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Abstract

The Java programming language has a number of features that make it attractive for writing high-quality, portable parallel programs. A
pure object formulation, strong typing and the exception model make programs easier to create, debug and maintain. The elegant threading
provides a simple route to parallelism on shared-memory machines. Anticipating great improvements in numerical performance, this paper
presents a suite of simple programs that indicate how a pure Java Navier—Stokes solver might perform. The suite includes a parallel Euler
solver. We present results from a 32-processor Hewlett—Packard machine and a 4-processor Sun server. While speedup is excellent on both
machines, indicating a high-quality thread scheduler, the single-processor performance needs much improvement. © 2000 Published by

Elsevier Science Ltd. All rights reserved.
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1. A high-performance Java test suite for engineering
and science

In this paper we present a set of parallel Java [1,2]
programs based on the Java Thread concept as well as the
Java Remote Method Invocation (RMI) to serve as a test
suite to measure the suitability of the Java OOP [3.,4]
(Object-Oriented-Programming) methodology to be used
for large scale applications in engineering and science.
We will provide quantitative measurements concerning
parallel speedup and parallel scalability as well as thread
handling in Java. Also, the question of numerical perfor-
mance will be addressed and the impact of the various
Java compilers will be presented.

In addition, we will also discuss qualitative questions
such as code robustness, maintainability, reusability and
testability. In light of the frustrating failures of launches
by NASA, Lockheed Martin or Boeing that resulted in
multibillion-dollar losses the question of software reliability
is a major topic. Also, in Europe, flight 501 ended in self-
destruction of the new launcher Ariane 5 after 37 s in flight,
because of a programming error.

We will first discuss why Java is the language of choice
for high-performance applications in science and engineer-
ing. We will present computational evidence as well as code
fragments in order to demonstrate that Java can provide both
requirements, namely high numerical performance on
parallel architectures and all the conceptual benefits of
OOP. Java allows the code developer to think in systems

and not in algorithms. Thus, the code design process reflects
the actual engineering system and therefore displays a much
clearer design and visibility.

While the impact of the Java programming language has
not yet been strongly felt in the high-performance comput-
ing community, it has quickly become the de facto language
in the huge web programming industry. We believe that this
trend will continue into numerically intensive computing
[5,6] because a Java program is more flexible, easier to
debug and easier to write than a program in C++ or
Fortran. Furthermore it has convenient and flexible thread-
ing to allow the programmer to make parallel programs.

When we compared Java with existing programming
languages for science and engineering, namely Fortran
and C (to some extent C+ +), despite its similar syntax to
C, it became clear that Java was not just another pro-
gramming language. Java is an OOP language, providing,
however, a much cleaner design than C++. OOP allows
code construction reflecting, for instance, the engineering
design process, because objects can be software coded and
integrated. In addition, Java is the programming language
for the Internet, and thus Java objects on disparate machines
or even separate networks can be connected.

Producing engineering software in Java requires a differ-
ent way of thinking, i.e. central to Java is the class concept.
A class is a collection of data structures and methods,
describing the functionality of a certain item, for example,
a wing. An aircraft can be described by a set of classes,
representing a wing, fuselage, nacelle, pylon, engine, etc.
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A specific aircraft can be constructed by instantiating
objects from these classes. In this way, a direct mapping
of the engineering parts to the corresponding software
objects can be achieved. The Java language mechanism
allows encapsulation and inheritance, meaning that an exist-
ing class can be used and modified according to the needs of
the code designer. The validated parent class will not be
touched, allowing complete code reusability. The interface
notion of Java extends the concept of inheritance, providing
some kind of template. The Java OOP approach provides
profoundly improved software productivity. Java’s robust
mechanism for exception handling promotes code reliability
(remember the Ariane 5 flight 501 in 1996 when the
launcher was destroyed by the self destruction system
because of software error, or faulty software involved in
the recent failures that occurred in six of the last nine U.S.
launches), a feature considered to be essential for today’s
large and complex codes.

Besides the clean, OOP model, Java makes it much easier
for a programmer to use threads, which is the primary route
to parallelism (and therefore speed) on a shared-memory
machine—the architecture of many modern machines.

