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SUMMARY

The present paper describes the implementation of muliti-block codes, used to model complex
2-D geometries for applications in computational fluid dynamics on massively parallel
architectures. The work starts with a brief description of ongoing and planned major
aerospace projects and gives an estimate of the computing power needed. In order to
provide this computational speed, one has to resort to massively parallel systems. In the first
section the essential features of multi-block grids, along with the grid generation cquations
are discussed and it is shown that overlapping multi-block grids are inherently parallel by
construction. Since the number of blocks is not fixed, but can be matched 10 a large extent to
the number of available processors, there are no principal limitations of this parallelization
approach, provided the ratio of computation time to communication time remains large
enough, which leads to the discussion of problem scalability. The details of implementation on
the Intel iPSC/2 of a general 2-D multi-block mesh-generation code are outlined in sections
2 and 3, together with the listings of the major communication function (Section 4). In
section 5 the results Tor this code are presented, clearly demonstrating that the multi-block
concept is a viable tool for massively parallel computers, which can be applied to virtually all
problems in science and engineering where computational meshes are used. In section 5.2 an
outlook on the parallelization of more complex problems is given, and estimates for speed-up
and efficiency, based on the present experiences, are provided. It turns out that, as long as
computation dominates commuaication time, which is usually the case for complex aerospace
applications, parallelization will be the tool to provide the additional orders of magnitude of
computing power needed to routinely design and analyse future aircraft as well as spacecraft,
in particular at high Mach numbers, when chemical reactions become important.

1. PARALLELIZATION OF COMPUTER CODES FOR AEROSPACE
APPLICATIONS

For the next two decades the operation of sevcral space vehicles for hypersonic missions
is planned. All these projects have in common that the vehicles are entering or flying
in an atmosphere with high speed, resulting in high thermal loads and stresses. The
high velocity at which the vehicles negotiate the atmosphere makes it nccessary o
consider chemical reactions, ¢.£. dissociation of molecules, and for temperatures larger
than 10,000°C ionization occurs. In any case, the flow is compressible and a bow shock
develops in front of the vehicle, leading to a jump of temperature, 17, velocity components
u, v, w (Cartesian co-ordinatc system) and pressure p, as wcll as density p. 1f the
temperature is high enough for chemical reactions to occur, the conservation for cach
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chemical species has to be considercd (the simplest model of air involves Ny, O, N,
O, and NO). Depending on the ratio of characteristic flow time and thermal relaxation
time, a decoupling of the vibrational energy modes can occur, resulting in additional
equations for the thermal energies of the molecules (i.c. for N3, Q2 and NO if the model
mentioned above is used). For the design of a vehicle the prediction of thermal loads and
thermal stresses is needed as well as the aerodynamic performance (i.e. pressure load,
drag, stability behavior, eic.).

Although numerous wind-tunnel tests are performed, there are fundamental limitations
for these facilities[1}, especially in the high-temperature range, apart from the gucstion of
cost-cffectiveness and versatility or development speed. On the other hand, computational
fluid dynamics (CFD) has matured during the last decade and now allows the computation
of flow fields past complete configurations. Apart from the question of modeling and code
validation, computation time is a severc problem. Firstly, there are very different length
scales in the problem, in principle ranging from the turbulent scale where dissipation
takes place to the characteristic length of the body. Sccondly, there are very different
time scales ranging from the time for a chemical reaction 10 the tlow velocity in the
boundary layer (BL), if viscosity is accounted for. In order to resolve all the relevant
physical phenomena, an cnormous number of grid points is needed, even when turbulence
15 modeled algebraically. It 1s not unrealistic {0 assume that 10 million grid points are
needed for a 3-D configuration. From the above discussion wc know that in a high-
temperature environment additional equations have to be incorporated, leading for the
simple atmosphere model to a set of 12 coupled non-linear partial differential cquations
(PDE)[2} in 3-D. It is known that for an implicit solution technique some 104 s per grid
point per iteration are needed based on a computation power of 100 MFlops (sustained,
that is, at 1 GFlops peak). Assuming 300 iterations {optimistic) for convergence and a
grid of 10 million grid points amounts 10 a total computation time of 3 x 10° s or some
S0 h. If a more sophisticated turbulence model is included, the computation time will be
substantially higher.

To give the reader an impression about the type of simulation being performed, Plaies
1 10 4 may serve as an example. Plate 1 depicts a structured grid for the Hermes space
plane, similar 1o but smaller than the Space Shuttle. Two grid plancs are shown, one in
the stream-wise (along the centerline) direction, the other one representing a cross-seclion
wilth the winglets. The grid is orthogonal at the surface of the vehicle. Grid points are
clustered in the vicinity of the body and nose part. Gnid size is 143 (circumfercniial),
33 (radial, for Euler calculations) and 62 stream-wise, i.e. some 293.000 points are
used.

