
Bluetooth for Programmers

Albert Huang
albert@csail.mit.edu

Larry Rudolph
rudolph@csail.mit.edu

Bluetooth for Programmers
by Albert Huang and Larry Rudolph

Copyright © 2005 Albert Huang, Larry Rudolph

TODO

Chapter 1. Introduction

In a single phrase, Bluetooth isa way for devices to communicate with each other wirelessly over short
distances.A comprehensive set of documents, called the Bluetooth Specifications, describes in gory
detail exactly how they accomplish this, but the basic idea is about wireless, short-range communication.

TODO

1.1. Understanding Bluetooth as a software developer

Developing applications that make use of Bluetooth communication is straightforward and easy although
it may seem difficult due to its unusually wide scope. Technologies names or specifications, often refer to
something very specific and with a narrow scope. Ethernet, for example, describes how to connect a
bunch of machines together to form a simple network, but that’s about it. TCP/IP describe two specific
communication protocols that form the basis of the Internet, but they’re just two protocols. Similarly,
HTTP is the basis behind the World-Wide-Web, but also boils down to a simple protocol. But if someone
asked you to describe the Internet, where would you start? What would you explain? You might describe
Ethernet, TCP/IP, email, or the World-Wide-Web, or all of them at once. The hard part is knowing where
to start because there is so much to describe at so many different levels. On the other hand, if a software
developer approached you and wanted to know about Internet programming - how to connect one
computer on the Internet to the other and send data back and forth, you probably wouldn’t bother
describing the details of Ethernet or email, precisely because they are both technologies aren’t central to
answering that question. Sure, you might mention email as an example of what Internet programming
can accomplish, or describe Ethernet to give context on how the connections are implemented, but what
you’d really want to describe is TCP/IP programming.

In many ways, the word Bluetooth is like the word Internet because it encompasses a wide range of
subjects. Similar to Ethernet or USB, Bluetooth defines a lot of physical on-the-wire stuff like on which
radio frequencies to transmit and how to modulate and demodulate signals. Similar to Voice-over-IP
protocols used in many Internet applications, Bluetooth also describes how to transmit audio between
devices. But Bluetooth also specifies everything in between! It’s no wonder that the Bluetooth
specifications are thousands upon thousands of pages.

Despite all that Bluetooth encompasses, a programmer only needs to know a small fraction of what’s laid
out in the specifications. When a software developer approaches to ask about how to get started with
Bluetooth programming, you really only need to describe how to connect one Bluetooth device to
another, and how to transfer data between the two. Sure, it helps to know a bit about the rest of
Bluetooth, but there’s no need to go into the specifics of the algorithms that Bluetooth devices use to
choose on their radio frequencies. The bad news is that Bluetooth is more than just a replacement for a
USB or ethernet cable. Most network application do not need to if their machine is connected tothe
network via a physical ethernet cable or a wireless 802.11 connection, they do need to know if the
connection is Bluetooth. The good news, is that they do not need to know very much.

1

Chapter 1. Introduction

1.2. Bluetooth Programming Concepts

The previous section gave a general overview of Bluetooth as a communications technology, and
information that’s useful to know about Bluetooth but isn’t absolutely necessary to create functional
programs. This section focuses specifically on explaining the parts of Bluetooth that concern a software
developer. Throughout the rest of this chapter, we’ll often present Bluetooth concepts side by side with
concepts from Internet programming. This is in part because the vast majority of network programmers
are already familiar with TCP/IP to some degreer. It is also because Bluetooth programming shares so
much in common with Internet programming, and it makes sense to explain a new idea in terms of an old
idea when they’re not all that different.

Although Bluetooth was designed from the ground up, independently of the Ethernet and TCP/IP
protocols, it is quite reasonable to think of Bluetooth programming in the same way as Internet
programming. Fundamentally, they have the same principles of one device communicating and
exchanging data with another device.

The different parts of network programming can be separated into several components

• Choosing a device with which to communicate

• Figuring out how to communicate with it

• Making an outgoing connection

• Accepting an incoming connection

• Sending and receiving data

Some of these components do not apply to all models of network programming. In a connectionless
model, for example, there is no notion of establishing a connection. Some parts can be trivial in certain
scenarios and quite complex in another. If the numerical IP address of a server is hard-coded into a client
program, for example, then choosing a device is no choice at all. In other cases, the program may need to
consult numerous lookup tables and perform several queries before it knows its final communication
endpoint.

1.2.1. Choosing a communication partner

Every Bluetooth chip ever manufactured is imprinted with a globally unique 48-bit address, which we
will refer to as theBluetooth addressor device address. This is identical in nature to the MAC addresses
of Ethernet1, and both address spaces are actually managed by the same organization - the IEEE
Registration Authority. These addresses are assigned at manufacture time and are intended to be unique
and remain static for the lifetime of the chip. It conveniently serves as the basic addressing unit in all of
Bluetooth programming.

For one Bluetooth device to communicate with another, it must have some way of determining the other
device’s Bluetooth address. This address is used at all layers of the Bluetooth communication process,

2

Chapter 1. Introduction

from the low-level radio protocols to the higher-level application protocols. In contrast, TCP/IP network
devices that use Ethernet as their data link layer discard the 48-bit MAC address at higher layers of the
communication process and switch to using IP addresses. The principle remains the same, however, in
that the unique identifying address of the target device must be known to communicate with it.

In both cases, the client program will often not have advance knowledge of these target addresses. In
Internet programming, the user will typically supply a host name, such aswww.kernel.org , which the
client must translate to a physical IP address using the Domain Name System (DNS). In Bluetooth, the
user will typically supply some user-friendly name, such as “My Phone", and the client translates this to
a numerical address by searching nearby Bluetooth devices and checking the name of each device.

1.2.1.1. Device Name

Since humans do not deal well with 48-bit numbers like0x000EED3D1829 (in much the same way we
do not deal well with numerical IP addresses like 64.233.161.104), Bluetooth devices will almost always
have a user-friendly name. This name is usually shown to the user in lieu of the Bluetooth address to
identify a device, but ultimately it is the Bluetooth address that is used in actual communication. For
many machines, such as cell phones and desktop computers, this name is configurable and the user can
choose an arbitrary word or phrase. There is no requirement for the user to choose a unique name, which
can sometimes cause confusion when many nearby devices have the same name. When sending a file to
someone’s phone, for example, the user may be faced with the task of choosing from 5 different phones,
each of which is named "My Phone".

Although names in Bluetooth differ from Internet names in that there is no central naming authority and
names can sometimes be the same, the client program still has to translate from the user-friendly names
presented by the user to the underlying numerical addresses. In TCP/IP, this involves contacting a local
nameserver, issuing a query, and waiting for a result. In Bluetooth, where there are no nameservers, a
client will instead broadcast inquiries to see what other devices are nearby and query each detected
device for its user-friendly name. The client then chooses whichever device has a name that matches the
one supplied by the user.

1.2.1.2. Searching for nearby devices

THIS SHOULD REALLY BE A SIDE NOTE

Device discovery, the process of searching for and detecting nearby Bluetooth devices is often a
confusing and irritating subject for Bluetooth developers and users. Why’s that, you might ask? Well, the
source of this aggravation stems from the fact that it can take a long time to detect nearby Bluetooth
devices. To be specific, if you have a Bluetooth cell phone and a Bluetooth laptop sitting next to each
other on your desk and you want your phone to make a connection to your laptop, it will usually take an
average of 5 seconds before it detects your laptop, and sometimes as long as 10-15 seconds. This might
not seem like that much time, but if you put it in context and realize that while it’s performing its search,
the phone is changing frequencies more than a thousand times a second and there are only 79 possible
frequencies2 that it can transmit on, then you’d start to wonder why they don’t find each other in the

3

Chapter 1. Introduction

blink of an eye. The technical reasons for this aren’t very interesting, but it’s mostly due to the result of a
strangely designed search algorithm. Suffice to say, device discovery may often take much longer than
you’d like it to.

1.2.2. Choosing a transport protocol

Once our client application has determined the address of the host machine it wants to connect to, it must
determine which transport protocol to use. This section describes the Bluetooth transport protocols
closest in nature to the most commonly used Internet protocols. Consideration is also given to how the
programmer might choose which protocol to use based on the application requirements.

Both Bluetooth and Internet programming involve using numerous different transport protocols, some of
which are stacked on top of others. In TCP/IP, many applications use either TCP or UDP, both of which
rely on IP as an underlying transport. TCP provides a connection-oriented method of reliably sending
data in streams, and UDP provides a thin wrapper around IP that unreliably sends individual datagrams
of fixed maximum length. There are also protocols like RTP for applications such as voice and video
communications that have strict timing and latency requirements.

While Bluetooth does not have exactly equivalent protocols, it does provide protocols which can often be
used in the same contexts as some of the Internet protocols.

1.2.2.1. RFCOMM

The RFCOMM protocol provides roughly the same service and reliability guarantees as TCP. Although
the specification explicitly states that it was designed to emulate RS-232 serial ports (to make it easier for
manufacturers to add Bluetooth capabilities to their existing serial port devices), it is quite simple to use
it in many of the same scenarios as TCP.

In general, applications that use TCP are concerned with having a point-to-point connection over which
they can reliably exchange streams of data. If a portion of that data cannot be delivered within a fixed
time limit, then the connection is terminated and an error is delivered. Along with its various serial port
emulation properties that, for the most part, do not concern network programmers, RFCOMM provides
the same major attributes of TCP.

The biggest difference between TCP and RFCOMM from a network programmer’s perspective is the
choice of port number. Whereas TCP supports up to 65535 open ports on a single machine, RFCOMM
only allows for 30. This has a significant impact on how to choose port numbers for server applications,
and is discussed shortly.