Java has a unique capability of using the Internet. This
special feature has been used to build a general client—
server application that allows the client and the server to
communicate and exchange data as well as code over the
Internet. The idea is to provide a general framework for
simulation purposes governed by partial differential
equations where at run time the client proves the specific
numerical solver to the server. Once this framework is in
place, it can serve as a parallel and geometric platform for
any kind of scientific or engineering problem described by a
solution space and a set of equations.

1.1. Why threads are good for CFD

When writing a parallel program, the memory of the
machine may be distributed or shared. In the former case,
each processor has its own memory, and communication is
by messages; in the latter case, each processor has access to
all of the memory.

Distributed memory is easier and therefore cheaper to
implement, but it leaves the programmer responsible for
partitioning the data among the processors. For a simple
CFD solver this approach is very effective: the compu-
tational grid is partitioned and a messaging scheme is
coded to exchange data between neighboring processors
that share a boundary. After each time step, there is a
loose synchronization mediated by this data exchange, so
the simulation moves at the pace of the slowest processor.
Therefore, we require each processor to have roughly equal
work in order to obtain good performance from the machine.
If each grid point takes equal work to update it, then we can
split the grid so that each processor has the same number of
grid points. This strategy works very well for simple,
explicit schemes [7].
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Unfortunately, the most numerically efficient CFD
schemes do not generate the same computational work at
each grid point. An iterative linear solver, employed
separately on each block of a multiblock grid, may require
different numbers of iterations on each of the blocks. Grid
points may differ in the algorithms they use: different
temperatures or shear rates may cause different turbulence
or chemistry models to be invoked. Furthermore there may
be different subgrid schemes near the boundaries. All of
these effects point to increasing computational hetero-
geneity with increasing sophistication of the solver.

Complex dynamic load-balancing schemes have been
proposed and implemented on distributed-memory
machines [8]. However, we feel that it is worth considering
a different approach, where the processors are kept busy by
self-scheduling and shared memory. The computational
load is divided into a set of threads (many more threads
than processors), and when a processor becomes idle, it
goes to the thread pool, removes a thread and works on it,
then puts it back in the pool and gets another. In the
JParEuler solver discussed below, a thread is associated
with a section of a CFD grid. Each thread needs information
from other threads (neighbors in the grid) before it can
continue: the programming model has constructs that
make sure this is available before a processor starts to
work on the thread. Once a time-step has been executed,
the thread goes back in the pool until its neighbors have
been updated to the same level, and then it can be updated
another time-step.

Thus, the burden of parallel computing is not borne solely
by the CFD implementer, but is shared with the operating
system design team; the quality of thread scheduling and
memory subsystem directly influence the efficiency of the
code. Moreover, this approach directly provides dynamic
load balancing.

1.2. Java numerical performance

One of the attractive features of Java is its portability, the
idea of “write once, run anywhere”. While this is not
entirely true, the experience of these authors is that porting
Java is certainly easier than porting C, C++ or Fortran
codes. The portability is obtained because Java is generally
not compiled to a platform-specific executable, but
converted to so-called byte code, which is in turn executed
by a platform-specific interpreter. While these extra layers
of insulation provide portability, they also have a serious
performance impact. However, many companies, including
Hewlett—Packard, IBM [9,10] and Sun, offer (or will offer)
Java compilers that create native code directly, and should
provide competitive performance with C or Fortran. Thus a
user has the choice of portability or performance; the user
can develop with one model, then run with the other.

Another reason why Java is slower than C is that a
garbage-collector thread is always running; reclaiming
memory that is no longer needed by the application. It is
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this overhead which takes away resources from the numer-
ical application, but at the same time it provides an enor-
mous boost to programmer productivity. The programmer is
thinking about CFD code instead of spending hours chasing
mysterious memory leaks that always beset large C+ +
projects.

Multithreading is a way to get improved performance
from a code, because many machines have extra processors
that can run the extra threads. But in C it is much more
difficult to manage threads than it is in Java; therefore,
programmers simply do not use threads very much. But
in Java, it is very easy to spawn a new thread. There-
fore, use of threads is much more natural and wide-
spread.