For parallelization this solution domain has 10 be subdivided inio blocks which are
mapped onto boxes and the conneclivity of the boxes has 1o be determined. Hence,
the main parallelization effort is the construction of these blocks. The communication
between blocks is straightforward, since information is exchanged through neighboring
faces. It is interesting to note that no additional communication structures in COMparison
to a mulu-block stuclure running on a scqucenual machine have 10 be developed.
The reason is that a multi-block structure necessitates communication among blocks,
indcpendent of the computer architecture. Plate 2 depicts the surface grid used. The blocks
on the surface serve as the boundary for the volume grid. Plaic 3 shows a grid around a
conc where two different physical parameters were used to capture the oblique shock and
the boundary layer. In order to achicve load balancing, a blocking methodology (o cnsure
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Plate 1: Structured grid used for typical inviscid Hermes calculations. Grid size is about 300,000
points; 143 in circumferential direction, 33 in radial and 62 points in streamwise direction.

Plate 2: The figure depicts the Hermes surface grid. Surface grid generation is a major issue,
since the surface grid critically determines the quality of the volume grid.

Plate 3: Solution adaptive grids are of high importance to improve the solution accuracy and (o
limit the number of grid points needed. Efficiency of parallel algorithms should not be affected
by grid point movement.
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Plate 4: Comparison of inviscid Hermes solutions obtained from perfeci gas and real gas
faccounting for additional degrees of freedom such as vibration, dissociation eic. ).

Partiecle Troaces

Colars indicate different starting planes.

Plate 5: Visualization of the flow field by introducing colored particles that move along stream
lines, a technigue used in wind tunnels (colored smoke). It gives the design engineer special
information about, for example, vortices that might hit the structure.
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that blocks with approximately the same number of grid points is used, provided that
this is the correct measure to determine computational load. Plate 4 shows a comparison
of the temperature fields, using the grid of Plate 1, of the inviscid Euler equations for a
perfect gas (left part) and the chemical equilibrium. Since chemistry intoduces additional
degrees of freedom, the transitional temperature is substantially lowered. However, (o
determine the heat flux in the vehicle, Navicr-Stokes calculations are mandaiory. Plate
5 shows the utility of advanced visualization of 3-D results,

Although there has been a dramatic growth in computer power in the past, a limit,
caused by the speed of light, of some 1 GFlops per uniprocessor can be foreseen. If
a sophisticated CFD code is to be used as a design tool, the computation time should
not exceed some 15 min, which amounts to the use of 360 of these 1 GFlops peak rate
uniprocessors in parallel. The question then is, provided the hardware as well as the
paralicl compiler along with the corresponding operating system is available, how can
aerospace compuler codes be parallelized to make cfficient use of a large number of very
powerful computiational nodes. In any casc, it can be seen that using only a handful of
parallel nodes (computers) will not be sufficient for this type of problem; thus onc has
to resort to massively parallcl systems where each node has ils own private memory 10
avoid access conflicts which arise if a shared memory 1s used.

2. MESH GENERATION FOR AEROSPACE APPLICATIONS

2.1. Multi-block meshes

Boundary fitted grids (BFG) (Plate 1) are now in wide usc since they allow the distribution
of grid points with alignment to the geometry, which may be irregular. BFGs arc
structured, and at each grid point corresponding co-ordinate directions exist. A BFG can
easily be visualized by considering the electric field lines and equipotential lines (which
intersect orthogonally) between the (curved) plates of a condensator. From electrostatics
it is known that this line distribution is gencrated by Laplace’s equation. In addition, the
grid line densily can be changed by introducing charged particles in the space between
the plates, which leads to the solution of the Poisson equaiion. Following the same
principle, a general BFG is simply constructed by solving a Poisson cquation for each
co-ordinate direction. This means that the imregular solution domain (SD) is mapped
onto a rectangle (2-D) or a box (3-D) in the computational domain (CD}. This approach
works well as long as the shape for the SD is not too complex, because then the grid can
become too distorted. The next step then is to introduce branch cuts 10 map a multiply
connected SD onto a single rectangle or box in the CD. Although this can be done, 1t
is casy t0 show that certain grid line configurations cannot be obtained, e.g. if the grid
line distribution is to resemble the strcam line pattern of a flow past a cylinder. (For
a more complele discussion see Reference 3.) A way out of this dilemma lics in the
use of multi-block grids, first introduced in Reference 4. The SD is covered by a sel
of overlapping charts (or blocks) where cach single block 1s mapped onto a reclangle
or box in the CD. The whole SD then is mapped onto a scl of connected biocks in the
CD, which relains the connectivity of the original physical domain and thus allows the
generation of an arbitrary grid line configuration. In that way cven the most complex SD
can be handled. The blocks can be paiching (grid line continuity only) or matching (grid
line continuity and continuity of tangent vectors, ie. slope conlinuity). Paiching grids
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are casier to construct, but from the standpoint of flow solution, matching grids arc to be
preferred, because of the implementation of the numerical scheme that demands access to
ncighboring points. Therefore this approach has been implemenied in the general mgp-3d
code[5], where further details can be found. In this work an overlap of onc cdge (2-D)
or one face (3-D) with the neighboring block is used.

Although higher overlaps can be constructed, such a scheme can lead (o substantially
increased storage requirements, since all the overlaps have 10 be stored twice. Figure 1
shows the principle of overlap,
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Figure 1. Overlap between neighboring blocks in 2-D. Here exactly one row or column overlaps,

ensuring slope continuity of grid lines when passing block boundaries, that is, these boundaries are

not visible when the final grid is depicted. Therefore an additional set of rows and columns is stored

in each block, forming the boundary of this block. These poirts, however, are interior points in the
respective neighboring blocks

ClihPD wwwLfastio.com


http://www.fastio.com/

PARALLEL COMPUTING IN AEROSPACE, PART 1 361

It should be pointed out that the generation of multi-block grids for complex 3-
D configurations is not a trivial task, since the blocking topology can become quite
complicated, and cach block has its own co-ordinate system where the orientation with
respect to neighboring blocks has to be determined{5].

