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Abstract

After the  Earth Simulator, built by NEC at the
Japan  Marine  Science  and  Technology  Center
(JAMSTEC)  on  an  area  of  3,250  m2

(50m×65m),  began  it's  work  in  March  2002
with  the  outstanding  performance  of  35,860
Gflops (40 Tflops peak) [1], numerous scientists
opted in favor of the high-performance compu-
tation and communications (HPCC) roots, sug-
gesting to  build again Cray type vector super-
computers that  dominated scientific  computing
in the mid seventies.  On the other hand, other
major industrial players in supercomputing, for
instance, IBM, Sony, and Toshiba, announced a
new  processor  design  for  the  upcoming  Sony
Playstation 3 called Cell and, according to these
companies,  a  Cell  processor  should  deliver
about one trillion floating-point calculations per
second  (Tflop).  Cell  would  be  roughly  a  100
times faster than the current Pentium 4 chip run-
ning at  2.5 GHz. Cell will most likely use be-
tween  four  and  16  general-purpose  processor
cores  per  chip [2].  If  one can provide enough
main memory for such a processor, a formidable
and inexpensive parallel system linked by a very
high  bandwidth  interconnect  could  outperform
the Earth Simulator. The size of such a cluster
would fit in the average kitchen and the off-the-
shelf  technology would cost  only a fraction of
the  Earth  Simulator.  It  should  be remembered
that the computer games industry is responsible
for the revolution in high end 3D graphics cards
that convert any PC into a most powerful graph-
ics  workstation.  It  should  be  obvious,  despite
the computational power of the Earth Simulator,
that this definitely is  not the road of HPCC for
general scientific and engineering computation. 

“I  hope  to  concentrate  my  attention  on  my  research
rather then how to program”, says Hitoshi Sakagami, a
researcher at Japan's Himeji Institute of Technology and
a  Gordon  Bell  Prize  finalist  for  work  using  the  Earth
Simulator [1].

We fully agree with this statement,  and this is
one of the major  reasons that  we have chosen
Java as  our  high  performance  computing  lan-
guage. Programming vector computers is a diffi-
cult task,  and to obtain acceptable results with
regard to announced peak performance has been
notoriously  cumbersome.  On  the  other  hand,
Cell like systems with many processors on a sin-
gle  chip  need  to  be  programmed  in  a  multi

threaded way.  Threads are a substantial part of
the Java programming language. Java is the only
general  programming  language  that  does  not
need   external  libraries  for  parallel  program-
ming,  because  everything  needed  is  built  into
the language. In addition, there are major addi-
tional  advantages  of the Java  language (object
oriented,  parallelization,  readability,  maintain-
ability, programmer productivity, platform inde-
pendence,  code safety  and reliability,  database
connectivity, internet capability, multimedia ca-
pability,  GUI  (graphics  user  interfaces),  3D
graphics (Java 3D) etc.)  which were discussed
in detail in [6-11].  In the current paper, we pre-
sent the next stage in the design of an internet
capable parallel Java based multi-physics solver.
The overall task is to build a fast, efficient, port-
able,  and  platform  independent  collaborative
scientific and engineering parallel multi-physics
simulation  environment  for  visualization  and
distributed computing over the Internet, using a
three tier  client-filter-server  approach.  The  ap-
plications  in  this  paper  are  taken  from  aero-
space. 

1 The Java Ultra Simulator Technol-
ogy (JUST) Grid

The latest version of Java is a serious competitor
to the traditional HPCC programming languages
like FORTRAN or C/C++ [10, 11]. The single-
processor performance of a Java code is now on
par  with  C++,  and  the  speedup  on  common
symmetric  multi  processor  (SMP)  machines  is
excellent.

There exists the JUSTGrid framework which is
a software platform providing the possibility to
simplify as well as to speed up solver develop-
ment. Among the additional features of  JUST-
Grid are the handling of complex 3D grids, both
structured and unstructured.

