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SUMMARY

In this paper the generation of general curvilinear co-ordinate svstems for use mosclected two-dimensional
flutd flow problems is presented. The curvilinear co-ordinate systems are obtained from the numerical
solution of a system of Poisson equations. The computational prids obtained by this technigque allow for
curved grid lincs such that the boundary of the solutton domain coincides with a grid line. Hence, these
meshes are called boundary fitted grids (BFGL The physical solution arca is mapped onto a set of connected
rectangles in the trunsformed (compututional) plane which form a composite mesh. All numerical caleulations
are performed in the transformed plane. Since the computational domain 1s ¢ rectangle und a unilorm gnd
with mesh spacings AS = Ay — | {in two-dimensions) is used. the computer programming is substantially
facilitated. By means of control functions, which form the rh.s. of the Poisson equations, the clustering of
grid lines or grid points is governed. This allows a very fine resolution at certain spectfied locations and
includes adaptive grid generation. The first two sections outline the general features of BFGs. and in
section 3 the general transformation rules ulong with the necessury concepts of differentiul geometry are
given. [n section 4 the transformed grid generation equations are derived and control functions are spectiied.
Expressions for grid adaptation are also presented. Section 3 briefly discusses the numerical solution of
the trunsformed grid generation equations using succssive overrelaxation and shows a sample caleulation
where the IFAS {full approxtmation scheme) multigrid technique was empioyed. In the compunion paper
{Part [1), the application of the BFG method to selected fluid flow problems is addressed.

KEY worDs  Computational Fluids Dyaamics  Numerical Grid Generation  Twoe-dimensional Fluid Flow Problems

1. INTRODUCTION
Since BFGs are a novel approach to environmental flow computations, a basic introduction to
their propertics and their implementation will be presented. First, BFG methods will be put
into historical context in relation to finite difference and finite element techniques.
Until recently, most of the problems in computational fluid dyvnamies (CFD) were solved by
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finite difference methods using Cartesian co-ordinate systems, ie. rectangular grids. With the
introduction of finite clements in CFD.' ™ problems of greater geometrical complexity could
be solved. Finite elements. however. demand the construction of a table of nearest neighbours
for the irregular grid. and the programming is therefore much more laborious. Furthermore, the
matrices resuiting from finite elements are in general not sparse and are more cumbersome to
invert. Thacker* used finite differences on an irregular grid and reported that lor the case of the
SWEs (shallow water equations} finite differences were approximately an order of magnitude
faster than Gulerkin finite clements when the same accuracy for both techniques was demanded,
though the number of grid points for the finite clement weehnigue was smaller. Hence, a method
which s generally applicable and which retains the computational efficiency of finite differences
as well as the geometrical Mexibility of finite clements would be desirable. To a large extent,
BEGs provide these desirabie features. A BFG exuctly matches curved boundaries where the
selution domain may alsoe be multiply connected. However. all calcubations are performed on
a regular grid; that is, o square grid with uniform grid spacings is used. Such a grid must have
certain features in order o produce meaningful numerical results of the poverning physical
cquations. In particuiar, many of the grids generated by so called fnite clement grid generators
are not well suited Tor time-dependent problems in CFD.

BEGs are gencrated by co-ordinate transformations. 'Fhe use of curvilincar co-ordinates is
well known from general relativity and the concepts used there also apply to BFGs® ' Two
questions arise with the generation of computational grids. First, how to automatically generate
grids which are well suited for CFD computations and. secondly. how (o control grid point
distribution,

i, for cxample. Laplace’s equation had to be solved on an annular ring, the natural choice
would be the use of pelar co-ordinates. In this case the approximation of the solution area by
rectangles or triangles would not be considercd optimal. Furthermore, for calculations on a
sphere, spherical co-ordinates would be used., whercas elliptical co-ordinates would be the natural
choice if the solution area was an cilipse. All these co-ordinate systems have in common that
houndarics of the solution area coincide with co-ordinate lines. The solution area of an annulus
is determined by r, < r<r, and the azimuthal angle 0 < ¢ < 27 In the transformed plane
having r and  as co-ordinale axes, these co-ordinates define a rectangle. Figure ! shows the
mapping of a circle. Except for r = 0 the mapping is one-to-onc. For the general application of
BFGs to arbitrary solution domains, co-ordinate systems have to be found such that co-ordinate
lines coincide with the boundaries of the solution area.