2.2. Mesh-generation equations

The following general co-ordinate transformation from the Cariesian co-ordinate system,
denoted by co-ordinates (x, y, z), 10 the CD plane, denoted by co-ordinates (£, 1, ¢), 18
considered. The one-to-one transformation is given by (except for a finite (small) number
of singularities):

x = x(EmC) £ = {xyz)
y = y&n.ck y = xy.z) (1)
z = z(E () ¢ = ((xyz}

Since there is a onc-to-one correspondence between grid points of the SD and CD,
indices {, j and £ can be used to indicate the grid point position. The gnd in the CD is
assumed to be uniform with grid spacings A€ = An = A( = 1. As mentioned in Section
2.1, a set of Poisson equations is used to determine the positions of (&, 7;, ) in the
SD as functions of x, y, 2. In addition, proper boundary conditions (BC) have o be
specified. Normally, Dirichlet BCs are used, prescribing the points on the surface, but
for adaptation purposes von Neumann BCs are sometimes used, allowing the points to
move on the surface, in order 10 produce an orthogonal grid in the first layer of grid
points off the surface. The Poisson equations for the gnd generation read:

S + &y + & =L

T + Ty + e = @ (2)

R

Cx + Cy + Cz
where P, O, R are so-called control functions that depend on £, » and (. However,
this set of cquations is not solved on the complex SD; instead it is transformed (e.g.
Reference 3) to the CD. The elliptic type of equations (2) is not aliered, but since £,

n and { are co-ordinalcs themselves, the equations become non-linear. Using the more
compact notation

g=¢c, € =g; € =¢x =xixt =y = (3)

Equations (2) can be written in the form

vieg = gl Pttty 1 =123 (4)
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where g''Py = P;gZP, = Q;g%P; = R was used in equations (2). There is no
summation over / on the RHS of equations (1). The factor g represents the diagonal
terms of the contravariant components of the metric tensor g, with g% = ¢/ » ¢/, where ¢
are the contravariant base vectors[3). Interchanging dependent and independent variables,
the transformed Poisson equations have the form

g’* .ré,-g = g™P.xl. 1 =123 (5)
The summation convention of Einstein is used in equations (5); i.e. indices occurring

twice arc summed over. For 2-D, using the original functions P and Q and co-ordinates
x, y and £,7, one oblains:

82 Xe¢ — 2812 X¢y + 81 Xpp + 8P + Q) = 0 (6)
82 Yee — 2812 Yen + 811 Yon + O + y,0) = 0
where
gu = x{ + ¥} 810 = 8u = XXy + Yevg s g2 = x2 + ¥} (7)
g =878 g1 = gn = ~g8' = —gg™ i gm = g8 1 g = (xgy, — Xy N

was used. The numerical solution of equations (6) along with specified control functions
P, ( as well as proper BCs is straightforward, and a large number of schemes is available.,
Here a very simple approach is taken, namely the solution by successive-over-relaxation
(SOR).

The second derivatives are described in the form

(Xeehiy = Xiery — 2% + Xy,
Fgndiy = Xijoo — 2y + Xij_i (8)
(endiy = 1[4 01 — Xio1jel — Xonyj-1 + Xio1j-1)
Solving the first of equations (6) for x;; yields the following scheme:

Xy = 1/2a + Q71 {aijia, — x_1,)
— Fij(Xierjs1 — Xiolj+l — Xislg—1 + X1 1)
+ Wit — Xiyjo1) (9)
+ 1/2-].%' Pijxiviy — Xi_1y)
t 1/21;%‘ Qij(Xija1 — Xij_1) }

where the notation J2 = £ a=gn,23=gp,, and v~ = g;; was used. Qver-relaxation is
achieved by computing the new values from

Xnew = Xold + wlX — Xoa); 1 <= w < 2 (10)
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Figure 2 shows a 32-block grid where slope continuity of the grid lines makes the
block boundaries invisible. This is a complex grid since a C-type grid is embedded in an
H-type grid, leading to a singularity and producing volumes of non-rectangular shape.
This, however, does not pose a problem as long as the volume of an element is different
from zero. In Figure 3 a view of the block structure is presented.

e SNNE AN R RO R
.

Y axis
Q

-2

Figure 2. Multi-block grid around an airfoil comprising 32 blocks. Because of the slope continuity,

biock boundaries are not visible. Since a C-type grid is embedded in an H-type grid, singularities

arise, which do not pose any numerical problem as long as the volume of the triangular elemenis
remains finite

The solution process for a multi-block grid is achieved by updating the boundaries
of each block, i.e. by recciving the proper data from neighboring blocks and sending
overlapping data to neighboring blocks (see Figure 4). Then one iteration step is
performed using these boundary data, iterating all interior points. In the next step, then,
the newly iterated points which are part of the overlap arc used to update the boundary
points of neighboring blocks and thc whole cycle starts again, until a certain number
of iterations has been performed or until the change in the solution of two successive
iterations is smaller than a specified bound.

