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I. INTRODUCTION

The following is a short notes of lectures about classical field theory, in particular classical electrodynamics for
fourth or fifth year physics students. It is not supposed to be an introductory course to electrodynamics whose
knowledge will be assumed. Our main interest is the consider electrodynamics as a particular, relativistic field theory.
A slightly more detailed view of back reaction force acting on point charges is given, being the last open chapter of
classical electrodynamics.
The concept of classical field emerged in the nineteenth century when the proper degrees of freedom have been

identified for the electromagnetic interaction and the idea was generalized later. A half century later the careful study
of the propagation of the electromagnetic waves led to special relativity. One is usually confronted with relativistic
effects at high energies as far as massive particles are concerned and the simpler, non-relativistic approximation is
sufficient to describe low energy phenomena. But a massless particle, such as the photon, moves with relativistic
speed at arbitrarily low energy and requires the full complexity of the relativistic description.

We do not follow here the historical evolution, rather start with a very short summary of the main idea of special
relativity. This makes the introduction of classical field more natural. Classical field theories will be introduced
by means of the action principle. This is not only a rather powerful scheme but it offers a clear view of the role
symmetries play in the dynamics. After having laid down the general formalism we turn to the electrodynamics, the
interactive system of point charges and the electromagnetic field. The presentation is closed by a short review of the
state of the radiation back reaction force acting on accelerating point charges.
This lecture notes differs from a text book to be written about classical field theory in restricting the attention

to subjects which can be covered in a one semester course and as a result gauge theory in general and in particular
general relativity are not presented. Another difference is the inclusion of a subject, special relativity, which might
not be presented in other courses.
There are numerous textbooks available in this classical subject. The monograph [1] is monumental collection of

different aspects of electrodynamics, the basics can be found best in [2]. The radiation reaction force is nicely discussed
in [3], and [4].

II. ELEMENTS OF SPECIAL RELATIVITY

The main concepts of special relativity are introduced in this chapter. They caused a genuine surprise a century
ago because people had the illusion that their intuition, based on the physics of slow moving object, covers the whole
range of Physics.
The deviation from Newton’s mechanics of massive bodies has systematically been established few decades after

the discovery of special relativity only. In the meantime the only strong evidence of special relativity came from
electromagnetic radiation, from the propagation of massless particles, the photons. They move with the speed of light
at any energy and provide ample evidences of the new physics of particles moving with speed comparable with the
speed of light. Therefore we rely on the propagation of light signals in the discussions below without entering into the
more detailed description of such signals by classical electrodynamics, the only reference to the Maxwell equations
being made in the simple assumption 2 below.

A. Newton’s relativity

A frequently used concept below is the inertial coordinate systems. Simplest motion is that of a free particle and
the inertial coordinate systems are where a free point particle moves with constant velocity. Once the motion of a
free particle satisfy the same equation, vanishing acceleration, in each inertial systems one conjectures that any other,
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interactive system follow the same laws in different inertial systems. Newton’s law, mẍ = −∇U , includes the second
time derivative of the coordinates, therefore inertial systems are connected by motion of constant speed,

x→ x′ = x− tv. (1)

This transformation is called Galilean boost because the invariance of the laws of mechanics under such transformation,
the relativity assumption of Newton’s theory, was discovered by Galileo. In other words, there is no way to find out
the absolute velocity in mechanics because the physical phenomena found by two observers, moving with constant
velocity with respect to each other are identical.
The point which marks the end of the applicability of Newton’s theory in physics is which was assumed for hundreds

of years but left implicit in Galilean boost, namely that the time remains the same,

t→ t′ = t (2)

when an inertial system is changed into another one. In other words, the time is absolute in Newton’s physics, can in
principle be introduced for all inertial system identically.

B. Conflict resolution

Special relativity results from the solution of a contradiction among the two main pillars of classical physics,
mechanics and electrodynamics.
The following two assumptions seem to be unacceptable:

1. Principle of Newton’s relativity: The laws of Physics look the same in the inertial coordinate systems.

2. Electrodynamics: According to the Maxwell equations the speed of the propagation of electromagnetic waves
(speed of light) is c = 2.99793 · 1010cm/s.

In fact, the Galilean boost of Eqs. (1)-(2) leads to the addition of velocities, dx′

dt = dx
dt − v. This result is in

contradiction with the inertial system independence of the speed of light, encoded in the Maxwell-equations.
It is Einstein’s deep understanding physics which led him to recognize that Eq. (2) is the weak point of the

argument, not supported by observations and special relativity is based on its rejection. Special relativity is based on
the following, weakened assumptions.

1’ There is a transformation x → x′ and t → t′ of the coordinate and time which maps an inertial system
into another and preserves the laws of physics. This transformation changes the observed velocity of objects,
rendering impossible to measure absolute velocities.

2’ The speed of light is the same in every intertial system.

Once the time lost its absolute nature then the next step is its construction for each inertial system by observations.
After this point is completed one can clarify the details of the relation mentioned in assumption 1’, between the time
and coordinates when different inertial systems are compared. This will be our main task in the remaining part of
this chapter.
The loss of absolute nature of the time forces us to change the way we imagine the motion of an object. In the

Newtonian mechanics the motion of a point particle was characterized by its trajectory x(t), its coordinates as the
function of the (absolute) time. If the time is to be constructed in a dynamical manner then one should be more
careful and not use the same time for different objects. Therefore, the motion of a point particle is described by its
world line xµ = (ct(s),x(s)), µ = 0, 1, 2, 3, the parametrized form of its time and coordinates. The trivial factor c, the
speed of light, is introduced for the time to have components with the same length dimensions in the four-coordinate
xµ(s). Each four-coordinate labels a point in the space-time, called event. The world line of a point particle is a curve
in the space time.
Let us suppose that we can introduce a coordinate system by means of meter rods which characterize points in

space and all are in rest. Then we place a clock at each space point which will be synchronized in the following
manner. We pick the clock at one point, x = 0 in Fig. 1, as a reference, its finger being used to construct the flow
of time at x = 0, the time variable of its world line. Suppose that we want now to set the clock at point y. We
first place a mirror on this clock and then emit a light signal which propagates with the speed of light according to
assumption 2’ from our reference point at time t0 and measure the time t1 when it arrives back from y. The clock at
y should show the time (t1 − t0)/2 when the light has just reached.
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FIG. 1: Synchronization of clocks to the one placed at the origin.
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FIG. 2: The arrival of the light to B and C are simultaneous (|AB|′ = |AC|′) in the inertial system (ct, x, y, x) but the light
signals arrive earlier to B than C in the inertial system (ct′, x′, y′, x′).

The clocks, synchronized in such a manner show immediately one of the most dramatic prediction of special
relativity, the loss of absolute nature of time. Let us imagine an experimental rearrangement in the coordinate system
(x, y, z) of Fig. 2 which contains a light source (A) and two light detectors (B and C), placed at equal distance from
the source. A light signal, emitted form the source reaches the detectors at the same time in this intertial system. Let
us analyze the same process seen from another inertial system (ct′, x′, y′, z′) which is attached to an observer moving
with a constant velocity in the direction of the y axis. A shift by a constant velocity leaves the free particle motion
unaccelerated therefore the coordinate system (ct′, x′, y′, z′) where this observes is at rest is inertial, too. But the
time ct′ when the detector C signals the arrival of the light for this moving observer is later than the time ct in the
co-moving inertial system. In fact, the light propagates with the same speed in both systems but the detector moves
away form the source int the system (ct′, x′, y′, z′). In a similar manner, the time ct′ when the light reaches detector
B is earlier than ct because this detector moves towards the source. As a result, two events which are in coincidence
in one inertial system may correspond to different times in another inertial system. The order of events may change
when we see them in different inertial systems where the physical laws are supposed to be identical.

C. Invariant length

The finding of the transformation rule for space-time vectors xµ = (ct,x) is rendered simpler by the introduction
of some kind of length between events which is the same when seen form different inertial systems. Since the speed
of light is the same in every inertial system it is natural to use light in the construction of this length. We define
the distance between two events in such a manner that is is vanishing when there is a light signal which connects the
two events. The distance square is supposed to be quadratic in the difference of the space-time coordinates, thus the
expression

s2 = c2(t2 − t1)
2 − (x2 − x1)

2. (3)

is a natural choice. If s2 is vanishing in one reference frame then the two events can be connected by a light signal.
This property is valid in any reference frame, therefore the value s2 = 0 remains invariant during change of inertial
systems.
Now we show that s2 6= 0 remains invariant, as well. The change of inertial system may consist of trivial translations

in space-time and spatial rotation which leave the the expression (3) unchanged in an obvious manner. What is left
to show is that a relativistic boost of the inertial system when it moves with a constant speed leaves s2 6= 0 invariant.
The so far unspecified transformation of the space-time coordinates between two intertial systems related by a

relativistic boost of velocity v is supposed to generate a transformation s2 → s′2 = F (s2,u) during the boost. We
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FIG. 3: The light cones.

know that F (0,v) = 0 and assume that the transformation rule is free of singularities and the function F (s2,v) has
a Taylor expansion around s2 = 0,

F (s2,v) = a(|v|)s2 +O
(
s4
)
. (4)

where

a(|v|) = ∂F (0,v)

∂s2
. (5)

Note that the symmetry under spatial rotations requires that the three-dimensional scalar a(|v|) depends on the
length of the three-vector v only.

Let us no consider three reference frames S, S(u1) and S(u2) the two latter moving with infinitesimal velocities u1

and u2 with respect to S. Because of s2 = 0 is invariant and the transformation law for s2 should be continuous in u

for infinitesimal ds2 (no large distances involved where physical phenomena might accumulate) we have

ds2 = a(|u1|)ds21,
ds2 = a(|u2|)ds22, (6)

where a(u) is a continuous function and the argument depends on the magnitude |u| only owing to rotational invari-
ance. When S(u1) is viewed from S(u1) then one finds

ds21 = a(|u1 − u2|)ds22 (7)

and the comparison of (6) and (7) gives

a(|u1 − u2|) =
a(|u2|)
a(|u1|)

(8)

which can be true only if a = 1. This argument, repeated for successively applied Lorentz-boosts establishes the
invariance of the length square such changes of reference system which can be reached by repeated infinitesimal
transformations.
One says that two events are time-, space- or light-like separated when s2 > 0, s2 < 0 or s2 = 0, respectively.

Signals emitted from a point, shown as the origin in Fig. 3 reaches the future light cone. The signals received may
be emitted form its past light cone. There is no communication between two events when they are space-like. Events
separated by light-like interval can communicate by signals traveling with the speed of light only.

D. Lorentz Transformations

The use of the invariant length is a simple characterization of the transformation of the space-time coordinates
when the inertial system is changed, a Lorentz transformation is carried out. For this end we introduce the metric
tensor

gµν =






1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




 (9)
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FIG. 4: Lorentz transformations.

which allows us to introduce a Lorentz-invariant scalar product

x · y = xµgµνy
ν (10)

where x = (ct,x), etc. The Lorentz-group consists of 4× 4 matrices which mix the space-time coordinates

xµ → x′µ = Λµ
νx

ν , (11)

in such a manner that the scalar product or the invariant length is preserved,

x · y = xµ′

Λµ
µ′gµνΛ

ν
ν′yν

′

(12)

or

g = Λ̃ · g · Λ. (13)

The Lorentz group is 6 dimensional, 3 dimensions correspond to three-dimensional rotations and three other direc-
tions belong to Lorentz-boosts, parameterized by the three-velocity v relating the inertial systems. Let us denote the
the parallel and perpendicular projection of the three-coordinate on the velocity v by x‖ and x⊥, respectively,

x = x‖ + x⊥, x‖ · x⊥ = v · x⊥ = 0. (14)

We can then write a general Lorentz transformation in a three-dimensional notation as

x′ = α(x‖ − vt) + γx⊥, t′ = β
(

t− x · v
c̃2

)

(15)

The invariance of the length,

c2t2 − x2 = c2β2
(

t− x · v
c̃2

)2

− α2(x‖ − vt)2 − γx2
⊥, (16)

yields the relations

γ = ±1, v = 0 =⇒ γ = 1

c̃ = c

α = β =
1

√

1− v2

c2

(17)

x′
‖ =

x‖ − vt
√

1− v2

c2

, t′ =
t− vx‖

c2
√

1− v2

c2

(18)

Note that the inverse Lorentz transformation is obtained by the change v → −v,

x‖ =
x′
‖ + vt′
√

1− v2

c2

, t =
t′ +

vx′
‖

c2
√

1− v2

c2

. (19)
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Fig. 4 shows that change of the space-time coordinates during a Lorentz boost. For an Euclidean rotation in two
dimensions both axes are rotated by the same angle, here this possibility is excluded by the invariance of the light
cone. As a results the axes are moved by keeping the light cone, shown with dashed lines, unchanged.
We remark that there are four disconnected components of the Lorentz group. First note that the determinant

of Eq. (13), det g = det g(det Λ)2 indicates that detΛ = ±1 and there are no infinitesimal Lorentz transformations
11 + δΛ such that detΛ(11 + δΛ) 6= detΛ. Thus the spatial inversion split the Lorentz group into two disconnected

sets. Furthermore, observe that the component (00) of Eq. (13), 1 = g00 = (Λ0
0)

2−∑j(Λ
j
0)

2 implies that Λ0
0| > 1,

and that time inversion, a Lorentz transformation, splits the :Lorentz group into two disconnected sets. The four
disconnected components consists of matrices satisfying Eq. (13) and

1. detΛ = 1, Λ0
0 ≥ 1 (the proper Lorentz group, L↑

+),

2. det Λ = 1, Λ0
0 ≤ 1,

3. det Λ = −1, Λ0
0 ≥ 1,

4. det Λ = −1, Λ0
0 ≤ 1.

Note that one recovers the Galilean boost, x′ = x−vt, in the non-relativistic limit. The argument for the invariance of

the length s2, presented in Chapter II C applies for L↑
+ only. But inversions preserve s2 in a obvious manner therefore,

the invariance holds for the whole Lorentz group.
One usually needs the full space-time symmetry group, called Poincar group. It is ten dimensional and is the direct

product of the six dimensional Lorentz group and the four dimensional translation group in the space-time.

E. Time dilatation

The proper time τ is the lapse the time measured the coordinate system attached to the system. To find it for an
object moving with a velocity v to be considered constant during a short motion, in a reference system let us express
the invariant length between two consecutive events,

ref. system of the particle c2dτ2 = c2dt2 − dt2v2 lab. system (20)

which gives

dτ = dt

√

1− v2

c2
. (21)

Remarks:

1. A moving clock seems to be slower than a standing one.

2. The time measured by a clock,

1

c

∫ xf

xi

ds (22)

is maximal if the clock moves with constant velocity, ie. its world-line is straight. (Clock following a motion with
the same initial and final point but non-constant velocity seems to be slower than the one in uniform motion.)

F. Contraction of length

The proper length of a rod, ℓ0 = x′
2− x′

1, is defined in the inertial system S′ in which the rod is at rest. In another
inertial system the end points correspond to the world lines

xj =
x′
j + vt′j
√

1− v2

c2

, tj =
t′j +

vx′
j

c2
√

1− v2

c2

. (23)
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The length is read off at equal time, t1 = t2, thus

t′2 − t′1 = − v

c2
(x′

2 − x′
1) = −

vℓ0
c2

(24)

and the invariant length of the space-time vector pointing to the event E is

−ℓ2 = c2
(
vℓ0
c2

)2

− ℓ20, (25)

yielding

ℓ = ℓ0

√

1− v2

c2
. (26)

Lorentz contraction is that the length is the longest in the rest frame. It was introduced by Lorentz as an ad hoc
mechanism to explain the negative result of the Michelson-Moreley experiment to measure the absolute speed of their
laboratory. It is Einstein’s essential contribution to change this view and instead of postulating a fundamental effect
he derived it by the detailed analysis of the way length are measured in moving inertial system. Thus the contraction
of the length has nothing to do with real change in the system, it reflects the specific features of the way observations
are done only.

G. Transformation of the velocity

As mentioned above, the Galilean boost (1)-(2) leads immediately to the addition of velocities, dx
dt → dx

dt − v. This
rule is in contradiction with the invariance of the speed of light under Lorentz boosts. It was mentioned that the
resolution of this conflict is the renounce of the absolute nature of the time. This must introduce non-linear pieces in
the transformation law of the velocities. To find them we denote by V the velocity between the inertial systems S
and S′,

dx‖ =
dx′

‖ + V dt′
√

1− V 2

c2

, dx⊥ = dx′
⊥, dt =

dt′ +
V dx′

‖

c2
√

1− V 2

c2

. (27)

Then

dt

dt′
=

1 +
V v′

‖

c2
√

1− V 2

c2

(28)

and the velocity transform as

v‖ =
v′‖ + V

1 +
V v′

‖

c2

, v⊥ = v′⊥

√

1− V 2

c2

1 +
V v′

‖

c2

. (29)

Note that
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1. the rule of addition of velocity is valid for v/c≪ 1,

2. if v = c then v′ = c,

3. the expressions are not symmetrical for the exchange of v and V

H. Four-vectors

The space-time coordinates represent the contravariant vectors xµ = (ct,x). In order to eliminate the metric tensor
from covariant expressions we introduce covariant vectors whose lower index is obtained by multiplying with the metric
tensor, xµ = gµνx

ν . Thus allows us to leave out the metric tensor from the scalar product, x · y = xµgµνy
ν = xµyµ.