According 1o the transformation, all PDEs (partial differential equations) and their respective
BCs (boundary conditions) have to be transformed. If the grid is generated by the numerical
solution of PDEs, these equations must also be transformed. All transformed equations, then,
are solved in the computational planc. In simple cascs, the selution area is mapped onto a single
rectangle and the calculations are performed on the square grid which spans this rectangle. Since

| 3
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Figure [ Physical and transformed planes, exemplified for 4 ¢irele and polar co-ardinates
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all computations are on a regular grid, finite differences or discrete elements (finite volume) are
used.' " Moreover, curved boundaries are accounted for and no loss of accurucy due to
inaccurale modelling of the boundary occurs. Thirdly, grid point positions can be easily changed
according to the needs of the physical solution. If a system of Poisson cyuations is employed
for the caleulation of grid point positions. the specification of appropriate control Tunctions (sce
below) allows the desired clustering of grid points. Poisson equations have been used in the
work of Thompson and coworkers.’™ '™ where the rh.s. governs grid line control. This can be
visualized by an electrostatic problem where charges (r.hs) change the positions of the
equipotential lines.

Therefore, the problem of solving the governing equations on a complex solution domain has
been modified to that of solving the transformed equations. On a uniform grid of rectangular
shape in the computational plane the transformation generates additional terms but does not
change the type of the equation. For more complicated solution domains the mapping onto a
set of connected rectangles is necessary. In this case the physical domain is subdivided into a
sct of segments where cach segment s then mapped onto a rectangle. Such a grid is called a
campasite or patched grid.™”

As has already been mentioned, the rhs. of Poisson’s equation allows comprehensive grid
linc control ithe same is true for alpebraic grid gencration®"). Moreover. it is possible (o consider
problems with time dependent geometry. This will also be usclul for inundating flow.

Girid point distribution can aiso be used to minimize numerical error’® or (o track the
propagatien ol shock fronts. Again. this can also be achieved by algebraic grid generation.”

In addition to the work of Thompson et al., parabolic and hyperbolic PDFEs?22* have been
used o generate grids. Instead of solving PDEs. complex variable methods and algebraic methods
have also been used. Unfortunately complex variable methods are restricted to two dimensions.
Algebraic techniques use algebraic expressions to cluster grid points near lixed boundaries. A
simple exampic of the algebraic technigue is u domain normalizing transformation to generale
a mesh for solution of the flow in a diverging nozzle. Algebraic methods have been developed,
for example. by Fiseman and Smith.?*** The proceedings pubiished by Thompson.”® Smith?’
and Ghia®® also contain work on algebraic techniques. A short iniroduction to both algebraic
and differential cquation techniques is found in Reference 290 A concise review an grid generation
techniques is found in Reference 30. There is a recent monograph on numerical grid generation
by Thompson et «l.*!

2. FEATURES OF BOUNDARY TITTED GRIDS

In this section a survey of the features of BFGs is presented. All examplcs in this paper were
obtained using a composite grid which is best suited for complex physical domains.

For a specified solution domain scveral co-ordinate systems are possible. For example, polar
co-ordinates map a circle onto a rectangle via a branch cut (Figure 1). Owing to this cut. the
east and wesl sides of the rectangle in the computational planc correspond to the same physicul
locations. Therefore no BCs must be specified along these re-entrant boundaries. Another
co-ordinate system for the circle is given in Figure 2, The transformation depicted in Figure 2
maps only boundary points in the physical plane onto boundary points in the computational
planc. This transformation has four singular points at the edges of the rectangle since in the
physical plane  und g co-ordinate lings intersect at an angle 7.

For a multiply connected arca more choices exist; e.g. for a doubly connected arca a branch
cut can be used (Figure 3) or slits (Figure 5) or slubs (Figure 6} can be emploved. The grid point
distributions resulting from the corresponding composite grids are depicted in Figure § 10, The
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Frgure 20 Transformation of o cirele onto a rectangle without the use of polar co-ordinates

use of branch culs corresponds to polar co-ordinutes and gives a grid hine pattern similar to the
one obtamed for an annular ring.

Since ahsolute values of grid spacings in the computational plance are not important, they are
sel 1o L In two-dimensions, where co-ordinate lines are denoted by 2 and 5. we have
AC — Ap — 1. Lines with a fixed Z-value are called Z-ines. e n varies from | to M. where M
indicates the number of grid points i this direction. The same holds [or g-lines, where & varies
from 1 1o N.