3. PARALLELIZATION FOR MULTI-BLOCK MESHES

3.1, Parallelization by domain decomposition

From Section 2 it should be clear how parallelization of a mulu-block code can be
achicved in a straightforward way. If there are more blocks than processors, they are
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Figure 3. View of the block structure of the airfoil muiti-block grid. The question of the shape of the
domain in the CD is not meaningful. In the CD there is only a set of 32 connected rectangles

Node i To Node k

From Node k

P

Figure 4. In 2-D each block sends edge information out to up to 4 neighbors and has to receive edge

information from up to 4 neighbors. Send and receive have 10 be synchronized only in a locse way,

that is, each node can continue its computation upon receiving the updating information, without

waiting for other nodes. Hence, the receive command must be a blocking one, because the program
execution has 1o be inlerrupted until the data have been received

distributed to the processors in such a way that the total number of grid points is
approximately the same. That mcans it may be necessary to start morc than one process
per processor, which is possible with the Unix Operating System (OS). It is possible with
the present grid generator to generate almost any desired number of blocks. However,
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there is a minimum number of blocks dictated by the complexity of the configuration,
So far the question of load balancing has not been addressed, which can be satisfied by
subdivision of existing blocks, which leads to the next topic: scalability. This means that
there must be a certain problem size on each single processor in order to have a high
ratio of computation time against communication (or transfer) time. Qbviously it is not
useful to distribute a fixed-size problem to a very large number of processors, ending up
with only a (cw grid points per processor. Here the advantage of the present multi-block
approach is striking. The problem can be run on a coarser grid on a small number of
processors such that a high ratio of computation against communication time is obtained.
The scaled problem, that is more grid points and morc blocks, can then be distributed on
a higher-dimensional hypercube so that the number of grid points on a single processor
remains about the same. This approach assumes that a large enough number of processors
is available. For a Teratlop machine , for ¢xample, most likely several thousand nodes
will be needed. Hence, for a grid of 10 million points, a block comprises several thousand
internal points, generating a compute-dominated problem. Thus, the specd-up observed
on the small grid will be ncarly the same as on the large one. This is clear since the ratio of
computational time and communication time, r¢r, remains almost unchanged. Therefore
the values measured on a low-dimensional hypercube can be used to predict performance
on a higher-dimensional cube (and similar ones in Reference 6), if the problem is scaled
accordmgly. Although the present investigations are restricied 10 a 32-processor version
of the hypercube, resuits will most likely remain valid for larger systems. In the following
it will be outlined why it is important 10 deal with the parallelization of the multi-block
grid code.

There have been many papers—for example, the excelient publication of Gustafson
et al.[7], where a large number of processors was already used. Despite these successful
calculations, there are two additional points to ponder, which so far have not been
demonstratcd, but are essental in the parallelization of real production CFD codes.
Firstly, the parallelization must not depend on domains that are of regular shape, e.g.
a rectangle or a box or any type of domain, which has to bc mapped on a simply
connected area. These cases are not relevant for practical purposes. Instead, speed-up
and efficiency have t0 be demonsirated for multi-block grids that form a completely
immegular pattern in the CD. This is mandatory, as was outlined in Section 2, to obtain
the most general grid line distribution. Secondly, the paralielization strategy maust not
depend on a nearest-neighbor basis for the blocks, e.g. the arrangement of blocks in a
mesh, In the multi-block case, blocks are simply numbered by the user and this block
number is used to map the block to the comresponding processor number where, for the
sake of simplicity, it is assumed that the number of blocks and processors are the same.
However, blocks could be numbered using some type of gray code in order to minimize
the total communication distance between the various blocks. So far no attemprt o do
this has been made. Regarding equation (9) it is clear that the computation work per
grid point is not very large, since the numerics are very simple. 1t has been estimated
that the computational work per grid point for the implicit solution of the system of
11 non-lincar equations (2-D) for hypersonic flow, incorporating thermo-chemical non-
equilibrium{2, 8), is a factor of 100-200 higher than for the solution of equation 9,
while the communication overhead increases roughly by a factor of 10, If one goes to
three space dimensions, rcr increases even more. Thus if a rcasonable speed-up can
be obtained for the simple grid generation equations, a much better speed-up can be
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expected for the flow equations solver. Since the grid generation code uses exactly the
same multi-block structure as the much more complicated flow solver, it is advisable to
investigate the grid generation code first, since this definitely provides a lower bound
for the speed-up and the efficiency of the parallelized code. With the experience of
this code it will be relatively straightforward to parallelize the aerothermodynamics flow
code[9].

3.2, Amdah?’s law revisited

Amdahl’s law, presented in 1967, equation (11), represents a type of barrier for parallel
applications with respect to achievable speed-up, if a fraction of the code has to be serial.
In gencral, Amdahl’s law severely limits the achievable speed-up but is not a limiting
factor for mult-block grids, as will be shown below. Next, we present this law in its
original form. Let 5 and p be the normalized serial and parallel fractions of the code
as measured on a uniprocessor. If the code is run on an n-processor massively parallel
system the computation time is 5 + p/n. The speed-up S therefore is

uniprocessor time s + p 1
multiprocessor time s +p/n s + p/n

S{n) =

(11)

For n — inf,§ = 1/s. If 5 is 1However, the law in this form does not account for the
fact that s and p can be functions of n. It simply refers to the fixed-sized problem and
therefore necessarily predicts a severe limitation in speed-up. The fixed-sized problem
constraint is avoided if the question is asked, as in Reference 7: how long will it lake to
run a parallel code on a uniprocessor? Let s/ and p’ be the corresponding values on the
multiprocessor system. The speed-up then is given by S, which is now a function of the
number of processors n and the problem size P (e.g. number of grid points):

s'(nP) + mp'nPy o
s'(nP) + p'(nP) n {n 1}s'(n.FP) (12)

S(np) =

where s’+p’=1 (normalized) was used.