The inverse of the metric tensor gµν is denoted by gµν , gµρgρν = δµν .
Identities for Lorentz transformations:

g = Λ̃ · g · Λ
Λ−1 = g−1 · Λ̃ · g = (g · Λ · g−1)tr

x′µ = (Λ · x)µ = Λµ
νx

ν

xµ = (g · Λ · g−1) µ
ν x′ν = x′νΛ µ

ν = (x′ · Λ)µ
x′
µ = (g · Λ · x)µ = (g · Λ · g−1 · g · x)µ = Λ ν

µ xν

xµ = x′
νΛ

ν
µ = (x′ · Λ)µ (30)

One can define contravariant tensors which transform as

Tµ1···µn = Λµ1
ν1
· · ·Λµn

νn
T ν1···νn , (31)

covariant tensors with the transformation rule

Tµ1···µn
= Λν1

µ1
· · ·Λνn

µn
Tν1···νn

(32)

and mixed tensors which satisfy

T ρ1···ρm
µ1···µn

= Λρ1
κ1
· · ·Λρm

κm
Λν1

µ1
· · ·Λνn

µn
Tκ1···κm
ν1···νn

. (33)

There are important invariant tensors, for instance the metric tensor is preserved, gµν′ = Λµ′

µgµ′ν′Λν′

ν together
with its other forms like gµν , g

µν and gνµ. Another important invariant tensor is the completely antisymmetric one

ǫµνρσ where the convention is ǫ0123 = 1. In fact, ǫµνρσ
′

= ǫµνρσ detΛ which shows that ǫµνρσ is a pseudo tensor, is
remains invariant under proper Lorentz transformation and changes sign during inversions. Note the minus sign in
the relation ǫµνρσ = −ǫµνρσ.

I. Relativistic mechanics

Let us first find the heuristic generalization of Newton’s law for relativistic velocities by imposing Lorentz invariance.
The time-like four-velocity of a massive particle is given in terms of its world line xµ(s) as

ẋ =
dxµ

ds
= ẋ0

(

1,
v

c

)

=
1

√

1− v2

c2

(

1,
v

c

)

, (34)

and it is a unit vector, ẋ2 = 1. The four-acceleration ẍµ is orthogonal to the four-velocity since

0 =
dx2

ds
= 2ẋ · ẍ. (35)

The four-momentum, defined by

pµ = mcẋµ = (p0,p) =
1

√

1− v2

c2

(mc,mv), (36)
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satisfies the relation p2 = m2c2. The rate of change of the four-momentum defines the four-force,

Kµ = ṗµ = mcẍµ. (37)

The three-vector

F =
ds

dt
K (38)

can be considered as the relativistic generalization of the force in Newton’s equation,

F = mc
d

dt
(ṫv)

=
ma

√

1− v2

c2

−
d2s
dt2

(dsdt )
2
mcv

=
ma

√

1− v2

c2

−
d
dt

√
c2 − v2

c2 − v2
mcv

=
m

√

1− v2

c2

[

a+
v(v · a)

c2(1− v2

c2 )

]

. (39)

The temporal component of Eq. (37),

d

ds
(mcẋ0) =

d

ds

mc
√

1− v2

c2

= K0 (40)

leads to the conservation law for the energy. This is because the constraint 0 = mcẍ · ẋ = K · ẋ gives

K0ẋ0 = Ku = ṫ2Fv. (41)

This condition, written as

d

dt
E(v) = Fv (42)

leads to the expression

E(v) =
mc2

√

1− v2

c2

(43)

of the kinetic energy. We have therefore

pµ =

(
E

c
,p

)

, (44)

and the relation p2 = m2c2 leads to the dispersion relation

E2

c2
= p2 +m2c2. (45)

Note that the unusual relativistic correction in the three-force (38) is non-vanishing when the velocity is not perpen-
dicular to the acceleration, i.e. the kinetic energy is not conserved and work done by the force on the particle.

J. Lessons of special relativity

Special relativity grew out from the unsuccessful experimental attempts of measuring absolute velocities. This
negative results is incorporated into the dynamics by postulating a symmetry of the fundamental laws in agreement
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with Maxwell equations. The most radical consequences of this symmetry concerns the time. It becomes non-
absolute, has to be determined dynamically for each system instead of assumed to be available before any observation.
Furthermore, two events which coincide in one reference frame may appear in different order in time in other reference
frames, the order of events in time is not absolute either. The impossibility of measuring absolute acceleration
and further, higher derivatives of the coordinates with respect to the time is extended in general relativity to the
nonavailability of the coordinate system before measurements where the space-time coordinates are constructed by
the observers.
The dynamical origin of time motivates the change of the trajectory x(t) as a fundamental object of non-relativistic

mechanics to world line xµ(s) where the reference system time x0 is parametrized by the proper time or simply a
parameter of the motion s. The world line offers a surprising extension of the non-relativistic motion by letting x0(s)
non-monotonous function. Turning point where time turns back along the world line is interpreted in the quantum
case as an events where a particle-anti particle pair is created or annihilated.
We close this short overview of special relativity with a warning. The basic issues of this theory , such as meter

rods and clocks are introduced on the macroscopic level. Though the formal implementation of special relativity is
fully confirmed in the quantum regime their interpretation in physical term, e.g. the speed of propagation of light
within an atom, is neither trivial nor parallel with the macroscopic reasoning.

III. CLASSICAL FIELD THEORY

A. Why Classical Field Theory?

It seems nowadays natural to deal with fields in Physics. It is pointed out here that the motivation to introduce
fields, dynamical degrees of freedom distributed in space, is not supported only by electrodynamics. There is a “no-go”
theorem in mechanics, it is impossible to construct relativistic interactions in a many-body system. Thus if special
relativity is imposed we need an extension of the many-particle systems, such fields, to incorporate interactions.
The dynamical problem of a many-particle system is establishment and the solution of the equations of motion

for the world lines xµ
a(s), a = 1m. . . , n of the particles. By generalizing the Newton equation we seek differential

equations for the world lines,

ẍµ
a = Fµ

a (x1, . . . , xn) (46)

where interactions are described by some kind of “forces” Fµ
a (x1, . . . , xn). The problem is that we intend to use

instantaneous force and to consider the argument of the force, the world lines at the same time x0
a as the particle in

question but the “equal time” is not a relativistically invariant concept and has not natural implementation.
A formal aspect of this problem can be seen by recalling that ẋ2(s) = 1 long the world line, therefore ẍ · ẋ = 0,

the four-velocity and the four-acceleration are orthogonal. Thus any Cauchy problem which provides the initial
coordinates and velocities on an initial spatial hyper-surface must satisfy this orthogonality constraint. This imposes
a complicated, unexpected restriction on the possible forces. For instance when translation invariant, central two-
particle forces are considered then

Fµ
a (x1, . . . , xn) =

∑

b 6=a

(xµ
a − xµ

b )f((xa − xb)
2) (47)

and xa − xb is usually not orthogonal to ẋa and xb.
The most convincing and general proof of the “no-go“ theorem is algebraic. The point is that the Hamilton function

is the generator of the translation in time and its Poisson brackets, the commutator with the other generators of the
Poincar group are fixed by the relativistic kinematics, the structure of the Poincar group. It can be proven that the
any realization of the commutator algebra of the Poincar group for a many-particle system must contains the trivial
Hamilton function, the sum of the free Hamilton functions for the particles.

What is left to introduce relativistic interactions is to give up instantaneous force and allow the influence of the
whole past history of the system on the forces. This is an action-at-a-distance theory where particles interact at
different space-time points. We can simplify this situation by introducing auxiliary dynamical variables which are
distributed in space and describe the propagation of the influence of the particles on each other. The systematical
implementation of this idea is classical field theory.
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B. Variational principle

Our goal in Section is to obtain equations of motion which are local in space-time and are compatible with certain
symmetries in a systematic manner. The basic principle is to construct equations which remain invariant under
nonlinear transformations of the coordinates and the time. It is rather obvious that such a gigantic symmetry renders
the resulting equations much more useful.
Field theory is a dynamical system containing degrees of freedom, denoted by φ(x), at each space point x. The

coordinate φ(x) can be a single real number (real scalar field) or consist n-components (n-component field). Our
goal is to provide an equation satisfied by the trajectory φcl(t,x). The index cl is supposed to remind us that this
trajectory is the solution of a classical (as opposed to a quantum) equation of motion.
This problem will be simplified in two steps. First we restrict x to a single value, x = x0. The n-component field

φ(x0) can be thought as the coordinate of a single point particle moving in n-dimensions. We need the equation
satisfied by the trajectory of this particle. The second step of simplification is to reduce the n-dimensional function
φ(x0) to a single point on the real axis.

1. Single point on the real axis

We start with a baby version of the dynamical problem, the identification of a point on the real axis, xcl ∈ R, in a
manner which is independent of the re-parametrization of the real axis.
The solution is that the point is identified by specifying a function with vanishing derivative at xcl only:

df(x)

dx |x=xcl

= 0 (48)

To check the re-parametrization invariance of this equation we introduce new coordinate y by the function x = x(y)
and find

df(x(y))

dy |y=ycl

=
df(x)

dx |x=xcl
︸ ︷︷ ︸

0

dx(y)

dy |y=ycl

= 0 (49)

We can now announce the variational principle. There is simple way of rewriting Eq. (48) by performing an
infinitesimal variation of the coordinate x→ x+ δx, and writing

f(xcl + δx) = f(xcl) + δf(xcl)

= f(xcl) + δx f ′(xcl)
︸ ︷︷ ︸

0

+
δx2

2
f ′′(xcl) +O

(
δx3
)
. (50)

The variation principle, equivalent of Eq. (48) is

δf(xcl) = O
(
δx2
)
, (51)

stating that xcl is characterized by the property that an infinitesimal variation around it, xcl → xcl + δx, induces an
O
(
δx2
)
change in the value of f(xcl).

2. Non-relativistic point particle

We want to identify a trajectory of a non-relativistic particle in a coordinate choice independent manner.
Let us identify a trajectory xcl(t) by specifying the coordinate at the initial and final time, xcl(ti) = xi, xcl(tf ) = xf

(by assuming that the equation of motion is of second order in time derivatives) and consider a variation of the
trajectory x(t): x(t) → x(t) + δx(t) which leaves the initial and final conditions invariant (ie. does not modify the
solution). Our function f(x) of the previous section becomes a functional, called action

S[x(·)] =
∫ tf

ti

dtL(x(t), ẋ(t)) (52)
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involving the Lagrangian L(x(t), ẋ(t)). (The symbol x(·) in the argument of the action functional is supposed to
remind us that the variable of the functional is a function. It is better to put a dot in the place of the independent
variable of the function x(t) otherwise the notation S[x(t)] can be mistaken with an embedded function S(x(t)).) The
variation of the action is

δS[x(·)] =

∫ tf

ti

dtL

(

x(t) + δx(t), ẋ(t) +
d

dt
δx(t)

)

−
∫ tf

ti

dtL(x(t), ẋ(t))

=

∫ tf

ti

dt

[

L(x(t), ẋ(t)) + δx(t)
δL(x(t), ẋ(t))

δx

+
d

dt
δx(t)

δL(x(t), ẋ(t))

δẋ
+O

(
δx(t)2

)
−
∫ tf

ti

dtL(x(t), ẋ(t))

]

=

∫ tf

ti

dtδx(t)

[
δL(x(t), ẋ(t))

δx
− d

dt

δL(x(t), ẋ(t))

δẋ

]

+ δx(t)
︸ ︷︷ ︸

0

δL(x(t), ẋ(t))

δẋ

∣
∣
∣
∣

ti

tf

+O
(
δx(t)2

)
(53)

The variational principle amounts to the suppression of the integral in the last line for an arbitrary variation, yielding
the Euler-Lagrange equation:

δL(x, ẋ)

δx
− d

dt

δL(x, ẋ)

δẋ
= 0 (54)

The generalization of the previous steps for a n-dimensional particle gives

δL(x, ẋ)

δx
− d

dt

δL(x, ẋ)

δẋ
= 0. (55)

It is easy to check that the Lagrangian

L = T − U =
m

2
ẋ2 − U(x) (56)

leads to the usual Newton equation

mẍ = −∇U(x). (57)

It is advantageous to introduce the generalized momentum:

p =
∂L(x, ẋ)

∂ẋ
(58)

which allows to write the Euler-Lagrange equation as

ṗ =
∂L(x, ẋ)

∂x
(59)

The coordinate not appearing in the Lagrangian in an explicit manner is called cyclic coordinate,

∂L(x, ẋ)

∂xcycl
= 0. (60)

For each cyclic coordinate there is a conserved quantity because the generalized momentum of a cyclic coordinate,
pcycl is conserved according to Eqs. (58) and (60).

3. Relativistic particle

After the heuristic generalization of the non-relativistic Newton’s law let us consider now more systematically the
relativistically invariant variational principle. The Lorentz invariant action must be proportional to the invariant
length of the world-line, this latter being the only invariant of the problem. Dimensional considerations lead to

S = −mc

∫ sf

si

ds =

∫ τf

τi

dτLτ (61)
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where τ is an arbitrary parameter of the world-line and the corresponding Lagrangian is

Lτ = −mc
√

x′µgµνx′ν , (62)

where f ′(τ) = df(τ)
dτ . The Lagrangian

L = −mc2
√

1− v2

c2
= −mc2 +

v2

2m
+O

(
v4

c2

)

(63)

corresponds to the integrand when τ is the time and justifies the dimensionless constant in the definition of the action
(61).
We have immediately the energy-momentum

p =
∂L

∂v
=

mv
√

1− v2

c2

E = pv − L =
mc2

√

1− v2

c

= mc2 +
v2

2m
+O

(
v4

c2

)

. (64)

The variation of the world-line,

δS =

∫ xf

xi

dτ

(
δLτ

δxµ
δxµ +

∂Lτ

∂x′µ
δx′µ

)

=
∂Lτ

∂x′µ
δxµ

∣
∣
∣
∣

xf

xi

+

∫ xf

xi

dτδxµ

(
∂Lτ

∂xµ
− d

dτ

∂Lτ

∂x′µ

)

, (65)

leads to the Euler-Lagrange equation

0 = mc
d

dτ

x′µ

√
x′2

= mc
x′′µx′2 − x′µx′ · x′′

(x′2)3/2

=
mc√
x′2

Tµνx′′
ν , (66)

where the projector into the transverse directions to the four-velocity,

Tµν = gµν − x′µx′ν

x′2
(67)

takes care that the infinitesimal change of the time-like unit vector x′µ/
√
x′2, as given in the first equation of (66)

is orthogonal to the itself. It is obviously the simplest to use teh invariant length s as parameter which makes the
four-acceleration automativally orthogonal to the four-velocity and the equation of motion reads as

0 = mcẍµ. (68)

Note that if one uses the invariant length in the place of the the parameter τ from the very beginning in the action
then the variations are constrained by the condition ẋ · δẋ = 0. To allow arbitrary variations one needs either a free
parametrisation of the world line or a Lagrange multiplyer to handle the constraint ẋ2 = 1 in the action. Note that
the momentum, defined as

pµ = − δS

δxµ
f

, (69)

is independent of the choice of parametrisation and given by pµ = mcẋν .
The projection of the non-relativistic angular momentum on a given unit vector n can be defined by the derivative

of the action with respect to the angle of rotation around n. Such a rotation generates δx = δRx = δφn×x and gives

δS

δφ
=

δS

δxℓ
f

δxℓ

δφ
= pRx = p(n× x) = n(x× p). (70)
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The relativistic generalization of this procedure is δxµ = δLµνx
ν ,

δS

δφ
=

δS

δxρ

δxρ

δφ
= −pµLµνx

ν =
1

2
Lµν(p

νxµ − pµxν) (71)

yielding

Mµν = xµpν − pµxν . (72)

4. Scalar field

We turn now the dynamical variables which were evoked in avoiding the “no-go“ theorem, fields. We assume the
simple case where there are n scalar degree of freedom at each space point, a scalar field φa(x), a = 1, . . . , n whose
time dependence gives a space-time dependent field φa(x).
To establish the variational principle we consider the variation of the trajectory φ(x)

φ(x)→ φ(x) + δφ(x), δφ(ti,x) = δφ(tf ,x) = 0. (73)

The variation of the action

S[φ(·)] =
∫

V

dtd3x
︸ ︷︷ ︸

dx

L(φ, ∂φ) (74)

is

δS =

∫

V

dx

(
∂L(φ, ∂φ)

∂φa
δφa +

∂L(φ, ∂φ)

∂∂µφa
δ∂µφa

)

+O
(
δ2φ
)

