
Fundamental Methods of Extrapolation 1

Fundamental Methods of Numerical

Extrapolation

With Applications

Eric Hung-Lin Liu

ehliu@mit.edu

Keywords: numerical analysis, extrapolation, richardson, romberg, numerical differentiation,
numerical integration

Abstract

Extrapolation is an incredibly powerful technique for increasing speed and accuracy
in various numerical tasks in scientific computing. As we will see, extrapolation can
transform even the most mundane of algorithms (such as the Trapezoid Rule) into an
extremely fast and accurate algorithm, increasing the rate of convergence by more than
one order of magnitude. Within this paper, we will first present some background theory to
motivate the derivation of Richardson and Romberg Extrapolation and provide support for
their validity and stability as numerical techniques. Then we will present examples from
differentiation and integration to demonstrate the incredible power of extrapolation. We
will also give some MATLAB code to show some simple implentation methods in addition
to discussing error bounds and differentiating between ”‘true”’ and ”‘false”’ convergence.

1 Introduction

In many practical applications, we often find ourselves attempting to compute continuous quan-
tities on discrete machines of limited precision. In several classic applications (e.g. numerical
differentiation), this is accomplished by tending the step-size to zero. Unfortunately as we will
see, this creates severe problems with floating point round-off errors. In other situations such
as numerical integration, tending the step-size toward zero does not cause extreme round-off
errors, but it can be severely limiting in terms of execution time: a decrease by a factor of 10
increases the required function evaluations by a factor of 10.

Extrapolation, the topic of this paper, attempts to rectify these problems by computing
”weighted averages” of relatively poor estimates to eliminate error modes–specifically, we will
be examining various forms of Richardson Extrapolation. Richardson and Richardson-like
schemes are but a subset of all extrapolation methods, but they are among the most common.
Moreover they have numerous applications and are not terribly difficult to understand and im-
plement. We will demonstrate that various numerical methods taught in introductory calculus
classes are in fact insufficient, but they can all be greatly improved through proper application
of extrapolation techniques.

2 Liu

1.1 Background: A Few Words on Series Expansions

We are very often able to associate some infinite sequence {An} with a known function A(h).
For example, A(h) may represent a first divided differences scheme for differentiation, where h
is the step-size. Note that h may be continuous or discrete. The sequence {An} is described by:
An = A(hn), n ∈ N for a monotonically decreasing sequence {hn} that converges to 0 in the
limit. Thus limh→0+ A(h) = A and similarly, limn→∞ An = A. Computing A(0) is exactly what
we want to do–continuing the differentiation example, roughly speaking A(0) is the ”point”
where the divided differences ”becomes” the derivative.

Interestingly enough, although we require that A(y) have an asymptotic series expansion,
we are only curious about its form. Specifically, we will examine functions with expansions that
take this form:

A(h) = A +
s
∑

k=1

αkh
pk + O(hps+1) as h → 0+ (1)

where pn 6= 0 ∀n, p1 < p2 < ... < ps + 1, and all the αk are independent of y. The pn can
in fact be imaginary, in which case we compare only the real parts. Clearly, having p1 > 0
guarantees the existence of limh→0+ A(h) = A. In the case where that limit does not exist, A is
the antilimit of A(h), and then we know that at pi ≤ 0 for at least i = 1. However, as long as
the sequence {pn} is monotonically increasing such that limk→∞ pk = +∞, (1) exists and A(h)
has the expansion A(h) ∼ A +

∑

∞

k=1 αkh
pk . We do not need to declare any conditions on the

convergence of the infinite series. We do assume that the hk are known, but we do not need to
know the αk, since as we will see, these constant factors are not significant.