JUSTGrid is  the  basis  for  JUST (Java  Ultra
Simulator  Technology)  that  is  a  revolutionary
computing software that dramatically improves
the ability to quickly create new kinds of soft-
ware systems across the whole field of science
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Table  1: Sequential matrix multiplication using a 30 times 30
matrix doing 10000 iterations on a Linux Pentium 4 PC

Runtime (2GHz, Pentium4, 1GB Memory) time in s
Sun JVM 1.4.2_02 (-server) 2,12
GNU gcc version 3.3.1 (-O3 -mcpu=pentium4) 3,16



and engineering,  embedded  in
an Internet-based environment.
JUSTGrid is  a  software  plat-
form and virtual computing en-
vironment  that  enables  scien-
tific and engineering computa-
tion of large-scale problems in
an  Internet-based  computa-
tional  grid  environment,  inte-
grating  computer  resources  at
different,  geographically  dis-
tributed,  sites.  JUSTGrid en-
ables  the  user  to  create  his
simulation  software  at  the cli-
ent site at run time by using a
Java  based  browser  GUI.  The
solver package composed by this GUI is sent in
binary form to the server site, replacing the de-
fault simulation solver package.

JUSTGrid is a completely Java based software
environment for the the user/developer of HPC
software.  JUSTGrid takes  care of the difficult
tasks of handling very complex geometries (air-
craft, spacecraft, biological cells, semiconductor
devices, turbines, cars, ships etc.) and the paral-
lelization of the simulation code as well as its
implementation  on  the  Internet.  JUSTGrid
builds  the  computational  Grid,  and  provides
both  the  geometry  layer and  parallel  layer as
well as an interface to attach any arbitrary solver
package to it.  JUSTGrid is implemented on the
client  site,  where  the  user  resides,  and  on the
compute  server  where the computations  are to
be  performed.  It  also  can  access  one  or  more
data servers, distributed over the Internet. A de-
fault  solver  package resides on the server site.
For  instance,  this  may  be  a  fluid  dynamics
solver. If the client decides that it will use this
solver, the necessary data needs to be collected
and sent to the server. In case a totally different
solver  is  needed,  e.g.,  a  solver  for  Maxwell's
equations to compute, for instance, the electro-
magnetic  signature  of  a  ship  or  aircraft  or  to
simulate  the  trajectories  of  an  ionized  plasma
beam of an ion thruster, the correct solver object
has to be sent from the client to the server at run
time. As described above, the new solver is cre-
ated  through the  GUI  at  the  client  site  at  run
time. This solver object is sent in binary form to
ensure code security. If the solver object is writ-
ten  in  Java,  the  Remote  Method  Invocation

(RMI)  class  is  used,  if  not,  the  Common  Re-
quest  Broker  Architecture   (CORBA)  or  the
Java Native Interface (JNI) is employed to inte-
grate so called legacy solvers. The server does
not need to know anything about the solver as
long as the solver  interface is correctly  imple-
mented. The parallelization is entirely based on
the Java thread concept. This thread concept has
substantial advantages over the PVM or MPI li-
brary  parallelization approach  [6-7,  12-13],
since it is part of the Java language. Hence, no
additional parallelization libraries are needed. 

JUSTGrid also provides a third layer, the solver
package layer, to be implemented on the client
site. This layer is a Java interface, that is, it con-
tains all methods (functions in the context of a
procedural  language)  to  construct  a  solver
whose physics is governed by a set of conserva-
tion laws.  An interface  in the Java  sense  pro-
vides the overall structure, but does not actually
implement the method bodies, i.e., the numeri-
cal schemes and the number and type of physi-
cal  equations.  This  JavaSolver-Interface there-
fore provides the software infrastructure to the
the  other  two  layers,  and  thus  is  usable  for  a
large class of computational problems based on
finite volume formulation. It is well known that
the  Navier-Stokes  equations  (fluid  dynamics),
Maxwell's  equations  (electromagnetics,  includ-
ing semiconductor simulation) as well as Schrö-
dinger's  equation  (quantum mechanics)  can  be
cast in such a form. Thus, a large class of solv-
ers  can  be  directly  derived  from this  concept.
The usage  of this  solver  package,  however,  is
not mandatory,  and any solver  can be sent by
the client at run time. All solvers extend the ge-
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Illustration  1: JUSTGrid a framework for HPCC in engineering, science and life sci-
ences.
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neric solver class, and in case a solver does not
need to deal with geometry, the generic solver
class is used directly instead of the conservation
law solver class.