Although Java programs are statically compiled, there is
still a need to do some runtime checking. In particular, null
references checking, array bounds checking and runtime
type checking cannot be done at compile time. This
makes Java programs more robust, but it also makes the
generated code a little slower than the equivalent C
program. However, many of these checks can be eliminated
at runtime by the native code generator.

1.3. JParNSS

We are in the process of producing a parallel Navier—
Stokes solver JParNSS [11,12], using the principles learned
from this test suite. The test suite presented here thus
concentrates on two aspects of the performance: the
single-node performance of the Java interpreter; and the
speedup (ratio of single-node speed to multiple-node
speed) that is obtained. We have run the test suite on two
machines at Caltech, one a super computer with 32 nodes
from Hewlett—Packard, the other a 4-processor Sun
machine running Solaris.

2. Test machines
2.1. HP V-class

In August 1999 the Hewlett—Packard V-Class server at
the Center of Advanced Computing Research, California
Institute of Technology had 32 PA-8200 processors running
at 240 MHz, with 16 GB RAM. Each processor has a 2 MB
instruction as well as data cache. Within a node the memory
access is implemented by the HyperPlane crossbar tech-
nology that provides high bandwidth and low latency access
from CPU as well as I/O to local memory. This nonblocking
8 X 8 crossbar provides a maximum of 15.36 GB/s memory
bandwidth with I-directional 960 MB/s per port. Communi-
cation across nodes is achieved by HyperLinks providing a
peak bandwidth of 3.84 GB/s. The operating system is HP-
UX version 11.01. HP provided their latest Java version
(Java 1.1.7) that is running on the HP V-Class.
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2.2. Sun Enterprise E450

The Sun Enterprise 450 has an SMP architecture, utiliz-
ing four 300 MHz Ultra SPARC 11 processors that are
connected by a 1.6 GB/s UPA interconnected to 1.7 GB
shared memory. Operating system version 5.6 in combin-
ation with Java 1.2 (Solaris VM (build Solar-
is_JDK_1.2_01_dev06_fcsV) native threads sunwjit) was
used on this machine.

2.3. Pentium Il 300 MHz, Linux

For comparison we also used a 300 MHz Pentium II PC
under Linux along with the IBM Alpha Works Java com-
piler 1.1.6 that was available as a prerelease version without
optimization. We found that this compiler produced fast
code, and we expect future releases to rival the speed of
highly optimized C code.

3. The test suite
3.1. Square root

In this ultra-simple program, many identical threads are
used for simple arithmetic—computing square roots. It is an
embarrassingly parallel problem, meaning that the threads
do not have to communicate, and thus there is no need for
thread synchronization. This is rather the exception than the
rule. In general, threads need to communicate as will be
shown in the Laplace solver example, and Java provides
the necessary methods for communication.

The code computes a fixed number of square roots, and it
splits the work among a variable number of threads. These
threads are then mapped to the processors by the operating
system, relieving the user of the need of employing any kind
of message-passing library as well as a load-balancing
algorithm. The code runs on any kind of platform as long
as Java is available.

The purpose of this code is to determine whether multi-
threading gives parallel speedup on the target parallel
machine.

3.2. Matrix multiply

Parallel matrix multiplication is implemented by block
matrices, as shown in Fig. 1. Matrices A and B are multi-
plied to produce C. In the figure, we see how computation of
each sub-block of C requires concurrent read access to
matrices A and B, but not for writing into C. In the bench-
mark suite are actually two programs: one being the multi-
threaded version, the other being, for comparison, a serial
version that does not use threads. In addition, we have a C-
coded version of the sequential block-matrix multiply. The
purpose of this component of the test suite is:

e to compare floating-point performance for scientific
applications between C and Java on the HP V-class, the
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Fig. 1. The multithreaded matrix multiplication is performed by splitting matrix C into partitions. Each partition is then calculated by one thread, with the
thread numbering as shown for matrix C. Concurrent access to the memory containing A and B is necessary: here we see the memory that thread 2 accesses.

Sun Enterprise 450 (Ultra SPARC I1, 300 MHz) and also
a Pentium II (300 MHz, Linux);

e to measure parallel efficiency of a multithreaded appli-
cation that has some read contention.