One should keep in mind that s’ and p’ depend on the overall problem size, while
in equation {11} 5 and p are constants. It is therefore clear that s and s’ are different
quantities. If n equals 1024 and 5’ is 1%, a speed-up of 1014 is obtained, which actually
has been achieved in Reference 7. However, the question can be put in guite a different
conlext, For the present multi-block formuiation, Amdahl’s law is not applicable at all.
Regarding the construction of the multi-block grid, one has the situation that a compleicly
parailel design has alrcady been achieved; but, because of the lack of a parallel computer
in 1984 when this work was started, the parallel code had to be execuled on a scrial
machine. This was simply achieved by processing all blocks seguentially, but after each
itcration the necessary updaies had to be made, that is, the communication task on the
serial machine was exactly the same as on the paralle! system. Although in 1984 there
was no intention o write a parallel application, the structure of the multi-block code is
already parallel, so that the principal design remains unchanged.

A host and a node program were written for the parallel application. The only limitation
therefore comes from the ratio 7cr. However, it 1§ interesting 0 note that the ratio of
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communication lime per byte 10 the computation time per floaling point operation is
relatively constant for various generations of computers, e.g. the N-cube as described
in Reference 7 has a ratio of 1 MByte/s to 0.3 MFlops. The newer Intel iPSC/2 has a
ratio of 2.5 MByte/s 10 0.8 MFlops (sustained, if the SX option is used). This ratio is
approximately the same for the intracluster-bus of Suprenum[10] and even lower when
the Suprenum bus is doing the data transfer. Even if once anlicipates a node with 100
MFlops sustained rate (peak rate some 1 GFlops), a bus rate of 250 MByie/s is optimistic,
indicating that 7¢r remains relatively constant and at least will not be decreasing. In
Scction 4.3 some estimales are presented. This shows that speed-ups from slower sysiems
can be transferred to the forthcoming massively parallel systems since the value of ¢y
remains roughly the same.,

4. INSTALLATION OF THE PARALLEL MULTI-BLOCK MESH GENERATION
PROGRAM (PMGP) ON THE INTEL IPSC/2

4.1. Technical aspects of the iPSC/2

A detailed discussion of the technical aspects of the iPSC/2 is given in Relerence 11,
Here the prescntation is limited to explain the technicalities that are of importance for the
performance of the multi-block algorithm. The 1PSC/2 18 a privalc memory and massivcly
parallel system, whose hardware components are microprocessor industry standard. The
CPU is an Intcl 80386 processor with either an Intel 80387 arithmelic coprocessor (32-
bit : 0.25 MFlops, 64-bit : 0.210 MFlops) or a Weitek 1167 coprocessor (64-bit : 0.65
MFlops). The floating-point performance can be enhanced by adding the iILBXII interface
with a vector board (32-bit : peak 20 MFlops ; 64-bit : peak 6 MFlops). The topology of
the iPSC/2 is a hypercube; that is, if n = 27 is the number of processors, each processor
has d nearest neighbors. Therefore a maximum of 4 hops (node-to-node communication)
is needed for a message ransfer from the first to the last processor. Each node has seven
bidircctional channels allowing a maximum of 128 processors to be connected. The
direct connect routing module (DCM) is responsible for the link of any two nodes in the
hypercube network where intermediate nodes are used. After the message has arrived on
the target node, the communication channel is deblocked. DCM is nearly independent
of the CPU activity of the node. The transfer time, cven for short packets (100 bytes) is
independent of the number of intermediate nodes. A value of 274 us is given in Reference
12. Each node has its own OS, called NX/2. The whole sysiem 13 directed by a host
which runs the system resource manager (SRM). The SRM distributes NX/2 to all nodes
when the cube is started. NX/2 is responsible for the message passing beiween nodes,
the multi-tasking (e.g. if there is more than onc block per processor), and the memory
management. Node memory can vary from I t0 16 MBytes.

The maximum bandwidth, that is the highest transler rate between nodes, is 2.8
MBytes/s. For comparison, the iPSC/1 had 512 KByte per node, 80286, 8MHz, CPU and
a 0.03 MFlops arithmctic coprocessor. Each node has eight communication channels that
can be attached to a SCSI-bus (small computer system inicriace) to perform concurrent
[/O at a rate of 2.8 MBytes/s. As host, a 80386/80387 PC can be used for housing all
the compilers. If a deadlock occurs, the cube has 10 be reset from the host, which is
somewhat inconvenicnt if one works on a tcrminal that is distant from the host. The
cube can be partitioned into subcubes to make it a multi-user system,
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4.2, Algorithmic structure of PMGP

The parallel algorithm comprises two parts. The first part runs on the host computer,
while the second part is downloaded on all the nodes. In Table 2 a short description of
the host program is given, while Table 3 presenis the node program where all calculations
and communications are performcd. The host program simply initiates the computation
and collects the results from the single nodes. In the next section the details of the
communication are outlined.