JUSTGrid provides the coupling to any existing
solver,  but  freeing this  solver  from all  the un-
necessary burden of providing its own geometri-
cal   and parallel   computational  infrastructure.
Because of Java's unique features,  JUSTGrid is
completely  portable,  and  can  be  used  on  any
computer  architecture  across  the  Internet  ,as
long as a Java Runtime  Environment  (JRE)  is
provided.

The online view of the solution progress gives
an impression of what is going on in during a
computation  and should  be  used  as  a  steering
aid. It is not meant as a replacement for visuali-
zation software like TecPlot™ or Ensight™.

2 JUSTGrid Simple
Frontend

This  JUSTGrid simple
frontend  is  a  rapid  proto-
type  to  demonstrate  the
simplicity  of  a  well  de-
signed GUI for a 2D mono
block  Euler  solver.  It  con-
verts  GridPro™  and
TecPlot™  grid  files  into  a
validated  XML  file  format
storing  additional  informa-
tion:  description,  physical
parameters  and  boundary
conditions.  The  XML  file
with its corresponding DTD
(Document  Type  Defini-
tion)  along  with  the  result
of the computation is auto-
matically  stored  as  a  ZIP-
file into the user's  file sys-
tem with the file  extension
GRX. The ZIP-file format is a well known for-
mat  on  a  wide  range  of  computer  systems
(UNIX/Linux, Windows, MacOS, etc.) and can
be extracted with tools like Java's JAR, UNZIP
or WinZIP. This frontend acts also as a control
center  for  the  Euler  solver.  Dealing  with  the
Java Media Framework one has the possibility
to render  video files  from the solution domain
during  the  computation,  employing  the  inte-

grated video player to display the solution video
in  real  time.  The  integrated  video  player  acts
like  a  normal  video  player,  for  instance,  the
usual  commands,  forward,  pause  and  reverse
playing are available. In JUSTGrid remote data
visualization  along with  data  compression  and
feature  extraction  as  well  as  remote  computa-
tional  steering  is  of  prime  importance.  Since
JUSTGrid allows  multiple  sessions,  multiuser
collaboration is  needed.  Different  visualization
modules  are  needed,  but  here  a computational
fluid dynamics (CFD) module, allowings the pe-
rusal  of remote  CFD data  sets  is  being devel-
oped, based on the Java3D standard. 

In large simulations, grids with millions of cells
are computed, producing hundreds of megabytes
of information during each iteration. Depending
on the numerical scheme, several thousand itera-

tions  may  be  needed  either  to  converge  to  a
steady state  solution  or to  simulate  a  time-de-
pendent  problem.  Hence,  a  fast  connection  is
needed to move data to the client where it can
be analyzed, displayed or interacted with in or-
der to navigate the parallel computation on the
server.  Therefore  a  visual  interactive  package,
termed the  JUST VVTK (Virtual  Visualization
Toolkit) is provided (illustration 17 on page 14).
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Illustration  2: A simple  JUSTGrid  front-end for a 2D mono block  solver.  The  3D mono
block solver is being developed. Upon testing, this solver is merged with the parallel infra-
structure of the JUSTGrid.



3 JUSTGrid Features at a glance

• Replace the default solver with your own
solver (mathematics).
The design  of  JUSTGrid allows to replace
every  default  computation  relevant  class
(Solver, Cell, SessionHandler, BoundaryHan-
dler, ...) on the server except the Session and
the Master Implementation.

• Exchange  the  solver  online  during  the
computation.
The  exchange  of  a  specific  class  on  the
JUSTGrid server can be initiated while the
computation is running without a restart cy-
cle.

• Dynamic load balancing for free on SMP
Architectures.
Dealing  with  multithreaded  architectures
transfers  the responsibility  for the load bal-
ancing from the applications to the operating
systems. Modern operating systems like Sun
Solaris  are  very efficient  in  distributing  the
thread load on the available system CPUs.