3.3. Mandelbrot

This code tests the self-scheduling of threads. Compu-
tation of the famous Mandelbrot set utilizes a 2D grid in
the complex plane, and an independent iterative calculation
takes place at each grid point where the number of iterations
varies greatly from point to point. We partition the grid into
blocks; we want each block large enough that thread over-
head will be much less than the computational work asso-
ciated with the block, and we want the blocks small enough
that there are many blocks for each processor. As explained
above, each processor takes a block from the pool, computes
it, then gets another block.

Although this program is still embarrassingly parallel, it
exhibits a new feature, namely, that computational load
depends on the position within the solution domain, which
is a rectangle in this case. Dynamic load balancing would be
needed to run such an application successfully on a large
parallel architecture. Using PVM or MPI, the user has to
provide a sophisticated algorithm to achieve this feature
requiring a lengthy piece of code. Using the Java thread

concept, dynamic load balancing is provided by the oper-
ating system.

The parallel Mandelbrot concept is simple. There is a
nonlinear mapping in a finite region of the complex plane
(rectangular). Since the mapping can work on any finite
region without interference with any other region being
computed, the parallelization strategy is a simple, ID-
domain decomposition. This is as far as the idea goes. The
final threaded code, however, shows a fair degree of
complexity. This example can be used to demonstrate the
effect of dynamic load balancing achieved by the Java
thread concept.

3.4. A parallel Laplace solver using Java threads

The 2D solution domain is subdivided into a specified
number of 2D subdomains (variable according to user
input) that are computed independently of the other sub-
domains. The concept of ghost or halo points, as shown in
Fig. 2 is used to model the overlap between neighboring
blocks. These subdomains have to communicate after each
iteration step to update their boundary (ghost) points. In this
regard, parallelization is simply done by introducing a new
(interblock) boundary condition. However, this condition
was already present in the sequential code because complex
geometries had to be modeled by using the multiblock
concept. It should be noted that the multiblock concept,

__dee

Data moves from the last column of internal grid-
points to the ghost gridpoints, and from the first
column of internal gridpoints to the ghost grid-

points.
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Fig. 2. Overlap or ghost points for a Laplace solver. An overlap of one column or one row is used. It should be noted that this overlap size is not sufficient for
higher-order numerical schemes. An overlap of size two is used for the flow solver PurNSS and JParNSS. The Java Laplace solver is described in Section 3.4.
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besides numerical advantages, is not subject to the severe
performance reduction caused by frequent cache misses.

It is also interesting to compare the message passing
Laplace solver written in C with the thread-based Java
Laplace solver. Parallelization using explicit messages is
much more elaborate and far less readable, while in Java
we simply extend a class from Thread and form new
instances of this class in a simple for loop using the new
operator. Since the class is derived from Thread it auto-
matically inherits all the methods of this class, including
the communication methods.

Subdomains or blocks are connected via edges, but not
via vertices. That means, communication takes place only
across edges, but not across diagonals. Hence, each block is
connected to at most four neighbors in 2D (six neighbors in
3D). If only first derivatives have to be computed numeric-
ally, diagonal points are not needed. However, for second
derivatives the computational stencil needs these diagonal
values. Since communication does not take place across
diagonals these values are not explicitly updated. Therefore,
a different computational stencil has to be used that
computes the missing value from its neighbors, omitting
the diagonal value. The scheme retains the same numerical
order but the truncation error changes. For instance, if
viscous terms have to be computed in the Navier—Stokes
equations, this practice has shown to be both accurate and
effective. In this regard, there is a minor difference between
the sequential and the parallel numerical algorithms.

The major difference to an irregular problem is that all
blocks are oriented with respect to a single coordinate
system and a regular structure is present. The regular
problem approach, of course, can be extended to curvilinear
coordinate systems, but in the computational space there
would always be a regular structure, i.e. a multidimensional
cube or parallelepiped.

3.5. Ghost points

To parallelize the Laplace solver, see also [13,14], we
split the rectangular set of gridpoints into rectangular
subgrids, and each node is responsible for one of these
subgrids, as shown in Fig. 2.