Now suppose that p1 > 0 (hence it is true ∀p), then when h is sufficiently small, A(y)
approximates A with error A(h) − A = O(hp1). It is worth noting that if p1 is rather large,
then A(h)−A ≈ 0 even for values of y that are not very small. However in most applications,
h1 will be small (say p1 < 4), so it would appear that we must resort to smaller and smaller
values of h. But as previously noted, this is almost always prohibitive in terms of round-off
errors and/or function evaluations. But we should not despair, because we are now standing
on the doorstep of the fundamental idea behind Richardson Extrapolation. That idea is to
use equation (1) to somehow eliminate the hp1 error term, thus obtaining a new approximation
A1(h) − A = O(hh2). It is obvious that | A1(h) − A |<| A(h) − A | since p2 > p1. As we will
see later, this is accomplished by taking a ”weighted average” of A(h) and A(h

s
).

2 Simple Numerical Differentiation and Integration Schemes

Before continuing with our development of the theory of extrapolation, we will briefly review
differentiation by first divided differences and quadrature using the (composite) trapezoid and
midpoint rules. These are among the simplest algorithms; they are straightforward enough
to be presented in first-year calculus classes. Being all first-order approximations, their error
modes are significant, and they have little application in real situations. However as we will
see, applying a simple extrapolation scheme makes these simple methods extremely powerful,
convering difficult problems quickly and achieving higher accuracy in the process.

Fundamental Methods of Extrapolation 3

2.1 Differentiation via First Divided Differencs

Suppose we have an arbitrary function f(x) ∈ C1[x0 − ǫ, x0 + ǫ] for some ǫ > 0. Then apply a
simple linear fit to f(x) in the aforementioned region to approximate the f ′(x). We can begin
by assuming the existence of additional derivatives and computing a Taylor Expansion:

f(x) = f(x0) + f ′(x0)(x − x0) +
1

2
f ′′(x0)(x − x0)

2 + O(f(h3))

where h = x − x0 and 0 < h ≤ ǫ

f ′(x0) =
f(x + h) − f(x)

h
− 1

2
f ′′(x)h + O(h2)

Resulting in:

f ′(x0) =
f(x0 + h) − f(x0)

h
(2)

From the Taylor Expansion, it would seem that our first divided difference approximation has
truncation error on the order of O(h). Thus one might imagine that allowing h → 0 will yield
O(h) → 0 at a rate linear in h. Unfortunately, due the limitations of finite precision arithmetic,
performing h → 0 can only decrease truncation error a certain amount before arithmetic error
becomes dominant. Thus selecting a very small h is not a viable solution, which is sadly a
misconception of many Calculus students. Let us examine exactly how this arithmetic error
arises. Note that because of the discrete nature of computers, a number a is represented as
a(1 + ǫ1) where ǫ1 is some error.

(a − b) = a(1 + ǫ1) − b(1 + ǫ2)

= (a − b) + (aǫ1 − bǫ2) + (a − b)ǫ3

= (a − b)(1 + ǫ3) + (| a | + | b |)ǫ4

Thus the floating point representation of the difference numerator, fl[f(x + h) − f(x)] is
f(x + h)− f(x) + 2f(x)ǫ + ... where 2f(x)ǫ represents the arithmetic error due to subtraction.
So the floating point representation of the full divided difference is:

f ′(x) = fl[
f(x + h) − f(x)

h
] +

2f(x)ǫ

h
− 1

2
f ′′(x)h + ... (3)

Again, 2f(x)ǫ
h

is the arithmetic error, while 1
2
f ′′(x)h is the truncation error from only taking the

linear term of the Taylor Expansion. Since one term acts like 1
h

and the other like h, there
exists an optimum choice of h such that the total error is minimized:

h ≈ 2

(

f(x)

f ′′(x)
ǫ

) 1

2

(4)

Implying that hoptimum ∼ √
eps where eps is machine precision, which is roughly 10−16 in IEEE

double precision. Thus our best error is 4(f ′′(x)f(x)ǫ)
1

2 ∼ 10−8. This is rather dismal, and we
certainly can do better. Naturally it is impossible to modify arithemtic error: it is a property
of double precision representations. So we look to the truncation error: a prime suspect for
extrapolation.

