
AIAA-2004-1091

JUSTGRID
1

A PURE JAVA HPCC GRID ARCHITECTURE

FOR MULTI-PHYSICS SOLVERS

USING COMPLEX GEOMETRIES.
Thorsten Ludewig2*, Jochem Häuser*, Torsten Gollnick*

and Hans-Georg Paap**

* Univ. of Applied Sciences and Dept. of High Performance Computing
Center of Logistics and Expert Systems (CLE) GmbH, Salzgitter, Germany

** HPC Consultant, Barbing, Germany

1 This name is due to Dr. Jean-Luc Cambier, U.S. Air Force Propulsion Directorate, EAFB
2 This paper is part of the PhD work of the first author.

42ND AIAA
AEROSPACE SCIENCES MEETING AND EXHIBIT, RENO, NEVADA

5-8 JANUARY 2004

30. December 2003

©2004 HPCC, DEPARTMENT OF HIGH PERFORMANCE COMPUTING AND COMMUNICATION,
CLE, CENTER OF LOGISTICS AND EXPERTSYSTEMS GMBH, SALZGITTER, GERMANY

Abstract

After the Earth Simulator, built by NEC at the
Japan Marine Science and Technology Center
(JAMSTEC) on an area of 3,250 m2

(50m×65m), began it's work in March 2002
with the outstanding performance of 35,860
Gflops (40 Tflops peak) [1], numerous scientists
opted in favor of the high-performance compu-
tation and communications (HPCC) roots, sug-
gesting to build again Cray type vector super-
computers that dominated scientific computing
in the mid seventies. On the other hand, other
major industrial players in supercomputing, for
instance, IBM, Sony, and Toshiba, announced a
new processor design for the upcoming Sony
Playstation 3 called Cell and, according to these
companies, a Cell processor should deliver
about one trillion floating-point calculations per
second (Tflop). Cell would be roughly a 100
times faster than the current Pentium 4 chip run-
ning at 2.5 GHz. Cell will most likely use be-
tween four and 16 general-purpose processor
cores per chip [2]. If one can provide enough
main memory for such a processor, a formidable
and inexpensive parallel system linked by a very
high bandwidth interconnect could outperform
the Earth Simulator. The size of such a cluster
would fit in the average kitchen and the off-the-
shelf technology would cost only a fraction of
the Earth Simulator. It should be remembered
that the computer games industry is responsible
for the revolution in high end 3D graphics cards
that convert any PC into a most powerful graph-
ics workstation. It should be obvious, despite
the computational power of the Earth Simulator,
that this definitely is not the road of HPCC for
general scientific and engineering computation.

“I hope to concentrate my attention on my research
rather then how to program”, says Hitoshi Sakagami, a
researcher at Japan's Himeji Institute of Technology and
a Gordon Bell Prize finalist for work using the Earth
Simulator [1].

We fully agree with this statement, and this is
one of the major reasons that we have chosen
Java as our high performance computing lan-
guage. Programming vector computers is a diffi-
cult task, and to obtain acceptable results with
regard to announced peak performance has been
notoriously cumbersome. On the other hand,
Cell like systems with many processors on a sin-
gle chip need to be programmed in a multi

threaded way. Threads are a substantial part of
the Java programming language. Java is the only
general programming language that does not
need external libraries for parallel program-
ming, because everything needed is built into
the language. In addition, there are major addi-
tional advantages of the Java language (object
oriented, parallelization, readability, maintain-
ability, programmer productivity, platform inde-
pendence, code safety and reliability, database
connectivity, internet capability, multimedia ca-
pability, GUI (graphics user interfaces), 3D
graphics (Java 3D) etc.) which were discussed
in detail in [6-11]. In the current paper, we pre-
sent the next stage in the design of an internet
capable parallel Java based multi-physics solver.
The overall task is to build a fast, efficient, port-
able, and platform independent collaborative
scientific and engineering parallel multi-physics
simulation environment for visualization and
distributed computing over the Internet, using a
three tier client-filter-server approach. The ap-
plications in this paper are taken from aero-
space.

1 The Java Ultra Simulator Technol-
ogy (JUST) Grid

The latest version of Java is a serious competitor
to the traditional HPCC programming languages
like FORTRAN or C/C++ [10, 11]. The single-
processor performance of a Java code is now on
par with C++, and the speedup on common
symmetric multi processor (SMP) machines is
excellent.

There exists the JUSTGrid framework which is
a software platform providing the possibility to
simplify as well as to speed up solver develop-
ment. Among the additional features of JUST-
Grid are the handling of complex 3D grids, both
structured and unstructured.