4

Chapter 1. Introduction

1.2.2.2. L2CAP

UDP is often used in situations where reliable delivery of every packet is not crucial, and sometimes to
avoid the additional overhead incurred by TCP. Specifically, UDP is chosen for its best-effort, simple
datagram semantics. These are the same criteria that L2CAP satisfies as a communications protocol.

L2CAP, by default, provides a connection-oriented3 protocol that sends individual datagrams of fixed
maximum length. The default maximum packet size is 672 bytes, but this can be negotiated up to 65535
bytes. Being fairly customizable, L2CAP can be configured for varying levels of reliability. To provide
this service, the transport protocol that L2CAP is built on4 employs an transmit/acknowledgement
scheme, where unacknowledged packets are retransmitted. There are three policies an application can
use:

• never retransmit

• retransmit until success or total connection failure (the default)

• drop a packet and move on to queued data if a packet hasn’t been acknowledged after a specified time
limit (0-1279 milliseconds). This is useful when data must be transmitted in a timely manner.

Never retransmitting and dropping packets after a timeout are often referred to asbest-effort
communications. Trying to deliver a packet until it has been acknowledged or the entire connection fails
is known asreliablecommunications. Although Bluetooth does allow the application to use best-effort
instead of reliable communication, several caveats are in order. The reason for this is that adjusting the
delivery semantics for a single L2CAP connection to another device affectsall L2CAP connections to
that device. If a program adjusts the delivery semantics for an L2CAP connection to another device, it
should take care to ensure that there are no other L2CAP connections to that device. Additionally, since
RFCOMM uses L2CAP as a transport, all RFCOMM connections to that device are also affected. While
this is not a problem if only one Bluetooth connection to that device is expected, it is possible to
adversely affect other Bluetooth applications that also have open connections.

The limitations on relaxing the delivery semantics for L2CAP aside, it serves as a suitable transport
protocol when the application doesn’t need the overhead and streams-based nature of RFCOMM, and
can be used in many of the same situations that UDP is used in.

Given this suite of protocols and different ways of having one device communicate with another, an
application developer is faced with the choice of choosing which one to use. In doing so, we will
typically consider the delivery reliability required and the manner in which the data is to be sent. As
shown above and illustrated inTable 1-1, we will usually choose RFCOMM in situations where we
would choose TCP, and L2CAP when we would choose UDP.

Table 1-1. A comparison of the requirements that would lead us to choose certain protocols.
Best-effort streams communication is not shown because it reduces to best-effort datagram
communication.

Requirement Internet Bluetooth

Reliable, streams-based TCP RFCOMM

5

Chapter 1. Introduction

Requirement Internet Bluetooth

Reliable, datagram TCP RFCOMM or L2CAP with
infinite retransmit

Best-effort, datagram UDP L2CAP (0-1279 ms retransmit)

1.2.3. Port numbers and the Service Discovery Protocol

The second part of figuring out how to communicate with a remote machine, once a numerical address
and transport protocol are known, is to choose the port number. Almost all Internet transport protocols in
common usage are designed with the notion of port numbers, so that multiple applications on the same
host may simultaneously utilize a transport protocol. Bluetooth is no exception, but uses slightly
different terminology. In L2CAP, ports are calledProtocol Service Multiplexers, and can take on
odd-numbered values between 1 and 32767. Don’t ask why they have to be odd-numbered values,
because you won’t get a convincing answer. In RFCOMM,channels1-30 are available for use. These
differences aside, both protocol service multiplexers and channels serve the exact same purpose that
ports do in TCP/IP. L2CAP, unlike RFCOMM, has a range of reserved port numbers (1-1023) that are
not to be used for custom applications and protocols. This information is summarized inTable 1-2.
Throughout the rest of this book, we’ll often use the wordport instead of protocol service multiplexer
and channel, mostly for clarity.

Table 1-2. Port numbers and their terminology for various protocols

protocol terminology reserved/well-known
ports

dynamically
assigned ports

TCP port 1-1024 1025-65535

UDP port 1-1024 1025-65535

RFCOMM channel none 1-30

L2CAP PSM odd numbered 1-4095 odd numbered 4097 -
32765

In Internet programming, server applications traditionally make use of well known port numbers that are
chosen and agreed upon at design time. Client applications will use the same well known port number to
connect to a server. The main disadvantage to this approach is that it is not possible to run two server
applications which both use the same port number. Due to the relative youth of TCP/IP and the large
number of available port numbers to choose from, this has not yet become a serious issue.

The Bluetooth transport protocols, however, were designed with many fewer available port numbers,
which means we cannot choose an arbitrary port number at design time. Although this problem is not as
significant for L2CAP, which has around 15,000 unreserved port numbers, RFCOMM has only 30
different port numbers. A consequence of this is that there is a greater than 50% chance of port number
collision with just 7 server applications. In this case, the application designer clearly should not
arbitrarily choose port numbers. The Bluetooth answer to this problem is the Service Discovery Protocol
(SDP).

6

Chapter 1. Introduction

Instead of agreeing upon a port to use at application design time, the Bluetooth approach is to assign
ports at runtime and follow a publish-subscribe model. The host machine operates a server application,
called the SDP server, that uses one of the few L2CAP reserved port numbers. Other server applications
are dynamically assigned port numbers at runtime and register a description of themselves and the
services they provide (along with the port numbers they are assigned) with the SDP server. Client
applications will then query the SDP server (using the well defined port number) on a particular machine
to obtain the information they need.

1.2.3.1. Service ID

This raises the question of how do clients know which service description is the one they are looking for.
The easy answer would be to just assign every single service a unique identifier and be done with it. This
approach has been done before, and the Internet Engineering Task Force has a standard method for
developers to independently come up with their own 128-bit Universally Unique Identifiers (UUID).
This is the basic idea around which SDP revolves, and this identifier is called the service’sService ID.
Specifically, a developer chooses this UUID at design time and when the program is run, it registers its
Service ID with the SDP server for that device. A client application trying to find a specific service would
query the SDP server on each device it finds to see if the device offers any services with that same UUID.

UUIDs are typically referred to as a hyphen-separated series of digits of the form
"XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX", where each ’X’ is a hexadecimal digit.
The first segment of 8 digits corresponds to bits 1-32 of the UUID, the next segment of 4 digits is bits
33-36, and so on.

1.2.3.2. Service Class ID list

Although a Service ID by itself can take us a pretty long way in terms of identifying services and finding
the one we want, it’s really meant for custom applications built by a single development team. The
Bluetooth designers wanted to distinguish between these custom applications and classes of applications
that all do the same thing. For example, two different companies might both release Bluetooth software
that provides audio services over Bluetooth. Even though they’re completely different programs written
by different people, they both do the same thing. To handle this, Bluetooth introduces a second UUID,
called theService Class ID. Now, the two different programs can just advertise the same Service Class
ID, and all will be well in Bluetooth Land. Of course, this is only useful if the two companies agree on
which Service Class ID to use.

Another thought to consider is this: what if I have a single application that can provide multiple services?
For example, many Bluetooth headsets can function as a simple headphone and speaker, and advertise
that service class; but they also are capable of controlling a phone call - ansewring an incoming call,
muting the microphone, hanging up, and so on. Although it’s possible to just register two separate
services in this case, each with a specific service class, the Bluetooth designers chose to allow every
service to have a list of service classes that the service provides. So while a single service can only have
oneService ID, it can have manyService Class IDs.

7

Chapter 1. Introduction

NOTE: Technically, the Bluetooth specification demands that every SDP service record have an Service
Class ID list with at least one entry. I think that’s stupid. The Linux Bluetooth implementation does not
enforce this. Should we mention this?

Bluetooth Reserved UUIDs

Similar to the way L2CAP and TCP have reserved port numbers for special purposes,
Bluetooth also has reserved UUIDs. These are mostly used for identifying predefined
service classes, but also for transport protocols and profiles (Bluetooth profiles are
described inSection 1.3.5). Usually, you’ll see them referred to as 16-bit or 32-bit values,
but they do correspond to full 128-bit UUIDs.

To get the full 128-bit UUID from a 16-bit or 32-bit number, take theBluetooth Base UUID
(00000000-0000-1000-8000-00805F9B34FB) and replace the leftmost segment with
the 16-bit or 32-bit value. Mathematically, this is the same as:

128_bit_UUID= 16_or_32_bit_number* 296 + * Bluetooth_Base_UUID

1.2.3.3. SDP attributes

So far, we’ve described SDP as a way to figure out what port and protocol a particular application service
is running on, using a Service ID or a Service Class ID as a lookup key. A more general way to think of
SDP is as an information database. Every record advertised by SDP is actually a list ofattributes, where
each attribute is in turn an[ID, value] pair. The attributeID is a 16-bit unsigned integer that specifies
the type of attribute, and the actual attribute data is described in thevaluefield. A client application
looking for a service can search on any of these attributes, although most will usually search on the two
already mentioned.

The data in thevaluefield is not restricted to only UUIDs, and can also be an integer, a boolean value, a
text string, a list of any of those types, or even a list of lists. Attributes values can be of variable length -
up to 4 GB long, although you’d have to be a little crazy to actually try that. All of this makes SDP a
powerful way of describing services, but also makes it a bit complicated and sometimes tedious to work
with.

Bluetooth defines several reserved attribute IDs which always have a special meaning, and the rest can be
used any way an application designer wishes to. Some of the more common reserved attributes are:

Service class ID list

A list of service class UUIDs that the service provides.

Service ID

A single UUID identifying the specific service.

8

Chapter 1. Introduction

Service Name

A text string containing the name of the service.

Service Description

A text string describing the service provided.

Protocol descriptor list

A list of protocols and port numbers used by the service.

Profile descriptor list

A list of Bluetooth profile descriptor that the service complies with. Bluetooth Profiles are described
in Section 1.3.5. Each descriptor consists of a UUID and a version number.