4 Liu

−16 −14 −12 −10 −8 −6 −4 −2 0
−8

−7

−6

−5

−4

−3

−2

−1

0

1
Failure of First Divided Differences

log
10

(dx)

lo
g 10

(e
rr

or
)

Figure 1: Approximation errors from dex

dx
|x=1

The extent of this problem can be seen in Fig. 1. It displays the numerical errors resulting
from the first divided difference approximation of dex

dx
|x=1. The y-axis represents the logarithm

of the error, while the x-axis shows the approximate step size. The log-log scale is convenient for
visualizing rough order of magnitude approximations for numerical errors with the additional
benefit of linearizing functions with polynomial error expressions. This method is commonplace
in numerical analysis.

Note that for practical purposes, we should not be applying first divided differences to
estimate derivatives. The previous method is O(h). By using centered divided differences, we
can obtain Oh2 without any additional work. We initially avoided this because the example
of numerical errors is most severe using first differences. The formula for centered differences
approximation is:

δ0(h) =
f(x0 + h) − f(x0 − h)

2h
for 0 < h ≤ a (5)

The derivative approximation then has error:

δ0(h) − f ′(x0) =
f ′′′(ξ(h))

3!
h2 = O(h2) (6)

Sidi provides the full expansion, obtained with a Taylor series expansion around x0:

δ0(h) − f ′(x0) =
s
∑

k=1

f 2k+1(x0)

(2k + 1)!
h2k + Rs(h) where

Rs(h) =
f (2s+3)(ξ(h))

(2s + 3)!
h2s+2 = O(h2s+2)

(7)

Fundamental Methods of Extrapolation 5

2.2 Integration via the Trapezoid and Midpoint Rules

First we should note that since the integration schemes presented are used over a range of inter-
polation points {xj}, the given formulas correspond to the Composite Trapezoid and Midpoint
schemes, although we will drop the ”composite” label.

Composite Trapezoid Rule:

∫ b

a

f(x) dx =
h

2

(

f(a) + 2
n−1
∑

j=1

f(xj) + f(b)

)

+ O(h2) (8)

For a uniformly chosen set of points {xj} in the range [a, b] such that xj = a + jh and j = 1/n
where n is the total number of interpolation points. Observe that all the Trapezoid Rule really
does is fit a line to the function between each pair of points in the interval.

The Trapezoid Rule is a special case (n = 1) of the (n+1)-point closed Newton-Cotes
formula. Also, Simpson’s Rule is another special case (n = 2) of this formula. The composite
rules arise from iterating the Newton-Cotes expressions over a range of points. The following
is adapted from Burden and Faires:

Theorem 1. Suppose that
∑n

i=0 aif(xi) denotes the (n+1)-point closed Newton-Cotes formula
with x0 = a, xn = b, and h = b−a

n
. Then there exists ξ ∈ (a, b) such that

∫ b

a

f(x)dx =
n
∑

i=0

aif(xi) +
hn+3fn+2(ξ)

(n + 2)!

∫ n

0

t2
n
∏

j=1

(t − j)dt

if n is even and f ∈ Cn+2[a, b], and

∫ b

a

f(x)dx =
n
∑

i=0

aif(xi) +
hn+2fn+1(ξ)

(n + 1)!

∫ n

0

t

n
∏

j=1

(t − j)dt

if n is odd and f ∈ Cn+1[a, b].

Proof. As implied in the introduction, we are assuming the validity of the following expansion:

∫ b

a

f(x)dx ≈
n
∑

i=0

aif(xi)

where

ai =

∫ xn

x0

Li(x)dx =

∫ xn

x0

n
∏

j=0

j 6=i

x − xj

xi − xj

dx

with Li being the i-th term of the Lagrange Interpolating Polynomial. Then we can exploit the
properties of the Lagrange Interpolating Polynomial along with Taylor Expansions to arrive at
the result. The proof is omitted here, but a very detailed explanation can be found in Issacson
and Keller along with more details about the specific error analysis. An alternative, more
difficult derivation that avoids the Lagrange Interpolating Polynomial can be found in Sidi.