JUSTGrid is the basis for JUST (Java Ultra
Simulator Technology) that is a revolutionary
computing software that dramatically improves
the ability to quickly create new kinds of soft-
ware systems across the whole field of science

3 of 14

Table 1: Sequential matrix multiplication using a 30 times 30
matrix doing 10000 iterations on a Linux Pentium 4 PC

Runtime (2GHz, Pentium4, 1GB Memory) time in s
Sun JVM 1.4.2_02 (-server) 2,12
GNU gcc version 3.3.1 (-O3 -mcpu=pentium4) 3,16

and engineering, embedded in
an Internet-based environment.
JUSTGrid is a software plat-
form and virtual computing en-
vironment that enables scien-
tific and engineering computa-
tion of large-scale problems in
an Internet-based computa-
tional grid environment, inte-
grating computer resources at
different, geographically dis-
tributed, sites. JUSTGrid en-
ables the user to create his
simulation software at the cli-
ent site at run time by using a
Java based browser GUI. The
solver package composed by this GUI is sent in
binary form to the server site, replacing the de-
fault simulation solver package.

JUSTGrid is a completely Java based software
environment for the the user/developer of HPC
software. JUSTGrid takes care of the difficult
tasks of handling very complex geometries (air-
craft, spacecraft, biological cells, semiconductor
devices, turbines, cars, ships etc.) and the paral-
lelization of the simulation code as well as its
implementation on the Internet. JUSTGrid
builds the computational Grid, and provides
both the geometry layer and parallel layer as
well as an interface to attach any arbitrary solver
package to it. JUSTGrid is implemented on the
client site, where the user resides, and on the
compute server where the computations are to
be performed. It also can access one or more
data servers, distributed over the Internet. A de-
fault solver package resides on the server site.
For instance, this may be a fluid dynamics
solver. If the client decides that it will use this
solver, the necessary data needs to be collected
and sent to the server. In case a totally different
solver is needed, e.g., a solver for Maxwell's
equations to compute, for instance, the electro-
magnetic signature of a ship or aircraft or to
simulate the trajectories of an ionized plasma
beam of an ion thruster, the correct solver object
has to be sent from the client to the server at run
time. As described above, the new solver is cre-
ated through the GUI at the client site at run
time. This solver object is sent in binary form to
ensure code security. If the solver object is writ-
ten in Java, the Remote Method Invocation

(RMI) class is used, if not, the Common Re-
quest Broker Architecture (CORBA) or the
Java Native Interface (JNI) is employed to inte-
grate so called legacy solvers. The server does
not need to know anything about the solver as
long as the solver interface is correctly imple-
mented. The parallelization is entirely based on
the Java thread concept. This thread concept has
substantial advantages over the PVM or MPI li-
brary parallelization approach [6-7, 12-13],
since it is part of the Java language. Hence, no
additional parallelization libraries are needed.

JUSTGrid also provides a third layer, the solver
package layer, to be implemented on the client
site. This layer is a Java interface, that is, it con-
tains all methods (functions in the context of a
procedural language) to construct a solver
whose physics is governed by a set of conserva-
tion laws. An interface in the Java sense pro-
vides the overall structure, but does not actually
implement the method bodies, i.e., the numeri-
cal schemes and the number and type of physi-
cal equations. This JavaSolver-Interface there-
fore provides the software infrastructure to the
the other two layers, and thus is usable for a
large class of computational problems based on
finite volume formulation. It is well known that
the Navier-Stokes equations (fluid dynamics),
Maxwell's equations (electromagnetics, includ-
ing semiconductor simulation) as well as Schrö-
dinger's equation (quantum mechanics) can be
cast in such a form. Thus, a large class of solv-
ers can be directly derived from this concept.
The usage of this solver package, however, is
not mandatory, and any solver can be sent by
the client at run time. All solvers extend the ge-

4 of 14

Illustration 1: JUSTGrid a framework for HPCC in engineering, science and life sci-
ences.

3D Complex Geometries

Parallelization

Dynamic Load Balancing

Internet

Collaborative
Engineering Outsourcing

Interactive
Steering

System
Security

VisualizationSolver

Navier Stokes
(fluid dynamics)

Maxwell
(electromagnetics)

Schrödinger
(quantum mechanics)

Surface
Conversion

Debugging
Session Tracking

Results

neric solver class, and in case a solver does not
need to deal with geometry, the generic solver
class is used directly instead of the conservation
law solver class.

JUSTGrid provides the coupling to any existing
solver, but freeing this solver from all the un-
necessary burden of providing its own geometri-
cal and parallel computational infrastructure.
Because of Java's unique features, JUSTGrid is
completely portable, and can be used on any
computer architecture across the Internet ,as
long as a Java Runtime Environment (JRE) is
provided.

The online view of the solution progress gives
an impression of what is going on in during a
computation and should be used as a steering
aid. It is not meant as a replacement for visuali-
zation software like TecPlot™ or Ensight™.