DIAGRAM!!!

1.2.3.4. Is SDP even necessary?

In this section, we’ve seen how to avoid the pitfalls of fixed port numbers and how a client program can
use SDP to find the specific Bluetooth service it’s looking for. Knowing this, we should also keep in
mind that SDP is not even required to create a Bluetooth application. It is perfectly possible to revert to
the TCP/IP way of assigning port numbers at design time and hope to avoid port conflicts, and this might
often be done to save some time. In controlled settings such as the computer laboratory or an in-house
project, this is quite reasonable. Ultimately, however, to create a portable application that will run in the
greatest number of scenarios, the application should use dynamically assigned ports and SDP.

1.2.4. Communicating using sockets

It turns out that choosing which machine to connect to and how to connect are the most difficult parts of
Bluetooth programming. Once the transport protocol and port number to cmomunicate on are chosen, the
rest of Bluetooth communications is essentially the same type of programming most network
programmers are already accustomed to: sockets! A server application waiting for an incoming
Bluetooth connection is conceptually the same as a server application waiting for an incoming Internet
connection, and a client application attempting to establish an outbound connection behaves the same
whether it is using RFCOMM, L2CAP, TCP, or UDP. For this reason, extending the socket programming
framework to encompass Bluetooth is a natural approach. In this section, we’ll give a brief introduction
to the concepts behind socket programming. Like the rest of this chapter, we won’t distract you with any
code yet, just give an overview of what’s involved. If you’re already a seasoned veteran with socket
programming, then you can skip this section, but if you’re new to sockets, then read on!

9

Chapter 1. Introduction

1.2.4.1. Introducing the Socket

DIAGRAM!!! A socketin network programming represents the endpoint of a communication link. The
idea is that from a software application’s point of view, all data being passing through the link must go
into or come out of the socket. First used in the 4.2BSD operating system, sockets have since become the
de-facto standard for network programming.

To establish a Bluetooth connection, a program must firstcreate a socket that will serve as the endpoint
of the connection. Sockets are used for all types of network programming, so the first thing to do is
specify what kind of socket it’s going to be. In Bluetooth programming, we’ll almost always be creating
either L2CAP or RFCOMM sockets, so that all data sent over the sockets will be sent using the correct
protocol.

When first created, the socket is not yet connected and can’t be used yet for communication. To connect
it, however, the application must decide if the socket will be used as a server socket to listen for
incoming connections, or as a client socket to establish an outgoing connection. The process of
connecting the socket depends on this choice, so we’ll look at each case separately.

1.2.4.2. Client sockets

Client sockets are easy to understand and straightforward to use. Once the socket has been created, the
client program only needs to issue theconnect command, specifying which device to connect to, and
on which port. The operating system then takes care of all the lower level details, reserving resources on
the local Bluetooth adapter, searching for the remote device, forming a piconet, and establishing a
connection. Once the socket is connected, it can be used for data transfer.

1.2.4.3. Server / Listening sockets

To get a useful data connection out of a server socket (also called listening sockets), there are three steps
an application must take. First, it mustbind the socket to local Bluetooth resources, specifying which
Bluetooth adapter and which port number to use5. Second, the socket must be placed intolistening

mode. This indicates to the operating system that it should listen for connection requests on the adapter
and port number chosen during the bind step. Finally, the application uses the bound and listening socket
to accept incoming connections.

One of the major differences between a server socket and a client socket is that the server socket first
created by the application can never be used for actual communication. Instead, what happens is each
time the server socket accepts a new incoming connection, it spawns a brand-new socket that represents
the newly established connection. The server socket then goes back to listening for more connection
requests, and the application should use the newly created socket to communicate with the client.
DIAGRAM!!!

10

Chapter 1. Introduction

1.2.4.4. Communicating using a connected socket

Once a Bluetooth application has a connected socket, using it to communicate it simple. Thesend and
receive commands are used to... well, send and receive data. When the application is finished, it simply
invokes theclose command to disconnect the socket. Closing a listening server socket unbinds the port
and stops accepting incoming connections.

1.2.4.5. Nonblocking sockets with select

TODO

1.2.4.6. Socket summary

To briefly summarize, socket programming is a multi-step process that involves 8 main operations.

Create

Allocates an unconnected socket.

Connect (client)

Establishes an outgoing connection. Implicitly forms a piconet if necessary.

Bind (server)

Reserves a port number on a local Bluetooth adapter.

Listen (server)

Instructs the operating system to begin accepting incoming connections.

Accept (server)

Waits for incoming connections.

Receive

Receive incoming data on a Bluetooth connection.

Send

Send data to the remote device of a Bluetooth connection.

Close

Disconnects a connected socket, or shuts down a listening socket.

11

Chapter 1. Introduction

1.3. Useful things to know about Bluetooth

One does not need to know very much about section

1.3.1. Communications range

Bluetooth devices are divided into three power classes, the only difference between them is the
transmission power levels used.Table 1-3summarizes their differences. Almost all Bluetooth-enabled
cell phones, headsets, laptops, and other consumer-level Bluetooth devices are class 2 devices. There are
many class 1 USB devices for sale to consumers. It is the higher class that determines the properties. If a
class 1 USB device communicates with a class 2 Bluetooth cell phone, the range of the Bluetooth radio is
limitted by the cell phone. Class 3 Bluetooth device are rare, as their limited range heavily restricts their
usefulness.

Table 1-3. The three Bluetooth power classes

Power class Transmission power level Advertised range

1 100 mW 100 meters

2 2.5 mW 10 meters

3 < 1 mW < 1 meter

The ranges listed here are only rough estimates used for advertising purposes. In practice, one can see a
much larger range when there aren’t many obstructions between two devices, and a smaller range when
there’s a lot of radio interference or objects in between. People are actually quite good at blocking
Bluetooth signals, mostly because water (which constitues around 60% of the human body) does a great
job absorbing radio waves at the frequencies used by Bluetooth. Distance is only related to the
transmission power. Further distances may have higher error rates and a device might be seen outside its
low-error operating range.

1.3.2. Communications Speed

It is also difficult to give a reliable number on the bandwidth of a Bluetooth communications channel, but
ballpark figures do help. Theoretically, two Bluetooth devices have a maximum assymetric data rate of
723.2 kilobits per second (kb/s) and a maximum symmetric data rate of 433.9 kb/s. Here, asymmetric
means that only one Bluetooth device is transmitting, and symmetric means that both are transmitting to
each other. In practice, the transfer rates you’re likely to see will be a bit less since there’s always going
to be a bit of noise on wireless communications channels as well as some transport protocol overhead on
each packet transmitted.

Like all wireless communications methods, the strength of a Bluetooth signal deteriorates quadratically
with the distance from the source. Since weaker signals are much more likely to be corrupted by noise,
the maximum communication speed between two Bluetooth devices is strongly limited by how far apart

12

Chapter 1. Introduction

they are. Unless you can closely control the distance and obstructions between two Bluetooth devices,
it’s a good idea to design a protocol that can tolerate lower communication speeds or dropped packets.

Bluetooth devices that conform to the Bluetooth 2.0 specification, which was released in late 2004, have
a theoretical limit triple that of older devices (2178.1 kb/s asymmetric, 1306.9 kb/s symmetric), but at the
time of this writing (October, 2005) there aren’t very many Bluetooth 2.0 devices available on the
market, and the vast majority of existing devices are limited by the older data rates.

1.3.3. Radio Frequencies and Channel Hopping

Bluetooth devices all operate in the 2.4 GHz frequency band. This means that it uses the same radio
frequencies as microwaves, 802.11, and some cordless phones (the kind that attach to land lines, not cell
phones). What makes Bluetooth different from the other technologies is that it divides the 2.4 GHz band
into 79 channels and employs channel hopping techniques so that Bluetooth devices are always changing
which frequencies they’re transmitting and receiving on.

DIAGRAM!! For comparison, take a look at the way 802.11b and 802.11g work. Both of these wireless
networking technologies divide the 2.4 GHz band into 14 channels that are 5 MHz wide. When a
wireless network is setup, the network administrator chooses one of these channels and all 802.11
devices on that wireless network will always transmit on the radio frequency for that channel (sometimes
this is done automatically by the wireless access point). If there are many wireless networks in the same
area, like in an apartment building where every apartment has its own wireless router, then chances are
that some of these networks will collide with each other and their overall performance will suffer.

Bluetooth, like 802.11, divides the 2.4 GHz band into channels, but that’s where the similarity ends. For
starters, Bluetooth has 79 channels instead of 14, and the channels are narrower (1 MHz wide instead of
5 MHz). The big difference, though, is that Bluetooth devices never stay on the same channel. An
actively communicating Bluetooth device changes channels every 625 microseconds (1600 times per
second). It tries to do this in a fairly random order so that no one channel is used much more than any
other channel. Of course, two Bluetooth devices that are communicating with each other must hop
channels together so that they’re always transmitting and receiving on the same frequencies.

Supposedly, all this hopping around makes Bluetooth more robust to interference from nearby sources of
evil radio waves, and allows for many Bluetooth networks to co-exist in the same place. Newer versions
of Bluetooth (1.2 and greater) go even further and useadaptive frequency hopping, where devices will
specifically avoid channels that are noisy and have high interference, (e.g. a channel that coincides with a
nearby 802.11 network). How much it actually helps is debatable, but it certainly makes Bluetooth a lot
more complicated than the other wireless networking technologies.

1.3.4. Bluetooth networks - piconets, scatternets, masters,

13

Chapter 1. Introduction

and slaves

To support the intricacies of a pseudorandom channel hopping scheme, the Bluetooth designers came up
with some even more confusing terminology that you might hear a lot, but doesn’t matter all that much
when developing Bluetooth software. Since it’s mentioned in a lot of Bluetooth literature, we’ll describe
it here, but don’t put too much effort into remembering it.