Figure 3 is an cxample for a region with two islunds and the respective branch cuts. The
correspanding grid line configuration s shown in Figure 4. If once visualizes the streamline
pattern resulting from laminar flow past a cylinder, it can be casily shown that such a grid ling
pattern cannot be constructed via branch cuts. Consider for example a grid line which starts
from the cast side of the boundary in the physical ptanc and which ends at the west side it is
assumed that the shape of the solution area is such that cast. west north and south sides exist).
These two sides must be mapped onto opposite sides of the rectangle in the computational plane
in order to obtain a grid line pattern like those in Figures 5 and 6. The same holds for the north
and south sides in the physical planc. Henee. there is no possibility of mapping both the branch
cut and the island onto the boundary of the rectungle in the computational plane. The island
is therefore mapped onto u slit (Figure 5), which is double-vulued, or onto a slab {Figure 6).
This approach poses the problem that within the computationat grid there are points which lie
outside the computational area and makes additionul book keeping necessary. For more
complicated solution domatns the transformed area must be different from u rectangle (Figure 7).
To overcome this problem. a composite grid is used. It is, howcever, necessary to specify the
segmentation and to prescribe how individual segments are connected 1o each other. Using the
concepts of differential geometry, an atlas of compatible charts is constructed which covers the
physical solution arca. The composite grids corresponding (o Figures 4 6 are shown in
Figures 8 10, respectively.

As has already been mentioned. Laplace or Poisson equations are used to determine grid
point positions. 1t is known that the solution of a Laplace equation obeys a maximum principle.
In order to retain this feature, the r.his. of Potsson’s equation must be properly choesen. The
electrostatic problem mentioned in the introduction leads to the grid line peneration system

Al =P, Ay =0 + BCs, {1

where P and  are functions of J and # or x and v If P and @ depend on x and v, iteration
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Figure 3. Transformation of a domuin with two islands onto a single rectangle by use of two branch
culs. Re-entrant boundaries are depicted by dashed lincs. Re-entrant boundarnies corresponding to the
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Figure 6. ‘Transformation of a doubly-connected area. This transformation has the disadvantage that the transformed area
15 no longer a rectangle
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Figure 9. Segment structure for solution ares shown i Figure §

h
(S

Figure 10. Scgment structere for solution arca shown in Figure 6

1s necessary. IUis sufficient to consider equations (1), since all regular co-ordinate systems satisfy
these cquations for uppropriate functions P and @. Since Dirichlet BCs are employed, that is
values £ = I(1)N are prescribed on the »-line boundaries n = 1 and = M, and values 7= 1{1)M
are used for the ¢-line boundaries & =1 and £ = N. the respective x- and yv-values are employed
in the transformed plane.

Many choices are possible for P and 0.'*7'” In this paper we use the method of Middlecoff
and Thomus3? where P and @ are calculated from the boundary point distribution and also
give a method for grid adaptation. Grid points are clustered automatically in regions where
boundary points are densely specified. In many cases only a few boundary peints would suffice
to describe the boundary. Since P and @ are calculated from the boundary point distribution,
however, this requires the user to specify many more boundary points to achieve the desired
grid point distribution. For this purpose an automatic grid doubling aigorithm was written.
Starting from a coarse initial grid, the grid is doubled each time the module is called. For
problems concerncd with composite meshes we refer to Reference 33.

Upon calculation of grid peint positions, a further module calculates the metric coefficients.
The output of this module is the input for the solution module of the transformed physical
cquations. The pipe concept 1s used for the connection of all modules. It 1s mandatory that the
solution module reflects the same segment structure as the grid generation program. Before the
physical equations are discretized, they are written in contravariant form.

In the numerical calculations it makes a difference whether covariant- or contravariant
components are used. If. for example. the upwinding technique is used. contravariant components
should be preferred since covariant base vectors are tangent to co-ordinate lines. Hence, numerical
diffusion will be reduced by proper grid alignment.
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3. DIFFERENTIAL GEOMETRICAL METHODS FOR NUMERICAL
GRID GENERATION

In order to use BFGs, all equations must be expressed in curvilinear co-ordinaies. Therclore
the transformation rules between the different co-ordinate systems are necessary. To this end,
we consider a physical solution domain M < K" and a munifold 4 = R™ which denotes the
transformed plane. [t is assumed that a one-to-one and continuous mapping A — M exists with

x(EL M= . 2)

As an example, we consider the surlace of a sphere where R =R and £ =0, - n/2 <0l < n/2;
&% =40 <t < 2n. The co-ordinates x', x* and x* correspond o the usual Cartesian co-ordinates
x, ¥ and z. In the physical space, we have the surface of a sphere, whercas in the transformed
space ' and 4 form a rectangle.

The tangent vectors or base vectors at a point PeM are defined by

X
e =, k=1hm (3
e

The tangent vector e, points in the direction of the respective co-ordinate line, These base
vectors are called covariant basc vectors. A second set of base vectors is defined by

ee;=dj (4)

The ¢ are called contravariunt base vectors and are orthogonal to the respective covariant
veetors lor i #j. Covariant and contravariant vectors arc related by the metric coefficients (see
below).