2 JUSTGrid Simple
Frontend

This JUSTGrid simple
frontend is a rapid proto-
type to demonstrate the
simplicity of a well de-
signed GUI for a 2D mono
block Euler solver. It con-
verts GridPro™ and
TecPlot™ grid files into a
validated XML file format
storing additional informa-
tion: description, physical
parameters and boundary
conditions. The XML file
with its corresponding DTD
(Document Type Defini-
tion) along with the result
of the computation is auto-
matically stored as a ZIP-
file into the user's file sys-
tem with the file extension
GRX. The ZIP-file format is a well known for-
mat on a wide range of computer systems
(UNIX/Linux, Windows, MacOS, etc.) and can
be extracted with tools like Java's JAR, UNZIP
or WinZIP. This frontend acts also as a control
center for the Euler solver. Dealing with the
Java Media Framework one has the possibility
to render video files from the solution domain
during the computation, employing the inte-

grated video player to display the solution video
in real time. The integrated video player acts
like a normal video player, for instance, the
usual commands, forward, pause and reverse
playing are available. In JUSTGrid remote data
visualization along with data compression and
feature extraction as well as remote computa-
tional steering is of prime importance. Since
JUSTGrid allows multiple sessions, multiuser
collaboration is needed. Different visualization
modules are needed, but here a computational
fluid dynamics (CFD) module, allowings the pe-
rusal of remote CFD data sets is being devel-
oped, based on the Java3D standard.

In large simulations, grids with millions of cells
are computed, producing hundreds of megabytes
of information during each iteration. Depending
on the numerical scheme, several thousand itera-

tions may be needed either to converge to a
steady state solution or to simulate a time-de-
pendent problem. Hence, a fast connection is
needed to move data to the client where it can
be analyzed, displayed or interacted with in or-
der to navigate the parallel computation on the
server. Therefore a visual interactive package,
termed the JUST VVTK (Virtual Visualization
Toolkit) is provided (illustration 17 on page 14).

5 of 14

Illustration 2: A simple JUSTGrid front-end for a 2D mono block solver. The 3D mono
block solver is being developed. Upon testing, this solver is merged with the parallel infra-
structure of the JUSTGrid.

3 JUSTGrid Features at a glance

• Replace the default solver with your own
solver (mathematics).
The design of JUSTGrid allows to replace
every default computation relevant class
(Solver, Cell, SessionHandler, BoundaryHan-
dler, ...) on the server except the Session and
the Master Implementation.

• Exchange the solver online during the
computation.
The exchange of a specific class on the
JUSTGrid server can be initiated while the
computation is running without a restart cy-
cle.

• Dynamic load balancing for free on SMP
Architectures.
Dealing with multithreaded architectures
transfers the responsibility for the load bal-
ancing from the applications to the operating
systems. Modern operating systems like Sun
Solaris are very efficient in distributing the
thread load on the available system CPUs.

• Simple geometrical model for the pro-
grammer.
JUSTGrid frees the programmer from deal-
ing with complex geometries. The program-
mers view on a cell is always in a mathemati-
cal universe where every edge has a normal-
ized length 1. The transformation from the
physical- to the mathematical- coordinate
system is done by JUSTGrid.

• Simple Solver API (interface)
One thing we kept in mind during the whole
design process it was Einstein he said: Make
it as simple as possible but not simpler. For

Example if one like to write his own multi-
block solver he has to implement only one
method named solve. For other types of
solvers there are only a few more methods to
implemented. Illustration 5 shows an UML
class diagram of the JUSTGrid solver inter-
faces.

• OnlineVisualization on demand
JUSTGrid provides access to all computa-
tional data in the solution domain at any state
of the computation. Illustrations 3 and 14
showing online visualizations of the solution
domain.

• Collaborative engineering
Via a unique Session-ID multiple clients are
able to connect to the same compute session
on the server. As an example: if an engineer
wants to ask an expert about the correctness
of his running computation the engineer
sends the Session-ID to the expert, he could
now connect to the compute session and
visualize the running computation online and
give his comment back to the engineer.

• Multiple sessions on one server.
The JUSTGrid server is able to run as many
sessions as you want; it is only limited by the
available resources on the server system.

• Application and network security
Java has a very smart security architecture
that protects your code and your data from
unauthorized access or modification. JUST-
Grid benefits from the application security
features and uses the network security layer
for the client/server communication.

• Loaders and writers for structured and
unstructured grids and TecPlot™ data
files are available.
Data files could be stored on the client as
well on the server side.

• Modern object oriented software architec-
ture
The object oriented architecture allows to
benefit from techniques like inheritance, data
encapsulation and message passing. These
are some of the features that make the code
more robust and maintainable.