DIAGRAM!! Two or more Bluetooth devices that are communicating with each other and using the
same channel hopping configuration (so that they’re always using the same frequencies) form a
Bluetoothpiconet. A piconet can have up to 8 devices total. That’s pretty straightforward. But how do
they all agree on which frequencies to use and when to use them? That’s where themastercomes in. One
device on every piconet is designated the master, and has two roles. The first is to tell the other devices
(theslaves) which frequencies to use - the slaves all agree on the frequencies dictated by the master. The
second is to make sure that the devices communicate in an orderly fashion by taking turns.

DIAGRAM!! To better understand the master device’s second role, we’ll compare it again with how
802.11 works. In 802.11, there is no such thing as an orderly way of transmitting. If a device has a data
packet to send to another, it waits until no other device is transmitting, then waits a little more, and then
transmits. If the recipient got the message, then it replies with an acknowledgment. If the sender doesn’t
get the acknowledgment, then it tries again. You can see how this can get messy when a lot of 802.11
devices are trying to transmit at the same time. Bluetooth, on the other hand, uses a turn-based
transmission scheme, where the master of a piconet essentially informs every device when to transmit,
and when to keep quiet. The big advantage here is that the data transfer rates on a Bluetooth piconet will
be somewhat predictable, since every device will always have its turn to transmit. It’s like the difference
between a raucous town meeting where everyone is shouting to get their voice heard, and a moderated
discussion where the moderator gives everyone who raises their hands a chance to speak.

The last bit of Bluetooth networking terminology here is thescatternet. It’s theoretically possible for a
single Bluetooth device to participate in more than one piconet. In practice, a lot of devices don’t support
this ability, but it is possible. When this happens, the two different piconets are collectively called a
scatternet. Despite the impressive name, don’t get too excited because scatternets don’t really do a whole
lot. In fact, they don’t do anything at all. In order for two devices to communicate, they must be a part of
the same piconet. Being part of the same scatternet doesn’t help, and the device that joins the two
piconets (by participating in both of them) doesn’t have any special routing capabilities. Scatternet is just
a name, and nothing more.

To be clear, the reason all this talk about piconets, scatternets, masters, and slaves doesn’t matter is that
for the most part, all of this network formation and master-slave role selection is handled automatically
by Bluetooth hardware and low-level device drivers. As software developers, all we need to care about is
setting up a connection between two Bluetooth devices, and the piconet issue is taken care of for us. But
it does help to know what the terms mean.

14

Chapter 1. Introduction

1.3.5. Bluetooth Profiles + RFCs

Along with the simple TCP, IP, and UDP transport protocols used in Internet programming, there are a
host of other protocols to specify, in great detail, methods to route data packets, exchange electronic
mail, transfer files, load web pages, and more. Once standardized by the Internet Engineering Task Force
in the form of Request For Comments (RFCs)6, these protocols are generally adopted by the wider
Internet community. Similarly, Bluetooth also has a method for proposing, ratifying, and standardizing
protocols and specifications that are eventually adopted by the Bluetooth community. The Bluetooth
equivalent of an RFC is a Bluetooth Profile.

Due to the short-range nature of Bluetooth, the Bluetooth Profiles tend to be complementary to the
Internet RFCs, with emphasis on tasks that can assume physical proximity. For example, there is a profile
for exchanging physical location information7, a profile for printing to nearby printers8, and a profile for
using nearby modems9 to make phone calls. There is even a specification for encapsulating TCP/IP
traffic in a Bluetooth connection, which really does reduce Bluetooth programming to Internet
programming.

If you find yourself needing to implement one of the Bluetooth Profiles, you can find the specification
and all the details for that particular profile on the Bluetooth website http://www.bluetooth.org/spec,
where they are freely distributed.

Notes
1. http://www.ietf.org/rfc/rfc0826.txt

2. The device discovery process actually only uses 24 of the 79 channels, which makes it even sillier

3. The L2CAP specification actually allows for both connectionless and connection-based channels, but
connectionless channels are rarely used in practice. Since sending “connectionless" data to a device
requires joining its piconet, a time consuming process that is merely establishing a connection at a
lower level, connectionless L2CAP channels afford no advantages over connection-oriented
channels.

4. Asynchronous Connection-Less logical transport

5. Most computers only have one Bluetooth adapter, so choosing a Bluetooth adapter isn’t much of a
choice at all

6. http://www.ietf.org/rfc.html

7. Local Positioning Profile

8. Basic Printing Profile

9. Dial Up Networking Profile

15

Chapter 2. Bluetooth programming with Python
- PyBluez

Now that we have an understanding of the concepts needed for Bluetooth programming, it’s time to get
our hands dirty and learn how to implement each of those different parts. To do this, we’re going to use
Python as a learning tool. Why Python, you might ask? Why not Java, or C, or (insert your favorite
language here)? There are two answers to that question. The short answer is that it’s just plain easy, as
we’ll soon find out. The long answer is that Python is a versatile and powerful dynamically typed object
oriented language, providing syntactic clarity along with built-in memory management so that the
programmer can focus on the algorithm at hand without worrying about memory leaks or matching
braces. Additionally, there’s no need to worry about compiling object files or linking against libraries or
setting the correct classpaths because, for our purposes, Python "Just Works".

The only tricky part we have to deal with before getting started is making sure that we add Bluetooth
support to Python. Although Python has a large and comprehensive standard library, Bluetooth is not yet
part of the standard distribution. Enter PyBluez, a Python extension that provides Python programmers
with access to system Bluetooth resources on GNU/Linux computers. Once we have this installed, as
described inTODO, we’re ready to get up and running.

Note: If you’re not very comfortable with Python, don’t worry! The examples used in this chapter use
only the simplest parts of Python possible, and you should think of reading through the examples as
if you’re reading pseudocode.

2.1. Choosing a communication partner

Following the steps outlined inChapter 1, the first action a Bluetooth program should take is to choose a
communication partner.Example 2-1shows a Python program that looks for a nearby device with the
user-friendly name “My Phone". An explanation of the program follows.

Example 2-1. findmyphone.py

from bluetooth import *

target_name = "My Phone"
target_address = None

nearby_devices = discover_devices()

for address in nearby_devices:
if target_name == lookup_name(address):

target_address = address
break

16

Chapter 2. Bluetooth programming with Python - PyBluez

if target_address is not None:
print "found target bluetooth device with address ", target_address

else:
print "could not find target bluetooth device nearby"

A Bluetooth device is uniquely identified by its address, so choosing a communication partner amounts
to picking a Bluetooth address. If only the user-friendly name of the target device is known, then two
steps must be taken to find the correct address. First, the program must scan for nearby Bluetooth
devices. The functiondiscover_devices does this and returns a list of addresses of detected devices.
Next, the program useslookup_name to connect to each detected device, request its user-friendly name,
and compare the result to the desired name. In this example, we just assumed that the user is always
looking for the Bluetooth device named "My Phone", but we could also display the names of all the
Bluetooth devices and prompt the user to choose one. Pretty easy, right?

PyBluez represents a Bluetooth address as a string of the form "xx:xx:xx:xx:xx", where each x is a
hexadecimal character representing one byte of the 48-bit address, with the most significant byte listed
first. Bluetooth devices in PyBluez will always be identified using an address string of this form. In the
previous example, if the target device had address "01:23:45:67:89:AB", we might see the following
output:

python findmyphone.py
found target bluetooth device with address 01:23:45:67:89:AB

discover_devices is used in this example without any arguments, which should be sufficient for most
situations, but there are a couple ways we can tweak it. When a Bluetooth device is detected during a
scan, its address is cached for up to a few minutes. By default,discover_devices will return
addresses from this cache in addition to devices that were actually detected in the current scan. To avoid
these cached results, set theflush_cache parameter toTrue . We can also control the amount of time
thatdiscover_devices spends scanning with theduration parameter, which is specified in integer
units of 1.28 seconds. This somewhat strange number is a consequence of the Bluetooth specification -
device scans always last a multiple ofexactly1.28 seconds. It’s usually not a good idea to decrease this
below the default value of 8 (10.24 seconds).

lookup_name also takes a parameter that controls how long it spends searching. Iflookup_name is not
able to determine the user-friendly name of the specified Bluetooth device within a default value of 10
seconds, then it gives up and returnsNone. Setting thetimeout parameter, a floating point number
specified in seconds, adjusts this timeout.

An important property of Bluetooth to keep in mind is that wireless communication is never perfect, so
discover_devices() will sometimes fail to detect devices that are in range, andlookup_name()

will sometimes returnNone when it shouldn’t. Unfortunately, it’s impossible for the program to know
whether these failures were a result of a bad signal or if the remote devices really aren’t there any more.
In these cases, it may be a good idea to try a few times, or to adjust the search durations.

17

Chapter 2. Bluetooth programming with Python - PyBluez

2.2. Communicating with RFCOMM

Example 2-2andExample 2-3show the basics of how to establish a connection using an RFCOMM
socket, transfer some data, and disconnect. In the first example, a server application waits for and accepts
a single connection on RFCOMM port 1, receives a bit of data and prints it on the screen. The second
example, the client program, connects to the server, sends a short message, and then disconnects.

Example 2-2. rfcomm-server.py

from bluetooth import *

port = 1

server_sock=BluetoothSocket(RFCOMM)
server_sock.bind(("",port))
server_sock.listen(1)

client_sock, client_info = server_sock.accept()
print "Accepted connection from ", client_info

data = client_sock.recv(1024)
print "received [%s]" % data

client_sock.close()
server_sock.close()

Example 2-3. rfcomm-client.py

from bluetooth import *

server_address = "01:23:45:67:89:AB"
port = 1

sock=BluetoothSocket(RFCOMM)
sock.connect((server_address, port))

sock.send("hello!!")

sock.close()

In the socket programming model, a socket represents an endpoint of a communication channel. Sockets
are not connected when they are first created, and are useless until a call to eitherconnect (client
application) oraccept (server application) completes successfully. Once a socket is connected, it can be
used to send and receive data until the connection fails due to link error or user termination.