There is a parallel (n+1)-point open Newton Cotes formula that does not evaluate the
endpoints a, b, which is useful for avoiding endpoint singularities as in int10

1
x
dx. The Midpoint

Rule is a member of this group.

6 Liu

Theorem 2. Suppose that
∑n

i=0 aif(xi) denotes the (n+1)-point closed Newton-Cotes formula
with x−1 = a, xn+1 = b, and h = b−a

n+2
. Then there exists ξ ∈ (a, b) such that

∫ b

a

f(x)dx =
n
∑

i=0

aif(xi) +
hn+3fn+2(ξ)

(n + 2)!

∫ n+1

−1

t2
n
∏

j=1

(t − j)dt

if n is even and f ∈ Cn+2[a, b], and

∫ b

a

f(x)dx =
n
∑

i=0

aif(xi) +
hn+2fn+1(ξ)

(n + 1)!

∫ n+1

−1

t

n
∏

j=1

(t − j)dt

if n is odd and f ∈ Cn+1[a, b].

Proof. The proof is analagous to Theorem 1, employing Lagrange Interpolating Polynomials in
the same fashion. Again, the full proof can be found in Issacson and Keller.

For completeness, here is the Composite Midpoint Rule. Again, the error term has been
simplified because the exact coeffcients are not of interest, as we will soon see. Additionally,
notice that as with the Composite Trapezoid Rule, the error term power is one less than the
one expressed by the Newton-Cotes formulas. This is simply because the Composite rule has
summed n ”copies” of the simple Newton-Cotes rules.

Composite Midpoint Rule:

∫ b

a

f(x) dx = h
n−1
∑

j=1

f(a +
jh

2
) + O(h2) (9)

Now, having reviewed the basics of numeric integration and differentiation, we will finally in-
troduce the Richardson (differentiation) and Romberg (integration) Extrapolation procedures.
The reader may find it surprising that only these most basic of numeric algorithms are nec-
essary to procede, but the reason for this will soon become clear. The two methods are in
fact essentially the same, so we will only derive the Romberg algorithm. Then we will present
numeric results demonstrating the superiority of extrapolation over the basic algorithms. We
will also show that one can arrive at Simpson’s rule simply by performing extrapolation on the
Trapezoid rule. (Note how we have avoided the most simple schemes of left and right hand
sums. The reasoning is left to the reader.)

3 The Richardson and Romberg Extrapolation Technique

3.1 Conceptual and Analytic Approach

The fundamental idea behind these extrapolation schemes is the usage of multiple, low-accuracy
evaluations to eliminate error modes and create a highly accurate result. As mentioned earlier,
we are assuming that the working functions have the following property: A(h) − A = O(hp1),
where p1 is known or obtainable.

To motivate our understanding of extrapolation, we will write some arbitrary quadrature
rule I as a function of its associated step-size, h: I(h). For example, the Trapezoid Rule could
be written as:

Fundamental Methods of Extrapolation 7

I(h) =
h

2

(

f(a) + 2
n−1
∑

j=1

f(xj) + f(b)

)

+ O(h2)

As previously mentioned, suppose the expansion I(h) = I0+hp1k1+hp2k2+ . . . exists, where
{pi} ⊂ R are the set of error powers and {ki} ⊂ R are some known or unknown constants. Now
consider:

I(
h

s
) = I0 +

hp1k1

sp1
+

hp2k2

sp2
+ . . .

To eliminate the hp1 error term (because it is the dominant error power), we will compute
−I(h) + sp1I(h

s
).

I ′(h) = sp1I(
h

s
) − I(h) = sp1I0 − I0 + 0 ∗ O(hp1) +

hp2k2

sp1−p2
− hp2k2 + . . . (10)

=
sp1I(h

s
) − I(h)

sp1 − 1
= I0 +

sp1−p2 − 1

sp1 − 1
hp2k2 + . . . (11)

= I0 + hp2k′

2 + . . . (12)

= I(
h

s
) − I(h) − I(h

s
)

sp1 − 1
(13)

And that is the basic idea underlying Romberg Extrapolation. Note that s is the weight by
which we decrease the step-size in each new evaluation of I. s = 2 is a very common choice.
From (14), we can continue iteratively (or recursively) to elimate O(hp2). Using that result,
we can eliminate O(hp3), and continue on indefinitely, in theory. In reality, we are limited by
floating point precision.