6 of 14

Illustration 3: Online view of the solution progress (video pro-
duction).

4 JUSTGrid Software Architecture

With a distributed computing system, for exam-
ple an engineer at a workstation running a simu-
lation on a supercomputer, the engineer would
like to see the computation just as if it where
happening on the workstation. The Java Remote
Method Invocation (RMI) is one way to do this:
the engineer (client) manipulates objects with a
user interface, but the actions he performs (the
method invocation) are actually performed on
objects on the supercomputer (server). This
transparent distribution of the computation and
steering are vital if we are to provide both the
immediacy of a worksta-
tion code with the compu-
tational power of the su-
percomputer.

If the client establish the
first connection to the
server and requests a new
session a random 64Bit
Session-ID is created on
the server and send back to
the client. Every further
action to the session is
bound to that Session-ID.
With a valid Session-ID
many clients are able to connect to the same ses-
sion and gives the engineers the possibility to
steer or visualize the computation from many
different clients (collaborative engineering). An-
other advantage of JUSTGrid is if the internet
connection to the server goes down a client can
easily reestablish the connection to server when

the internet connection becomes up using the
Session-ID. During the inter-
net connection is down the
computation does not stop and
no data will be lost. Addition-
ally to the communication
with RMI JUSTGrid has also
implemented a streaming
server for large data files be-
cause of RMI is packed ori-
ented and inefficient for large
continuos data sets.

4.1 Solver Interface Class
Diagram (UML)

Illustration 5 shows the class
diagram of the JpSolver in-

terface. This simple interface has to be imple-
mented with the numeric for the problem to be
solved. The JUSTGrid automatically starts one
solver per block or domain (illustration 8 on
page 9) and handles the boundary update after
each iteration. As default a loose synchroniza-
tion is performed that means if all neighboring
blocks of a current block are become ready with
the actual iteration the boundary update for the
current block will be done by the JUSTGrid
JpBoundaryHandler. After the boundary

update the solver (block) starts for the next it-
eration. This synchronization strategy increases
dramatically the efficiency of the dynamic load
balancing.

7 of 14

Illustration 5: UML Diagram for the JUSTGrid Solver Interface

interface

cle.just.share.JpMultiblockSolver

+void initSolver(JpBlock block, int nodeId)

interface

cle.just.share.JpGenericSolver

+void initSolver(int maxNumberOfNeighbors, int nodeId)
+void preSolveUpdate(int iteration)
+void postSolveUpdate(int iteration)
+void finishSolver()
+void setNeighborObject(JpSolver neighborObject, int edge)

Exception

cle.just.share.JpSolverException

+ JpSolverException()

+ JpSolverException(String message)

+String toString()

 String message

interface

cle.just.share.JpSolver

+boolean solve(int iteration)
+Object getDataObject(int dataId)
+void setDataObject(int dataId, Object object)

Illustration 4: JUSTGrid Architecture Overview. The server itself, in principle, can be
distributed over the internet.

 Internet,
 Intranet

Solver/Code Development

Visualization

Collaborative Engineering

Server

Session-ID

Session-ID

Session-ID

Session-ID

4.2 Server Class Diagram

The central class on the server side is JpMas-
terImp. It provides the remote view of the cli-
ent onto the server implementing the JpMas-
ter interface. It is responsible for the creation,
monitoring and deletion of the servers sessions
and io stream severs. The JpIoStream-
Server is used to transport large amount of
data sets between client and server where the
packet oriented RMI (Remote Method Invoca-
tion) is inefficient. Before the JpMasterImp
is started on the server machine the
rmiregistry has to be started on the same
computer. The
rmiregistry is
a java based nam-
ing service that as-
sociates a name
(String) with an re-
mote object and is
part of the Java 2
Standard Edition.
This registry gives
the client the ability
to get in contact
with a registered
JpMasterImp
object.

4.3 Session Class Diagram

In illustration 7
the JpSes-
sion provides
all functional-
ity's for interac-
tive steering of
a computation
like initializa-
tion, data trans-
fer, start and
stop. The
JpSolver-
Handler is
responsible for
the initializa-
tion and moni-
toring of all

compute nodes. that are represented by the
JpNodeImp class. It is also dealing with the
JpBoundaryHandler which is responsible
for the boundary update. If the computational
problem requires a totally different initialization
or data transfer, e.g. integration of legacy FOR-
TRAN code, the default JpSolverHandler
and JpBoundaryHandler can also be re-
placed on demand in the JUSTGrid framework
like the solver or the cell implementation.