=

∫

V

dx

(
∂L(φ, ∂φ)

∂φa
δφa +

∂L(φ, ∂φ)

∂∂µφa
∂µδφa

)

+O
(
δ2φ
)

=

∫

∂V

dsµδφa
∂L(φ, ∂φ)

∂∂µφa

+

∫

V

dxδφa

(
∂L(φ, ∂φ)

∂φa
− ∂µ

∂L(φ, ∂φ)

∂∂µφa

)

+O
(
δ2φ
)

(75)

The first term for µ = 0,

∫

∂V

ds0δφa
∂L(φ, ∂φ)

∂∂0φa
=

∫

t=tf

d3x δφa
︸︷︷︸

0

∂L(φ, ∂φ)

∂∂0φa

−
∫

t=ti

d3x δφa
︸︷︷︸

0

∂L(φ, ∂φ)

∂∂0φa
= 0 (76)

is vanishing because there is no variation at the initial and final time. When µ = j then

∫

∂V

dsjδφa
∂L(φ, ∂φ)

∂∂jφa
=

∫

xj=∞

dsjδφa
∂L(φ, ∂φ)

∂∂jφa
︸ ︷︷ ︸

0

−
∫

xj=−∞

dsjδφa
∂L(φ, ∂φ)

∂∂jφa
︸ ︷︷ ︸

0

= 0 (77)

and it is still vanishing because we are interested in the dynamics of localized systems and the interactions are supposed
to be short ranged. Therefore, φ = 0 at the spatial infinities and the Lagrangian is vanishing. The suppression of the
second term gives the Euler-Lagrange equation

∂L(φ, ∂φ)

∂φa
− ∂µ

∂L(φ, ∂φ)

∂∂µφa
= 0. (78)
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Let us consider a scalar field as an example. The four momentum is represented by the vector operator p̂µ =

−
(

~

ic∂0,
~

i
~∂
)

in Quantum Mechanics which leads to the Lorentz invariant invariant Klein-Gordon equation

0 = (p̂2 −m2c2)φa = −~2
(

∂µ∂
µ +

m2c2

~2

)

φa, (79)

generated by the Lagrangian

L =
1

2
(∂φ)2 − m2c2

2~2
φ2 =⇒ 1

2
(∂φ)2 − m2

2
φ2. (80)

The parameter m can be interpreted as mass because the plane wave solution

φk(x) = e−ik·x (81)

to the equation of motion satisfies the mass shell condition,

~
2k2 = m2c2 (82)

c.f. Eq. (45).
One may introduce a relativistically invariant self-interaction by means of a potential V (φ),

L =
1

2
(∂φ)2 − m2

2
φ2 − V (φ) (83)

and the corresponding equation of motion is

(∂µ∂
µ +m2) = −V ′(φ). (84)

C. Noether theorem

It is shown below that there is a conserved current for each continuous symmetry.
Symmetry: A transformation of the space-time coordinates xµ → x′µ, and the field φa(x)→ φ′

a(x) preserves the
equation of motion. Since the equation of motion is obtained by varying the action, the action should be preserved
by the symmetry transformations. A slight generalization is that the action can in fact be changed by a surface term
which does not influence its variation, the equation of motion at finite space-time points. Therefore, the symmetry
transformations satisfy the condition

L(φ, ∂φ)→ L(φ′, ∂′φ′) + ∂′
µΛ

µ (85)

with a certain vector function Λµ(x′).
Continuous symmetry: There are infinitesimal symmetry transformations, in an arbitrary small neighborhood

of the identity, xµ → xµ + δxµ, φa(x) → φa(x) + δφa(x). Examples: Rotations, translations in the space-time, and
φ(x)→ eiαφ(x) for a complex field.
Conserved current: ∂µj

µ = 0, conserved charge: Q(t):

∂0Q(t) = ∂0

∫

V

d3xj0 = −
∫

V

d3x∂vj = −
∫

∂V

ds · j (86)

It is useful to distinguish external and internal spaces, corresponding to the space-time and the values of the field
variable. Eg.

φa(x) : R
4

︸︷︷︸

external space

→ R
m

︸︷︷︸

internal space

. (87)

Internal and external symmetry transformations act on the internal or external space, respectively.
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1. Point particle

The main points of the construction of the Noether current for internal symmetries can be best understood in the
framework of a particle. To find the analogy of the internal symmetries let us consider a point particle with the
continuous symmetry x→ x+ ǫf(x) for infinitesimal ǫ,

L(x, ẋ) = L(x+ ǫf(x), ẋ+ ǫ(ẋ · ∂)f(x)) +O
(
ǫ2
)
. (88)

Let us introduce a new, time dependent coordinates, y(t) = y(x(t)), based on the solution of the equation of motion,
xcl(t), in such a manner that one of them will be y1(t) = ǫ(t), where x(t) = xcl(t) + ǫ(t)f(xcl(t)). There will be n− 1
other new coordinates, yℓ, ℓ = 2, . . . , n whose actual form is not interesting for us. The Lagrangian in terms of the
new coordinates is defined by L(y, ẏ) = L(y(x), ẏ(x)). The ǫ-dependent part assumes the form

L(ǫ, ǫ̇) = L(xcl + ǫf(xcl), ẋcl + ǫ(ẋcl · ∂)f(xcl) + ǫ̇f(xcl)) +O
(
ǫ2
)
. (89)

What is the equation of motion of this Lagrangian? Since the solution is ǫ(t) = 0 it is sufficient to retain the O (ǫ)
contributions in the Lagrangian only,

L(ǫ, ǫ̇)→ L(1)(ǫ, ǫ̇) = ǫ
∂L(xcl, ẋcl)

∂x
· f(xcl)

+
∂L(xcl, ẋcl)

∂ẋ
[ǫ(ẋcl · ∂)f(xcl) + ǫ̇f(xcl)] (90)

up to an ǫ-independent constant. The corresponding Euler-Lagrange equation is

∂L(1)(ǫ, ǫ̇)

∂ǫ
− d

dt

∂L(1)(ǫ, ǫ̇)

∂ǫ̇
= 0. (91)

(this is the point where the formal invariance of the equation of motion under nonlinear, time dependent transforma-
tions of the coordinates is used). According to Eq. (88) ǫ is a cyclic coordinate,

∂L(ǫ, ǫ̇)

∂ǫ
= 0 (92)

and its generalized momentum,

pǫ =
∂L(ǫ, ǫ̇)

∂ǫ̇
(93)

is conserved.
Let us now consider two important examples. The external space transformation of field theory corresponds to the

shift of the time, t → t + ǫ which induces x(t) → x(t − ǫ) = x(t) − ǫẋ(t) for infinitesimal ǫ. This is a symmetry as
long as the Hamiltonian (and the Lagrangian) does not contain explicitly the time. In fact, the action changes by a
boundary contribution only which can be seen by expanding the Lagrangian in time around t− ǫ,

∫ tf

ti

dtL(x(t), ẋ(t)) =

∫ tf

ti

dt

[

L(x(t− ǫ), ẋ(t− ǫ)) + ǫ
dL(x(t), ẋ(t))

dt

]

(94)

up to O
(
ǫ2
)
terms and as a result the variational equation of motion remains unchanged. But the continuation of the

argument is slightly different from the case of internal symmetry. We consider ǫ as a time dependent function which
generates a transformation of the coordinate, x(t)→ x(t− ǫ(t)) = x(t)− ǫ(t)ẋ(t) +O

(
ǫ2
)
. The Lagrangian of ǫ(t) as

new coordinate for the choice x(t) = xcl(t) is

L̃(ǫ, ǫ̇) = L(xcl(t− ǫ), ẋcl(t− ǫ))− L(xcl(t), ẋcl(t))

= −ǫẋcl
∂L(xcl, ẋcl)

∂x
− dǫẋcl

dt

∂L(xcl, ẋcl)

∂ẋ

= −ǫẋcl
∂L(xcl, ẋcl)

∂x
− ǫẍcl

∂L(xcl, ẋcl)

∂ẋ
︸ ︷︷ ︸

−ǫ
dL(xcl,ẋcl)

dt

−ǫ̇ẋcl
∂L(xcl, ẋcl)

∂ẋ

= −ǫ
[
dL(xcl, ẋcl)

dt
− d

dt

(
∂L(xcl, ẋcl)

∂ẋ
ẋcl

)]

− d

dt

(
∂L(xcl, ẋcl)

∂ẋcl
ǫẋcl

)

(95)
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up to an ǫ-independent constant andO
(
ǫ2
)
contributions and its equation of motion, Eq. (91), assures the conservation

of the energy,

H =
∂L(x, ẋ)

∂ẋ
ẋ− L(x, ẋ). (96)

As another application of Noether theorem we consider now a particle moving in a spherically symmetric potential.
The Lagrangian

L(x, ẋ) =
m

2
ẋ2 − U(|x|) (97)

displaying rotational symmetry. Infinitesimal rotation around the axis defined by the unit vector n by angle ǫ can
be written as δx = ǫn × x + O

(
ǫ2
)
. We use a time-dependent rotation, described by a function ǫ(t) satisfying the

constraint ǫ(ti) = ǫ(tf ) = 0 to parameterize a variation x(t) → x(t) + ǫ(t)n × x(t) around a solution x(t) of the
Euler-Lagrange equations. We find now the Euler-Lagrange equation for ǫ(t) which, we know ahead is satisfied by
ǫ(t) = 0. The Lagrangian in terms of ǫ(t) is

L(ǫ, ǫ̇) =
m

2
(ẋ+ ǫn× x)2 − U(|x+ ǫn× x|) +O

(
ǫ2
)

= L(x, ẋ) +mǫẋ(n× x) +O
(
ǫ2
)
. (98)

The infinitesimal rotation angle ǫ is cyclic parameter of the O (ǫ) Lagrangian due to the rotational invariance of the
problem. Hence the Euler-Lagrange equation for ǫ is

d

dt
nL = 0 (99)

where L = x×mẋ and the identity ẋ(n× x) = n(x× ẋ) has been used.

2. Internal symmetries

An internal symmetry transformation of field theory acts on the internal space only. We shall consider linearly
realized internal symmetries for simplicity where

δxµ = 0, δiφa(x) = ǫ τab
︸︷︷︸

generator

φb(x). (100)

This transformation is a symmetry,

L(φ, ∂φ) = L(φ+ ǫτφ, ∂φ+ ǫτ∂φ) +O
(
ǫ2
)
. (101)

Let us introduce new ”coordinates”, ie. new field variable, Φ(φ), in such a manner that Φ1(x) = ǫ(x) where φ(x) =
φcl(x) + ǫ(x)τφcl(x), φcl(x) being the solution of the equations of movement. The linearized Lagrangian for ǫ(x) is

L̃(ǫ, ∂ǫ) = L(φcl + ǫτφ(x), ∂φcl + ∂ǫτφ(x) + ǫτ∂φ(x))

→ ǫτ
∂L(φcl, ∂φcl)

∂φ
+ [∂ǫτφ(x) + ǫτ∂φ(x)]

∂L(φcl, ∂φcl)

∂∂φ
. (102)

The symmetry, Eq. (101), indicates that ǫ is a cyclic coordinate and the equation of motion

∂L̃(ǫ, ∂ǫ)

∂ǫ
− ∂µ

∂L̃(ǫ, ∂ǫ)

∂∂µǫ
= 0. (103)

shows that the current,

Jµ = −∂L̃(ǫ, ∂ǫ)

∂∂µǫ
= −∂L(φ, ∂φ)

∂∂µφ
τφ (104)

defined up to a multiplicative constant as the generalized momentum of ǫ, is conserved. Notice that (i) we have an
independent conserved current corresponding to each independent direction in the internal symmetry group and (ii)
the conserved current is well defined up to a multiplicative constant only.
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Let us consider a complex scalar field with symmetry φ(x)→ eiαφ(x) as an example. The theory is defined by the
Lagrangian

L = ∂µφ
∗∂µφ−m2φ∗φ− V (φ∗φ) (105)

where it is useful to considered φ and φ∗ as independent variables. The infinitesimal transformations δφ = iǫφ,
δφ∗ = −iǫφ∗ yield the conserved current

jµ =
i

2
(φ∗∂µφ− ∂µφ∗φ) (106)

up to a multiplicative constant.

3. External symmetries

The most general transformations leaving the action invariant may act in the external space, too. Let us consider
the translations, xµ → x′µ = xµ + δxµ and φ(x) → φ′(x′) = φ(x) + δφ(x) where δφ(x) = −δxµ∂µφ(x). We shall use
infinitesimal, space-time dependent δxµ(x), to parametrize a particular variation of the field. The variation of the
action is

δS =

∫

V

dxδL+

∫

V ′−V

dxL

=

∫

V

dxδL+

∫

∂V

dSµδx
µL (107)

according to Fig. 6 what can be written as

δS =

∫

V

dx

(
∂L

∂φ
− ∂µ

∂L

∂∂µφ

)

δφ+

∫

∂V

dSµ

(
∂L

∂∂µφ
δφ+ δxµL

)

. (108)

due to the relation ∂µδφ(x) = ∂µ[φ(x− δxµ(x))− φ(x)] = δ∂µφ(x). For field configurations satisfying the equation of
motion the first integral is vanishing and we find

δS =

∫

∂V

dSµδx
ν

(

Lgµν −
∂L

∂∂µφ
∂νφ

)

(109)

leaving the current, defined for translations, ie. space-time independent δxµ(x) = ǫµ

Jµ = ǫν
(

Lgµν −
∂L

∂∂µφ
∂νφ

)

(110)

conserved. Hence the canonical energy-momentum tensor, containing the four conserved current,

Tµν
c =

∂L

∂∂µφ
∂νφ− Lgµν (111)

obeys the conservation law

∂µT
µν
c = 0. (112)

Therefore,

P ν =

∫

d3xT 0ν
c (113)

can be identified by the energy-momentum vector and we have the form

Tµν
c =

(
ǫ cp
1
cS σ

)

(114)

where ǫ denotes the energy density, p stands for the momentum density, S is the energy flux and σjk is the flux of pk

in the direction j.
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xδ

V

V’

FIG. 6: Deformation of a space-time region.

When Lorentz transformations and translations are performed simultaneously then we have δxµ = aµ + ωµ
ν x

ν and
δφ = Λνµωµνφ 6= 0 for field with nonvanishing spin and the conserved current is

Jµ =
∂L

∂∂µφ
(Λνκωκνφ− δxν∂νφ) + δxµL. (115)

Let us simplify the expressions be introducing the tensor

fµνκ =
∂L

∂∂µφ
Λνκφ (116)

and write

Jµ = fµνκωκν −
∂L

∂∂µφ
δxν∂νφ+ δxµL. (117)

By the cyclic permutation of the indices µνκ we can define another tensor

f̃µνκ =

(
∂L

∂∂µφ
Λνκ +

∂L

∂∂νφ
Λκµ − ∂L

∂∂κφ
Λµν

)

φ (118)

which is antisymmetric in the first two indices,

f̃νµκ =

(
∂L

∂∂νφ
Λµκ +

∂L

∂∂µφ
Λκν − ∂L

∂∂κφ
Λνµ

)

φ

=

(

− ∂L

∂∂νφ
Λκµ − ∂L

∂∂µφ
Λνκ +

∂L

∂∂κφ
Λµν

)

φ

= −f̃µνκ (119)

and verifies the equation

f̃µνκωνκ =

(
∂L

∂∂µφ
Λνκ +

∂L

∂∂νφ
Λκµ − ∂L

∂∂κφ
Λµν

)

φωνκ

= fµνκωνκ −
(

∂L

∂∂νφ
Λµκ +

∂L

∂∂κφ
Λµν

)

φωνκ

= fµνκωνκ. (120)

As a result we can replace fµνκ by it in Eq. (117),

Jµ = f̃µνκωκν −
∂L

∂∂µφ
δxν∂νφ+ δxµL

= f̃µνκ∂ν(δxκ)−
∂L

∂∂µφ
δxν∂νφ+ δxµL

= δxκ

(

gµκL− ∂L

∂∂µφ
∂κφ− ∂ν f̃

µνκ

)

+ ∂ν(f̃
µνκδxκφ). (121)
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The last term J ′µ = ∂ν(f̃
µνκδxκφ) gives a conserved current thus can be dropped and the conserved Noether current

simplifies as

Jµ = Tµν(aν + ωνκx
κ) = Tµνaν +

1

2
(Tµνxκ − Tµκxν)ωνκ (122)

where we can introduced the symmetric energy momentum tensor

Tµν = Tµν
c + ∂κf̃

µκν (123)

and the tensor

Mµνσ = Tµνxσ − Tµσxν . (124)

Due to
∫

∂V

Sµ∂κf̃
µκν =

∫

V

∂µ∂κf̃
µκν = 0 (125)

the energy momentum extracted from Tµν and Tµν
c agree and M is conserved

∂µM
µνσ = 0, (126)

yielding the relativistic angular momentum

Jνσ =

∫

d3x(T 0νxσ − T 0σxν). (127)

with the usual non-relativistic spatial structure. The energy-momentum tensor Tµν is symmetric because the conser-
vation of the relativistic angular momentum, Eq. (126) gives

0 = ∂ρM
ρµν = ∂ρ(T

ρµxν − T ρνxµ) = T νµ − Tµν . (128)

IV. ELECTRODYNAMICS

The dynamics of the charge-electromagnetic field system will be constructed in two steps, first the motion of the
charges is considered on a prescribed electromagnetic field then the equations of motion are sought for the electromag-
netic field in the presence of electric current of charges. Next the energy-momentum content of the electromagnetic
field is identified by means of the energy-momentum tensor. Finally, the simplest solution of the equations of motion
for the electromagnetic field in vacuum, the plane waves are considered.