The following table presents a graphical representation of the extrapolation process. Notice
that the left-most column is the only column that involves actual function evaluations. The
second column represents estimates of I with the O(hp1) term eliminated using the algorithm
given above. The third column elmiminates O(hp2) and so forth. The actual approximations
that should be used for error checking can be found by reading off the entries on the main
diagonal of this matrix.

Table 1: Iteration of a Generic Extrapolation Method

I0(h)
I0(

h
s
) I1(h)

I0(
h
s2) I1(

h
s
) I2(h)

I0(
h
s3) I1(

h
s2) I2(

h
s
) I3(h)

...
...

...
...

. . .

Note: more generally, we need not decrease h geometrically by factors of 1
s
, but this approach

is often easiest to visualize, and it simplifies the algebra in most applications without damaging
performance. Common choices for s are small integers (e.g. s = 2) because larger integers may
cause the number of function evaluations to grow prohibitively quickly.

8 Liu

3.2 A Few Words on Implementation

When implementing Richardson or Romberg extrapolation, it is most common to do it itera-
tively, unless storage is an extreme issue. Although the problem can be solved just as easily
using recursion, iteration is generally preferred. In an iterative method, storage of the full
table/matrix is not neccessary. Conveniently, it is only necessary to store the last two rows.
Although one should keep at least a short history (1 or 2 entries) from the main diagonal for
error comparisions. That is to say, when the difference between successive estimates decreases
to some given tolerance (the smallest possible tolerance being machine-zero), we should termi-
nate the algorithm because we are done. However it is possible the extrapolation method to
stall locally and generate two successive entries that are within tolerance even though the result
may be relatively far from the desired precision. Thus it is common practice to check errors
across every second or third term to avoid this problem. The following example demonstrates a
simple implementation that avoids storing the full table using MATLAB. It only checks for ter-
mination in successive terms, and it assumes the error powers follow the arithmetic progression
2, 4, 6,

while log10(abs(diff(I)))>log10(eps) %Only checks error of successive terms

h(k)=(b-a)/2^k; %step-size for the next row

R(2,1)=midpoint(a,b,h(end)); %Uses midpoint rule to obtain the first entry

for j=2:k %perform extrapolation steps

R(2,j)=R(2,j-1)+(R(2,j-1)-R(1,j-1))/(4^(j-1)-1);

end

I(k)=R(end); %store latest result in an array

for m=1:k %copy the second row to the first row

R(1,m)=R(2,m);

end %the next iteration will overwrite the current second row

k=k+1;

end

If the full matrix is desired, the for loop would be similar to the following. Here, we allow for
arbitrary error powers.

%xs are the x-locations along the axis where the function is evaluated

%ys are the corresponding y-values

%p is the array of error powers

n = length(xs);

R = zeros(n); %create the table

R(:,1) = ys;

for j=1:n-1,

for i=1:(n-j),

R(i,j+1)=R(i,j)+(R(i,j)-R(i+1,j))/((xs(i+j)/xs(i))^(p(j)/j)-1);

end

end

Fundamental Methods of Extrapolation 9

4 Graphical Demonstration of Results

4.1 Differentiation and Integration Revisited

To see the power of extrapolation, we present two illustrative examples. First, we return to
dex

dx
|x=1. Figure 2 shows the original plot of the first divided difference approximation followed

by the un-extrapolated centered difference (red). The two black lines represent one and two
extrapolation steps with the single step being naturally less accurate. Thus we can see that
extrapolation increased the rate of convergence here by an incredible amount. Not only that,
but it also handed us 14 decimal places of accuracy, compared to the mere 7 achieved by first
differences. Even the single step showed great improvements over the non-extrapolated centered
difference. But unfortunately, not even extrapolation can eliminate the problems of floating
point errors. What it can do and has done here is eliminate truncation error due to ”poor”
initial approximation methods.