A Bluetooth socket in PyBluez is represented as an instance of theBluetoothSocket class, and almost
all communications will use methods of this class. The constructor takes in only one parameter
specifying the type of socket. This can be eitherRFCOMM, as used in these examples, orL2CAP, which is

18

Chapter 2. Bluetooth programming with Python - PyBluez

described in the next section. The construction of the socket is the same for both client and server
sockets.

An RFCOMM BluetoothSocket used to accept incoming connections must be attached to operating
system resources with thebind method.bind takes in a single parameter - a tuple specifying the
address of the local Bluetooth adapter to use and a port number to listen on. Usually, there is only one
local Bluetooth adapter or it doesn’t matter which one to use, so the empty string indicates that any local
Bluetooth adapter is acceptable. Once a socket is bound, a call tolisten puts the socket into listening
mode and it is then ready to accept incoming connections with theaccept method.

accept returns two values - a brand newBluetoothSocket object connected to the client, and the
connection information as aaddress , port pair - address corresponds to the Bluetooth address of the
connected client andport is the port number on the client’s side of the connection.

Client programs do not need to callbind or the other two server-specific functions, but instead use the
connect method to establish an outgoing connection. Likebind , connect also takes a tuple specifying
an address and port number, but in this case the address can’t be empty and must be a valid Bluetooth
address. InExample 2-3, the client tries to connect to the Bluetooth device with address
“01:23:45:67:89:AB" on port 1. This example, andExample 2-2, assumes that all communication
happens on RFCOMM port 1.Section 2.4shows how to dynamically choose ports and use SDP to search
for which port a server is operating on.

Once a socket is connected, thesend andrecv methods can be used to, well... send and receive data.
recv takes a parameter specifying the maximum amount of data to receive, specified in bytes, and
returns the next data packet on the connection. To send a packet of data over a connection, simply pass it
to send , which queues it up for delivery.

Once an application is finished with its Bluetooth communications, it can disconnect by calling the
close method on a connected socket. So how does one side detect when the other has disconnected?
Therecv method will return an empty string. This is the only case whererecv does that, which makes
it a reliable way of knowing when the connection has been terminated.

We’ve left out error handling code in these examples for clarity, but the process is fairly straightforward.
If any of the Bluetooth operations fail for some reason (e.g. connection timeout, no local bluetooth
resources are available, etc.) then aBluetoothError is raised with an error message indicating the
reason for failure.

2.3. Communicating with L2CAP

Example 2-4andExample 2-5demonstrate the basics of using L2CAP as a transport protocol. You’ll
notice that using L2CAP sockets is almost identical to using RFCOMM sockets.

19

Chapter 2. Bluetooth programming with Python - PyBluez

Example 2-4. l2cap-server.py

from bluetooth import *

port = 0x1001

server_sock=BluetoothSocket(L2CAP)
server_sock.bind(("",port))
server_sock.listen(1)

client_sock,address = server_sock.accept()
print "Accepted connection from ",address

data = client_sock.recv(1024)
print "received [%s]" % data

client_sock.close()
server_sock.close()

Example 2-5. l2cap-client.py

from bluetooth import *

sock=BluetoothSocket(L2CAP)

bd_addr = "01:23:45:67:89:AB"
port = 0x1001

sock.connect((bd_addr, port))

sock.send("hello!!")

sock.close()

Aside from passing inL2CAPas a parameter to theBluetoothSocket constructor instead ofRFCOMM,
the only major difference between these examples and the RFCOMM examples from the previous
section is the choice of port number. Remember that in L2CAP, we’re strictly limited to odd-valued port
numbers between 4097 and 32765. Usually, we’ll use hexadecimal notation when referring to L2CAP
port numbers, just because they tend to look a little cleaner.

2.3.1. Maximum Transmission Unit

As a datagram-based protocol, packets sent on L2CAP connections have an upper size limit. Although
this has a small default value of 672 bytes, it can be adjusted. Each device at the endpoint of a connection
maintains anincoming maximum transmission unit (MTU), which specifies the maximum size packet it
can receive. If both devices adjust their incoming MTU settings, then it is possible to change the MTU of

20

Chapter 2. Bluetooth programming with Python - PyBluez

the entire connection beyond the 672 byte default up to 65535 bytes and as low as 48 bytes. In PyBluez,
theset_l2cap_mtu function is used to adjust this value.

set_l2cap_mtu(l2cap_sock, new_mtu)

This method is fairly straightforward, and takes two parameters.l2cap_sock should be a connected
L2CAP BluetoothSocket , andnew_mtu is an integer specifying the incoming MTU for the local
computer. Calling this function affects only the specified socket, and does not change the MTU for any
other socket. Here’s an example of how we might use it to raise the MTU:

l2cap_sock = BluetoothSocket(L2CAP)
.
. # connect the socket. This must be done before setting the MTU!
.

set_l2cap_mtu(l2cap_sock, 65535)

If you do find yourself using this function, don’t forget that both devices involved in a connection should
raise their MTU settings. It is possible for each side to have a different MTU, but that just gets confusing.

2.3.2. Best-effort transmission

Although we expressed reservations about using best-effort L2CAP channels inSection 1.2.2.2, there are
some cases where we might prefer best-effort semantics over reliable semantics. For example, if we’re
sending time-critical data such as audio or video data, it may be more important to forget about a few bad
packets and keep sending at a constant data rate so that the connection doesn’t "skip". Adjusting the
reliability semantics of a connection in PyBluez is also a simple task, and can be done with the
set_packet_timeout function.

set_packet_timeout(address, timeout)

set_packet_timeout takes a Bluetooth address and a timeout, specified in milliseconds, as input and
tries to adjust the packet timeout for all L2CAP and RFCOMM connections to that device. The process
must have superuser privileges, and there must be an active connection to the specified address. The
effects of adjusting this parameter will last as long as any active connections are open, including those
which outlive the Python program. If all connections to the specified Bluetooth device are closed and
new ones are re-established, then the connection reverts to the default of never timing out.

2.4. Service Discovery Protocol

So far we’ve seen how to detect nearby Bluetooth device and establish the two main types of data
transport connections, all using fixed Bluetooth address and port numbers that were determined at design
time. To build a truly robust Bluetooth application service, we should use dynamically allocated port
numbers. In doing so, we also need to give client applications a way to determine which port the service
is running on. After all, what’s the point of having a server running on a random port if the clients can’t

21

Chapter 2. Bluetooth programming with Python - PyBluez

find it? Here, we’ll see how to use the Service Discovery Protocol (SDP) for this purpose. To get started,
Example 2-6andExample 2-7show the RFCOMM client and server fromSection 2.2modified to use
dynamic port numbers and SDP. An explanation follows the examples.

Example 2-6. rfcomm-server-sdp.py

from bluetooth import *

port = get_available_port(RFCOMM)

server_sock=BluetoothSocket(RFCOMM)
server_sock.bind(("",port))
server_sock.listen(1)

advertise_service(server_sock, "Bluetooth Serial Port",
service_classes = [SERIAL_PORT_CLASS],
profiles = [SERIAL_PORT_PROFILE])

client_sock, client_info = server_sock.accept()
print "Accepted connection from ", client_info

data = client_sock.recv(1024)
print "received [%s]" % data

client_sock.close()
server_sock.close()

Example 2-7. rfcomm-client-sdp.py

import sys
from bluetooth import *

service_matches = find_service(name = "Bluetooth Serial Port",
uuid = SERIAL_PORT_CLASS)

if len(service_matches) == 0:
print "couldn’t find the service!"
sys.exit(0)

first_match = service_matches[0]
port = first_match["port"]
name = first_match["name"]
host = first_match["host"]

print "connecting to ", host

sock=BluetoothSocket(RFCOMM)
sock.connect((host, port))
sock.send("hello!!")
sock.close()

22

Chapter 2. Bluetooth programming with Python - PyBluez

You’ll notice right away that these examples aren’t much different from the ones we saw inSection 2.2.
Instead of hard-coding a port number, the server dynamically allocates a port number. After creating a
bound and listening socket, the server then advertises an SDP service and continues on in the same
manner as the previous examples. The client, instead of hardcoding a Bluetooth address and port number,
searches for a service record and uses that information to establish a connection. In the next few pages,
we’ll see some more details on how all this happens.

2.4.1. Dynamically allocating port numbers

Instead of using a predetermined port number, a Bluetooth server application can use the
get_available_port function to find an unused port number.

free_port = get_available_port(protocol)

This function takes a single parameter,protocol , which can be eitherL2CAPor RFCOMMand specifies
which protocol the application will use. It checks each port starting from the lowest number and returns
the first one that isn’t being used. The server application can then usefree_port in a call tobind . If no
ports are available at all, then it returnsNone.

get_available_port only identifies free ports, and doesn’t reserve them, so your application should
make a call tobind immediately afterwards. It is possible that, in the few milliseconds of time between
identifying the free port and binding it, another application could sneak by and "steal" the port number. If
this happens,bind will raise aBluetoothError , so you can just repeat the process. This should almost
never happen, but if you want to have a completely bug-free program that guards against this problem,
you could do the following:

from bluetooth import *
socket = BluetoothSocket(RFCOMM)
while True:

free_port = get_available_port(RFCOMM)
try:

socket.bind(("", free_port))
break

except BluetoothError:
print "couldn’t bind to ", free_port

listen, accept, and the rest of the program...