For the above example the two tangent vectors e, and e, are oblained by differentiating each of
the functions x(f.r), W0, ¥) and (8, ) with respeet to either ) or .

A physical vector can either be represented by contravariant or covanant components

v=t'e, = 1@, (3)

wherc the summation convention is employed. In two-dimensions, contravariant componcnts
of a vector are found by parallel projection onto the axes, whereas covariant components are
obtained by orthogonal projection.
According to its transformation behaviour, a vector is called contravariant or covariant. Let
v be the components of a vector in the co-ordinate system described by the x* and let ¢ be the
componenis in the system &
(x} A vectoris a contravariant vector if its components transform in the same way as the co-
ordinate differentials:

(6}

(f) A vector is a covariant vector if it transforms in the same way as the gradient of a scalar
function:
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In order to measure the distance between neighbouring points, the first fundamental form is
introduced

%

The g;; are also called components of the metric tensor. The components of the inverse matrix
are found {rom

dijm =608

gyt = o). 9
The distance ds between two naighbouring points is given by
ds = lg, A2 d2). (10)

[n Cartesian ¢o-ordinates there is no difference between covariant and contravariant
components since there s no difference between covariant and contravarant buse vectors.
Therefore the matrix g;; (the “denotes the Cartesian system) is the unit matrix. The components
of g,; in any other co-ordinate system can be directly calculated using the chain rule:

R

g = o o (7198 (L1}

[n order to find the transformation rules of derivatives of scalars, vectors und tensors. the
Christolfel symbols of the first and second kinds arc introduced. Supposc that co-ordinate &
is changed by an amount ¢’ This changes the base vector e; by de;. Since de; 15 4 vector, il
cun be represented by the system of base vectors e,. Further. de; is proportional to d34. One
can therelore write

de, = 'Y, de,. (12
where the symbols [T}, are only cocfticients of proportionality. These symbols are also called

Christoffel symbols of the second kind. Taking the scalar product with ¢*, one obtains directly
from (12}

r?;‘ :cf.j'ek~ {13}

where a comma denotes partial differentiation. The Christoffel symbols of the first kind are
defined as

rljk::!l'if.!]—ﬂk’ {14}

IT the base vectors are independent of position, the ChristofTe] symbaols vanish. They are, however,
not tensor components, which follows directly from their transformation behaviour.

The relationship between the 1% and the g, is found in the following way. Insertion of the
definition of the metric compoenents g,,,. equation (8). into equation {13)and interchanging indices
leads to

s Y

; Gl T T i
jA:éﬁf’(ﬁ;’:-F ,fkf.f——_'—f‘f). (15)

=t
= Uy [
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If we use equation (3), the definition of the tangent vector, glong with eguation (13). onc obiains
the computational useful form

- -3
L e et
k= N ne;nck”
4 (ﬁ'\,! (’_‘.;j(.;k

(16)

The knowledge of the grid point distribution, then, allows the numerical calculation of the

Christoffel symbols. If we contract the Christolfel symbols, i.c. upper and lower indices are the
sume and are summed over. equation (15) vields

. O 10U . ,

r}i — égxm -]mlr - N g _ [ln \."_(])_j. {17]

~vj

SN A

where ¢ is the determinant of the metric tensor, that is /¢ is the Jacobian of the transformation.
In two-dimensions with curvilinear co-ordinates &, i and Cartesian co-ordinates x, y, one finds

(55 ) “3}
", Pfy - _'0‘: .\';

Vo =J =gy, e

In curved space. partial differentiation is replaced by covariant differentiation which takes
into account the fact that base vectors themselves have non-vanishing spatiai derivatives. In the
following, the nabla operator

e
Vi=e' (1%

R
~

{
is used. For the calculation of the cross product the Levi-Civita tensor is introduced.

I,fori=1.j=2 k=23 and all even permutations.

fai= ¢~ L for all odd permutations. (20)
0, if any two indices are the same, -

where © again denotes the Cartesian co-ordinate system. Yrom equation (7) we know the
transformation law for covariant components, and hence

CRPoxmaxn

= =Jé&. 21
Suk E.\’l LR-,\'J (—;xk Blmn JEUJ(- ( ]

where J is the Jacobian of the transformation. Forming the determinant from the components
of equation (11), resulls in g = 2. and therefore

Eij = v G- (22)
Raising the indices in equation {22) with the metric, one obtains
pife _ V,-'géijkl (23)
The cross product of two vectors a and b in any co-ordinaite frame is then written as
a x b=d'bte, xe;,=abl 0" = giabled. (24)

1t should be noted that equations (22) and {23) can also be derived by starting from the
well-known relation in Cartesian co-ordinates