−16 −14 −12 −10 −8 −6 −4 −2 0
−14

−12

−10

−8

−6

−4

−2

0

2

Improvement of Divided Differences
from Extrapolation

log
10

(h)

lo
g 10

(e
rr

or
)

Figure 2: First and Extrapolated Centered Differences for dex

dx
|x=1

Figure 3 displays the LHS, Trapezoid, Midpoint, and Simpson Rules in their standard
forms (dotted lines). If it is not clear, LHS is the black line marked by asterisks, the mid-
point/trapezoid rules virtually lie on top of each other, and the pink like marked by Xs is
Simpson’s Rule. Once extrapolated (solid lines), Simpson, Midpoint, and Trapezoid are nearly
indistinguishable. (Why does this imply that we should never start with Simpson’s Rule when
extrapolating?) Even the lowly Left Hand Sum is now performing at a decent level. But clearly,
the Midpoint or Trapezoid Rule is the best choice here. The deciding factor between them is
typically where we want the function evaluations to occur (i.e. Midpoint avoids the endpoints).

10 Liu

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

log
10

(h)

lo
g 10

(e
rr

or
)

Comparison of Extrapolated and
Un−Extrapolated Integration Methods

Figure 3: LHS, Trapezoid, Midpoint, and Simpson extrapolated and Un-Extrapolated

4.2 Finding Error Powers Graphically

Oftentimes, we find ourselves attempting to extrapolate expressions where the error powers have
not been analytically pre-derived for our convenience. We have already seen a few examples of
this; other situations include most ”canned” methods for numerically solving ODEs. However
not all cases are so nice. For example, it is easy to apply extrapolation to evaluate infinite
series or sequences, but the error terms are usually not obvious in those cases. Differentiation
and integration are special in that it is relatively easy to analytically show how to form the
{pi}. In these situations, we are left with two options. We can either attempt to analytically
derive the error terms or we can use graphical methods.

This is another situation where using log-log plots is ideal. We begin with:

I(h) − I(
h

s
) = (1 − s−p1)hp1k1 + (1 − s−p2)hp2k1 + . . .

= (1 − s−p1)hp1k1 + O(hp2)

From here, we would like to determine p1. We can do this by first assuming that for sufficently
small values of h (in practice, on the order of 1

100
and smaller is sufficient), we can make the

approximation O(hp2) ≈ 0. Now we apply log10 to both sides; note that we will now drop the
subscript p1 and assume that log means log10. So now we have:

log(I(h) − I(
h

s
)) = p log(h) + log(1 − s−p) + logk1 (14)

At this point, we can taylor expand log(1 − s−p) = 1
ln(10

(

−s−p − 1
2
s−2p − 1

3
s−p + . . .

)

. At
this point we have two options. If we believe that the error powers will be integers or ”simple”
fractions (e.g. 1

2
, 1

3
, 1

4
and similarly simple ones), then we can make the additional approximation

Fundamental Methods of Extrapolation 11

log(1− s−p) ≈ log(1) = 0. As we will see, this series of approximations actually does not really
harm our ability to determine p in most situations. The alternative is to retain more terms from
the expansion of log(1− s−p) and solve for p using the differences log(I(h)− I(h

s
)). Proceeding

with the first option, we have:

log(I(h) − I(
h

s
)) = p log(h) + C (15)

Figure 4 begins with the Trapezoid Rule extrapolated once using the known first error term,
p1 = 2. The slope of this (red) line shows the next error power we would need to use in order to
continue with the extrapolation process. Not surprisingly, the plot shows that p2 = 4. Table 2
displays the successive points between step-sizes. As predicted, the slope values converged to
approximately 4 fairly quickly. In the first few entries, the choice of s is too small, and in the
last few values, it begins to diverge from 4 as floating point errors come into play. But in the
center, there is little doubt that the correct choice is p2 = 4, if you did not believe the plot.