23

Chapter 2. Bluetooth programming with Python - PyBluez

2.4.2. Advertising a service

Once an application has a bound and listening socket, it can advertise a service with the local SDP server.
This is done with theadvertise_service function.

advertise_service(sock, name, service_id="", service_classes=[],
profiles=[], provider="", descrption="")

Only the first two parameters to this function,sock andname are required, and the rest have empty
defaults.

sock

A BluetoothSocket object that must already be bound and listening.

name

A short text string describing the name of the service.

service_id

Optional. The service ID of the service, specified as a string of the form
"XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX", where each ’X’ is a hexadecimal
digit.

service_classes

Optional. A list of service class IDs, each of which can be specified as a full 128-bit UUID in the
form "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX", or as a reserved 16-bit UUID
in the form "XXXX". A number of predefined UUIDs can be used here, such as
SERIAL_PORT_CLASS, or BASIC_PRINTING_CLASS. See the PyBluez documentation for a full list
of predefined service class IDs.

profiles

Optional. A list of profiles. Each item of the list should be a (uuid , version) tuple. A number of
predefined profiles can be used here, such asSERIAL_PORT_PROFILE, or LAN_ACCESS_PROFILE.
See the PyBluez documentation for a full list of predefined profiles.

provider

Optional. A short text string describing the provider of the service.

description

Optional. A short text string describing the actual service.

Calling advertise_service will register a service record with the local SDP server. To unregister the
service, use the functionstop_advertising .

stop_advertising(sock)

24

Chapter 2. Bluetooth programming with Python - PyBluez

This function takes a single parameter,sock , which is the socket originally used to advertise the service.
Another way to unregister a service is to simply close the socket, which will automatically can
stop_advertising .

2.4.3. Searching for and browsing services

To find a single service, or get a listing of services on one or multiple nearby Bluetooth devices, we use
the functionfind_service .

results = find_service(name = None, uuid = None, address = None)

Without any arguments at all,find_service returns a listing of all services offered by all nearby
Bluetooth devices. If there are a lot of Bluetooth devices in range, this could take a long time! Three
optional parameters to this function can be used to filter the search results:

name

Optional. Restricts search results to services with this name. In the special case that this is
"localhost" , then the local SDP server is searched.

uuid

Optional. Restricts search results to services with any attribute value matching thisuuid . Note that
the matching UUID could be either the service ID, or an entry in the service class ID list, or an
entry in the profiles list.

address

Optional. Only searches the Bluetooth device with thisaddress .

The results of this search is a list of dictionary objects. Each dictionary has eight keys, which describe
the corresponding service. The value for a key may beNone, which indicates that it wasn’t specified in
the service record. The keys and their values are:

"host"

The bluetooth address of the device advertising the service

"name"

The name of the service being advertised.

"description"

A description of the service.

"provider"

The provider of the service.

25

Chapter 2. Bluetooth programming with Python - PyBluez

"protocol"

A text string indicating which transport protocol the service is using. This can take on one of three
values:"RFCOMM", "L2CAP" , or "UNKNOWN".

"port"

If "protocol" is either"RFCOMM"or "L2CAP" , then this is an integer indicating which port
number the service is running on.

"service-classses"

A list of service class IDs, in the same format as used foradvertise_service

"profiles"

A list of profiles, in the same format as used foradvertise_service

2.5. Advanced usage

Although the techniques described in this chapter so far should be sufficient for most Bluetooth
applications with simple and straightforward requirements, some applications may require more
advanced functionality or finer control over the Bluetooth system resources. This section describes
asynchronous Bluetooth communications and the_bluetooth module.

2.5.1. Asynchronous socket programming with select

In the communications routines described so far, there is usually some sort of waiting involved. During
this time, the controlling thread blocks and can’t do anything else, such as respond to user input or
display progress information. To avoid these pitfalls ofsynchronousprogramming, it is possible to use
multiple threads of control, with one thread dedicated to each task that requires some waiting. That can
get quite hairy and complicated, though, so instead we’ll turn to usingasynchronoustechniques as a
solution.

The first step in asynchronous programming is to switch the sockets tonon-blockingmode, so that all the
operations that would block (wait) beforehand return immediately instead. The idea is "Don’t wait for
something to happen. Just get it started and we’ll figure it out later". To switch a socket into
non-blocking mode, use thesetblocking method and pass itFalse . Conversely, to switch back into
blocking mode, pass itTrue . For example:

from bluetooth import *
sock = BluetoothSocket(RFCOMM)
sock.setblocking(False)
s.bind(("", get_available_port(RFCOMM)))
...

26

Chapter 2. Bluetooth programming with Python - PyBluez

Thesetblocking method must be called on every socket that you want to switch to nonblocking mode.
This includes sockets that are returned by theaccept method.

The next step in asynchronous programming is the "Figure it out" step, where the program determines if
anything happened. The idea here is to consolidate all of the things a program can wait on into one place.
Then, when anything happens, some data is received or the user types something or a timer fires, the
program can deal with it immediately. To do this, we can use theselect module, which comes as part
of the standard Python distribution. Within theselect module is theselect function, which is what
we’ll be using extensively.

from select import *

can_rd, can_wr, has_exc = select(to_read, to_write, to_exc, [timeout])

select can wait for three different types of events - read events, write events, and exceptions. The first
three parameters are lists of objects - which list an object is in determines which type of eventselect

will detect for that object. An object can be in multiple lists. As soon asselect detects an event, it
returns three more lists, each of which contains objects from the original lists where event activity was
detected. The fourth parameter toselect is optional and specifies a timeout as a floating point number
in seconds. If no events are detected before the timeout elapses, thenselect returns three empty lists.

So what exactly are the different types of events? Some of these should be pretty obvious, but others have
been shoehorned in.Table 2-1summarizes which list to put a socket in for detecting specific events.

Table 2-1.select events

event list

outgoing connection established (client) write

data received on socket read

incoming connection accepted (server) read

can send data (i.e. send buffer not full) write

disconnected read

You’ll notice a couple things here. First, the third list for exceptions isn’t used at all.select is meant to
be used for all different types of objects, and the third list is used elsewhere, just not in Bluetooth.
Second, we didn’t mention searching for nearby devices or SDP. We’ll talk about the device discovery
process next, but unfortunately there aren’t yet any asynchronous techniques for SDP. In this case, you’ll
have to rely on threads for non-blocking operations, but hopefully that will change in the future.

2.5.2. Asynchronous device discovery

Asynchrously searching for nearby devices and determining their user-friendly names can also be done
with select , but is a bit more complicated and involves the use of a new class, the

27

Chapter 3. C programming withlibbluetooth

// build a command packet to send to the bluetooth microcontroller
cmd_param.handle = cr->conn_info->handle;
cmd_param.flush_timeout = htobs(timeout);
rq.ogf = OGF_HOST_CTL;
rq.ocf = 0x28;
rq.cparam = &cmd_param;
rq.clen = sizeof(cmd_param);
rq.rparam = &cmd_response;
rq.rlen = sizeof(cmd_response);
rq.event = EVT_CMD_COMPLETE;

// send the command and wait for the response
status = hci_send_req(dd, &rq, 0);
if(status != 0) goto cleanup;

if(cmd_response.status) {
status = -1;
errno = bt_error(cmd_response.status);

}

cleanup:
free(cr);
if(dd >= 0) close(dd);
return status;

}

On success, the packet timeout for the low level connection to the specified device is set totimeout *

0.625 milliseconds. A timeout of 0 is used to indicate infinity, and is how to revert back to a reliable
connection. The bulk of this function is comprised of code to construct the command packets and
response packets used in communicating with the Bluetooth controller. The Bluetooth Specification
defines the structure of these packets and the magic number0x28 . In most cases, BlueZ provides
convenience functions to construct the packets, send them, and wait for the response. Setting the packet
timeout, however, seems to be so rarely used that no convenience function for it currently exists.

3.6. Chapter Summary

This chapter has provided an introduction to Bluetooth programming with BlueZ. The concepts covered
in chapter 2 were presented here in greater detail with examples on how to implement them in BlueZ.
Many other useful aspects of BlueZ were left out for brevity. Specifically, the command line tools and
utilities that are distributed with BlueZ, such ashciconfig , hcitool , sdptool , andhcidump , are not
described here. These utilities, which are invaluable to a serious Bluetooth developer, are already well
documented. Only the simplest aspects of using the Service Discovery Protocol were covered - just
enough to search for and advertise services. Additionally, other socket types such asBTPROTO_SCOand
BTPROTO_BNEPwere left out, as they are not crucial to forming a working knowledge of programming
with BlueZ. Unfortunately, as of now there is no official API reference to refer to, so more curious
readers are advised to download and examine the BlueZ source code4.

57

Chapter 3. C programming withlibbluetooth

Notes
1. http://www.bluez.org/lists.html (http://www.bluez.org/lists.html)

2. https://www.bluetooth.org/foundry/assignnumb/document/baseband

3. Bluetooth terminology refers to this as the ACL connection

4. available at http://www.bluez.org

58

Chapter 4. Bluetooth development tools

Note: need to re-word this introduction now that the chapter is after 2 and 3

There are three major parts of the Bluetooth subsystem in Linux - the kernel level routines, the
libbluetooth development library, and the user level tools and daemons. Roughly speaking, the kernel
part is responsible for managing the Bluetooth hardware resources that are attached to a machine,
wrestling with all the different types of bluetooth adapters that are out there, and presenting a unified
interface to the rest of the system that allows any Bluetooth application to work with any Bluetooth
hardware.

The libbluetooth development library takes the interface exposed by the Linux kernel and provides a
set of convenient data structures and functions that can be used by Bluetooth programmers. It abstracts
some of the most commonly performed operations (such as detecting nearby Bluetooth devices) and
provides simple functions that can be invoked to perform common tasks.