However, at the edge of one of these domains, it is neces-
sary to read the value of the field from a grid point which is
in another node. To do this, we have established a cache of
these values on each side of the boundary; in addition to the
internal points and the boundary points, this cache is known
as ghost (or overlap) points. A ghost point in one node may
be (conceptually) thought of as lying in the same place as an
internal point that is stored in another node; the ghost point
value should follow the value in the internal point.

In the sequential code, we do the Jacobi relaxation repeat-
edly until convergence; with the parallel code the loop alter-
nating between updating the ghost points and doing the
Jacobi relaxation.
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3.6. Java parallel framework: client—server

In this section we will describe a general, complete Java
parallel framework for solving problems in science and
engineering. The approach is based on the client—server
concept and thus allows to perform a parallel computation
using the Internet. The code comprises three parts: namely
the client, the server and the shared part. The shared partis a
Java interface that has to be implemented by either the client
or the server. First, all codes have to be compiled to generate
the class (Java bytecode) files. This can be done using any
Java compiler on any machine. On the server, the rmnic [ 15—
17]—the rmic is part of the Java Development Kit (JDK)—
compiler has to be evoked to produce the stub and skeleton
classes. The stub class along with the client code resides on
the client computer, and the skeleton class is on the server
machine. The communication between client and server
takes place through these two objects. Next, the so called
rmiregistry is started on the server to register all objects that
can perform communication. The rmiregistry command is
used for this purpose. In general, the registry now is ready to
communicate over port 1080 and listens to communication
requests. In the next stage, the server code is started and the
objects for communication are actually registered. When the
server is started an address is supplied in form of an rmi
address, i.e. rmi://hostname/RMIObject where hostname is
the name of the server. The RMIObject name can be any
name, but it must be the same for both client and server. We
used JParFW. A domain name service (DNS) must be
enabled that translates this name into a valid IP address.
In the last step, the code on the client is started using the
same rmi address. Since both client and server know the
shared interface code that contains an interface for the
JPSolver that is implemented on the client side, the client
can send over its own solver object at run time. The server
knowing the interface of the JPSolver object, therefore, has
the necessary information about the signature of all solver
methods (in non object-oriented terminology methods are
referred to as functions) and thus knows how to handle the
solver object. The Java parallel framework does not know
anything about the numerics or physics that is actually
implemented. It provides, however, the necessary parallel
infrastructure for all solver objects that implement the
JPSolver interface. Hence, parallelization is done once and
very different solver objects can be constructed, resulting in
a parallel code that might solve problems in different
fields of science and engineering. The solver used as an
example is the Laplace solver described in the previous
section.

The parallel framework code, JParFW, has been extracted
from the parallel Java flow solver JParNSS [6] that is
currently being developed. The latter code uses many
features like user authentication, multiple session manager
and class loaders that are not present in the JParFW.
JparFW, however, comprises only 800 lines of Java instead
of the 20,000 lines of the JParNSS code.
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Table 1

Computing times and speedups for square root program on HP V-Class.
Essentially linear speedup is achieved for up to 32 processors. The same
behavior holds for the 4-processor Sun

Number of threads Time (s) Speedup
! 12:41 1.00
2 6:34 1.93
3 4:20 2.92
4 3:17 3.86
8 1:39 7.69
9 1:28 8.65
16 0:50 15.22
32 0:26 29.27

3.7. JParEuler

This code solves the Euler equations with a first-order
explicit method, using a simple multiblock grid. The grid
is a collection of rectangular blocks, each with a regular,
square mesh. This code has client—server control through
Java RML

It also has a larger ratio of computation to communication
than the Laplace example.

4. Results

The main goal of the present Java test suite is to investi-
gate parallel scalability for the thread-based parallelization
approach. The numerical performance is also important, but
will definitely improve with new compiler releases, and
therefore is not our major concern.