The electromagnetic field dynamics has no non-relativistic limit, the radiation always travels with speed of light.
Therefore it is important to keep track of the Lorentz contraction of the charges in order to preserve relativistic
invariance of the full, interacting system. We encounter a serious technical problem when Lorentz contraction, a
result of observations made by light, is imposed on the charges because their world line can not be used anymore as
independent dynamical variable beside the electromagnetic field. To avoid this deadlock one usually goes into the
limit of point charges where the Lorentz contraction is expected to be negligible. But we run into another problem
in this limit, classical physics becomes inconsistent close to a point charge due to the strong Coulomb field. This
problem, the remnants of Lorentz contraction is reconsidered in the last chapter.

A. Point charge in an external electromagnetic field

The three-dimensional scalar and vector fields make up the four-dimensional vector potential as Aµ = (φ,A) and the
simplest Lorentz invariant Lagrange function we can construct with it is Aµẋ

µ therefore the action for a point-charge
moving in the presence of a given, external vector potential is

S = −
∫ xf

xi

(

mcds+
e

c
Aµdx

µ
)

= −
∫ xf

xi

(

mcds− e

c
A · dx+ eφdt

)

=

∫ τf

τi

Lτdτ, (129)
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where the index τ in the Lagrangian is a reminder of the variable used to construct the action,

Lτ = −mc
√
x′2 − e

c
Aµ(x)x

′µ. (130)

The Euler-Lagrange equation reads

0 =
∂Lτ

∂xµ
− d

dτ

∂Lτ

∂x′µ

= −e

c
∂µAν(x)x

′ν +mc
d

dτ

x′
µ√
x′2

+
e

c

d

dτ
Aµ(x)

=
mc√
x′2

Tµνx′′
ν −

e

c
Fµνx

′ν (131)

where the field-strength is given by

Fµν = ∂µAν(x)− ∂νAµ(x). (132)

It is useful to write this equation for the world line which is parametrized by its invariant length as,

0 = mcẍµ −
e

c
Fµν ẋ

ν . (133)

It is advantegous to write the interaction action as a space-time integral involving the current density,

S = −mc

∫

ds− e

c

∫

dxAµ(x)j
µ(x). (134)

In the case of a system of charges, xa(t), we have

jµ(x) = c
∑

a

∫

dsδ(x− xa(s))ẋ
µ

= c
∑

a

∫

dsδ(x− xa(s))δ(x
0 − x0

a(s))ẋ
µ

= c
∑

a

δ(x− xa(s))
ẋµ

|ẋ0|

=
∑

a

δ(x− xa(s))

︸ ︷︷ ︸

ρ(x)

dxµ

dt
. (135)

The relativistically covariant generalization of the non-relativistic current j = ρv for a single charge is indeed

jµ = ρ
dxµ

dt
= (cρ, j) = (cρ, ρv) = ρ

ds

dt
ẋµ (136)

It is easy to verify that the continuity equation

∂µj
µ = c∂0ρ+∇ · j

=
∑

a

ea[−va(t)∇δ(x− xa(t)) +∇δ(x− xa(t))va(t)] = 0 (137)

is satisfied.

B. Dynamics of the electromagnetic field

The action (136) dos not contain the time derivatives of the vector potential therefore we have to extend our
Lagrangian, L→ L+LA, to generate dynamics for the electromagnetic field. The guiding principle is that LA should
be
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1. quadratic in the time derivative of the vector potential to have the usual equation of motion,

2. Lorentz invariant and

3. gauge invariant, ie. remain invariant under the transformation

Aµ → Aµ + ∂µα. (138)

The simplest solution is

LA = − 1

16π
FµνFµν (139)

where the factor −1/16π is introduced for later convenience. The complete action is S = Sm + SA where

Sm = −mc
∑

a

∫

ds
√

ẋµ
agµν ẋν

a (140)

and

SA = −e

c

∑

a

∫

Aµ(x)dx
µ − 1

16πc

∫

FµνFµνdx

= −e

c

∑

a

∫

dsdxδ(4)(x− xa(s))Aµ(x)ẋ
µ − 1

16πc

∫

FµνFµνdx

=

∫

LAdV dt (141)

with

LA = −e

c
jµAµ −

1

16π
FµνFµν

= −e

c
jµAµ −

1

8π
∂µAν∂

µAν +
1

8π
∂µAν∂

νAµ. (142)

It yields the Maxwell-equations

0 =
δL

δAµ
− ∂ν

δL

δ∂νAµ
= −e

c
jµ − 1

4π
∂νF

µν . (143)

Note that the necessary condition for the gauge invariance of the action is the current conservation, Eq. (139).
A simple calculation shows that any continuously double differentiable vector potential satisfies the Bianchi identity,

∂ρFµν + ∂νFρµ + ∂µFνρ = 0. (144)

The usual three-dimensional notation is achieved by the parametrization Aµ = (φ,A), Aµ = (φ,−A), giving the
electric and the magnetic fields

E = −∂0A−∇φ = −1

c
∂tA−∇φ,

H = ∇×A. (145)

Notice that transformation jµ = (cρ, j)→ (cρ,−j) under time reversal and the invariance of the term jµAµ interaction
Lagrangian requires the transformation law φ→ φ, A→ −A, E→ E, H→ −H for time reversal. The equation

ǫjkℓHℓ = ǫjkℓǫℓmn∇mAn = (δjmδkn − δjnδkm)∇mAn = ∇jAk −∇kAj (146)

relates the electric and magnetic field with the field strength tensor as

Fµν(E,H) =






0 −Ex −Ey −Ez

Ex 0 −Hz Hy

Ey Hz 0 −Hx

Ez −Hy Hx 0




 , Fµν(E,H) =






0 Ex Ey Ez

−Ex 0 −Hz Hy

−Ey Hz 0 −Hx

−Ez −Hy Hx 0




 (147)
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One defines the dual field strength as

F̃µν =
1

2
ǫµνρσF

ρσ. (148)

Duality refers to the exchange of the electric and the magnetic fields up to a sign,

F̃0j = −
1

2
ǫjkℓF

kℓ = Hj , F̃jk = −ǫjkℓF ℓ0 = ǫjkℓEℓ, (149)

giving

F̃µν(E,H) = Fµν(H,−E), F̃µν(E,H) = Fµν(H,−E). (150)

We have two invariants,

FµνFµν = −2E2 + 2H2

FµνF̃µν = 4EH (151)

but the first can be used only in classical electrodynamics which is invariant under time reversal. The electromagnetic
field is called null-field when both invariants are vanishing, FµνFµν = F̃µνFµν = 0.
The field strength tensor transforms under Lorentz transformations as

φ′ =
φ− v

cA‖
√

1− v2

c2

, A′
‖ =

A‖ − v
cφ

√

1− v2

c2

, (152)

and

F⊥⊥′

= F⊥⊥

F ‖⊥′

=
F ‖⊥ − v

cF
0⊥

√

1− v2

c2

F 0⊥′

=
F 0⊥ − v

cF
‖⊥

√

1− v2

c2

F ‖0′ = F ‖0 (∼ ǫ01). (153)

For v = (v, 0, 0) we have in the three-dimensional notation

E′
‖ = F ‖0′ = E‖, H ′

‖ = F⊥⊥′

= H ′
‖,

E′
y = F 0⊥′

=
Ey − v

cHz
√

1− v2

c2

, E′
z = F 0⊥′

=
Ez +

v
cHy

√

1− v2

c2

H ′
y = F ‖⊥′

=
Hy +

v
cEz

√

1− v2

c2

, H ′
z = F ‖⊥′

=
Hz − v

cEy
√

1− v2

c2

, (154)

i.e. the homogeneous electric and magnetic fields transform into each other when seen by an observer moving with
constant speed.
The equation of motion (145) can easily be written in three-dimensional notation. The time component is

4πρ = ∇E (155)

and the spatial components

4π

c
jk = ∂0F

0k +∇jF
jk (156)

yield

4π

c
j = −1

c
∂tE+∇×H. (157)

The Bianchi identity (146) is non-trivial for µ 6= ν 6= ρ when it gives

0 = ∇H,

0 =
1

c
∂tH+∇×E. (158)
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C. Energy-momentum tensor

Let us first construct the energy-momentum tensor for the electromagnetic field by means of the Noether theorem.
The translation xν → xν+ǫν is a symmetry of the dynamics therefore we have a conserved current for each space-time
direction ν, (Jµ)ν , which can be rearranged in a tensor, Tµν = (Jµ)ν , given by

Tµν
c = −gµνL+

δL

δ∂µAρ
∂νAρ = gµν

(
1

16π
F ρσFρσ +

e

c
jρAρ

)

− 1

4π
Fµρ∂νAρ (159)

for the canonical energy-momentum tensor. The conservation law, ∂µT
µν
c = 0 suggests the identification of

P ν(t) =

∫

V

d3xT 0ν
c (t,x) (160)

with the energy-momentum of the system up to a multiplicative constant. But the physical energy-momentum may
contain a freely chosen three index tensor Θµρν as long as Θµρν = −Θρµν because

Tµν → Tµν + ∂ρΘ
µρν (161)

is still conserved and the charge is changed by a surface term only,

T 0ν
c → T 0ν

c + ∂jΘ
0jν . (162)

This freedom can be used to eliminate an unphysical property of the canonical energy-momentum tensor, namely
its gauge dependence. The choice Θµρν = 1

4πF
µρAν gives

Tµν = gµν
(

1

16π
F ρσFρσ +

e

c
jρAρ

)

− 1

4π
Fµρ∂νAρ +

1

4π
∂ρ(F

µρAν)

=
gµν

16π
F ρσFρσ +

1

4π
FµρF ν

ρ + gµν
e

c
jρAρ +

1

4π
∂ρF

µρAν

=
gµν

16π
F ρσFρσ +

1

4π
FµρF ν

ρ + gµν
e

c
jρAρ − jµAν (163)

where the equation of motion was used in the last equation. The new energy-momentum tensor in the absence of the
electric current, the true energy-momentum tensor of the EM field,

Tµν
ed =

gµν

16π
F ρσFρσ +

1

4π
FµρF ν

ρ , (164)

is gauge invariant, symmetric and traceless.
The energy-momentum of the EM field is not conserved, there is a continuous exchange of energy-momentum

between the charges and the EM field. The amount of non-conservation, Kν = −∂µTµν
ed 6= 0, identifies the energy-

momentum density of the charges,

Kν = −∂µ
(
gµν

16π
F ρσFρσ +

1

4π
FµρF ν

ρ

)

= − 1

8π
F ρσ∂νFρσ −

1

4π
Fµρ∂µF

ν
ρ − 1

4π
∂µF

µρF ν
ρ . (165)

We use the Bianchi identity for the first term and the equation of motion

Kν = − 1

8π
F ρσ(−∂ρF ν

σ − ∂σF
ν
ρ

︸ ︷︷ ︸

Bianchi

−2∂σF ν
ρ )− 1

c
jρF ν

ρ

= − 1

8π
F ρσ(∂ρF

ν
σ + ∂σF

ν
ρ)

︸ ︷︷ ︸

=0

+
1

c
jρF ν

ρ

= ρF ν
0 +

1

c
jkF ν

k

= ρF ν0 − 1

c
jkF νk. (166)
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Since

−jkF 0k = jE

ρF ℓ0 = ρEℓ

jkF ℓk = −jkǫℓkmHm (167)

we have the source of the energy-momentum of the EM field

Kµ = (K0,K) =

(
1

c
jE, ρE+

1

c
j×H

)

. (168)

The time-like component is indeed the work done on the charges by the EM field. The spatial components is the rate
of change of the momentum of the charges, the Lorentz force.
The energy-momentum density of the EM field, P ν = T 0ν , is

P 0 =
1

8π
(−E2 +H2) +

1

4π
E2 =

1

8π
(E2 +H2)

P ℓ =
1

4πc
F 0kF ℓ

k =
1

4πc
EkǫkℓmHm = − 1

c2
Sℓ (169)

where the energy flux-density

S =
c

4π
E×H (170)

is given by the Poynting vector. In fact, the symmetry of the energy-momentum tensor allows us to identify the
energy flux-density with c times the momentum density.

D. Simple electromagnetic waves in the vacuum

Let us consider first the EM field waves in the absence of charges, the solution of the Maxwell equations, (145) for
j = 0. We shall use the Lorentz gauge ∂µA

µ = 0 where the equations of motion are

0 = ∂νF
µν = ∂ν∂

µAν −�Aµ = −�Aµ. (171)

we shall consider plane and spherical waves, solutions which display the same value on parallel planes or concentric
spheres.
The plane wave solution depends on the combination

tn = t− n · x
c

(172)

of the space-time coordinates. The linearity of the Maxwell equation allows us to write the solution as the linear
superposition

Aµ(x) = A+
µ (tn) +A−

µ (t−n) (173)

where
(

1

c2
∂2
t −∆

)

A±
µ (x) = �A±

µ (t±n) = 0 (174)

for an arbitrary functions A±
µ (t), to be determined by the boundary conditions.

The plane wave Aµ(tn) appears in the three-dimensional notation as

H = ∇×A = ∇
(

t− n · x
c

)

×A′ = −1

c
n×A′

E = −1

c
∂tA−∇φ = −1

c
A′ +

1

c
nφ′. (175)

The vectors E, H and n are orthogonal to each others. In fact, the relation

H = −1

c
n× (−cE+ nφ′) = n×E (176)
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shows that H orthogonal both to the direction of the propagation, n and to E. The Lorentz gauge condition,

0 =
1

c
∂tφ+∇A =

1

c
φ′ − 1

c
nA′ (177)

together with the second equation in (177) shows that E is orthogonal to n, as well. The orthogonality of E and H

follows from

E ·H =
1

c2
(A′ − nφ′)n×A′ = 0. (178)

The simple reason of the orthogonality is that we have two vectors, n and A′ at our disposal to generate two other
vectors, E and H in a rotationally covariant and gauge invariant manner. The latter requires to use A′ within the
vector product n×A′ to find one vector, the other can only be n× (n×A′).

The energy-momentum density

P ν =

(
E2 +H2

8π
,−E×H

4π

)

=

(
E2

4π
,−E× (n×E)

4π

)

=
E2

4π
(1,−n), (179)

is a light-like vector, P 2 = 0.
The spherical waves are of the form (175) with

t± = t± r

c
(180)

in spherical coordinate system. We consider them in d spatial dimensions where they satisfy the wave equation

∂µ∂
µA = 0. We write A±(x) = r

1−d
2 a±(t±) where a± is a solution of the equation

0 =

(
1

c2
∂2
t −

1

rd−1
∂rr

d−1∂r

)

A±(t±)

=

(
1

c2
∂2
t +

(d− 1)(d− 3)

4r2
∂r − ∂2

r

)

a±(t±). (181)

The functions a±(t±) correspond to 1+1 dimensional plane waves in d = 1, 3 only. We consider the latter case where
the expressions

∇φ(r) = er∂rφ

∇a(r) =
1

r2
∂r(r

2ar) +
cot θ

r
aθ

∇× a(r) = eφ
1

r
∂r(raθ)− eθ

1

r
∂r(raφ) (182)

for vector operations will be used for φ = u/r, and A = a/r. The magnetic and electric fields are

H = ∇× 1

r
a = ∇1

r
× a+

1

r
∇× a

=
1

r2
[−er × a− eθ∂r(raφ) + eφ∂r(raθ)]

= ± 1

cr

(
eφa

′
θ − eθa

′
φ

)

= ± 1

cr
er × a′

E = − 1

rc
∂ta−∇

u

r
= − 1

rc
a′ + er

u∓ r
cu

′

r2
. (183)

Now the relation

H = ∓er ×E (184)
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shows again that H orthogonal both to the direction of the propagation, er and to E. The Lorentz gauge condition,

0 =
1

cr
u′ +∇1

r
a

=
1

cr
u′ +

1

r2

[

−ar +
1

r
∂r(r

2ar)

]

+
cot θ

r2
aθ

=
1

r2

[r

c
(u′ ± a′r) + ar

]

+
cot θ

r2
aθ (185)

sets aθ = 0. But the electric field is not necesseraly orthogonal to the direction of propagation,

Eer = − 1

rc
a′r +

u∓ r
cu

′

r2
= − 1

rc
a′r +

u

r2
+
±ar + r

ca
′
r

r2
=

u± ar
r2

(186)

and the energy-momentum density is not always time-like neither as a result of the compactness of the equal phase
surface.