6 X &= £,,6,. (25)
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Insertion of

-l om ok
ox ix ox
é=——¢: €= _ .¢€,. é=—¢
Pt T p ix”

into cquation (25) and multiplication of the resubting left and right hand sides by

ox!
X

with summation over ¢ and J finally leads to

¢, X € = gé,.c". (26)

With the above equations it is now possible to derive the transformation rules (1} (viii} needed
for the Euler or SWEs and for the grid generation equations themselves:

(i)

Gradient of a scalar lunction h:

-

I

Vh=¢_ h=eh;=g"he. {27)
s
(11} Gradient of a vector ficld u:
Y LA i B ,
Vu=1¢ “*t(chJ):("*x +u"‘]{,,,)t"t*j, 28)
s (5 ¥,

(i)

(v)

where equation (12) was used.
Divergence of a vector ficld w

G cu! ;
Ve e =y e
i te
aut ! SRREPI
=omtulh =t + g u' =—1( g, (29)
i 26} ' v 7

where equation (17) was used.
Cross product of two vectors (here base vectors e, e; since they are most often needed):

€ % &= 0t = jgé, et = JE, et (30)

It should be noted that this formula directly gives an expression for the area d4* and
the volume dV.

dAk:=ds' % ds/; dV: = ds*-(ds’ x ds')

where i, j, k are all different. The vector ds' is of the form ds” = e,d&' (no summation over i).
Thus we obtain

dAM=JdEdS AV =JdE e de

Delta operator applied to a scalar function

B =V (V) = (%d’)

&2
il L
=gty (Gegt) (3N
v

where the components of the gradient of equation (27) were inserted into equation (29},
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{vi} For transient solution arcas, i.¢. the solution area moves in the physical plane but is fixed
in the computational domain, time derivatives in the two planes are rclated by

() A,
ctfe ct /, [ PN

where (0x'/dr); are the corresponding grid speeds, which can be calculated from two
consecutive grid point distributions.
(vii) Relation between covariant and contravariant components of the metric tensor:

{32)

. A
gt =—, (33
)
where A% denotes cofactor (i, k) of the matrix of the metric tensor. In two-dimensions we
have
g =g g ¢V =gt = g g @ = e e (34)

(viii) Relationship between grid point distribution and Chrnistoffel symbols, equation (16):

) (‘1:1‘ (*.2_\.1

e agag 1)
There arc 6 Christoffel symbols in two-dimensions and 18 in three-dimensions, Storage of
Christoflel symbols for a staggered grid in three-dimensions will most likely not be possible since
{18 + 1) x 4 x N computer words (the 1 comes from the Jacobian) would be necessary where N
is the total number of grid points (N could be the number of elevation points if SWEs were
solved). 1f metric coeflicients arc used in three-dimensions, (6 + 1) x 4 x & words were necessary.
For a realistic value of some 20,000 grid points in three-dimensions. this requirement exceeds
available storage for most machines. I interpolation of metric coefficients (dangerous) is used,
the factor 4 can be eliminated. Fven then, the storage needed is an order of magnitude higher
than the number of grid points. Thus. one should consider the recalculation of the Christoffel
svmbols or the metric coefficients at cach time step. using a vectorizable scheme,

4. NUMERICAL GRID GENERATION

We first consider the transformation of Poisson’s equation. We start with a co-ordinate system
x=x(Z,m), ¥y = y(& n). The covariant base vectors are given by
e, ={x.yh ey =(x,p)! (36)

that is, e, is tangential to an x-line and e, is tangential to a Z-line. The superseript T means
transposed, i.e. a vector is considered to be a one-column matrix. The components of the metric
tensor are obtained from equation (8)

d11 = \f + }‘f: Yy =ga = XXyt Vel go22= qu + 1:; (37

The contravariant components are

Y21 qa o THhaz, 32_g_§1_ (38)
The contravariant base vectors ¢ are determined from e¢quation (4). Using the matrix
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E:=(XE ":")—(cl,cz). (39)

¥ ¥,

1 v, —X
E'= ) )
J (“ Y ‘) o

We find, since e are the row vectors,

the inverse matrix is given by

e =(y,. — xS el ={—y.v) L (41)

e' is perpendicular to e..e? is perpendicular to e; but ¢! and e, arc in gencral not perpendicular.