4.3. Message-passing for PMGP

The 1PSC/2 disposes of a large number of system calls for message-passing. Since
updating of boundary values is nccessary after one iteration siep, somec type of
synchronization is needed. That means no strict synchronization is needed as in single
instruction multiple data (SIMD) machines, where at the same instant of time the same
statement on cach processor is execuied, but instead a type of loose synchronization
is nceded where the nodes are constrained 10 intermittently communicate with cach
other. There are therefore two stages in the algorithm, namely the compute phasc (onc
iteration step) and the communication phase (sending and receiving data). Since a loose
synchronization has to be established, the corresponding blocking send and receive
commands have to be used; that is, program exccution is suspended until the information
is moved to the buffer (send) or the information was received. The commands are shown
in Table 1.

Table 1. Simple blocking calls as used in PMGP

Message-passing calls:
csend(msgid, buf, length, node, pid)
crecv(msgid, buf, length)

Message information calls;

infotype{) : msgid of last message received
infonode() : mnumber of node sending message
infopid() : process id of message

General information calls:
myhost() : returns host id
mynode() : returns own nodc number
mypid{) i returns own process number

The routine csend sends a message of length bytes which resides in array buf
wilh the identifier msgid (positive integer) 10 the corresponding nodenumber node and
processnumber pid (positive integer). crecv waits for a message with identifier msgid
and stores it in array buf using length. Routine csend blocks the calling process until
the message 15 sent (no wait for acknowledgement), and routing crecv blocks the calling
process until the message is received. Tables 2 to 6 show how the communication is
performed.
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Table 2. Host program for the parallel mesh generation

H1 (Start) Prompt user for the cube dimension and name of input file.
H2 (Start host timers) Initialize elapsed timer and host timer 1o zero.

H3 (Start nodes) Open the hypercube with the requested dimension. Load the MGP node
program. Send block parameters.

H4 (Assemble block data) Assemble block data from each hypercube node. The mapping of
the hypercube nodes is simply performed by block number.

HS {Time) Read node timers and write out all host and node times.

H6 (Close hypercube) Return all nodes to SRM.

Table 3. Node program for the parallel mesh generation

N1 {Start timers) Inidalize all node performance limers.
N2 (Initial data) Receive block data from host and send signal 1o host.
N3 (Start) Reccive start signal to host.

N4 (Send block boundaries) Send boundary values to corresponding edges of neighboring
block. If neighboring block does not exist, no data are sent.

N§ (Receive block boundaries) Receive boundary valuces from corresponding edges of
ncighboring block. If neighboring block does not exist, no data are received.

Né (Iterate) Do exactly 1 iteration step.

N7 (Converge) Converged? If not go to N4, updating boundaries of neighboring blocks.
N8 (Time) Send node time w host.

N9 (Data) Send block data to host.

5. RESULTS FOR PMGP

5.1. Efficiency and speed-up measurements

Anensemble of 2,4, 8, 16 and 32 processors was used to run PMGP. For the configuration
of 2, 4 and 8 processors there is no processor communicating on all four edges. Only
when 16 or more processors are present are there at Icast some processors with the fulk
communication load. This is reflected in Figure 5. The ratio of boundary points to inner
points is 4/N (2-D) and 6/N (3-D), where N denotes the number of grid points in onc
dimension.

From Figure 5 it is clear that a certain problem size has 1o be provided 10 achieve
a good speed-up if 16 or more processors are used. A simple estimate of the time
consumed by the message-passing between neighbonng blocks (far node) can be done
straighiforwardly, assuming a message length from 100 to 1000 bytes, resulling in a
transfer ratc of 0.1 MByics/s, which is a fairly low transmission speed. Approximately 1
ms is needed for the transfer of a message (Figure 6). Since a maximum of four send and
receive calls 18 necessary in 2-D, this amounts to a tolal message transfer time of some
8 ms. Thercfore, in order to make this time negligible with respect 10 compulation time,
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Table 4. The hsting shows part of the main iteration loop of a node program. First information is
sent and then received from the neighboring nodes

C main iteration loop in node program
do 30 iter=1, max
c
c send own block dimensions for corresponding edges of
c neighboring processors
c neighboring processors are specified by values of ic(5,*)
c for a fixed edge (ic(5,*)=0) no neighboring processor exists
¢ in that case no information is sent (see subroutine sendbn)
C same holds for subroutine recvbn
c
call sendbn
c receive boundary data [rom neighboring processors
C... the denotation of edges as seen from neighboring processor
call recvbn( ic(5,1), 1, xw, yw, jl)
call recvbn( ic(5,2), 2, xs, ys, il)
call recvbn( ic(5,3), 3, xe, ye, jb)
call recvbn( ic(5,4), 4, xn, yn, il)
C
emesh = 0.0
C... update edges
do 10 edge=1,4
call bset(ic(3,edge), ic(d,edge), ic(5,edge), ic(6.edge),
* Xe,XN,XW,XS,Ye, YN,y W,Vs)
10 continue
C... perform one iteration step
call monly
sum(iter) = emesh
30 continue
C
c... send information to host
call csend(55, sum, 14, mh, 1)
end

80 ms should be spent on computation. Assuming a computation power of 1 MFlops and
some B0 floaling-point operations per grid point for the present problem, there should
be 1000 grid points per block, or some 32 peints per dimension, which amounts o an
{=10 (Figurc 6). This is a lower limit, since subroutine calls and arithmetic operations
performed with the contents of the messages have not been counied. For 64 points per
dimension, a speed-up of 14 is achicved with 16 processors (Figure 6).