The user-level tools are the programs that a typical end-user or programmer might use to leverage the
computer’s Bluetooth capabilities, while the daemons are constantly running programs that use the
Bluetooth development library to manage the system’s Bluetooth resources in the ways configured by the
user. The BlueZ developers strive to make these tools and daemons as straightforward to use as possible,
while also providing enough flexibility to meet every user’s needs. As a software developer, you’ll be
interacting with the user-level tools the most, so we’ll focus on introducing them in this chapter.

There are six command-line tools provided with BlueZ that are indispensable when configuring
Bluetooth on a machine and degugging applications. We’ll give some short descriptions here on how
they’re useful, and show some examples on how to use them. For full information on how to use them,
you should consult themanpages that are distributed with the tools, or invoke each tool with the-h flag.
This section serves mainly to give you an idea of what the tools are and which one to use for what
scenario.

4.1. hciconfig

hciconfig is used to configure the basic properties of Bluetooth adapters. When invoked without any
arguments, it will display the status of the adapters attached to the local machine. In all other cases, the
usage follows the form:

hciconfig <device> <command> <arguments...>

where <device> is usuallyhci0 (hci1 specificies the second Bluetooth adapter if you have two,hci2 is
the third, and so on). Most of the commands require superuser privileges. Some of the most useful ways
to use this tool are:

59

Chapter 4. Bluetooth development tools

Display the status of recognized Bluetooth adapters

hciconfig
hci0: Type: USB

BD Address: 00:0F:3D:05:75:26 ACL MTU: 192:8 SCO MTU: 64:8
UP RUNNING PSCAN ISCAN
RX bytes:505075 acl:31 sco:0 events:5991 errors:0
TX bytes:25758 acl:24 sco:0 commands:1998 errors:0

Each Bluetooth adapter recognized by BlueZ is displayed here. In this case, there is only one
adapter,hci0 , and it has Bluetooth Address00:0F:3D:05:75:26 . The "UP RUNNING" part on
the second line indicates that the adapter is enabled. "PSCAN" and "ISCAN" refer to Inquiry Scan
and Page Scan, which are described a few paragraphs down. The rest of the output is mostly
statistics and a few device properties.

Enable / Disable an adapter

Theup anddown commands can be used to enabled and disable a Bluetooth adapter. To check
whether or not a device is enabled, usehciconfig without any arguments.

hciconfig hci0 down
hciconfig
hci0: Type: USB

BD Address: 00:0F:3D:05:75:26 ACL MTU: 192:8 SCO MTU: 64:8
DOWN
RX bytes:505335 acl:31 sco:0 events:5993 errors:0
TX bytes:25764 acl:24 sco:0 commands:2000 errors:0

hciconfig hci0 up
hciconfig
hci0: Type: USB

BD Address: 00:0F:3D:05:75:26 ACL MTU: 192:8 SCO MTU: 64:8
UP RUNNING PSCAN ISCAN
RX bytes:505075 acl:31 sco:0 events:5991 errors:0
TX bytes:25758 acl:24 sco:0 commands:1998 errors:0

Display and change the user-friendly name of an adapter.

Thename command is fairly straightforward, and can be used to display and change the
user-friendly name of the Bluetooth adapter.

hciconfig hci0 name
hci0: Type: USB

BD Address: 00:0F:3D:05:75:26 ACL MTU: 192:8 SCO MTU: 64:8
Name: ’Trogdor’

hciconfig hci0 name ’StrongBad’
hciconfig hci0 name
hci0: Type: USB

BD Address: 00:0F:3D:05:75:26 ACL MTU: 192:8 SCO MTU: 64:8
Name: ’StrongBad’

60

Chapter 4. Bluetooth development tools

"Hide" an adapter, or show it to the world.

The Inquiry Scan and Page Scan settings for a Bluetooth adapter determine whether it is detectable
by nearby Bluetooth devices, and whether it will accept incoming connection requests, respectively.
Don’t be confused by the names! These control whether the adapterrespondsto inquiries and to
pages (connection requests), not whether it makes them.1

Table 4-1. Inquiry Scan and Page Scan

Inquiry Scan Page Scan Interpretation command

On On This is the default. The
adapter is detectable by
other Bluetooth devices,
and will accept
incoming connection
requests

piscan

Off On Although not detectable
by other Bluetooth
devices, the adapter still
accepts incoming
connection requests by
devices that already
know the Bluetooth
address of the adapter.

pscan

On Off The adapter is detectable
by other Bluetooth
devices, but it wil not
accept any incoming
connections. This is
mostly useless.

iscan

Off Off The adapter is not
detectable by other
Bluetooth devices, and
will not accept any
incoming connections.

noscan

For example, the following invocation disables both Inquiry Scan and Page Scan for the first
Bluetooth adapter.

hciconfig hci0 noscan

There are many more ways to usehciconfig , all of which are described in the help text (hciconfig

-h) and the man pages (man hciconfig). The key thing to remember is thathciconfig is the tool to

61

Chapter 4. Bluetooth development tools

use for any non-connection related settings for a Bluetooth adapter.

NOTE: Changes made byhciconfig are only temporary, and the effects are erased after a reboot or
when the device is disabled and enabled again.hcid.conf should be used To make a change permanent
(e.g. to permanently change the user-friendly name).

NOTE: The namehciconfig comes from the term Host Controller Interface (HCI). It refers to the
protocol that a computer uses to communicate with the Bluetooth microcontroller that resides on the
computer’s Bluetooth adapter. HCI is used to do all the dirty work of configuring the adapter and setting
up connections. The commandshciconfig andhcitool are so named to emphasize that they are used
for the low-level Bluetooth operations that, while important, can’t actually be used for communicating
with other Bluetooth devices.

4.2. hcitool

hcitool has two main uses. The first is to search for and detect nearby Bluetooth devices, and the
second is to test and show information about low-level Bluetooth connections. In a sense,hcitool picks
up wherehciconfig ends - once the Bluetooth adapter starts communicating with other Bluetooth
devices.

Detecting Nearby Bluetooth devices

hcitool scan searches for nearby Bluetooth devices and displays their addresses and
user-friendly names.

hcitool scan
Scanning ...

00:11:22:33:44:55 Cell Phone
AA:BB:CC:DD:EE:FF Computer-0
01:23:45:67:89:AB Laptop
00:12:62:B0:7B:27 Nokia 6600

In this invocation, four Bluetooth devices were fuond. Detecting the addresses of nearby Bluetooth
devices and looking up their user-friendly names are actually two separate processes, and
conducting the name lookup can often take quite a long time. If you don’t need the user-friendly
names, thenhcitool inq is useful for only performing the first part of the search - finding the
addresses of nearby devices.

Testing low-level Bluetooth connections

hcitool can be used to create piconets of Bluetooth devices and show information about locally
connected piconets. Remember that piconets are just an ugly consequence of Bluetooth’s fancy
frequency hopping techniques. When we’re writing Bluetooth software, we won’t have to worry

62

Chapter 4. Bluetooth development tools

about these low level details, just like we won’t have to worry about instructing the Bluetooth
adapter on which radio frequencies to use. So for application programming, this part ofhcitool is
strictly of educational use, because BlueZ automatically takes care of piconet formation and
configuration in the process of establishing higher-level RFCOMM and L2CAP connections.

If you’re curious about usinghcitool for basic piconet configuration, then thehcitool cc and
hcitool con commands are the first places to start.hcitool cc forms a piconet with another
device, and is fairly straightforward to use. For example, to join a piconet with the device
00:11:22:33:44:55

hcitool cc 00:11:22:33:44:55:66

hcitool con can then be used to show information about existing piconets.

hcitool con
Connections:

< ACL 00:11:22:33:44:55 handle 47 state 1 lm MASTER

Here, the output ofhcitool con tells us that the local Bluetooth adapter is the master of one
piconet, and the device 00:11:22:33:44:55 is a part of that piconet. For details on the rest of the
output, see thehcitool documentation.

NOTE: A fairly common mistake is to try to usehcitool to create data transport connections
between two Bluetooth devices. It’s important to know that even if two devices are part of the same
piconet, a higher-level connection needs to be established before any application-level data can be
exchanged. Creating the piconet is only the first step in the communications process.

4.3. sdptool

sdptool has two uses. The first is for searching and browsing the Service Discovery Protocol (SDP)
services advertised by nearby devices. This is useful for seeing what Bluetooth profiles are implemented
by another Bluetooth device such as a cellular phone or a headset. The second is for basic configuration
of the SDP services offered by the local machine.

Browsing and searching for services

sdptool browse [addr] retrieves a list of services offered by the Bluetooth device with address
addr . Leavingaddr out causessdptool to check all nearby devices. Iflocal is used for the
address, then the local SDP server is checked instead. Each service record found is then briefly
described. A typical service record might look like this:

sdptool browse 00:11:22:33:44:55

63

Chapter 4. Bluetooth development tools

Browsing 00:11:22:33:44:55
Service Name: Bluetooth Serial Port
Service RecHandle: 0x10000
Service Class ID List:

"Serial Port" (0x1101)
Protocol Descriptor List:

"L2CAP" (0x0100)
"RFCOMM" (0x0003)

Channel: 1
Language Base Attr List:

code_ISO639: 0x656e
encoding: 0x6a
base_offset: 0x100

Profile Descriptor List:
"Serial Port" (0x1101)

Version: 0x0100

Here, the device00:11:22:33:44:55 is advertising a single service called "Bluetooth Serial Port"
that’s operating on RFCOMM channel 1. The service has the UUID 0x1101, and also adheres to the
Bluetooth Serial Port Profile, as indicated by the profile descriptor list at the bottom. In general, this
information should be sufficient for an application to determine whether or not this is the service
that it’s looking for (has UUID 0x1101), and how to connect to it (use RFCOMM channel 1).

sdptool search can be used to search nearby devices for a specific service, but it can only look
for a handful of predefined services. It is not able to search for a service with an arbitrary UUID,
this must be done programmatically. Because of this,sdptool browse will generally be more
useful for testing and debugging applications that use SDP (e.g. to check that a service is being
advertised correctly).