8 of 14

Illustration 6: UML diagram of the JUSTGrid Server classes

interface
cle.just.share.JpIoStreamStatus

Remote
interface

cle.just.share.JpMaster

Remote
interface

cle.just.share.JpSession

Serializable
...server.JpIoStreamStatusImp

Runnable
cle.just.server.JpIoStreamSession

interface
cle.just.share.JpServerSession

UnicastRemoteObject

JpSession

JpServerSession
cle.just.server.JpSessionImp

UnicastRemoteObject
cle.just.server.JpMasterImp

Runnable

cle.just.server.JpIoStreamServer

Illustration 7: UML digram for JUSTGrid Session classes

0..*

0..*

0..*

UnicastRemoteObject
cle.just.server.JpSessionImp

Runnable
cle.just.server.node.JpNodeImp

cle.just.server.node.JpNodeStatusImp

interface
cle.just.share.JpNodeStatus

interface
cle.just.share.JpServerSession

Remote

interface
cle.just.share.JpClientSession

java.io.Serializable
Runnable

cle.just.share.JpSessionEvent

ObjectInputStream

...server.JpObjectInputStream

interface
cle.just.share.JpSolver

Remote

interface
cle.just.share.JpSession

interface
cle.just.share.JpSolverHandler

Runnable
cle.just.server.JpSessionMonitor

ClassLoader
...server.JpSessionClassLoader

4.4 Multiblock Class Diagram

The illustration 8 shows the class diagram of the
JUSTGrid multiblock implementation including
the loader- and writer- packages and its contain-
ing classes.

5 Threads

The thread concept as the basic parallelization
strategy, delivers an unlimited number of op-
tions to speed up parallelization, since fine tun-
ing by threads on all levels of parallelization
(i.e, domain decomposition, numerical algo-
rithm, loops etc.) of a computation is possible.

5.1 What are Threads?

Multithreaded programs extend the idea of mul-
titasking one level further such that individual
programs (processes) will appear to perform
multiple tasks at the same time. Each task is
called a thread which is the short form for
thread of control. Programs that can run more
than one thread at a time are said to be multi-
threaded. A thread consist of three parts : a vir-
tual CPU, the code to be executed and the data
the code works on. (see Illustration 9)

5.2 Threads in the JUSTGrid framework

In JUSTGrid, each
subdomain is run
within its own
thread, and is com-
pletely independent
of all other threads
(macroscopic paral-
lelization). The
mapping of threads
onto the set of proc-
essors as well as
thread scheduling is
entirely left to the
underlying operat-
ing system.

The issues of static
and of dynamic
loadbalancing are
not the concern of
JUSTGrid running
on a single SMP
machine. The situa-
tion is different for
cluster computing.

Within the thread for a singel subdomain, addi-
tional threads can be started, for instance to par-
allelize the numerical algorithm itself (micro-
scopic parallization).

Illustration 12 in Section 6.1.1 on page 10 give a
good impression about the small amount of
scheduling overhead dealing with threads. A
straightforward rule is to use a minimum of 4

threads per system
processor but not
to exceed than 512
threads per proces-
sor.

9 of 14

Illustration 8: UML class diagram of the JUSTGird multiblock implementation

1..*

1..*

1..*

1..*

java.io.Serializable

JpCell
+NUMBER_OF_FACES:int

 volume:double

 faceSurface:double[]

java.io.Serializable

interface

JpBoundaryHandler

+wall:void

+inflow:void

+outflow:void

+init:void

java.io.Serializable

JpVertex
+x:double

+y:double

+z:double

+JpVertex

JpBlock

+NUMBER_OF_FACES:int

-jpVertex:JpVertex[][][]

-jpCell:JpCell[][][]

-boundaryHandler:JpBoundaryHandler

+JpBlock

+setJpFace:void

+setJpVertex:void

+getJpVertex:JpVertex

 jpFace:JpFace[]

 jpFaces:JpFace[]

 volumeI:int

 volumeJ:int

 volumeK:int

 jpVertexCount:int

 uniqueId:int

 blockNumber:int

 blockName:String

JpFace

-jpBlock:JpBlock

+JpFace

+setJpFacePart:void

 parentBlock:JpBlock

 faceNumber:int

 jpFacePart:JpFacePart[]

 jpFaceParts:JpFacePart[]

JpFacePart

+JpFacePart

 parentFace:JpFace

 partNumber:int

 partWidth:int

 partHeight:int

 partX:int

 partY:int

 orientation:int

 boundaryCondition:int

 neighborBlockNumber:int

 neighborFaceNumber:int

 neighborFacePartNumber:int

 neighborFacePart:JpFacePart

loaders

+JpPlot3dLoader

+JpParsingErrorException

+JpLoader
+JpCommandLoader

+JpLoaderAdapter
+JpBoundaryLoader

writers

+JpPlot3dWriter

+JpWriter

+JpWriterAdapter
+JpCommandWriter

+JpBoundaryWriter

+JpCommandReferenceWriter

Illustration 9: A thread or execu-
tion context

CPU

Code Data

6 Java Performance

6.1 Scaling

6.1.1 Simple Numeric Benchmark

In this ultra-simple
program, many iden-
tical threads are used
for simple arithmetic
computing multiplica-
tion's and division's.
It is an embarrass-
ingly parallel prob-
lem, meaning that the
threads do not have to
communicate, and
thus there is no need
for thread synchroni-
zation.