V. GREEN FUNCTIONS

The Green functions provide a clear and compact solution of linear equations of motion. But the transparency pf
the result hides a drawback, the suppression of the the boundary conditions which are imposed both in space and
time. The spatial boundary conditions are usually simpler, they amount to some suppression of the fields at spatial
infinity when localized phenomena are investigated. The boundary conditions in time are more complicated and are
dealt with briefly in the next section.

A. Time arrow problem

The basic equations of Physics, except weak interactions, are invariant under a discrete space-time symmetry, the
reversal of the direction of time, T : (t,x) → (−t,x). Despite this symmetry, it is a daily experience that the this
symmetry is not respected in the world around us. It is enough to recall that we are first born and die later, never in
the opposite order. A more tangible example is that the radio transmission arrives at our receivers after its emission,
namely the electromagnetic signals travel forward in time rather than backward which is in principle always possible
with time reversal invariant equations of motion. What eliminates the backward moving electromagnetic waves? This
is one aspect of the time arrow problem in Physics, the problem of pinning down the direction of time, the dynamical
origin of the apparent breakdown of the time reversal invariance.
This problem can be discussed at four different level. The most obvious is the level of electromagnetic radiation

where it appears as the suppression of backward moving electromagnetic waves in time. It is believed that the origin
of this problem is not in Electrodynamics and this property of the electromagnetic waves is related to the boundary
conditions chosen in time. We can prescribe the solution we seek in terms of initial or final conditions or even by
a mixture of these two possibilities and depending on our choice we see forward or backward going waves or even
their mixture in the solution. Why are we interested mainly initial problems rather than final condition problems in
physics?
A tentative answer comes from Thermodynamics, the non-decreasing nature of entropy in time. It seems that the

composite systems tend to become more complicated and to expand into more irregular regions in the phase space
as the time elapses. This property is might not be related to the breakdown of the time reversal invariance because
it must obviously hold for either choice of the time arrow. It seems more to have something to do with the nature of
the initial conditions we encounter in Physics.
The choice of the initial condition leads us to the astrophysical origin of the time arrow. The current cosmological

models, solutions of the formally time reversal invariant Einstein equations of General Relativity, suggest that our
Universe undergone a singularity in the distant past. This singular initial condition might be the origin of the peculiar
features of the choice of the time arrow.
Yet another level of this issue is the quantum-classical crossover, the scale regime where quantum effects give rise

to classical physics. Each measurement traverses this crossover, it magnifies some microscopic quantum effects into
macroscopic, classical one. This magnification process, such as the condensation of the drops in the Wilson cloud
chamber or the ”click” of a Geiger counter indicating th presence of an energetic particle, breaks the time reversal
invariance. In fact, the end result of the measurements, a classical ”record” created endures the flow of time and can
not be reconverted into microscopic phenomena without macroscopic trace. Hence the deepest level of the breakdown
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of the time reversal invariance comes from the scale regions because any quantum gravitational problem must be
handled by this scheme.
Instead of following a more detailed analysis of this dynamical issue we confine the discussion of the separation of

the kinematical aspects of this problem. The question we turn to is the way a certain initial of final condition problem
can be handled within the framework of Classical Field Theory. The problem arises from the use of the variational
principle in deriving the equations of motion. The variational equations of motion can not break the time reversal
invariance and can not handle any boundary conditions which does it.
We start the discussion with the formal introduction of the Green function. Let us consider a given function of the

time f(t) and the inhomogeneous linear differential equation

Lf = g, (187)

where L is a differential operator acting on the time variable. The Green function satisfies the equation

LtG(t, t′) = δ(t− t′). (188)

The index in Lt is a reminder that the differential operator acts on the variable t of the two variable function G(t, t′).
Note that for translation invariant L we have G(t, t′) = G(t − t′). The Dirac-delta is the identify operator on the
function space, thus G = L−1. The solution of Eq. (189) can now formally be written as

f(t) =

∫

dt′G(t, t′)g(t′). (189)

The time reversal invariance of the equation of motion renders the matrix L(t, t′), representing the operator L in
Eq. (189) symmetric, L(t, t′) = L(t′, t). Eq. (190) might be interpreted by saying that the Green function is the
inverse of the operator L. The inverse of a symmetric matrix is symmetric, as well, G(t, t′) = G(t′, t). But this is
in contradiction with our experience that the effect of an external perturbation, represented by the source g appears
after the perturbation and not before. When the propagation of a signal violates time reversal invariance then the
Green function must contain antisymmetric part. How can this happen?

Before showing the solution of this apparent paradox yet another, related puzzle. The variation principle which
reproduces Eq. (189) as an equation of motion is based on the action

S[f ] =
1

2

∫

dtdt′f(t)G−1(t, t′)f(t′)−
∫

dtf(t)g(t). (190)

But the quadratic action is invariant under the exchange of the integral variables t↔ t′. Therefore, any time reversal
breaking antisymmetric part of G−1(t, t′) is canceled in the action, the variation principle can not produce time
reversal breaking.
The way out of this deadlock is the observation that Eq. (190) yields a well defined Green function when the

operator L has trivial null-space only. The null-space of an operator is the linear subspace of its domain of definition
which is mapped into 0. Whenever there is a non-trivial solution of the equation Lh = 0 it can freely be added to
the solution of Eq. (189), rendering G ill-defined in Eqs. (190)-(191). The variational problem has nothing to say
on the trajectories, corresponding to the null-space of the equation of motion. But this null-space consists of the
physically most important functions, the solution of the free equation of motion, in the absence of external source g.
This component of the solution must be fixed by the boundary conditions. We shall bring it into the dynamics and
the variational equations by adding an infinitesimal, imaginary piece to the inverse propagator,

G−1 → G−1 + iO (ǫ) . (191)

It renders the Green function well defined by making the null-space of G−1 trivial and breaks the time reversal
invariance in the desired manner because the time reversal implies complex conjugation.
The relation between the time arrow problem and this formal discussion is that these freely addable solutions are

to assure the particular boundary conditions. Therefore, the handling of the boundary conditions must come from
devices beyond the variational principle, such as the non-symmetrical part of the Green function.

B. Invertible linear equation

We start with the simple case where L is invertible and has trivial null-space. The invertible differential operators
usually arise in time independent problems. We consider here the case of a static, 3 dimensional equation

∆f = g (192)
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in the three-volume V when f and ∇f⊥ are given on ∂V . The null-space of the operator ∆ is nontrivial, it consists
of harmonic functions. But by imposing boundedness on the solution on an infinitely large domain, a rather usual
condition in typical physical cases, the null-space becomes trivial.
One can split the solution as f = fpart + fhom where fpart is a particular solution of the inhomogeneous equation

and fhom, the solution of the homogeneous equation. Due to boundedness fhom must be a trivial constant and will
be ignored. A useful particular solution is found by inspecting the first two derivatives of the function

D(x,y) = − 1

4π

1

|x− y| . (193)

which read as

∂k
1

|x| = − xk

|x|3

∂ℓ∂k
1

|x| = − δkℓ

|x|3 + 3
xkxℓ

|x|5 (194)

give

∆
1

|x| = 0 (195)

for x 6= 0. Apparently ∆ 1
|x| is a distribution what can be identified by calculating the integral

∫

x2<ǫ2
dV f(x)∆

1

|x| = −
∫

x2<ǫ2
dV∇f(x) · ∇ 1

|x|
︸ ︷︷ ︸

O(ǫ)

+

∫

x2=ǫ2
dSf(x) · ∇ 1

|x|
︸ ︷︷ ︸

−4πf(0)

(196)

giving

∆xD(x,y) = δ(x− y). (197)

Thus we have

fpart(x) =

∫

d3yD(x,y)g(y) = −
∫

d3y
g(y)

4π|x− y| . (198)

To find the homogeneous solution we start with Gauss integral theorem,

∫

∂V

dSyF(y) =

∫

V

d3y∇F(y) (199)

and by applying for F(y) = D(x,y)∇f(y)− f(y)∇yD(x,y) we arrive at Green theorem

∫

∂V

dSy[D(x,y)∇f(y)− f(y)∇D(x,y)]

=

∫

V

d3y[D(x,y)∆f(y)− f(y)∆yD(x,y)]. (200)

which gives

f(x) = − 1

4π

∫

V

d3y
g(y)

|x− y| +
1

4π

∫

∂V

dSy

(∇f(y)
|x− y| − f(y)∇y

1

|x− y|

)

. (201)

C. Non-invertible linear equation with boundary conditions

The non-invertible operators usually appears in dynamical problems. Let us consider the equation

�f = g (202)
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on 4-dimensional space-time where the function f is sought for a given g. We follow first the extension of the previous
argument for four-dimensions: We define a Green-function which is the solution of the equation

�xD(x, y) = δ(x− y) (203)

and take the time integral of Eq. (202) with a translation invariant Green function D(x, y) = D(x− y),
∫

[ti,tf ]⊗∂V

dtdS[D(x, y)∇f(y)− f(y)∇yD(x, y)] (204)

=

∫

[ti,tf ]⊗V

dy[D(x, y)∆f(y)− f(y)∆yD(x, y)]

=

∫

[ti,tf ]⊗V

dy[−D(x, y)�f(y) +D(x, y)∂2
t f(y)− f(y)∂2

tyD(x, y)

+f(y)�yD(x, y)]

= f(x)−
∫

[ti,tf ]⊗V

dyD(x, y)�f(y)

+

∫

[ti,tf ]⊗V

dy∂ty [D(x, y)∂tf(y)− f(y)∂tyD(x, y)].

The resulting equation

f(x) =

∫

[ti,tf ]⊗V

dyD(x, y)g(y)

+

∫

[ti,tf ]⊗∂V

dtdS[D(x, y)∇f(y)− f(y)∇yD(x, y)]

−
∫

V

d3y[D(x, y)∂tf(y)− f(y)∂tyD(x, y)]

∣
∣
∣
∣

tf

ti

(205)

expresses the solution in terms of the boundary conditions, the value of the function f and its derivatives on the
boundary of the space-time region where the equation (204) is to be solved.
The definition (205) determines the Green-function up to a null-space function, a solution of the homogeneous

equation. It is easy to see that the solution (207) is well defined and is free of ambiguity.

D. Retarded and advanced solutions

We turn now the more formal method to make the Green-function well defined by introducing an infinitesimal
imaginary part. To see better the role of the boundary conditions in time let us drop the spatial boundary conditions
by extending the three-volume where the solution of Eq. (204) is sought to infinity. The Fourier representation of the
Green-function is

D̃(k) = − 1

k2
(206)

for k2 6= 0 because
∫

d4k

(2π)4
(−k2)e−ikµx

µ

D̃(k) =

∫
d4k

(2π)4
e−ikµx

µ

. (207)

To make this integral well defined we have to avoid the singularities of D̃(k2) by some infinitesimal shift of the
singularities in the complex frequency plane, k0 → k0 ± iǫ. The different modifications of the propagator in the
vicinity of k2 = 0 introduce different additive homogeneous solutions of Eq. (204) in the Green-function.
Let us introduce first the retarded Green-function, Dr(x, y) ≈ Θ(x0 − y0) which is used when the initial conditions

are known. It is obtained by shifting the poles of D̃(k2) slightly below the real axes on the complex energy plane. In
fact, the frequency integral

D(k, t) =

∫
dk0

2π
e−ik0tD̃(k) (208)
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is non-vanishing just for t > 0. The advanced Green-function is used when the final conditions are known and it is
obtained by shifting the poles slightly above the real axis,

D
r
a(x) = −

∫
d3k

(2π)3

∫
dk0
2π

e−ikµx
µ

(k0 + |k| ± iǫ)(k0 − |k| ± iǫ)
(209)

The explicit calculation gives

Dr(x) = −
∫

d3k

(2π)3
eikx

∫
dk0
2π

e−ick0t

(k0 + iǫ− |k|)(k0 + iǫ+ |k|)

= iΘ(t)

∫
d3k

(2π)3
eikx

(
e−ickt

2k
− eickt

2k

)

=
iΘ(t)

(2π)3

∫

dkk2dφd(cos θ)eikr cos θ e
−ickt − eickt

2k

=
iΘ(t)

(2π)2

∫

dkk2
eikr − e−ikr

ikr

e−ickt − eickt

2k

=
Θ(t)

2(2π)2r

∫ ∞

0

dk(eikr − e−ikr)(e−ickt − eickt)

=
Θ(t)

8πr

∫ ∞

−∞

dk

2π
(eik(r−ct) + eik(−r+ct) − e−ik(r+ct) − eik(r+ct))

=
Θ(t)

4πr
[δ(−r + ct)− δ(r + ct)]

= Θ(t)
δ(ct− r)

4πr
(210)

and

Da(x) = −
∫

d3k

(2π)3
eikx

∫
dk0
2π

e−ick0t

(k0 − iǫ− |k|)(k0 − iǫ+ |k|)

= iΘ(−t)
∫

d3k

(2π)3
eikx

(
eickt

2k
− e−ickt

2k

)

= Θ(−t)δ(r + ct)− δ(−r + ct)

4πr

= Θ(−t)δ(ct+ r)

4πr
. (211)

Finally we have

f(x) =

∫

d4yD
r
a(x− y)g(y) + f in

out
(x)

=

∫

d4y
δ(x0 − y0 ∓ |x− y|)g(y)

4π|x− y| + f in
out

(x)

=

∫

d3y
g(x0 ∓ |x− y|,y)

4π|x− y| + f in
out

(x) (212)

where f(t i

f
,x) = f in

out
(t i

f
,x) and �f in

out
= 0. It is easy to find the relativistically invariant form of the Green functions,

D
r
a(x) = Θ(±t)δ(ct∓ r)

4πr

= Θ(±t)δ(ct+ r) + δ(ct− r)

4πr

= Θ(±t)δ(c
2t2 − r2)

2π

= Θ(±x0)
δ(x2)

2π
. (213)
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There is no dynamical issue in choosing one or other solution. The trivial guiding principle in selecting a Green-
function is the information we possess, the initial the final conditions. One can imagine another, rather unrealistic
problem where the sum agin(x) + (1− a)gout(x) is known to the solution of Eq. (204). Then the solution is

f(x) =

∫

dy[aDr(x, y) + (1− a)Da(x, y)]g(y) + agin(x) + (1− a)gout(x). (214)

We are accustomed to think in terms of initial rather than final conditions and therefore use the retarded solutions.
This is due to the experimental fact that the homogeneous solution of the Maxwell-equation, the incoming radiation
field is negligible compared to the final, outgoing field after some local manipulation. The deep dynamical question is
why is this the case, why is the radiation field rather weak for t→∞ when the basic equations of motion are invariant
with respect to the inversion of the direction of the time.
Since Da(x, y) = Drtr(x, y) = Dr(y, x) the symmetric and antisymmetric Green-functions

D
n

f =
1

2
(Dr ±Da) (215)

give the solutions of the inhomogeneous and homogeneous equation, respectively. The inhomogeneous Green-functions
are connected by the relation

D
r
a(x, y) = 2Dn(x, y)Θ(±(x0 − y0)) (216)

where the near field Green function is

Dn(x) =
δ(x2)

4π
(217)

according to Eq. (215). The Fourier representation of the homogeneous Green function can be obtained by considering
the difference of the second lines in Eqs. (212) and (213),

Df (x) =
1

4π
δ(x2)ǫ(x0)

= − i

2

∫
d3k

(2π)3
eikx

(
eickt

2k
− e−ickt

2k

)

=
i

2

∫
d4k

(2π)3
e−ikx δ(k0 − |k|)− δ(k0 + |k|)

2|k|

=
i

2

∫
d4k

(2π)3
eikxδ(k2)ǫ(k0) (218)

where ǫ(x) = sign(x). A useful relation satisfied by this Green-function is

∂x0D(x)x0=0 =
1

2

∫
d3k

(2π)3
eikxk0

δ(k0 − |k|)− δ(k0 + |k|)
2|k|

=
1

2

∫
d3k

(2π)3
eikx

1

2
[δ(k0 − |k|) + δ(k0 + |k|)]

=
1

2
δ(x) (219)

The far field, given by Df is closely related to the radiation field. The expressions

A
r
a(x) =

4π

c

∫

dyD
r
a(x, y)j(y) +A in

out
(x) (220)

suggest the definition

Arad = Aout −Ain = 2Af . (221)

Let us close this discussion with a remark about the Huygens principle stating that the wavefront of a propagating
light coincide with the envelope of spherical waves emitted by the points of the wavefront at an earlier time. This
implies a fixed propagation speed. The retarded Green-function for d space-time dimensions

Dr(x) =

{
1

2πd/2−1Θ(x0)( d
dx2 )

(d/2−2)δ(x2) v = c, d even,

(−1) d−3
2

1
2π2/dΓ(

d
2 − 1)Θ(x0 − |x|)(x2)1−d/2 v ≤ c, d odd.

(222)
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FIG. 7: Huygens principle for a wave front.

shows that the propagation of the EM wave is restricted to the future light cone in even dimensional space-times only.
For odd space-time dimensions the speed of the propagation is not fixed, special relativity takes a radically different
form and the Huygens principle is violated.