Basic service configuration

sdptool add <name> can be used to advertise a set of predefined services, all of which are
standardized Bluetooth Profiles. It cannot be used to advertise an arbitrary service with a
user-defined UUID, this must be done programatically. This means it won’t be very useful for
advertising a custom service.

sdptool del <handle> can be used to un-advertise a local service. The SDP server maintains a
handle for each service that identifies it to the server - essentially a pointer to the service record.
To find the handle, just look at the description of the service usingsdptool browse and look for
the line that says "Service RecHandle: ". Using the example above, the Serial Port service has the
handle0x10000 , so if we were using that machine, we could issue the following command to stop
advertising the service:

sdptool del 0x10000

sdptool also provides commands for modifying service records (e.g. to change a UUID), that you
could actually use, but probably don’t want to. These, along with theadd anddel commands exist

64

Chapter 4. Bluetooth development tools

more so that programmers can look at the source code ofsdptool for examples on how to do the
same in their own applications. Advertising and configuring services with C and Python are
described in later chapters of this book, but you can always download the BlueZ source code at
http://www.bluez.org and see how it’s done withsdptool .

4.4. hcidump

For low-level debugging of connection setup and data transfer,hcidump can be used to intercept and
display all Bluetooth packets sent and received by the local machine. This can be very useful for
determining how and why a connection fails, and lets us examine at exactly what stage in the connection
process did communications fail.hcidump requires superuser privileges.

When run without any arguments,hcidump displays summaries of Bluetooth packets exchanged
between the local computer and the Bluetooth adapter as they appear. This includes packets on device
configuration, device inquiries, connection establishment, and raw data. Incoming packets are preceded
with the ">" greater-than symbol, and outgoing packets are preceded with the "<" less-than symobl. The
length of each packet (plen) is also shown. For example, if we startedhcidump in one command shell
and issued the commandhcitool inq in another, the output ofhcidump might look like this:

hcidump
HCI sniffer - Bluetooth packet analyzer ver 1.23
device: hci0 snap_len: 1028 filter: 0xffffffff
< HCI Command: Inquiry (0x01|0x0001) plen 5
> HCI Event: Command Status (0x0f) plen 4
> HCI Event: Inquiry Result (0x02) plen 15
> HCI Event: Inquiry Complete (0x01) plen 1

Here, we can see that one command (Inquiry) was sent out instructing the Bluetooth adapter to search for
nearby devices, and three packets of size 5, 4, and 15 bytes were received: information on the status of
the command, an inquiry result indicating that a nearby device was detected, and another status packet
once the inquiry completed. You’ll notice that used this way,hcidump only provides basic summaries of
the packets, which is not always enough for debugging. One option is to use the-X flag, which causes
hcidump to display the raw contents of every packet in hexadecimal format along with their ASCII
decodings. Used in the above example, we might see the following:

hcidump -X
HCI sniffer - Bluetooth packet analyzer ver 1.23
device: hci0 snap_len: 1028 filter: 0xffffffff
< HCI Command: Inquiry (0x01|0x0001) plen 5

0000: 33 8b 9e 08 00 3....
> HCI Event: Command Status (0x0f) plen 4

0000: 00 01 01 04

65

Chapter 4. Bluetooth development tools

> HCI Event: Inquiry Result (0x02) plen 15
0000: 01 26 75 05 3d 0f 00 01 02 00 00 01 3e d6 1f .&u.=.......>..

> HCI Event: Inquiry Complete (0x01) plen 1
0000: 00 .

Okay, so unless you’ve memorized the Bluetooth specification and can decode the raw binary packets in
your head, maybe that’s not as useful as we’d like. Whilehcidump -X is great for very low-level
debugging of raw packets, the-V option gives us a nice compromise.hcidump -V will display as much
information as it can gather from each packet, and summarize the ones it can’t interpret. If used together
with -X , it will still provide all the information for packets that it can decode, but will also show the raw
hexadecimal data for all the other packets (these tend to be application-level data packets). Repeating our
example once again, we might see this:

hcidump -X -V
HCI sniffer - Bluetooth packet analyzer ver 1.23
device: hci0 snap_len: 1028 filter: 0xffffffff
< HCI Command: Inquiry (0x01|0x0001) plen 5

lap 0x9e8b33 len 8 num 0
> HCI Event: Command Status (0x0f) plen 4

Inquiry (0x01|0x0001) status 0x00 ncmd 1
> HCI Event: Inquiry Result (0x02) plen 15

bdaddr 00:0F:3D:05:75:26 mode 1 clkoffset 0x1fd5 class 0x3e0100
> HCI Event: Inquiry Complete (0x01) plen 1

status 0x00

Now, we see the packets decoded according to the Bluetooth specification, which are probably mostly
meaningless to you right now, but would make sense if you found the need to read the parts of the
Bluetooth specification on device inquiry. Since this is a simple example,hcidump is able to fully
decode each packet, so we don’t see any raw hexadecimal data.

As with the other utilities, there are many more ways to usehcidump for debugging and low-level
display of Bluetooth packet communication that you can find out by reading the help text included with
BlueZ.

4.5. l2ping

l2ping sends echo packets to another Bluetooth device and waits for a response. An echo packet is a
special type of L2CAP packet that contains no meaningful data - when a Bluetooth device receives an
echo packet, it should just send (echo) the packet back to the originator. This is useful for testing and
analyzing L2CAP communications with another Bluetooth device. If two devices are communicating,
but seem a little sluggish, thenl2ping can provide timing information on how long it takes to send and
receive packets of a certain size. The only required parameter is the address of the Bluetooth device to
"ping". For example, to send echo packets to the device01:23:45:67:89:AB :

66

Chapter 4. Bluetooth development tools

l2ping -c 5 01:23:45:67:89:AB
Ping: 01:23:45:67:89:AB from 00:D0:F5:00:0E:B5 (data size 44) ...
44 bytes from 01:23:45:67:89:AB id 0 time 60.87ms
44 bytes from 01:23:45:67:89:AB id 1 time 55.97ms
44 bytes from 01:23:45:67:89:AB id 2 time 50.96ms
44 bytes from 01:23:45:67:89:AB id 3 time 51.94ms
44 bytes from 01:23:45:67:89:AB id 4 time 48.93ms

l2ping continues sending packets until stopped by pressingCtrl-C . Other command line arguments let
us control the size of the packets sent, the delay between packets, how many to send, and so on. For
details on how to use these capabilities, invokel2ping -h .

4.6. rfcomm

Therfcomm tool lets us establish arbitrary RFCOMM connections and treat them like serial ports.
Although the RFCOMM protocol was described in the previous chapter as a general purpose transport
protocol, one of its original purposes was to emulate a serial port connection between two devices. The
idea was that device manufacturers who had serial-port capable devices would only need to add a
Bluetooth chip to the end of the serial port controller, which requires much less modification to the
original device than replacing the serial port controller. In fact, Bluetooth was even marketed as a
"wireless serial cable". To utilize the serial-port emulation capabilities of Bluetooth in Linux, we use the
rfcomm tool.

rfcomm can be used to connect to another device or to listen for incoming connections. A special device
file is created for each connection, which user-level programs can read and write to like regular files.
Data written to the device file is transmitted over Bluetooth, and reading from the device file retrieves the
data received over the connection. When the device file is closed, the Bluetooth connection is terminated.

To listen for an incoming connection, we first choose which device file to bind it to. Typically, we’ll use
/dev/rfcommX , whereX ranges from 0 - 9. Next, we choose an RFCOMM port number to listen on. To
listen on RFCOMM port 20 and connect it to/dev/rfcomm0 , we’d use therfcomm listen command
like this:

rfcomm listen /dev/rfcomm0 20

Similarly, to establish an outgoing connection and serial port, we’d use therfcomm connect command,
but we would also specify the address of the Bluetooth device to connect to:

rfcomm connect /dev/rfcomm0 01:23:45:67:89:AB 20

Keep in mind that in both these examples, the special device file/dev/rfcomm0 is not a valid file until
therfcomm commands successfully complete. The other way of usingrfcomm to establish outgoing

67

Chapter 4. Bluetooth development tools

connections is to use therfcomm bind command to create the device file, and only establish the
Bluetooth connection when a separate program tries to access the device file. For example:

rfcomm bind /dev/rfcomm0 01:23:45:67:89:AB 20

Usingrfcomm in this way is sort of saying "When a program opens /dev/rfcomm0, make a connection to
the Bluetooth device 01:23:45:67:89:AB and send all data through that file. But if no program ever
access that file, don’t bother making the connection"

4.7. uuidgen

TODO

4.8. Obtaining BlueZ and PyBluez

Note: this should be an appendix

Instructions for installing the BlueZ development libraries can be found at the BlueZ website:
htp://www.bluez.org (http://www.bluez.org). Most modern Linux distributions should have this packaged
somehow. For example, on Debian-based systems:

apt-get install libbluetooth1-dev bluez-utils

On Fedora:

yum install bluez-devel

Similarly, instructions for installing PyBluez can be found at the PyBluez website:
http://org.csail.mit.edu/pybluez. PyBluez is included with a few Linux distributions, but TODO

Notes
1. The idea is that Inquiry Scan and Page Scan control whether the adapterscansfor inquiries and

pages, in the same way that you might use your eyes to scan around to see if anyone is talking to you.
Confusing!

68