4.1. Square root

In this simple program, we expect essentially linear
speedup as the number of processors is increased. Or, if

File | Reports

System: marge Graph Points: 10 Int: 750 ms 7|
Range : 19:54:18 - 19:56:31 Dur: 2:13

Processes

CPU/Q-Length

100%

Normal
Sys

By CPU Utilization

Fig. 3. The program GLANCEPLUS is used on the HP V-Class to illustrate
the parallel runtime behavior for the square root program. The upper graph
shows a history of the averaged machine load. The lower graph shows the
CPU utilization. The workload of all CPUs is close to the ideal 100% level,
resulting in excellent speedup.
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Table 2

Comparison of the single-processor floating-point performance for a
sequential matrix multiplication algorithm between C and Java on HP V-
Class, Sun Enterprise 450 (Ultra SPARC II, 300 MHz) and Pentium II
{300 MHz, Linux)

Hardware and software MFlops per second for different matrix

specification sizes

30 %30 100 x 100 300 x 300
HP V-Class, C code® 242.00 237.00 114.00
HP V-Class, Java 1.1.7 9.33 9.57 9.54
SUN E450, C code” 176.86 157.73 35.24
SUN E450, Java 1.1.7 6.35 6.72 5.87
SUN E450, Java 1.2 17.08 12.65 8.90
Pentium II, 300 MHz, 90.00 91.74 39.82
Linux C code pgece/eges
Pentium compiler
group
Pentium 11, 300 MHz, 24.80 22.79 11.21
Linux, Java IBM 1.1.6,
Jite

* Optimization level: + O3.
b Optimization level: fast.

this example cannot use multiple processors efficiently,
there is no hope of achieving a parallel Navier—Stokes
solver, since such a code requires a substantial amount of
communication at each iteration.

Table 1 shows that the HP V-class provides essentially a
linear speedup for the Java threaded square root example,
with an efficiency of over 90% on 32 processors.

Fig. 3 shows the CPU usage depicting saturation of all
processors within the first few seconds of the run.

4.2. Matrix multiplication

4.2.1. Sequential matrix multiplication

Table 2 shows the performance, in megaflops, of the
sequential matrix-multiply program on one processor of
the HP-Vclass, the Sun E450 and a Pentium II PC running
Linux.

The performance of the C code decreases significantly
with the size of the matrix. We interpret this as a caching
effect—in a modern computing system the CPU is rarely a
bottleneck, even for numerically intensive code. Rather, it is
the memory subsystem that usually cannot deliver data fast
enough to the CPU. For the smallest matrices the perfor-
mance ratios are:

e for the HP, C is 26 times faster than Java 1.1.7;

e for the Sun, C is 28 times faster than Java 1.1.7, and 10
times faster than Java 1.2;

e for the Pentium, C is 3.6 times faster than Java 1.1.6.

The performance of Java 1.2 is nearly three times better
than the old Java 1.1 on the Sun architecture. We expect the
same kind of improvements when HP releases its Java 1.2
implementation (late 1999). We would expect further large
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Table 3

MFlop rates for multithreaded matrix multiplication algorithm. Columns are labeled with the size of the matrices

Number of threads HP V-Class using 16 processors®

HP V-Class using one processor”

Sun E450° using four processors

30x30 100 x 100 300 x 300 30x 30 100 x 100 300 X 300 30x 30 100 X 100 300 X 300

1 7.01 8.67 8.64 6.51 8.77 8.66 13.40 13.47 9.06

4 11.38 31.35 33.49 3.86 8.34 8.68 19.21 28.60 23.56

9 6.33 - 72.53 2.40 - 8.73 12.25 - 22.00
16 - 65.40 118.68 - 7.74 8.69 27.01 28.13
25 2.62 59.17 112.97 1.04 7.28 8.65 5.14 42.21 27.84
36 1.83 - 110.66 0.75 - 8.64 375 - 30.07
100 0.64 22.84 109.53 0.29 4.82 8.44 1.57 29.43 33.93

* Java version “HP-UX Java C.01.17.00 99/02/08"; mpsched-1 | java Testa b c.
® Java version “HP-UX Java C.01.17.00 99/02/08; mpsched-c 20 java Test a b c.
¢ Solaris VM (build Solaris_JDK_1.2_01_dev06_fcsV, native threads, sunwjit).

speed increases when a new Java compiler is released by HP
(early 2000). The Java speed for the Pentium processor
seems to be in a much more advanced state, and with the further
development of Sun’s hotspot technology, we expect the speed
of Java programs to rival the performance of C codes.