Since E7 ' is also given by
b (%)
1

el =0 e = (.t (43)

we have

We now recoensider the grid generation cquations
As=F; An=20. (44}
Using (), the transformation equation of the Laplacian. and the luct that £ and gy are co-ordinates

themselves, we find

Al =gMiE - r{k‘:.j} = —ghe; e, (45a)

g

A‘:-: = ; 1 L(Avn[.ql l-\‘;: + gql “qu + g“'\-rm] - -‘};(9’1 1}'._"\__—: + 2_‘]]~.1.:|| + .q--."‘rm)J = P [45b)
W 5

In a similar way we obtain for the g-co-ordinate
_+_

l i) 4 4
g D8 X 4 20 0 g7 ) = xlg Y 4 20 v 1 0] = 00 (46)
N

An =

By means of {vii). the g can be expressed in terms of g;;. For stability reusons in the numerical
iterative solution of the abave system of cquations. the above equations are rewritten in the
form

Y20Xe: — 2G 12Xy + G1g Xy T 9P+ x,01 =10, (47)
GaaVs:— 2911}';r; + gy Ve +glyP + v, 0r=0 (48)

These equations are quasilincar, where the non-linearity appears in the expressions for the metric
cocfficients.

The grid generation can be extended to two-dimensional co-ordinates on parametrived surfaces.
The dertvation of these equations is found in Reference 34. The fact that boundary curves are
grid lines does not uniquely determine the co-ordinate system. Further requirements of the grid
point distribution can be demanded, such as equidistance of grid points or orthogonality of grid
lines. For an orthogonal grid it 1s necessary that boundary curves intersect at right angles. For
the construction of orthegonal grids we refer to References 34- 37, For internal flow, however,
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it seems that orthogonal grids are not well suited. Since certain features of a grid must be globally
satisfied, grids can also be obtained from variational principles. 438

If we sct control functions P and @ equal to vero in cquations (47) and (48). we obtain the
transformed Laplace equation. To visualize the distribution of grid lines by solution of Laplace’s
cqualion, one can assume that each grid point is coupled to its four nearest neighbours by
springs having equal spring constants (Figure 11). The equilibrium of that spring model gives
the distribution of ce-ordinate points. If the distribution of boundary points is equidistant, onc
observes the lollowing fact (which can be directly shown by cxplicit solution of Laplace’s
cquation): A convex boundary (Figure 12(a)). repels grid lines, whereas a concave boundary.
{Figure 12(b}). attracts grid lines.

Very often, however, the opposite is desirable. For example, when a storm surge model is
used [or the caleulation of the water level in a bay (convex area), high resolution near the shore
is required. The simplest way to achieve this would be the change of the distribution of boundary
points, i.e. to choose a dense distribution along the shorcline which forms the boundary of the
bay. Since the Laplacian smoothes the effects coming from the boundary. the grid point
distributien in the interior is not affected and remains nearly cquidistant. For that reasons
Poisson equation 1s needed and control functions have 1o be determined.

Since a boundary is cither a Z- or an y-line (in two dimensions), all partial derivatives in the
other direction vanish. At the moment we ussume that £ only depends on x. and # only depends
on y. If the boundary is not a straight line. x and ¥ must be replaced by arc length s If we
determine P from a boundary formed by un y-line (i.e. ¢ varies) and Q from a boundary which
is 4 &-line, we find from equations (47) and (48)

H] 1'\‘:5 = - 'YfP: ”22, 1)7; - nQ 149)
LT — ,-——:""/T
i & ] 3

]
r% uu;u_._;_n.s:;q ER3555 u._a_w 21 .uu{ﬁmﬁb

wem " -

J

L

,,u.rvuiu&umru

i d’-!.i‘E“.iul

L 1y een
umuﬂ

Figure 1. Grid point distribution obtained from Laplace’s equation: cxemplilied by spring maxdel

y-direction

-354—._.___‘__—_—__.____'___,_.-‘
o3 5 -—
-4 ——— 7T -a rr T T T TS et S
0% L 152 2% 3 35 4 45 5 %5 6 ¢ 05 t % 2 2% 3 O3S a4 a5 5 5% &
x-directon x-direction

Figure 12, Grid hne distribution for convex {a) and concave tb} solutien arcas
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Since xg, x: as well as v, y, can be calculated from the boundary point distribution,

cquations (49) can be solved for P and @, yielding

P = —g“i‘ff: Q:= mg33'1"“. {50)

The usc of these control functions guarantees that the specified boundary point distribution is
obtained. Moreover, if these control functions are employed in the interior of the solution domain,
this yields the same grid point distribution along &- and »-lines as on the boundary. Figure 13
shows the grid line distribution resulting from a non-equidistant boundary point distribution
with and without the use of control functions. If boundary point distributions on top and bottom
tor left and right} are different, the values of the control functions in the interior can be determined
by linear interpolation. For curvilinear boundaries arc length s replaces x and y.