The code computes a
fixed number of mul-
tiplication's and division's and it splits the work
among a variable number of threads. These
threads then are mapped to the processors by the
operating system, relieving the user of the need
to employing any kind of message passing li-
brary as well as a load balancing algorithm. The
code runs on any kind of platform as
long as a Java virtual machine is
available.

The purpose of this code is to deter-
mine whether multi-threading pro-
duces a parallel (linear) speedup on
the target machine.

Every benchmark in the single threaded and also
in the multi threaded benchmark was done 8
times in the same Java runtime environment.

The performance losses at about every 8 CPUs
noticed in illustration 10 might be a behavior of
the hardware architecture of the Sun Micro-
systems Enterprise 10000 server.

6.1.2 Multi-threaded Simple Numerics

Illustration 12 shows that even in case of some
512 threads per CPU
the overall computing
time rises only
slightly

10 of 14

Illustration 12: This benchmark shows the very small amount of overhead using threads. This
benchmark was done on a Sun Microsystems Enterprise 6000 with 28 CPUs.

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

4
2

5
6

1
1
2

2
2
4

4
4
8

8
9
6

1
7
9
2

3
5
8
4

7
1
6
8

1
4
3
3
6

0
50

100
150
200
250
300
350
400
450
500
550

MultiThreaded Simple Numerics

Computation time

Number of Threads

T
im

e
in

 s
ec

on
ds

Illustration 10: Simple numeric benchmark on a Sun Microsystems Enterprise 10000 with 64
UltraSPARC II CPUs and 256GB main memory.

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000

0

8

16

24

32

40

48

56

64

72

Simple numeric without communication 10e11 iterations

Time in s

Speedup

Number of CPUs

T
im

e
in

 s
ec

on
ds

Illustration 11: The Enterprise 10000 running all 64 CPUs with 100% load
during the computation.

6.2 Dynamic load balancing

6.2.1 Mandelbrot Benchmark

This code tests the self-scheduling of threads.
Computation of the well-known Mandelbrot set
utilizes a 2D grid in the complex plane, and an
independent iterative calculation takes place at
each grid point, where the number of iterations
varies greatly from point to point. We partition
the grid into blocks; we want each block large
enough that thread overhead will be much less
than the computational work associated with the
block, and we want the blocks small enough that
there are many blocks for each processor. As
explained above, each processor takes a block
from the pool, computes it, then gets another
block.

Although this program is still embarrassingly
parallel, it exhibits a new feature, namely the
computational load depends on the position
within the solution domain, which is a rectangle
in this case. Dynamic load balancing would be
needed to run such an application successfully
on a large parallel architecture. Using PVM or
MPI, the user has to provide a sophisticated al-
gorithm to achieve this feature, requiring a
lengthy piece of code. Using the Java thread
concept, dynamic load balancing is provided by
the operating system.

The parallel Mandelbrot concept is simple.
There is a nonlinear mapping in a finite region
of the complex plane (rectangular). Since the
mapping can work on any finite region without
interference to any other region being com-
puted, the parallelization strategy is a simple 1D

domain decomposition. This is as far as the idea
goes. The final threaded code, however, shows a
fair degree of complexity. This example can be
used to demonstrate the effect of dynamic load
balancing achieved by the Java thread concept.

Illustration 13 shows a linear speedup is
achieved with that configuration.

6.3 Java vs. C++

6.3.1 Matrix multiplication

6.3.1.1 Sequential Matrix Multiplication

A sequential (1 thread) matrix multiplication us-
ing a 30 times 30 matrix doing 10000 iterations
on a single processor Pentium 4 PC running
Linux.

Exactly the following source was used for both
benchmarks. (C++ and Java)
// get start time here
 for(n=0; n<maxIterations; n++)
 {
 for(i=0; i<dim; i++)
 {
 for(j=0; j<dim; j++)
 {
 for(k=0; k<dim; k++)
 {
 c[i][j] += a[i][k]*b[k][j];
 }
 }
 }
 }
// get end time here

a and b are the source and c the destination ma-
trix. dim and maxIterations aren't con-
stant variables so the compilers are not able to
do an unroll loop optimization.