4.2.2. Multithreaded matrix multiplication

Table 3 shows megaflop rates for the pure Java multi-
threaded matrix-multiply benchmark. The table shows abso-
lute performance for the HP and the Sun machines, and also
gives a comparison between one and 16 processors of the
HP architecture. A maximal speedup of 13.74 for 16 proces-
sors for the 300 X 300 matrix example was measured.

For the 16-processor HP V-class results, we notice a
performance increase for the 300 X 300 matrix example,
with the number of threads, up to a limit of 16. After that,
the performance slightly decreases because of additional
thread administration time, since for the given problem
size and 16 threads the machine is saturated. The same is
true of the 4-processor Sun. But this is not true for a smaller

matrix size: performance increases only a little bit and then
decreases. Here, the overhead in creating threads dominates
the computational work of the processor.

Missing values in the table are caused by implementation
strategy, requiring all block matrices to be of the same size,
so that the number of threads must divide the number of
matrix elements.

4.3. Mandelbrot

This part of the benchmark suite tests the management of
the thread pool. In previous sections, we have discussed
multithreaded codes where threads are created at the begin-
ning of the code, then run until the end of the code. In this
example, however, processors take, run and stop threads
repeatedly during execution. A bottleneck in the dynamic
allocation of threads to processors would thus be found in
this part of the test suite.

Fig. 4 shows CPU utilization when the Mandelbrot
examples is run with seven processors, and it can be seen

System: marge
Range

Graph Points: 10
09:07:25 - 09:07:31

Int: 760 ms 7|
Dur: 6 sec

Processes

CPU/Q-Length

100%
Normal
Sys|_ — - — ——

By CPU Utilization

Fig. 4. CPU Graph for Mandelbrot computation using seven threads on HP V-Class. Only three processors are used, although no communication of

synchronization is required.
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Table 4

Computing times and speedups for Laplace program on 4-processor Sun
using 192 threads (16 X 12 blocks with 9600 cells) running 5000 iterations.
We achieve in this test a 50% CPU load only

Number of processors Time (s) Speedup
1 893 1.00
2 639 1.40
3 562 1.59
4 578 1.54

that only three processors are actually in use. The timings
seem to be very inconsistent, and we are working with HP to
investigate the problem.

4.4. Laplace

In this test program we are using global thread synchroni-
zation instead of lose thread synchronization. This means that
all ready threads are waiting until the last thread becomes
ready, then the next iteration can be computed. With this
synchronization method we achieved only about 50% CPU
load (Table 4). With a lose synchronization, as we are using in
the JParEuler test program, we have a much better use of the
available resources ~100% CPU load. In the lose synchroni-
zation model a thread is only waiting until its neighbor threads
become ready, so the balance between running and waiting
threads during the computation is improved.

(a)

4.5. JParEuler

As a test case, we have chosen to compute an Euler flow
past a forward-facing step at Mach 3. The resulting Mach
number field is shown in Fig. 5a. A strong bow shock is
formed, with an expansion fan radiating from the corner,
and a cascade of shock reflections downstream.

The computational grid has (at minimum) three rectan-
gular blocks that surround the step-corner. Fig. 5b shows
splittings of these elemental blocks into a total of 16 and 48
blocks. It is these that are used for the actual computation,
because it is possible to use many more processors when
there are many more blocks. Six different grids have been
created with topologies shown in Fig. 5b, three with 16
blocks and three with 48 blocks. For each of these grids,
all of the blocks have the same number of gridpoints, and
therefore we expect them to have the same computational
work. Furthermore, the ratio of number of blocks to proces-
sors is an integer, and so the theoretical parallel efficiency is
100%.

The results are shown in Table 5 where 320 iterations of
the first-order explicit Euler scheme have been timed.

When there is more than one thread per processor, i.e. the
48-block runs, then we get much better speedup, which is
because there is enough computational work to keep each
processor busy. We also notice that when the number of
cells per block increases, then the corresponding speedup
decreases.

(b)

16 blocks

43 blocks

Fig. 5. (a) Euler flow past a forward-facing step at Mach 3. The computations are explicit and first-order accurate. Shown is the Mach-number distribution. (b)

Splitting of the grid for the forward-facing step into 16 and 48 blocks.