It should be noted that the communication time for 32 points and 64 points is nearly
the same, since in the first case 2 x 4 x 32 byles have 1o be sent, and in the latter onc
2 x 4 x 64 bytes are needed (Figure 6). For these message lengths the transfer time is
approximalely constant, as mcasurements have shown.

If we now consider the 2-D (or 3-D) flow problem with thermo-chemical non-
equilibrium, which is 100-200 times morc computationally intensive than the present
grid generation problem, the following conclusions can be drawn, For 32 points per
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Table 5. Subroutine recvbn receives boundary data from neighboring block and updates respective
edge of own block

subroutine recvbn(nbl, edge, xbnd, ybnd, dim)

c receive edge number pnedge and block dimensions nil(), njl()
c from neighboring block with block number nbl

parameter ( maxdim = 32 )

integer edge, nbl, dim

real xbnd(maxdim), ybnd(maxdim)

real rmessg(2*maxdim)

if (nbl .ne. 0) then
c... message length in bytes
call crecv(edge, rmessg, 4*2*maxdim)
do 10 i=1, dim
xbnd(i)=rmessg{i)
ybnd(i)=rmessg(i+dim}
10 continue
endif
return
end

Table 6. Subroutine sendbn sends the updated boundary data to neighboring processors. Element
ic(6, 1) denotes the east side; ic(6, 2) (not shown) the north side, etc.

subroutine sendbn

maxdim = max(ilmax, jlmax)

scrd x, y boundary to corresponding edge of neighboring block nbl
pnedge is corresponding edge of neighboring block

il, jl are dimensions of own block

real x(ilmax, jlmax), y(ilmax, jlmax), ic(6, €)

integer i, j, maxdim

parameter (maxdim = 32)

real rmessg{2*maxdim)

06000

C... send values of east side
if (ic{5.1) .ne. O) then
do 10 j=1, jl
messg(j)=x(l-1, j)
rmessg(l+)=y(il-1, J)
10 continue
call csend(ic(6,1), rmessg, 4*2*jl, ic(5.1)-1, 1)
endif

... SAME CODE FOR OTHER SIDES
reum
end

dimension, some 11 x 4 x 32 bytes have to be communicated, resulting in about 1.2
ms transfer tume (as was measured; see Figure 6). Note that the relationship beiween
communication time and message length is non-linear, and longer messages are favored.
The maximum bandwidth of about 2.4 MBytes/s for messages 10 lar nodes 1s obtained for
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Table 7. Computing time against preblem size and number of processors. All values

are in milliseconds. There is a steep increase in time for the 16-processor configuration,

due to the full communication load, that is the maximal number of 4 neighboring
processors is reached for that configuration

Number of nodes 1 2 4 8 16 32
Poinis per node

30 x 30 8339 8470 8773 9201 12293 14209
60 x 30 17301 17593 18092 14758 23181 27424
60 x 60 35935 36156 36514 37453 49155 52976
120 x 60 73704 73999 74982 77350 102748 109906
120 x 120 149751 150454 151261 159199 204714 206856
240 x 120 305773 308323 310143 320745 401967 417301

Table 8. Efficiency with respect to problem size and number of processors is shown.

Values in parenthesis in the last column depict efficiency based on the 16-processor

results. A substantial decrease for the I6-processor performance is obscrved. The

reason is that with 16 processors the full communication load is felt, that is,
communication to four neighbors takes place

Number of nodes 1 2 4 8 16 32
Points per node
30 x 30 1 0.985 0.951 0.906 0.678 0.587
(0.865)
60 x 30 1 .987 0.960 0926 0.750 0.633
(0.845)
60 x 60 1 0.994 0.984 0.959 0.731 0.678
(0.928)
120 x 60 1 0.996 0.983 0.953 0.717 0.671
(0.935)
120 x 120 1 0.995 0.990 0.941 0.732 0.724
(0.990)
240 x 120 1 0.992 0.986 0.953 0.761 0.733
(0.963)

a length of 16 KByte. The total transfer time for the flow code therefore is in the range of
10 ms. If a ratio of 10 between computation time and communication time is demanded,
al lcast 100 ms are to be spent on computational work per block. To make calculations
simple, 10* floating-point operations per grid point arc assumed (a number that has been
supported by sequential calculations). With a computation power of 1 MFlops, 10 points
per block arc nceded; thal 18, [our interior points per dimension would be sufficient. This
rough estimate already shows that parallelization of general flow solvers will lead to very
high efficiencies on massively paraliel systems.

