E[/(t)x(t) - 0] = b + 1 The 
test for market-timing ability using this specification would be to show 
that /2 is significantly greater than ,. That is, show that the expected 
"up-market" beta of the portfolio is greater than the expected 
"down-market" beta of the portfolio. The large sample properties of oi' 
are the same as for a^ in (18): namely, plim ^' = A. 

IV. Summary and Extensions 

Provided that the forecaster only attempts to predict the sign of ZM(t) - 
R (t) but not its magnitude, and provided that his forecasts are observ- 
able, a procedure for testing market timing has been derived which 
does not depend on any distributional assumptions about the returns on 
securities. The test includes the possibility that the forecaster's 
confidence in his forecasts as measured by (P 1,P2) can vary over time, 
and indeed, if such variations are observable, then the test can be 
refined to measure his forecasting ability for each such variation. 

In the case where the forecaster's predictions are not observable, a 
parametric test procedure was derived which permits separate mea- 
surements of the contributions to portfolio performance from market 
timing and security analysis. As is apparent from the analysis of the 
error term in Section III, this test will accommodate the case where the 
two-target risk levels chosen by the manager vary over time provided 
that these variations are random around a stationary mean. 

The test is also applicable to the case where the forecaster selects 
from more than two discrete systematic risk target levels, as long as the 
different levels are based on differing levels of confidence in the fore- 
casts and not differing expectations of the level of the return. In this 
case, the large sample least-squares estimates of)/1 and 32 represent a 
weighted average of the different risk levels. 

The test procedures presented here can be extended to evaluate the 
performance of a market timer who segments his prediction of x(t) into 
more than two discrete regions. For example, a forecaster might have 
four possible predictions: that x(t) < - 10%F, that - 10%o - x(t) < 0, that 
0 - x(t) < 10%, and that 10%lo x(t). We briefly illustrate how the 
analysis would be applied to such multiple regions for the parametric 
test case. As in the two-region case, it is assumed that the probability 
of a particular forecast will only depend on the region in which x(t) 
falls. However, there are now more than two possible forecasts. 
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Specifically, we assume that there are n different regions that the 
forecaster might predict and define pij as the probability that the 
forecaster's prediction was that x(t) would be in the jth region, given 
that x(t) actually ended up in the ith region. The only constraint on the 
conditional probabilities is that j=1pij = 1, i = 1,2 . . . , n. The return 
on the forecaster's portfolio can be defined as in Section III except that 
now 

n n 

b = E i > jpj, 
i=1 j-1 

where 6i is defined as the probability that x(t) will end up in region i and 
,q j is the chosen level of systematic risk when the forecast is that x(t) 
will end up in region j. 

The regression equation corresponding to (28) in the two region case 
can be written as Z -R = a x + E, where xi = x if x is in 
region i, and xi = 0 otherwise. 

The large sample least-squares estimates of /pi and a are: plim 
A 

= 

j- pijqj and plim a' = X. From this analysis, it follows that for 
sufficiently finely partitioned regions (that is, for large enough values of 
n), it is at least in principle, possible to separate the incremental returns 
from micro- and macroforecasting without any restrictions on the dis- 
tribution of forecasts. All that is required are the actual returns from 
the market, the portfolio, and riskless securities. 
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