According to what was said above, a higher grid line concentration near the inner boundary
of an annular ring s expected. In order to have an equidistant distribution, control functions
have o be specified. Without control functions, the Laplace operator expressed in polar
co-ordinates takes the form

|
szw."+r¢,+¢.w. (31)

For an equidistant distribution in radial direction  must be of the form = ar + b. Let y satisfy
the boundary condition iy = | for r = r| and ¢ = N for r = r,. The solution of equation (31) 1s then

1 — N
W=1— {r, rh (52}
ry— s
[}
T
5
c
e 5 4
o
=3 4
z
1
0 = I —— L —
0 1 2 3 4 5 6 T & 49 10 I 12 I3 i4 IS 16
x - direction
8
7 \ \ J_,.,-f-'-""/
& \ \ _\/
: |
2
% |
Lo
=

o | VAR [T

T T T T + T T T T T T

o 2 3 4 El & 12 13 14 1% 16

T8 3 10
x - direction

Figure 13, Gnid line distribution for a rectangle with and without the use of control functions
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flx)

max

Figure 14 Inorder to attract grid lines from both sides to the maximum. the control functivn P must
sitisfy P = 0 at the left of the maximum and P < 0 at the night

Hence we obtain lor the control function P

P VR R VR
P=Ap=""=" " ="
rooorr, oy Ar
where Ar=r, —r, and « denotes curvature. Curvature 15 calculated on boundaries & =1 and
¢ = N and determined from linear interpolation for the interior. In the same way control function
¢ is determined. In general, curvature 1s determined from

I R U K A S L (33)

where any curve O is given by (x(¢), #(1))7 and * denotes derivation with respect to t. In our case,
boundary curves are parametrized by either £ or . Since the control functions are computed
[rom a monotonic lunction, no singularities can arise.

Grid lines can also be attracted to extrema of the physical solution or 1o regions of high
gradicnis. First, the one-dimensional case is considered. In order to attract grid lines, I* must
have the following properties (Figure 14). To the left of the maximum, grid lincs must be moved
in the direction of higher v values, that is P > 0 is necessary (this follows directly from solution
of equation &, = a for ¢ <0 and a > 0). To the right of the maximum, we have P < 0, A function
which gives the right signs is the derivative f,. Since f, =0 at the maximum, lines are moved
only up to the maximum. Near f ... . 15 small. which mecans that lines in the vicinity of [,
are only slightly moved. f, is multiplied by f which serves as a weight function. For P = ff
we find from

X

fn=P =1, (54)
that
17 .
‘= ZJ £rdx. (59)

which is 4 monotonic function in x. To concentrate grid hnes near gradients. P has the form
P= [ [, For the extension to (wo dimensions, f is differentiated in the direction of the
co-ordinate lines & and n. f, is replaced by f./g'' and f,//y** The factors 1//g"" and
1//g*? ensurc that the slope is measured in physical units and not in grid units. If the sccond
IV . . T T s . - -
derivatives are approximated by f../g'" and f,./g7, the control functions written in analogy
to cquation (54) assume the form

P=ddomf fAg") = daoqf fof gy )™ {56)
Q =diZmf S @ = dE S L Mg, ) (57)
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Figure 15, Concentration of grid knes to a arcle. The untial grid 1s a square grid

where the functions ¢ and d are additional normalizing functions. The term 1/J? eliminates the
factor which arises in the transformed equations (48). As an cxample of the control functions,
Figure 15 depicts the concentration of grid lines to the extrema of the function

[ =xtanh[D(r -4 —1]. (58)

The initial grid is a square grid. The highest grid line density is for a circle of radius } with
the origin at (,%). which is the location of the maximum of the gradient. The magnitude of
the gradient is changed by « and D.

5. NUMERICAL SOLUTION OF GRID GENERATION EQUATIONS

In order to obtain the grid point distributions, equations (47) and (48) have to be solved
numerically. To this ¢nd, the functions x, v, P and @ have to be discretized. Central differences
are used for first derivatives:

(eehi; =300 ;= X1 ), (59)

where ie[1, N, je[ 1, M]. First derivatives are needed for the components of the metric tensor.
Second derivatives arc discretized as follows:

(Xze)i ;= Xiw 1= 2%+ Xim o

1 .
iy =30 e = X~ Xivnj0 P Xem g o) (60}
(x

:m)i,j =Xije1 2-“;‘,;“‘ Xej—1-

Using the denotations =, 28, 7 for the discretized forms of g,,, g,, and g,, and writing J2
instead of ¢, equation (47) can be solved for x, ;, resulting in the following system of cquations:
xpp=Aa oy — Xy )
B A e T X Kot X )
by e — X D P )

Ve ij

+ é'lfz.jQ.‘.j{x;.p 1 X ) @Aey 4 (61)
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Table [.  Variation with ¢ tor the number of iterations for the free surface problem