11 of 14

Illustration 13: Mandelbrot Set dimension 7200 x 4800, max iterations 5000 running 400 threadson a
Sun Microsystems Enterprise 6000 with 28 processors.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0,0

2,5

5,0

7,5

10,0

12,5

15,0

17,5

20,0

22,5

25,0

27,5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

Mandelbrot benchmark

speedup

efficiency

Number of CPUs

S
pe

ed
up

The most important result of this bench is the
enormous speed improvement after the two war-
mup phases in the Sun Java HotSpot Server
VM. This runtime is about 1.5 times faster then
the compiled C++ binary.

Due to a Linker error we could not use the
-fast option with the Intel compiler.

6.3.1.2 Multithreaded Matrix Multiplication

In this configuration the C++ and the Java run-
times are on par.

7 Internet based HPCC and Security

These days we sometimes are talking about
internet based HPCC as the holy grail for all of
our HPC problems. But only a few people are
talking about internet based SecureHPCC for
our sensitive data.

Today the Java programming language with the
Java Runtime Environment is the best way to
get a SecureHPCC over the Internet. Java grows
up with the Internet (World Wide Web) boom
and it was developed always with the security
problems in mind. Unlike the other popular pro-
gramming languages ('C/C++', FORTRAN, ...)
and development environments the overall sys-

tem security was always one of Java's key fea-
tures.

7.1 Java Language Security

Like even all OOP (Object-Oriented-Program-
ming) languages Java has different access modi-
fier/level (private, default, public)
for data protection. Attributes that are declared
as final must not be changed and Java does
not have pointers like 'C/C++' with the possibil-
ity to access arbitrary data at any memory loca-
tion.

7.2 Java Security Model

The Java 2 SDK security architecture is policy-
based, and allows fine-grained access control.
When code is loaded, it is assigned "permis-
sions" based on the security policy currently in
effect. Each permission specifies a special ac-
cess to a particular resource, such as "read" and
"write" access to a particular file or directory, or
"connect" access to a given host and port.

7.3 Java Secure Socket Extension (JSSE)

The Java Secure Socket Extension (JSSE) en-
able secure Internet communications. It includes
functionality for data encryption, server authen-
tication, message integrity, and optional client
authentication. A service can provide the secure
passage of data between a client and a server
running any application protocol using JSSE.

8 Results from JUSTGrid

Illustration 3 on page 6 shows a Lava Nozzle
with the Euler 2D code.

As a reference sample to check the correct com-
munication (boundary update) of the JUSTGrid
we computed a 3D cone with the JUST Euler

12 of 14

Table 2: A sequential (1 thread) matrix multiplication using a 30 times 30 matrix doing 10000 iterations on a single proces-
sor Pentium 4 PC running Linux.

Runtime (2GHz Pentium 4, 1GB Memory) 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run
3,15 3,19 3,22 3,16 3,15 3,17 3,16 3,16

3,23 3,23 3,25 3,23 3,23 3,23 3,23 3,25

3,86 3,88 3,90 3,90 3,90 3,90 3,89 3,90

3,55 3,51 2,12 2,12 2,12 2,12 2,13 2,12

GNU g++ -O3 -mcpu=pentium4 -march=pentium4
-Wall
(Version 3.3.1)
Intel icc -O3 -mcpu=pentium4 -march=pentium4
(Version 8.0)
Sun Java HotSpot Client VM (Version 1.4.2_02-
b03)
Sun Java HotSpot Server VM (Version 1.4.2_02-
b03)

Table 3: Multithreaded matrix multiplication using a 100 times
100 matrix doing 10000 iterations with 400 threads on a 26
CPU Sun Microsystems Enterprise 6000.

Runtime time in s
1.1.8_14 516,94
1.2.2_08 38,97
1.3.0_03 Server 37,47
1.3.1_02 Server 21,69
1.4.0_01 Server 19,51
1.4.1_02 Server 17,31
C++ - GCC 26,65
C++ - Forte 6u1 17,26

3D solver and CFD++ shown in the Illustrations
15 and 16.

Illustration 14 shows a 3D online visualization
(client) of a sphere during the computation with
the JUST Euler 3D solver (server) demonstrat-
ing the high performance client server commu-
nication and visualization of JUSTGrid.

Another visualization with the JUSTGrid Vir-
tual Visualization Toolkit (VVTK) is shown
with Illustration 17 on page 14. It displays the
surface of the EXTV the European eXperimen-
tal Test Vehicle.

9 Conclusions and Future Work

9.1 Achieved or shown

• With JUSTGrid a modern, well structured,
easy to use and extensible framework for
HPCC is provided.

• Collaborative engineering, online visualiza-
tion and advanced security features are im-
plemented in JUSTGrid.