The other lines in figure 4 demonstrate what happens as continue setting successive error
powers. Here it is clear that the progression for the trapezoid rule goes in multiples of 2.

5 Conclusion

Extrapolation allows us to achieve greater precision with fewer function evaluations than un-
extrapolated methods. In some cases (as we saw with simple difference schemes), extrapolation
is the only way to improve numeric behavior using the same algorithm (i.e. without switching
to centered differences or something better). Using sets of poor estimates with small step-
sizes, we can easily and quickly eliminate error modes, reaching results that would be otherwise
unobtainable without significantly smaller step-sizes and function evaluations. Thus we turn
relatively poor numeric schemes like the Trapezoid Rule into excellent performers.

Of course the material presented here is certainly not the limit of extrapolation methods.
The Richardson and Romberg techniques are part of a fundamental set of methods using
polynomial approximations. There exist other methods using rational function approximations
(e.g. Pade, Burlirsch Stoer) along with generalizations of material presented here. For example,
Sidi gives detailed analysis of extrapolating functions whose expansions are more complicated
than A(h) = A +

∑s

k=1 αkh
pk + O(hps+1). The next order of complexity can solve problems

where we can write A(h) = A+
∑s

k=1 αkφk(y)+O(φs+1(y)) where A(y) and φk(y) are assumed
known, while again the αk are not required.

Still, the methods presented here are more than sufficient for many applications including
evaluating integrals, derivatives, infinite sums, infinite sequences, function approximations at a
point (e.g. evaluating π or γ), and more.

5.1 From Trapezoid to Simpson and Beyond

On a closing note, we will now quickly outline how Romberg extrapolation can be used to easily
derive Simpson’s rule from the Trapezoid rule. More generally, extrapolating the n = i Closed
Newton-Cotes Formula results in the n = i + 1 version. By now, this should not be all that
surprising. We start with s = 2 and p = 2; the choice of p is based on the error term from
the Closed Newton-Cotes Formula. Alternatively, it could have been determined graphically,
as shown earlier.

12 Liu

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

log
10

(h)

lo
g 10

(d
iff

(S
))

Using Slope to Find
 Error Exponents

Figure 4: Trapezoid Rule applied to
∫ 1.25

0.25
exp(−x2)

Table 2: Slope between step-sizes

4.61680926238264
4.12392496687081
4.02980316622319
4.00738318535940
4.00184180151224
4.00045117971785
4.00034982057854
3.99697103596297
4.08671822443851
4.02553509210714

Fundamental Methods of Extrapolation 13

4trap(h
2
) − trap(h)

22 − 1
= Simp(

h

2
)

=
h

3

(

f(a) + 2
n−1
∑

j=1

f(xj) + f(b)

)

− h

6

(

f(a) + 2
n−1
∑

j=1

f(xj) + f(b)

)

=
h

3



f(a) + 2

n
2
−1
∑

j=1

f(xj) + 4

n
2
∑

j=1

f(xj) + f(b)





Thus Simpson’s Rule is:

Simpson’s Rule:

∫ b

a

f(x) dx =
h

3



f(a) + 2

n
2
−1
∑

j=1

f(xj) + 4

n
2
∑

j=1

f(xj) + f(b)



+ O(h4) (16)

References

[1] Burden, R. and D. Faires, Numerical Analysis 8TH Ed, Thomson, 2005.

[2] Issacson, E. and H. B. Keller. Analysis of Numerical Methods, John Wiley and Sons. New
York, 1966.

[3] Press, et. al. Numerical Recipes in C: The Art of Scientific Computing, Cambridge Uni-
versity Press, 1992.

[4] Sidi, Avram, Practical Extrapolation Methods, Cambridge University Press, 2003.

[5] Stoer, J. and R. Burlirsch, Introduction to Numerical Analysis, Springer-Verlag, 1980.

[6] Sujit, Kirpekar, Implementation of the Burlirsch Stoer Extrapolation Method, U. Berkeley,
2003.