ClihPD wwwLfastio.com


http://www.fastio.com/

PARALLEL COMPUTING IN AEROSPACE, PART |

373

TCcaoaoTW

Table 9. Efficiency values converted to speed-up numbers. Speed-up decreases for the
16-processor configuration, since only for that configuration is the full communication
load obtained. Observe that speed-up is approximately a factor of 2 when the 32-
processor topology is used, Results are not speed-up measurements in the standard
sense, because comparison is with a monoblock example where no communication
takes place. However, a 16-block example on a uniprocessor would have the same
communication load as the parallel version. Therefore the results here are a lower
bound. As the results from 16 to 32 processors indicate, linear speed-up is received

Number of nodes 1 2 4 8 16 32
Points per node
30 x 30 1 1970 3.804 7.248 140.848 18.784
(1.730)
60 x 30 1 1.974 31.840 7.408 12.000 20,256
(1.690)
60 x 60 1 1.988 3.936 7.672 11.696 21.696
(1.856)
120 x 60 1 1.992 3.932 7.624 11.472 21.472
{1.870)
120 x 120 1 1.990 3.960 7.528 11.712 23,168
{1.988)
240 x 120 1 1.984 3.944 7.624 12.176 24.236
(1.990)
25
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Figure 5. Speed-up against the number of nodes. Problem size (points per node) used as parameter

ChhPD

wavwfastio.com


http://www.fastio.com/

374 1. HAUSER ET AL.

—&— ring —©— near neighbor —+— far nodes

—£— host-to-node —— node-to-host —5— multi-nodes to host

I Communication time [ms]

1000 % e R
_ . r |
= 2 s !
100 5= B S i ; ‘
10— S T . i
= —t ; =
VE———— ] = N
0.1 S b— LIS £ N BN 1B
1 10 100 1000 10000

Message length [bytes] —

Figure 6. Measured communication time agains! message lenglh for various lopologies on the
IPSC/2. Both scales are logarithmic

5.2. Discussion and outlook: parallelization of multi-block CFD-codes

Multi-block codes, introduced into CFD to handle the most geometncally complex
configurations in 2-D and 3-D, while retaining the computational efficiency of finite
differences, are unique with regard to parallelization. The implementation of matching
(overlapping) multi-block grids on massively parallel systems is straightforward, since
this algorithmic approach is inherently parallel; their implementation on a sequential
machine in the past was only dictated by the non-availability of parallel sysiems. On a
von-Neumann computer, blocks have to be processed in sequential order, performing one
iteration step, and then the boundaries have to be updated by sending rows or columns
from neighboring blocks. No loss in performance caused by domain decomposition will
oceur, since the possible convergence slowdown generated by the muit-block structure
is also present in the sequential case. This shows that exactly the samc algorithm can
be used on parallel systems; henee the parallel algonthm has in principal no additional
overhead compared to the sequential code. Modificauions arc nceded only o implement
the message-passing routines from the parallel OS. The resulting shape in the CD 1s of
no importance; there is only a set of connected rectangles or boxes, cach with 1s own
local CS. How edges or faces of neighboring blocks are maiched 0 each other is of
no concern to the user. The oricntation of the local CSs with respect to cach other is
completely done by the program[5], which is, however, much more complicated than
the relatively straightforward implementation of the message transfer. The advantage
of a local CS is that edges that have to be communicated arc casily identified. 1f, for
example, completely irregular grids—as in finite elements-—were used, some type of local
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CS has 1o be introduced (e.g. Chap 8 of Reference 13), in order 10 identify the maiching
points. Despite other disadvantages of finite elements as against finite differences (or
finite volume) in CFD([2], a local CS makes the assumption of a completely nregular
grid invalid. In addition, as is shown in Chap. 7 of Reference 13, parallelization of finite
elements demands a much bigger effort compared with multi-block grids.

The algorithm of the present paper works not only for any arbitrary 2-D geometry,
but also demonstrates that there is no dependence on arrays or any predefined topology
of processors. No nearest-neighbor topology is used because the block number simply
dectermines the processor, thus leading 10 the most gencral approach. Although PMGP is
not a computing-mntensive application, very good speed-ups can be achieved with 1000
or more points per block. Since the CFD code for the calculation of thermo-chemical
non-cquilibrium hypersonic flow ficlds is a factor of 100-200 more computing-intensive
than the present problem, using exactly the same data structure and topology, il is obvious
that the usc of parallel systems will result in nearly optimal efficiencics for a very large
number of nodes (1000 or more). Therefore, the next step is to parallelize the code
described in Reference 9, which is the theme of Part 11 of this paper{8]. Although special
libraries arc available on some parallel systems, ¢.g. Suprenum({9], Sec. 4.3 has shown
that only a handful of routines are necessary for loosely synchronized problems. These
routines, which are very basic, arc available on all message-passing systems. Therefore,
the implementation of the present code on other massively paraliel systems demands only
minor changes; e.g. a direct implementation on the CrOS 111 as described in Reference
13 or on the Suprenumn machine would be possible.

From the foregoing it is clear that the overlapping multi-block concept is ideally suited
for massively parallel sysiems, combining great geometric flexibility with high efficiency
and speedup for a very wide class of PDEs. It has been shown that for the simple system
of two elliptical grid generation equations, high speed-up is obtained, and from eguation
(12) high efficiency for a large number of nodes can be predicted for all problems with
sufficient computational demand, which is satisfied in applications in CFD. Thus the
multi-block concept is a viable tool to gain the orders of magnitude in computation
powcer nceded for future acrospace applications.
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