VI. RADIATION OF A POINT CHARGE

We consider in this chapter a point charge following a prescribed world line and determine the induced electromag-
netic field. The equation of motion to solve,

∂νF
νµ =

4π

c
jµ, (223)

remains manifestly covariant in Lorentz gauge,

∂µA
µ = 0, (224)

where it reads

�Aµ =
4π

c
jµ. (225)

A. Liénard-Wiechert potential

As the first step we seek both the retarded and advenced vector potential Aµ(x), created by a point charge e
following the world line xµ(s). The current is

jµ(x) = ce

∫

dsδ(x− x(s))ẋµ(s). (226)

It is easy to check tthere is definite event on the world line which contributes. In fact, the world-line, having time-like
tangent vector can traverse of the future or the past light cone of any point at a single event only as shown in Fig. 8.
We shall find the answer in two different ways, by a simple heuristic argument and by a more general and complicated
manner.
Heuristic method: The solution of the equation of motion (227) can be calculated in any inertial system. The result

is the four vector Aµ(x) which can later be brought over other inertial systems by means of Lorentz transformation.
This latter step can be simplified if we can find a manifestly covariant way to write our solution. The inertial system
where the induced electromagnetic field is the simplest is where the charge is at rest at the event x′ of the emission of
field, observed at x. In the coordinate system where the charge is at rest at the emission of the electromagnetic field
we can replace the world line x(x) of the charge by that of a charge at rest, xµ(s) = (s,x′), ẋµ(s) = (1,0), without
changing the resulting vector potential,

A
r
aµ(x) =

4π

c

∫

d4x′D
r
a(x− x′)ce

∫

dsδ(x′0 − s)δ(x− x(s))ẋ′µ(s)

= e(1,0)

∫

d3x′ δ(x− x)

|x− y| , (227)

a simple Coulomb field,

φ =
e

|x− x′| , A = 0. (228)
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x(s)

x

x

xret

av

FIG. 8: The observer at x receives the signal emitted from the point xret or xav for the retarded or the advanced propagation,
respectively.

Let us generalize this expression for an arbitrary inertial system, in particular where the four vector of the charge in
the retarded or advanced time is

ẋµ =
dxµ(s)

ds
= (c,v)

dt

ds
(229)

For this end we introduce the four-vector Rµ = (ct− ct′,x− x′), with R2 = 0,

ct− ct′ = ±|x− x′|, (230)

(+:retarded propagation, −:advanced propagation), and write

A
r
aµ = ± eẋµ

R · ẋ (231)

Due to R · ẋ = (±rc− rv) dtds , r = |x− x′| we have

φ =
e

r ∓ r·v
c

, A =
ev

c(r ∓ r·v
c )

. (232)

The part O
(
v0
)
is the static Coulomb potential, the v-dependent pieces in the denominator represent the retardation

or advanced effects. Finally, A gives the magnetic field induced from the Coulomb potential by the Lorentz boost.
The more systematical way of obtaining the induced field is based on the use of the Green-functions,

A
r
aµ(x) = e4π

∫

dx′

∫

dsD
r
a(x− x′)δ(x′ − x(s))ẋµ(s)

= 2e

∫

dx′

∫

dsδ((x− x′)2)Θ(±(x0 − x
′0))δ(x′ − x(s))ẋµ(s)

= 2e

∫

dsδ((x− x(s))2)Θ(±(x0 − x0(s)))ẋµ(s) (233)

x− x(s
r
a) can be written as the linear superposition of two orthogonal vectors,

x− x(s
r
a) = (±ẋ+ w)R

r
a (234)

where R
r
a > 0 and w is a space-like vector. Since (x− x(s

r
a))2 = 0, ẋ2 = 1 and ẋ · w = 0 we have w2 = −1 and

R
r
a = −w · (x− x(s

r
a)) = ±ẋ · (x− x(s

r
a)) (235)

The use of the rule δ(f(x))→ δ(x− x0)/|f ′(x0)| where f(x0) = 0 and the relation

d(x− x(s))2

ds
= ∓2R

r
a (236)

gives

A
r
aµ(x) = e

ẋµ(s
r
a)

R
r
a

. (237)
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B. Field strengths

The retarded field strength is obtained by calculating the space-time derivatives of the Liénard-Wiechert potential
(239),

∂µA
ν(x) = e4π

∫

dx′

∫

ds∂xµDr(x− x′)δ(x′ − x(s))ẋν(s)

= e4π

∫

ds
∂Dr(x− x(s))

∂(x− x(s))2
∂(x− x(s))2

∂xµ
ẋν(s)

= e8π

∫

ds
∂Dr(x− x(s))

∂s

∂s

∂(x− x(s))2
︸ ︷︷ ︸

1/[−2(x−x(s))·ẋ(s)]

(x− x(s))µẋ
ν(s)

= −e4π
∫

ds
∂Dr(x− x(s))

∂s

(x− x(s))µẋ
ν(s)

(x− x(s)) · ẋ

= −e4πDr(x− x(s))
(x− x(s))µẋ

ν(s)

(x− x(s)) · ẋ

∣
∣
∣
∣

∞

−∞
︸ ︷︷ ︸

=0

+e4π

∫

dsDr(x− x(s))
∂

∂s

(x− x(s))µẋ
ν(s)

(x− x(s)) · ẋ(s)

= 2e

∫

dsδ((x− x(s))2)Θ(x0 − x0(s))
∂

∂s

(x− x(s))µẋ
ν(s)

(x− x(s)) · ẋ(s)

= e
1

(x− x(s)) · ẋ(s)
∂

∂s

(x− x(s))µẋ
ν(s)

(x− x(s)) · ẋ(s) |s=sr
(238)

The introduction of the scalar

Q = (x− x(s)) · ẍ(s) = R(ẋ+ w) · ẍ(s) = Rw · ẍµ(s) (239)

allows us to write

Fµν =
e

R3
[(x− x(s))µẍνR− ẋµẋνR− (x− x(s))µẋνQ

+ẋ · ẋ(x− x(s))µẋν − (µ↔ ν)]

=
e

R3
[(x− x(s))µẍνR− (x− x(s))µẋνQ+ (x− x(s))µẋν − (µ↔ ν)]

=
e

R2
[(ẋ+ w)µẍνR− (ẋ+ w)µẋνQ+ (ẋ+ w)µẋν − (µ↔ ν)]

=
e

R2
[(ẋ+ w)µẍνR− wµẋνRw · ẍ+ wµẋν − (µ↔ ν)] (240)

The field strength is the sum of O
(
R−1

)
and O

(
R−2

)
terms, called far and near fields.

Let us lay mention three important properties of the field strength obtained from the Liénard-Wiechert potential.

• The equation

F̃µνFµν =
1

2
ǫµνρσFµνFρσ = 0 (241)

follows from the symmetry of FµνFρσ for µ↔ ρ in this expression, according to the second or third line in Eq.
(242). Due to second equation in (153) this condition implies H ⊥ E.

• In a similar manner,

F̃ ρσ(x− x(s))σ =
1

2
ǫµνρσFµν(x− x(s))σ = 0 (242)

follows from the symmetry of Fµν(x − x(s))σ for ν ↔ σ. The time component of this equation indicates that
H ⊥ x− x(s) by the help of Eq. (151). The spatial components of this equation is

H =
(x− x(s))×E

x0 − x0(s)
=

(x− x(s))×E

|x− x(s)| . (243)
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• The far field satisfies beyond Eqs. (243)-(244) the conditions

F f
µνF

fµν =
2e2

R4
{[(ẋ+ w)µẍνR− wµẋνRw · ẍ][(ẋ+ w)µẍνR− wµẋνRw · ẍ]

−[(ẋ+ w)µẍνR− wµẋνRw · ẍ][(ẋ+ w)ν ẍµR− wν ẋµRw · ẍ]}

=
2e2

R4
[−(Rw · ẍ)2 − (Rw · ẍ)2 + 2(Rw · ẍ)2]

= 0 (244)

ie. |Hf | = |Ef |. Furthermore we have

F fµν(x− x(s))ν =
e

R3
[(x− x(s))µẍνR− (x− x(s))µẋνQ− (µ↔ ν)](x− x(s))ν

=
e

R3
[(x− x(s))µQR− (x− x(s))µQR]

= 0, (245)

giving

Ef =
Hf × (x− x(s))

x0 − x0(s)
=

Hf × (x− x(s))

|x− x(s)| . (246)

According to Eqs. (243) and (248) the far field is a null field, cf. the definition after Eq. (153).

The tree-dimensional notation is introduced by

ẋ = (c,v)
dt

ds
, R

r
a = ±(±rc− rv)

dt

ds
= (rc∓ rv)

dt

ds
=

r ∓ rβ
√

1− β2
(247)

where β = v

c . The formally introduced spatial unit vector w is determined by the condition

(±r, r) = R

[

±(c,v) dt
ds

+ w

]

(248)

which yields

w =
1

R
(±r, r)∓ (c,v)

dt

ds

=
(±r, r)

(rc∓ rv)

ds

dt
∓ (c,v)

dt

ds
(249)

which reads

w =
r

(r ∓ rβ)

√

1− β2 ∓ β
√

1− β2

w0 = ± r

(rc∓ rv)

ds

dt
∓ c

dt

ds

= ±
[

r

(r ∓ rβ)

√

1− β2 − 1
√

1− β2

]

(250)

in three-dimensional notation.
The near-field depends on the coordinate and the velocity,

Fnµν =
e

R3
[(x− x(s))µẋν − (x− x(s))ν ẋµ]

=
e

R2
[wµẋν − wν ẋµ] (251)
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The near electric field, Ej = F j0, is

En =
e

R2
[wẋ0 − w0ẋ]

=
e(1− β2)

(r ∓ rβ)2

[(

r

(r ∓ rβ)

√

1− β2 ∓ β
√

1− β2

)

1
√

1− β2

∓
(

r

(r ∓ rβ)

√

1− β2 − 1
√

1− β2

)

β
√

1− β2

]

=
e(1− β2)

(r ∓ rβ)2

[(
r

(r ∓ rβ)
∓ β

1− β2

)

∓
(

r

(r ∓ rβ)
− 1

1− β2

)

β

]

=
e(1− β2)

(r ∓ rβ)2

(
r

(r ∓ rβ)
∓ rβ

(r ∓ rβ)

)

= e
(1− β2)(r∓ rβ)

(r ∓ r · β)3

= e
(1− v2

c2 )(r∓ r v

c )

(r ∓ r·v
c )3

(252)

The far-field depends on the acceleration as well,

F fµν =
e

R3
[(x− x(s))µ(ẍνR− ẋνQ)− (x− x(s))ν(ẍµR− ẋµQ)] (253)

and

Ef = e
r× [(r− r v

c )× a]

c2(r − r·v
c )3

, (254)

where a = dv
dt . The near and far magnetic fields can be obtained by using the relation (245).

C. Dipole radiation

The complications in obtaining the Liénard-Wiechert potential come from the retardation. Thus it is advised to
see the limits when the retardation effects are weak and the final result can be expanded in them. Let us suppose
that the characteristic time and distance scales of the prescribed charge distribution are tch and rch, respectively. The
period length of the radiation is approximately tch, yielding the wavelength λ = ctch. The retardation time is what
needs for the EM wave to traverse the charge distribution, tret = rch/c. The retardation effects are therefore weak
for tret/tch ≪ 1 which gives rch ≪ λ. Another way to express this inequality is to consider the characteristic speed
of the charge system, vch = rch/tch, to write λ = crch/vch which yields vch ≪ c.

We assume that these inequalities hold and consider the leading order effect of the retardation on the retarded
Liénard-Wiechert potential (239)

Aµ(x) =
∑

a

eaẋ
µ(sra)

Rr
a

. (255)

It is sufficient to find the magnetic field,

A(x) =
1

cr

∑

a

eava

(

1 +O
( |v|

c

))

(256)

where r denotes the distance between the observation point and the center of the charges and va stands for the
velocity of the charge a at the time of observation. Since

∑

a

eava =
d

dt

∑

a

eaxa =
d

dt
d (257)
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where d is the dipole moment of the charge system we have

A(x) =
1

cr

dd

dt
(258)

in the leading order. Then the magnetic field is given by

H = ∇× 1

cr

dd(t− r
c )

dt

= − 1

cr3
r× dd

dt
− 1

c2r2
r× d2d

dt2

=
1

cr3

∑

a

eava × r+
1

c2r2

∑

a

eaaa × r (259)

the sum of the near and the far dipole fields. According to Eq. (248)

Ef =
Hf × r

r
=

1

c2r3

∑

a

ea(aa × r)× r. (260)

The far field, dipole radiation depends on the acceleration of the charges only.
The radiation power passing trough a surface df is

dI = Sdf (261)

where S is the Poynting vector and is given by

dI =
c

4π
H2r2dΩ (262)

according to Eq. (181) where dΩ denotes the solid angle. In the case of the far dipole radiation we find

dI =
1

4πc3r2

(
d2d

dt2
× r

)2

dΩ =
1

4πc3

(
d2d

dt2

)2

sin2 θdΩ (263)

where θ is the angle between d2

dt2d and r. The total radiated power is obtained by integrating over the solid angle,

I =

∫

dφ

∫

d(cos θ)
1

4πc3

(
d2d

dt2

)2

sin2 θ =
2

3c3

(
d2d

dt2

)2

. (264)

Note that had the near field been retaind in the expresion of the radiated power it would have dropped out in the
limit r → ∞, reflecting the fact that the near field belongs to the charge and it is only the far field which decouples
and decomes a new dynamical degree of freedom as will be shown below in Section VID. For a single charge we have

I =
2e2a2

3c3
. (265)

(J. Larmor, 1897).
As a simple excercise let us estimate the energy loss of an electron on an orbit around the proton according to

classical physics. We can consider the motion of the electron in the (x, y) plane producing a time dependent dipole

d(t) = ea0

(
cosωt
sinωt

)

, (266)

a0 = ~
2/me2 being the Bohr radius and the use of Eq. (266) gives

I =
2ω4e2a20

3c3
. (267)

By assuming a ballance between the centrifugal and the Coulomb forces, mrω2 = e2/r2 we can write

I =
2e6

3m2a40c
3
∼ 109Ry/sec, (268)

indicating that the Hydrogen atom would loose stability and the electron would fall onto the proton in 10−9sec
according to classical physics.
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D. Radiated energy-momentum

As a preparation for the reaction force acting on charges let us establish the energy-momentum balance for a point
charge. For this end we need the field generated by the charge at large distances where the radiation field dominates.
Hence we start by identifying some important properties of the radiation field.