9] H ) n ‘1 [ () n
1-45 83 1-70 42 1-75 36 1-80 41
1-50 74 1-71 41 1-76 37 1-88 64
1-35 66 1-72 39 1-77 R} 1-90) 92
1-60) 38 173 38 1-78 19 1-95 150
1-65 50 1-74 36 1-79 40
2 -
0 | E
5] E? ;
5 =22
£ ) = S:
- EEEEsCohunn
: EEeSisee s eines S
0 : SESSESEEsRssSattsses =
-20-B -6 14 1216 -8B -6 -4 -2 0 2 4 € B 0 12 14 16 18 20
x - direction

Figure 16, Time dependent solution demain for the free surface problem. The number ofiterations for the generation of this
grid strongly depends on o, as depicted in Table L

TYiL

p ar oo
T XTI,
T r2rIL
ya
rs

y-directen

T t
4 13 18 20 22
%- direction

Figure 17, "Canverged’ solution lor grid generation equations ona 125 « 635 grid. As start values. the co-ordinate values of

the north side were used
where i, j vary from 2 to N — | and from 2 to M — 1. respectively. A similar equation holds for
¥:; This system of non-linear equations is solved by iteration. In order Lo increase convergence
speed. SOR (successive overrelaxation) is used. Values from the previous iteration, x,,, are
compared with those of the current iteration, x;,. The differences of these values are amplified
by a factor m to foree the solution in this direction. The new values, x_ .. are calculated from
the formula

xnuw = X4 + ”)‘.-\‘ir 'YL‘ld,: l “<~ i ‘<- 2 [62]

As is known from numerical experience, the convergence speed is susceplible to the value of o,
in particular for time-dependent domains. Table | shows the numbers of iterations for different
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values of @ for the free surface problem (Figure 16). Although it is not necessary to solve
equations (61) to a high degree of accuracy, it is necessary that the numcrical error is sufficiently
damped during each iteration. Since grid point i (one dimension considered for the moment)
depends only on neighbouring points i — 1, i + 1, convergence at i is determined by the difference
of the errors at these points. If the errors have the same sign, the error at i cannot vanish but
is smoothed (averaged). Considering the Fourier componenis of the crror function, one obtains
from local mode analysis'® that wave lengths of 2A (A is grid spacing) are highly damped while
error components of long wave iengths are nearly unaffected, since many iterations are needed to
propagate improved values through the grid because only direct neighbours are coupled.

Fourier transformation is not possible for the non-lincar equations (61) but numerical
cxperiments show that damping of numerical error may be so slow for large grids (sec Figure 17)
that the criterion for ending the itcration process is reached before a satisfactory solution is
computed. Figure 17 shows an attempt at solving the transformed grid generation equations for
a rectangle where a numerical error due to farge wavelength components is present. An equidistant
grid was the expected solution. If equations {61) are solved on grids with mesh spacings. ..,
8A, 4A, 2A, A, each of these grids climinates the error in a certain frequency range. This method is
called the multigrid technique.** *? Using the FAS (full approximation scheme?®), the above
problem was solved in | second on a Siemens 7873 computer.

It is felt that combination (where possible) of grid generation technigues and multigrid methods
will substantially increase computational efficiency. It would be worth while 1o investigate the
possibie applications to transient fluid dynamics probiems.

The following is a summary of the steps for the grid generation program. First, it is nceessary (o
input the boundary co-ordinate values along with the chosen segment structure. If necessary, the
program culculates the values of the control functions from the boundary point distribution and
solves equations (61). Only one iteration sweep per segment is performed where the sequence of the
scgments is determined from the specified input order. Segments which have a side in common are
connected by an overlap of either one row or column of grid points;'” i.e. the boundary points of
one segment are interior points in the neighbouring segment and vice versa. Henee boundary
points on segment sides are automatically updated after each iteration sweep. The next module
calculates the metric coefficients from the computed grid point positions. These values arc then
used in the solution module which will be discussed in the companion paper (Part II).

6. CONCLUSIONS AND OUTLOOK

In this paper a description of the basic ideas and properties of BFGs was given. Furthermore, the
general transformation laws for gnid gencration and physical equations were presented. It was
shown that for large grids convergence problems in the solution of the grid generation equations
can occur which can be overcome by usc of the FAS multigrid technique.

Since orthogonal grids do not seem to be advantageous for internal flow problems, their
construction was not addressed.** ~** It is believed that the use of composite grids can be directly
extended to three-dimensional grids**-*% which are important for environmental flow problems. In
a companion paper the application of the generated grids to selected two-dimensional fluid flow
problems will be discussed.*”
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