• The code developer is freed from dealing
with complex geometries, dynamic load bal-
ancing and inter block or domain communi-
cation.

• We obtain dynamic load balancing for free, if
the CPU workload is high enough and the
number of compute threads is about 4 times
higher than the number of processors. These
conditions can be easily ful-
filled with our computational
problems in mind.

• A numerical framework for a
system of hyperbolic conserva-
tions laws is installed, based on
the integral form of the conser-
vation equations

• Today Java has become THE
modern object oriented lan-
guage for HPCC, providing ex-
cellence performance (at least
as fast as C++) and outstanding
parallelization features, as well
as internet and security features
already available in the core
system.

9.2 TODO

• The communication layer of JUSTGrid has to
be extended to cluster computing.

13 of 14

Illustration 14: Online visualization of a 3D sphere with JUST Euler 3D

Illustration 15: 3D cone reference result computed with
CFD++, Mach-number distribution, AoA 0, Mach 2.0,

Illustration 16: 3D cone, computed with JUST euler 3D, Mach-
number distribution, AoA 0, Mach 2.0

Acknowledgments

This work was partly
funded by Arbeitsgruppe
Innovative Projekte
(AGIP), Ministry of Sci-
ence, Hanover, Germany
under Efre contract

The authors are grateful to
Profs. Mark Cross and Ma-
yur Patel, University of
Greenwich, London, U.K.
for many stimulating dis-
cussions.

We are grateful to Mr. Jean
Muylaert from ESA, ES-
TEC for a lot of informa-
tion and discussion.

We are particularly grateful
to Sun Microsystems,
Benchmark Center, Ger-
many for providing exclu-
sive access to a 28 CPU Sun Enterprise 6000
server and a 64 CPU Sun Enterprise 10000
server.

References

[1] Tristram, Claire, Supercomputing Resurrected, MIT Tech-
nology Review, February 2003, pp. 54.

[2] PlayStation 3 chip nears completion, ZD Net UK News,
http://news.zdnet.co.uk/story/0, ,t269-s2120395,00.html ,
August 2002.

[3] The Need for Software, Scientific Computing World,
August-September 2000, Issue 54, pp.16.

[4] Science and Technology Shaping the Twenty-First Cen-
tury, Executive Office of the President, Office of Science
and technology Policy, 1997.

[5] Foster, Ian, The Grid: Computing without Bounds, Scien-
tific American, April 2003, pp. 60-67 and Foster, Ian
(ed.): The Grid: Blueprint for a new Computing Infra-
structure, Morgan Kaufmann Publishers, 1999.

[6] Häuser, J., Ludewig, T., Gollnick, T., Williams, R.D.: An
innovative Software for HPCC., ECCOMAS 2001, Com-
putational Fluid Dynamics Conference, Swansea, Septem-
ber 2001, UK

[7] Häuser, J., Ludewig, T., Williams, R.D., Winkelmann R.,
Gollnick T., Brunett S., Muylaert J.: A Test Suite for High-
Performance Parallel Java, Advances in Engineering
Software, 31 (2000), 687-696, Elsevier.

[8] Ginsberg, M., Häuser, J., Moreira, J.E., Morgan, R., Par-
sons, J.C., Wielenga, T.J. .: Future Directions and Chal-

lenges for Java Implementations of Numeric-Intensive In-
dustrial Applications, 31 (2000), 743-751, Elsevier.

[9] Häuser, J., Ludewig, T., Gollnick, T., Winkelmann, R.,
Williams, R., D., Muylaert, J., Spel, M., A Pure Java Par-
allel Flow Solver, 37th AIAA Aerospace Sciences Meet-
ing and Exhibit, AIAA 99-0549 Reno, NV, USA, 11-14
January 1999.

[10] Moreira, J.E., S. P. Midkiff, M. Gupta, From Flop to Me-
gaflop: Java for Technical Computing, IBM Research Re-
port RC 21166.

[11] Moreira, J.E., S. P. Midkiff, M. Gupta, A Comparison of
Java, C/C++, and Fortran for Numerical Computing,
IBM Research Report RC 21255.

[12] Häuser J., Williams R.D., Strategies for Parallelizing a
Navier-Stokes Code on the Intel Touchstone Machines, Int.
Journal for Numerical Methods in Fluids 15, pp. 51-58.,
John Wiley & Sons, June 1992.

[13] Winkelmann, R., Häuser J., Williams R.D, Strategies for
Parallel and Numerical Scalability of CFD Codes, Comp.
Meth. Appl. Mech. Engng., NH-Elsevier, 174, 433-
456,1999.

14 of 14

Illustration 17: Surface visualization of the European eXperimental Test Vehicle (EXTV)
with the JUSTGrid Virtual Visualization Toolkit (VVTK) formally known as ShowMe 3D