The far field is null-field, therefore its energy-momentum tensor is

T fµν =
1

4π
F fµσF fν

σ

=
e2

4πR6
[(x− x(s))µ(ẍσR− ẋσQ)− (x− x(s))σ(ẍµR− ẋµQ)]

×[(x− x(s))σ(ẍ
νR− ẋνQ)− (x− x(s))ν(ẍσR− ẋσQ)]. (269)

Due to (x− x(s))2 = 0 we have

T fµν =
e2

4πR6
[(x− x(s))µ(ẍνR− ẋνQ)(ẍR− ẋQ) · (x− x(s))

−(x− x(s))µ(x− x(s))ν(ẍR− ẋQ)2

+(ẍµR− ẋµQ)(x− x(s))ν(x− x(s)) · (ẍR− ẋQ)]. (270)

The first and the last terms contain the same scalar product which is actually vanishing,

(ẍR− ẋQ) · (x− x(s)) = [ẍ ẋ · (x− x(s))
︸ ︷︷ ︸

R

−ẋ ẍ · (x− x(s))
︸ ︷︷ ︸

Q

] · (x− x(s))

= [ẍ · (x− x(s)][ẋ · (x− x(s))]

−[ẋ · (x− x(s))][ẍ · (x− x(s))] = 0, (271)

therefore we can write

T fµν = − e2

4πR6
(x− x(s))µ(x− x(s))ν(ẍR− ẋQ)2

= − e2

4πR6
(x− x(s))µ(x− x(s))ν(ẍ2R2 +Q2) (272)

where the orthogonality ẋ · ẍ = 0 was used in the last equation.
The radiation reaction four-force acting on the charge, Kµ = −∂νT νµ, can be obtained by considering the integral

I of ∂νT
νµ over the four-volume V of Fig. 9, bounded by the hyper-surfaces S1, C1, S2, C2. For sufficiently far from

the charges the far field survives only and we have

I =

∫

dV ∂νT
νµ

=

∫

∂V

dSνT
νµ

=

∫

S2

dSνT
νµ −

∫

S1

dSνT
νµ +

∫

C1

dSνT
νµ +

∫

C2

dSνT
νµ (273)

for the far field contributions. The last two terms are vanishing because T fνµ ≈ (x − x(s))ν , dSνT
νµ = 0, the

energy-momentum flux does not cross the hyper-surfaces C1 and C2. It is important to note that this is not true for
the near field because Tnµν 6≈ (x − x(s))ν , the near-field, eg. Coulomb field moves with the charge. The co-moving
nature of the near-field contrasted with the decoupled, freely propagating nature of the far field which identifies the
radiation field.
Since the energy-momentum tensor tµν of the localized charge is vanishing in the integration volume the energy-

momentum conservation ∂ν(T
νµ + tνµ) = 0 assures I = 0, and

∆Pµ = −
∫

S

dSνT
fνµ, (274)

the radiated energy-momentum, is a four-vector and is independent of the choice of the surface S.
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FIG. 9: Energy momentum emitted by an accelerating charge

To calculate ∆P we choose a suitable surface S in such a manner that dSµ is space-like. This is reached by
choosing S be a sphere in the rest-frame of the charge at the emission of the radiation for infinitesimal proper length
ds, dSµ = wµR2dΩds, in terms of the parameterization x− x(s) = R(ẋ+ w). Therefore, we have

∆Pµ = −ds
∫

dΩR2wνT
fµν

=
e2

4π
ds

∫

dΩwν(ẋ+ w)µ(ẋ+ w)ν
(

ẍ2 +
Q2

R2

)

= − e2

4π
ds

∫

dΩ(ẋ+ w)µ
(

ẍ2 +
Q2

R2

)

. (275)

Since
∫

dΩwµ = 0 (276)

for a sphere and

Q2 = [(x− x(s)) · ẍ]2 = [R(ẋ+ w) · ẍ]2 = −R2ẍ2 cos2 θ (277)

where the angle θ between the two space-like vectors ẍ and w, the energy-flux for relativistic charge is

∆Pµ = − e2

4π
dsẋµ

∫

dΩ

(

ẍ2 +
Q2

R2

)

= − e2

4π
dsẋµẍ2

∫

dΩ(1− cos2 θ)

= −e2

2
ẋµẍ2ds

∫ 1

−1

d(cos θ) sin2 θ

︸ ︷︷ ︸
4
3

. (278)

and

∆Pµ

ds
= −2

3
e2ẋµẍ2. (279)

VII. RADIATION BACK-REACTION

The charges and the electromagnetic fields interact in electrodynamics. The full dynamical problem where both
the charges and the electromagnetic field are allowed to follow the time dependence described by their dynamics, the
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mechanical equation of motion and the Maxwell equations is quite a wonderful mathematical problem. A simpler
question is when the motion is partially restricted, when one members of this system is forced to follow a prescribed
time dependence and the other is allowed to follow its own dynamics only. For instance, the world lines of a point
charge moving in the presence of a fixed electromagnetic field can easily be found by integrating the equation of motion
(133). The use of the Green functions provides the solution for a number or engineering problems in electrodynamics
where the electromagnetic fields are sought for a given charge distribution. We devote this chapter to a question
whose complexity is in between the full and the restricted dynamical problems but appears a more fundamental issue.

A. The problem

Let us consider a charge moving under the influence of a nonvanishing external force. The force accelerates it and
in turn radiation is emitted. The radiation has some energy and momentum which is lost in the supposedly infinite
space surrounding the charge. Thus the energy and momentum of our charge is changed and we have to assume that
there is some additional force acting on the charge.
The very question is rather perplexing because one would have thought that the equation of motion for the charge,

Eq. (133), containing the Lorentz force, the second term on the right hand side is the last word in this issue. There
is apparently another force in the ”true” equation of motion! The complexity of this problem explains that this is
perhaps the last open chapter of classical electrodynamics.
There is a further, even more disturbing question. Does a point-like charge interact with the electromagnetic field

induced by its own motion? It is better not, otherwise we run into the problem of singularities like a point-charge at
rest at the singular point of its own Coulomb-field. But the electric energy of a given static charge distribution ρ(x),

E =
1

2

∫

d3xd3y
ρ(x)ρ(y)

|x− y| (280)

suggests that the answer is affirmative.
The radiation reaction force whose derivation is the goal of this chapter touches a number of subtle issues.

1. Singular solutions: Is there regular solutions at all for the set of coupled equations for point charges and the
electromagnetic field? It may happen that some smearing, provided by the unavoidable vacuum polarization of
quantum electrodynamics is needed to render the solution of the classical equations of motion regular.

2. Lack of variation principle: The existence of the radiation back reaction force is beyond doubt but its
derivation is non-trivial. It is a friction force, describing the loss of energy to the radiation field, and can not
be derived by variational principle ie. it is not present in the usual variational system of equations of motion of
classical electrodynamics.

3. Breakdown of time reversal invariance: The energy radiated out by the charge can not be recovered
anymore in an infinite system. Thus the sign of the radiation reaction force represents a dynamical breakdown
of the time inversion invariance of the basic laws of electrodynamics.

4. Loss of causal structure: The radiation back reaction force acting on point charges can be calculated exactly
and turns out to be proportional to the third derivative of the coordinates. Such kind of force generates acausal,
advanced effects and lead to self-accelerating motion.

5. Limit of classical physics The self interaction of a point charge is a singular problem, it can be made sense
in some limit only, when the size of a finite, extended charge distribution is sent to zero. It reveals an ill defined
corner of classical electrodynamics , a pillar of ninteenth century classical physics. Had the physicist missed the
discovery of the quantum world they would have been forced to face the challenge of modifying the fundamental
laws in physics to render classical electrodynamics of point charges consistent. The only counterpart of such a
clear sign of the end of applicability of the classical rules is the Gibbs paradox in statistical phyics.

6. Noncommuting limits: The problem about the limit r0 → 0 where r0 is the characteristic size of the charge
distribution of a particle raises the possibility that the limits ~ → 0 and r0 → 0 do not commute. In fact, in
discussing a point charge in classical electrodynamics one tacitly takes the limit ~ → 0 first to get the laws
of classical electrodynamics where the limit r0 → 0 is performed at the end. But a strongly localized particle
induces quantum effects what should be taken into account by keeping ~ finite, ie. we should start with the
limit r0 → 0 to introduce a point-like particle in Quantum Mechanics and the classical limit ~ → 0, should be
performed at the end only. There are no point charges in this scheme because even if one starts with a strictly
point-like charge the unavoidable vacuum-polarization effect generates a charge density polarization cloud of
the size of the Compton wavelength around the point charge.
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V

FIG. 10: A body moving in viscous fluid.

B. Hydrodynamical analogy

Before embarking the detailed study of classical electrodynamics let us consider a simpler, related problem in
hydrodynamics, in another classical field theory. We immerse a spherical rigid body of mass M in a viscous fluid as
depicted in Fig. 10. What is the equation of motion for the center of mass x of this body?

The naive answer,

M
d2x

dt2
= Fext (281)

the right hand side being the external force acting on the body is clearly inadequate because it ignores the environment
of the body. The full equation of motion must contain a rather involved friction force Ffl(v),

M
dv

dt
= Fext + Ffl(v) (282)

where v is the velocity of the body.
There are two ways to find the answer. The direct, local one is to construct the force Fext(v) the fluid exerts on the

body by the detailed study of the flow in is vicinity. If we have not enough information to accomplish this calculation
then another, more indirect global possibility is to calculate the total momentum Pfl(v) of the fluid which is usually
easier to find and to set

Ffl(v) = −
d

dt
Pfl(v), (283)

or equivalently to state that the total momentum of the body is

Ptot(v) = Mv +Pfl(v). (284)

We shall find the electromagnetic analogy of both schemes in the rest of this chapter.

C. Brief history

We summarize few important the stages of the discussion of the radiation reaction force.

1. Extended charge distribution

The energy of a charge e distributed in a sphere of radius r0 which moves with velocity v, was written by Thomson
as E = K + Eed where K = 1

2mmechv
2 and

Eem =
1

8π

∫

d3x(E2 +H2), (285)

and the actual calculation [5] yields

Eem = f
e2

r0c2
v2

2
, (286)
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f being a dimensionless constant depending on the charge distribution with value f = 2/3 for uniformly distributed
charge within the sphere. One can introduce the electromagnetic mass for such a charge distribution,

med =
2

3

e2

r0c2
(287)

giving

Eem =
med

2
v2. (288)

We thereby recover E = m
2 v

2 where m = mmech+med. Assuming pure electromagnetic origin of the mass, mmech = 0,
we have the classical charge radius

rcl =
2

3

e2

mc2
, (289)

the distance where the non-mechanical origin of the mass becomes visible.
The next step was made by Lorentz who held the conviction that all electrodynamics phenomena arise from the

structure of the electron [6]. Larmor’s formule gives

∆EL =
2e2

3c3

∫

a2dt =
2e2

3c3

∫ (
d(a · v)

dt
− da

dt
· v
)

dt (290)

for the energy loss due to radiation. The contribution of the first term in the last equation is negligible for long time
and motion with bounded velocity and acceleration and we have

∆EL ≈ −
2e2

3c3

∫
da

dt
· vdt

= −
∫

Fraddx (291)

yielding the first time an expression for the radiation reaction force,

FL =
2e2

3c3
da

dt
. (292)

In another work [7] Lorentz sets out to calculate the direct (Lorentz) force acting on a rigid charge distribution
ρ(x) of size r0 due to the radiation back-reaction and he found

Frad = ρ

(

Erad +
1

c
v ×Hrad

)

= − 4

3c2
1

2

∫
ρ(x)ρ(x′)

|x− x′| d
3xd3x′

︸ ︷︷ ︸
4
3med

a+
2e2

3c3
da

dt
︸ ︷︷ ︸

FL

−2e2

3c3

∞∑

n=2

(−1)n
n!cn

dma

dtn
O
(
rn−1
0

)
. (293)

The problems, opened by this result are the following.

1. The coefficient of the acceleration, the electromagnetic mass, differs from med as given by Eq. (289) in a
multiplicative factor 4/3. One way to understand the origin of this problem is to note that the rigidly prescribed
charge distribution, used in this early calculations, before 1905 violates special relativity in the absence of Lorentz
contraction.

2. There is no place in electrodynamics for cohesive forces, appearing for finite charge distribution, r0 6= 0, in
equilibrium, in other words pure classical electrodynamical forces can not hold together a system of charges. It
is believed today that extended charge systems are held together by quantum effects and by strong interactions.

3. Higher order derivatives with respect to the time appear in the equation of motion. They contradict with our
daily experience in mechanics. We have to come to term with this feature and to accept that all equations we
know in physics are effective, meaning that they are presumable derivable from a more microscopic level and
therefore contain infinitely many higher order derivative terms with small coefficients.
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4. The divergence med =∞ in the limit r0 → 0 spoils our ideas about point charges. The concept of point charges
is irrecovably removed from physics by the ultraviolet divergences appearing in quantum field theories.

While Lorentz concentrated on the energy loss of the charge system Abraham approached the problem from the
point of view of the momentum loss. He identified the momentum of the Coulomb field of an charge in uniform motion
by its Poyting’s vector [8],

prad =
1

4πc

∫

(E×H)d3x. (294)

The actual calculation yields

prad =
4

3
medv (295)

where the electromagnetic mass is given by Eq. (289). The absence of Lorentz contraction lead to the factor 4/3
again.
Approximately in the same time Sommerfeld calculated the self force acting on a charge distribution ρ(x) in its

co-moving coordinate system by ignoring the higher order than linear terms in the acceleration and its time derivatives
[9],

Frad =
2e2

3c

∞∑

n=0

(−1)n
n!

cn
dn+1

dctn+1
v, (296)

where

cn =

∫

d3xd3yρ(x)|x− y|n−1ρ(y). (297)

He considered charges distributed homogeneously on the surface of a sphere of radius r0 when

cn =
2(2r0)

n

n+ 1
(298)

and managed to resum the series which results the non-relativistic equation of motion

m
dv

dt
= Fext +med

v(t− 2 r0
c )− v(t)

2r0
(299)

which is a finite difference equation with the delay time needed to reach the opposite points of the sphere.
Soon after the discovery of special relativity Laue has found the relativistic extension of Lorentz’s result (294), [10]

mcẍµ = −2

3
e2(ẋµẍ2 +

...
xµ), (300)

an equation to be derived in a more reliable manner later by Dirac. The first term is positive definite and represents
the breakdown of the time inversion invariance, the loss of energy due to the ’friction’ caused by the radiation. The
second, the so called Schott term can change sign and stands for the emission and absorption processes.

A particularly simple, phenomenological argument to arrive at the self force (302) [11] is based on the constraint
ẍ · ẋ = 0 on the world line of a point particle which asserts that the four-force Fµ

rad = mmechẍ
µ must be orthogonal

to the four-velocity. One can easily construct the linearized equation of motion, an orthogonal vector which is linear
in the velocity and its derivatives by means of the projector

Pµν = gµν − ẋµẋν (301)

as

Fµ
rad = Pµν

∞∑

n=1

an
dnxν(s)

dsn
. (302)

The derivative of the constraint ẍ · ẋ = 0 with respect to the world-line parameter,

...
x · ẋ+ ẍ2 = 0, (303)
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gives for the self force truncated at the third derivative

mmechcẍ
µ ≈ Pµν(a2ẍ

ν + a3
...
x ν) = a2ẍ

µ + a3(
...
xµ + ẋµẍ2). (304)

The mass renormalization m = mmech−a2 eliminates the first term on the right hand side and expresses the physical
mass as the sum of the mechanical and part and the contribution from electrodynamics. The comparison with Eq.
(302) gives a3 = −2e2/3.
The third derivative with respect to the time in the equation of motion presents a new problem, such an equation

has runaway, self-accelerating solution,

ẋ0 = cosh[r0(e
s/r0 − 1)], ẋ1 = sinh[r0(e

s/r0 − 1)], ẋ2 = ẋ3 = 0, (305)

with rc being the classical electron radius (291). This is unacceptable. Dirac proposed an additional boundary
condition in time for the charges which is needed for the equation of motion with third time derivative. This is to be
imposed at the final time and it eliminates the runaway solutions. The problem which renders this proposal difficult
to accept is that it generates acausal effects on the motion of the charges, acceleration before the application of the
forces.
The origin of this problem is the sharp boundary of the homogeneously distributed charge in a sphere when

the radius r0 tends to zero. It was shown that both the runaway and the preaccelerating solutions are absent for
Sommerfeld’s equation of motion (301) as long as r0 > rcl [12]. It is the truncated power series approximation for
this finite difference equation which creates the problem in the point charge limit.

2. Point charge limit

The singular nature of the point charge limit forced Dirac to avoid the use of the Lorentz-force, the second term in
the last equation of (133) altogether. Instead, he extracted the force by means of the energy-momentum conservation
which can be applied safely, outside of the body [13]. His calculation is based on the introduction of a tube of radius r0
around the world-line of the body which is supposed to include all charge and the calculation of the energy-momentum
balance equation for the charge-electromagnetic field interactive system. It turns out that the forces acting on the
body can be determined and are local in time when the limit r0 → 0 is taken. An important qualitative result of this
scheme can be summarized by means of the decomposition (217) of the retarded Green function. Dirac found that
the the singular part of the force arises exclusively from the near field component of the induced field, An = 4π

c Dn · j.
Furthermore, the remaining, far field component, Af = 4π

c Df ·j remains finite in the point charge limit and reproduces
Laue’s result, Eq. (302). Based on theses results we follow here a shorter path to reach the goal [4], based on the
direct use of the Lorentz force, amended by a regularization of the singular generalized functions appearing in the
point charge limit.
We start with

Fµν
rad(s

′) = 4πe

∫

dsDrad(x− x′)
d

ds

(x− x(s))µẋν(s)

(x− x(s)) · ẋ(s) − (µ←→ ν), (306)

where

Drad(x) = Dr(x− x′)−Da(x− x′) =
1

2π
ǫ(x0 − x

′0)δ((x− x′)2). (307)

We write s = s′ + u and expand in u,

x(s)− x(s′) = uẋ+
u2

2
ẍ+

u3

6

d3x

ds3
+ · · ·

ẋ(s) = ẋ+ uẍ+
u2

2

d3x

ds3
+ · · ·

(x(s)− x(s′))2 = u2 +O
(
u4
)

(x(s)− x(s′)) · ẋ = u+O
(
u3
)

ǫ(x0(s)− x′0(s′)) = ǫ(u) (308)
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to find

Fµν
rad(s

′) = 2e

∫

dsǫ(u)

×δ(u2)
d

du

[(

ẋ+
u

2
ẍ+

u2

6

d3x

ds3

)µ(

ẋ+ uẍ+
u2

2

d3x

ds3

)ν]

−(µ←→ ν) (309)

= 2e

∫

duǫ(u)δ(u2)

d

du

(

uẋµẍν +
u

2
ẍµẋν +

u2

2
ẋµ dx

ν

ds3
+

u2

6

dxµ

ds3
ẋν

)

− (µ←→ ν).