Table 5
JParEuler on HP V-Class. Times are for 320 iterations

Number of blocks Number of cells Time (s)
Single processor Multi processor (16) Speedup

16 121,104 3246.73 541.13 6.00
16 200,704 6908.88 1077.20 6.41
16 484,416 12905.88 2720.48 4.74
48 118,803 2980.93/ 225.76 13.20
48 202,800 5190.54 436.09 11.90
48 480,000 12663.30 1162.54 10.89

ClibPDF - wyww.laslio.com


http://www.fastio.com/

J. Héuser et al. / Advances in Engineering Software 31 (2000) 687—696 695

Table 6
JParEuler on SUN E450, with 320 iterations

Number of blocks Number of cells Time (s)
Single processor Multi processor (4) Speedup

16 (B10) 121,104 852.79 258.26 3.30

16 (BI1) 200,704 1571.775 532.74 295

16 (B13) 484,416 4277.962 1593.45 2.68

48 (B6) 118,803 756.24 195.95 3.86

48 (BY) 202,800 1409.962 378.61 372

48 (B8) 480,000 3892.67 1077.06 3.61

Table 7 kernel architecture comparability vs. Solaris 2.6 (32 bit

JParEuler on SUN E450, with 1000 iterations

Number of Number of Operating Time in s multi
blocks cells system processor (4)
48 (B3) 42,000 Solaris 282.04

2.6
48 (B3) 42,000 Solaris 7 258.16

Table 6 shows the results from the Sun machine, where
the speedup is between three and four for all of the
configurations.

4.6. Comparing Solaris 2.6 and Solaris 7 using exactly the
same JDK release (build Solaris_JDK_1.2.1_03, native
threads, sunwjit) on a Sun Enterprise 450

For this comparison we also use the JParEuler test to
demonstrate the influence of the operating system on the
computation while using the same JDK release. Table 7
shows that Solaris 2.6 takes about 24 s more for the same
computation than Solaris 7. A reason for this behavior is that
the internal Thread (LWP) handling of Solaris 2.6 takes
much more time doing an efficient load balancing than
Solaris 7 (Fig. 6) since this OS, Solaris 7, is a 64 bit system.
To have no side effects on using 64 bits and to have a better

only) we started the Solaris 7 explicit in a 32 bit mode.

5. Conclusions

The main emphasis of the Java test suite has been to
investigate the parallel efficiency of the Java thread concept.
Up to 32 processors have been used. As a result, we
conclude that parallel efficiency is obtained if a sufficient
number of threads and sufficient computational work within
a thread can be provided. With the scientific and engineer-
ing problems that we have in mind, in particular fluid
dynamics for complex geometries, these requirements are
easily satisfied. For instance, calculating the flow past a 500
block X-33 configuration or a 4000 block Ariane 5 launcher
utilizing several million grid points, clearly allows us to use
hundreds or even thousands of processors. In this regard, we
feel safe to say that parallel efficiency can be achieved via
the thread concept and thus large-scale parallel applications
in Java are possible.

On the other hand, the speed of the Java code generated
by the compilers of the main hardware vendors is unsatis-
factory. However, these compilers are in an early stage and
something substantial can be expected within the next
18 months. The IBM Alpha Works compiler delivered
good results and we see no principal reason that Java code
should be significantly slower than Fortran or C code. In

—| Proctool — CPU Graph Window (rzsws1) | -]
CPU Utilization
47 samples
100 e || 16 SR
80 g0 B % die
60 60
40 40
20 20
{ R S S S S S 0

Fig. 6. CPU Graph during the first minute of the JParEuler computation on Sun E450 using Solaris 2.6. The system requires ~20% of the CPU resources for the

internal Thread (LWP) handling.
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addition, the new Solaris release has shown that the OS
itself can decrease computing time by more efficient thread
handling.

We are, therefore, not concerned by the speed issue; and
leave this problem to the compiler builders. The major point
for large-scale applications is parallel efficiency and the
results using the thread concept have been very encour-
aging. Further work will be needed, but we follow
Kernighan’s rules, Make it right before you make it faster
and Don’t patch bad code, rewrite it, the latter rule being the
reason for a pure Java flow solver code. The Java OOP
approach and the unique Internet capabilities through RMI
provide a major advantage over all other existing pro-
gramming languages.
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