The small but finite size of the charge compared with the width of the light cone where the radiation field is constrained
is taken into account by the formal steps

δ(u2) = lim
v→0+

δ(u2 − v2) = lim
v→0+

[
δ(u− v)

2v
+

δ(u+ v)

2v

]

(310)

and

ǫ(u)δ(u2) = lim
v→0+

[
δ(u− v)

2v
− δ(u+ v)

2v

]

= −δ′(u), (311)

yielding

Fµν
rad(s

′) = 2e

∫

duδ(u)
d2

du2

(
u

2
ẋµẍν +

u2

3
ẋµ dx

ν

ds3

)

− (µ←→ ν)

=
4

3
e

(

ẋµ d
3xν

ds3
− ẋν d

3xµ

ds3

)

(312)

and

Kµ
react = mcẍµ

rad(x
′) =

e

2c
Fµν
rad(x

′)ẋν

=
2

3
e2(ẋµ...x · ẋ− ...

xµ). (313)

Finally, by the the use of Eq. (305) we recover Eq. (302). The regularization of the product of two distributions in
Eq. (313) is the delicate point, justified by the recovery of Dirac’s result.

The near field represents no loss or gain in energy and momentum, it rather enriches the structure of the charge
by modifying, renormalizing its free equation of motion. Dirac found that Lorentz’s divergent mreact is given by the
near-field and gives rise a mass renormalization. To see this we start with the action

S = −mbc

∫

ds+ Sed

Sed = −e

c

∫

d4xAν(x)jν(x)

= −e

2

∫

d4x[Ar
ν(x) +Aa

ν(x)]

∫

ds ρ(x− x(s))
︸ ︷︷ ︸

form factor

ẋν(s) (314)

We write the near field An
ν (x) =

1
2 [A

r
ν(x) +Aa

ν(x)] as

An
ν (x) = 4πe

∫

d4x′ds′
1

2
[Dr(x− x′) +Dadv(x− x′)]ρ(x′ − x(s′))ẋν(s

′)

= e

∫

d4x′ds′δ((x− x′)2)ρ(x′ − x(s′))ẋν(s
′) (315)
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which yields, upon inserted into the action

Sed = −e2
∫

d4xd4x′dsds′δ((x− x′)2)ρ(x′ − x(s′))ρ(x− x(s))ẋ(s′) · ẋ(s)

= −e2
∫

d4wd4w′dsds′

×δ((w − w′ + x(s)− x(s′))2)ρ(w′)ρ(w)ẋ(s′) · ẋ(s).
(316)

This was the decisive step, this action does not contain the Liénard-Wiechert potentials anymore, the Green functions
were used to eliminate the electromagnetic field from the problem by means of their equations of motion. We follow
the limit r0 →, s′ = s+ u, ẋ(s′) = ẋ+ uẍ+ · · · , x(s)− x(s′) = −uẋ+ · · · and write

Sed ≈ −e2
∫

dsd4wd4w′duδ((w − w′ − uẋ)2)ρ(w′)ρ(w)

= −e2

2

∫

dsd4wd4w′

×
[

1

(w − w′ − uretẋ) · ẋ
+

1

(w − w′ − uadvẋ) · ẋ

]

ρ(w′)ρ(w)

= −e2

2

∫

dsd4wd4w′

×
[

1

(w − w′) · ẋ− uret
+

1

(w − w′) · ẋ− uadv

]

ρ(w′)ρ(w)

= −medc

∫

ds (317)

where the integral in the third equation diverges and becomes independent of s when ρ(x)→ δ4(x) and

med =
e2

2c

∫

d4wd4w′

[
1

(w − w′) · ẋ− uret
+

1

(w − w′) · ẋ− uadv

]

ρ(w′)ρ(w) (318)

What is found is a renormalization of the mass, the combination mph = mb + mel is observable only which sets
mb = mph −med.

3. Iterative solution

The coupled equations of motion for the charge and the electromagnetic field can be solved iteratively, by reinserting
the Liénard-Wiechert potential obtained by means of the solution of the mechanical equation [2]. They set up a
perturbation expansion in the retardation which comprises the nontrivial effects of the radiation and obtain the
radiation force in two steps. First they calculate the effective Lagrangian for the charge, obtained by eliminating
the electromagnetic field by the Maxwell equation in order O (v/c). The next order contain the radiational friction
force and is obtained by iterating the equation of motion. It is reassuring to see that the further iterations in the
retardation yield vanishing result in the point charge limit.
The retarded Liénard-Wiechert potential (which can not be obtained from an action principle due to its non time

reflection symmetrical form) leads to the effective Lagrangian

L = −
∑

a

mac
2

√

1− v2a
c2
−
∑

a

eaφ+
∑

a

ea
c
A · va

=
∑

a

[
mav

2
a

2
+

mav
4
a

8c2
+O

(
v6

c6

)]

−
∑

a

ea

∫

d3x′ ρ(t−
|xa−x

′|
c ,x′)

|xa − x′|

+
∑

a

ea
c2

∫

d3x′ j(t−
|xa−x

′|
c ,x′)

|xa − x′| · va (319)

for a system of charges when the self-interaction is retained.
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We make an expansion in the retardation by assuming v ≪ c, R/c ≪ τ , τ being the characteristic time scale of

the charges. Note that the factor |xa − x′|n in the higher, O
(

( v
2

c2 )
n
)

order contributions with n ≥ 3 suppresses the

singularity at |xa − x′| = 0. We find

φ(t, ra) =
∑

b

[∫

drb
ρ(t, rb)

Rab
− 1

c
∂t

∫

drbρ(t, rb)

︸ ︷︷ ︸

Q=const.

+
1

2c2
∂2
t

∫

drbRabρ(t, rb)

− 1

6c3
∂3
t

∫

drbR
2
abρ(t, rb)

]

+O
(

1

c4

)

A(t, ra) =
∑

b

[
1

c

∫

drb
j(t, rb)

Rab
− 1

c2
∂t

∫

drbj(t, rb)

]

+O
(

1

c3

)

, (320)

what yields

φa =
∑

b

[
eb
Rab

+
eb
2c2

∂2
tRab −

eb
6c3

∂3
tR

2
ab

]

Aa =
∑

b

[
ebvb

cRab
− eb

c2
∂tvb

]

(321)

in the point charge limit. We perform the gauge transformation

φ′
a = φa −

1

c

∑

b

[

∂t

( eb
2c

∂tRab −
eb
6c2

∂2
tR

2
ab

)]

=
∑

b

eb
Rab

= φ′(0)
a

A′
a = Aa +∇

∑

b

[( eb
2c

∂tRab −
eb
6c2

∂2
tR

2
ab

)]

=
∑

b





ebvb

cRab
− eb

c2
∂tvb +

eb
2c
∇∂tRab −

eb
6c2

∂2
t ∇R2

ab
︸ ︷︷ ︸

2Rab




 = A′(1)

a +A′(2)
a . (322)

The Lagrangian is

L(0) =
∑

a

mav
2
a

2
− 1

2

∑

a 6=b

eaeb
Rab

(323)

in the non-relativistic limit, O
(
( vc )

0
)
after ignoring an unimportant, diverging self energy for a = b.

For the next non-relativistic order, O
(
v
c

)
, we need

∇∂tR = ∂t∇R = ∂tn =
∂tR

R
− R∂tR

R2
(324)

where n = (r−r′)/|r−r′| denotes the unit vector from the charge to the observation point and R∂tR = R∂tR = −Rv,
with

∂tn =
−v + n(n · v)

R
. (325)

One finds

φ′(0)
a =

∑

b

eb
Rab

A′(1)
a =

∑

b

eb
vb + nb(nb · vb)

2cRab
(326)

and the Lagrangian is

L(2) =
∑

a

(
mav

2
a

2
+

mav
4
a

8c2

)

(327)

−1

2

∑

a 6=b

eaeb
Rab

+
1

2

∑

a 6=b

eaeb
c2Rab

[va · vb + (va · nab)(vb · nab)]
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in this order after a diverging self energy is ignored again for a = b.
The next, O

(
( vc )

2
)
order electromagnetic field contains the radiation induced friction force and can not be repre-

sented in the Lagrangian. We set R = r− r′, ∂tR = −∂tr′ and write

A
′(2)
a =

∑

b

[eb
c2

∂tvb +
eb
3c2

∂tvb

]

= −
∑

b

2

3

eb
c2

∂tvb. (328)

In the absence of explicit x-dependence the magnetic field is vanishing in this order, H(2) = 0. The force acting on
the charge is of electric origin alone and the self force arises from the electric field

E(2)
a = −1

c
∂tA

′(2)
a −∇ φ(2)

a
︸︷︷︸

=0

=
2

3

ea∂
3
t xa

c3
(329)

The energy loss per unit time is

W =
∑

a

Fa · va

=
3

2

1

c3

∑

b

eb∂
3
t xb ·

∑

a

ea∂txa

=
3

2

1

c3

∑

ab

eaeb[∂t(∂
2
t xb · ∂txa)− (∂2

t xa · ∂2
t xb)] (330)

with the time average

W = −3

2

1

c3

∑

ab

eaeb(∂2
t xa · ∂2

t xb) (331)

where the total derivative term can be neglected.
The higher order contributions in the retardation become negligible in the point-like charge limit when R→ 0 and

the expression for the radiation reaction force

Frr =
2

3

e2∂2
t v

c3
(332)

becomes exact! We see that we recover the second term in the right hand side of the last equation of Eqs. (302) but
not the first one in this manner, by relying on the retarded potentials.

The non-relativistic equation of motion,

m∂tv =
2

3

e2∂2
t v

c3
(333)

leads unavoidable to the runaway solution

∂tv = v0e
t 3
2

mc3

e2 . (334)

The equation of motion with the Lorentz-force, corrected by the radiation reaction is

m∂tv = eEext +
e

c
v ×Hext +

2

3

e2∂2
t v

c3
. (335)

We arrived finally at a central question: at what length scales can we see the radiation reaction forces? The
condition for the radiation back-reaction be small and an iterative solution is applicable is the following. In the rest
frame

∂2
t v =

e

m
∂tEext +

e

mc
∂tv ×Hext +O

(
c−3
)
. (336)
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Since ∂tv = eEext/m,

∂2
t v =

e

m
∂tEext +

e2

m2c
Eext ×Hext +O

(
c−3
)

(337)

and the radiation reaction force is

Frr =
2

3

e3

mc3
∂tEext

︸ ︷︷ ︸

O
(

e3ω
mc3

E
)

+
2

3

e4

m2c4
Eext ×Hext

︸ ︷︷ ︸

O
(

e4

m2c4
EH

)

+O
(
c−5
)
. (338)

The first term is negligible compared with the force generated by the external electric field for a monochromatic
field with frequency ω if

|Frr|
|Fext|

≈ e2ω

mc3
≪ 1 (339)

or

e2

mc2
≪ c

ω
=

λ

2π
. (340)

Thus classical electrodynamics becomes inconsistent due to pair creations at distances shorter than the classical charge
radius, ℓ ≈ λC = e2/mc2.
We note that the second term is negligible,

H ≪ m2c4

e3
(341)

for realistic magnetic fields.

4. Action-at-a-distance

A different approach to electrodynamics which might be called effective theory in the contemporary jargon is based
on the elimination of the electromagnetic field altogether from the theory [14–16].
Let us write the action of a system of charges described by their world lines xµ

a(s) and the electromagnetic field in
a condensed notation as

S =
∑

a

Sm[xa] +
1

2
A ·D−1 ·A−

∑

a

ja ·A (342)

where the dot stands for space-time integration and index summation, j · A =
∫
dxjµ(x)Aµ(x), etc. The Maxwell

equation, δS
δA = 0, yields

A = D · j. (343)

This equation can be used to eliminate A from the action and to construct the effective theory for the charges with
the action

S =
∑

a

Sm[xa] +
1

2

∑

ab

ja ·D ·D−1 ·D · jb −
∑

ab

ja ·D · jb

=
∑

a

Sm[xa]−
1

2

∑

ab

ja ·D−1 · jb

→
∑

a

Sm[xa]−
1

2

∑

a 6=b

ja ·D−1 · jb (344)

without the electromagnetic field. The elimination of the field degrees of freedom generates action-at-a-distance. The
self-interaction was omitted in the last equation.
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The Maxwell equation indicates that D should be a Green-function. But which one? According to Dirac’s proposal
we have near and far field Green-functions

A
n

f =
1

2
(Ar ±Aa) =

1

2
(Dr ±Da) · j (345)

which motivates the notation D
n

f = 1
2 (D

r ±Da). Whatever Green-function we use, the symmetric part survives only

because A ·B ·A = 0 for an anti-symmetrical operator, Btr = −B. Since Da(x, y) = Dr(y, x), Dn and Df are just the
symmetric and antisymmetric part of the inhomogeneous propagator and we have to use Dn in the action principle.
The self-interaction generated by the near-field and ignored in the last line of Eqs. (346) is indeed a world-line
independent, divergent term.
The support of the Green-function is the light-cone therefore the charge a at point xa interacts with the charge b

if the world-line xb(s) of the charge b pierces the light-cone erected at point xa. The interaction is governed by the
near-field Green-function and it is 50% retarded and 50% advanced. Such an even distribution of the retarded and
advanced interaction assures the formal time inversion invariance.
The unwanted complication of the near-field mediated interactions is that it eliminates radiation field and the

retardation effects. It is a quite cumbersome procedure to add by hand the appropriate free field to the solution which
restores the desired initial conditions.
The use of the retarded Green-function assumes that the in-fields are weak. This is not the case for the out-fields

and the time inversion symmetry is broken. A sufficient plausible assumption to explain this phenomenon is the
proposition that the Universe is completely absorptive, there is no electromagnetic radiation reaching spatial infinities
due to the elementary scattering processes of the inter-galactic dust [17]. The equation of motion for the charge a in
the theory given by the action (346),

mcẍµ
a =

e

c
Fnµν ẋaν

=
e

2c

∑

b 6=a

(F rµν
b + F aµν

b )ẋaν (346)

can be written as

mcẍµ
a =

e

c




∑

b 6=a

F rµν
b +

1

2
(F rµν

a − F aµν
a )− 1

2

∑

b

(F rµν
b − F aµν

b )



 ẋaν . (347)

The first term represents the usual retarded interaction with the charges, self interactions ignored. The second term
is the regular far field generated by the charge and provides the forces needed for the energy-momentum conservation
for radiating charges. The last expression, the radiation field of all charges is vanishing in a completely absorbing
Universe. The origin of the breakdown of the time reversal invariance needed for the appearance of the radiation
friction force which can be derived without difficulty from Eq. (349) is thus located in the absorbing nature of
the Universe. Calculations performed in Quantum Electrodynamics in finite, flat space-time support the absorbing
Universe hypothesis.

5. Beyond electrodynamics

Similar radiation back-reaction problem exist in any interactive particle-field theory, for instance gravity or a more
academic model where the interaction is mediated by a massive scalar field.

A mass curves the space-time around itself and is actually moves in such a distorted geometry. part of the
distortion is instantaneous, the analogy of the Coulomb force of electrodynamics, another part displays retardation
and represents gravitational radiation. It was found [18, 19] that there is indeed a radiation back-reaction force in
gravity and its additional feature is that it has a non-local component parallel to the four-acceleration, hence the
mass is renormalized by a term which depends on the whole past of the motion. It is the special vector algebra
which rendered the mass renormalization a part and time independent constant in Eq. (289) for the electromagnetic
interaction in flat space-time. But a conceptual issue which remains to settle in the gravitational case is that in
general any explicit use of the space-time coordinate corresponds to a gauge choice, in particular the form of the self
force one can get is gauge dependent and not physical. The satisfactory solution of this problem which is still ahead
of us is to translate all relevant dynamical issues into gauge invariant, coordinate choice independent form. The loss
of the mass as a constant to characterize the motion of a point particle obviously forces radical changes upon our way
to imagine classical physics.
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The origin of the non-local nature of the self-force can easily be understood. An external background curvature
acts as a mass term for the gravitational radiation. Therefore, the dynamical problem here is like the radiation
back-reaction arising from interacting with a massive field. This problem can specially easily analyzed in the case of
a massive scalar field. Its retarded Green function is non-vanishing within the future light cone as opposed to the
massless Green function whose support is the future light cone only. Therefore whole past of the world-line for the
point x(s) lies within the past light cone of x(s) and contribute to the self-force as opposed to the simple situation of
the massless electromagnetic interaction, depicted in Fig. 8.

D. Epilogue

The recent developments in High Energy Physics, namely the construction of effective theories based on the use
of the renormalization group shows clearly the origin of the Abraham-Lorentz force. When degrees of freedom are
eliminated in a dynamical system by means of their equation of motion then the equations of motion of the remaining
degrees of freedom change. The new terms represent the correlations realized by the eliminated degrees of freedom
in the dynamics of the remaining part of the system. When the effect of the self field is considered on a charge then
we actually eliminate the EM field and generate new pieces to the equations of motion for the charges. These are the
radiation back-reaction forces, their importance can systematically be estimated by the method of the renormalization
group, applied either on the classic or the quantum level.
It may happen that the coupled set of equations of motion for point charges and the electromagnetic field has no

regular solution and electrodynamics of point charges is well defined on the quantum level only. This is reminescent
of the possibility that the proof of relaxation and the approach to an equilibrium ensemble in statistical physics might
need quantum mechanics.
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