• Simple  geometrical  model  for  the  pro-
grammer.
JUSTGrid frees the programmer from deal-
ing with complex geometries.  The program-
mers view on a cell is always in a mathemati-
cal universe where every edge has a normal-
ized  length  1.  The  transformation  from the
physical-  to  the  mathematical-  coordinate
system is done by JUSTGrid.

• Simple Solver API (interface)
One thing we kept in mind during the whole
design process it was Einstein he said: Make
it as simple as possible but not simpler. For

Example if one like to write his own multi-
block  solver  he has  to  implement  only  one
method  named  solve.  For  other  types  of
solvers there are only a few more methods to
implemented.  Illustration  5 shows  an  UML
class diagram of the JUSTGrid solver inter-
faces.

• OnlineVisualization on demand
JUSTGrid provides  access  to  all  computa-
tional data in the solution domain at any state
of  the  computation.  Illustrations  3 and  14
showing online visualizations of the solution
domain.

• Collaborative engineering
Via a unique Session-ID multiple clients are
able to connect to the same compute session
on the server. As an example: if an engineer
wants to ask an expert about the correctness
of  his  running  computation  the  engineer
sends the Session-ID to the expert, he could
now  connect  to  the  compute  session  and
visualize the running computation online and
give his comment back to the engineer.

• Multiple sessions on one server.
The JUSTGrid server is able to run as many
sessions as you want; it is only limited by the
available resources on the server system.

• Application and network security
Java  has  a  very  smart  security  architecture
that protects  your  code  and your  data  from
unauthorized access or modification.  JUST-
Grid benefits  from the  application  security
features and uses the network security layer
for the client/server communication.

• Loaders  and  writers  for  structured  and
unstructured  grids  and  TecPlot™ data
files are available.
Data  files  could  be  stored  on  the  client  as
well on the server side.

• Modern object oriented software architec-
ture
The  object  oriented  architecture  allows  to
benefit from techniques like inheritance, data
encapsulation  and  message  passing.  These
are some of the features that make the code
more robust and maintainable.
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Illustration 3: Online view of the solution progress (video pro-
duction).



4 JUSTGrid Software Architecture

With a distributed computing system, for exam-
ple an engineer at a workstation running a simu-
lation on a supercomputer,  the engineer would
like to see the computation just  as if  it  where
happening on the workstation. The Java Remote
Method Invocation (RMI) is one way to do this:
the engineer (client) manipulates objects with a
user interface, but the actions he performs (the
method  invocation)  are  actually  performed  on
objects  on  the  supercomputer  (server).  This
transparent distribution of the computation and
steering are vital if we are to provide both the
immediacy  of  a  worksta-
tion code with the compu-
tational  power  of  the  su-
percomputer.

If  the  client  establish  the
first  connection  to  the
server  and requests  a new
session  a  random  64Bit
Session-ID  is  created  on
the server and send back to
the  client.  Every  further
action  to  the  session  is
bound  to  that  Session-ID.
With  a  valid  Session-ID
many clients are able to connect to the same ses-
sion and gives  the engineers  the possibility  to
steer  or  visualize  the  computation  from many
different clients (collaborative engineering). An-
other advantage of  JUSTGrid is if the internet
connection to the server goes down a client can
easily reestablish the connection to server when

the  internet  connection  becomes  up  using  the
Session-ID.  During  the  inter-
net  connection  is  down  the
computation does not stop and
no data will be lost. Addition-
ally  to  the  communication
with RMI JUSTGrid has also
implemented  a  streaming
server  for large data  files  be-
cause  of  RMI  is  packed  ori-
ented and inefficient for large
continuos data sets.

4.1 Solver  Interface  Class
Diagram (UML)

Illustration  5 shows  the  class
diagram of the JpSolver in-

terface.  This simple  interface has to be imple-
mented with the numeric for the problem to be
solved. The JUSTGrid automatically starts one
solver  per  block  or  domain  (illustration  8 on
page  9) and handles the boundary update after
each iteration.  As default  a loose synchroniza-
tion is performed that means if all neighboring
blocks of a current block are become ready with
the actual iteration the boundary update for the
current  block  will  be  done  by  the  JUSTGrid
JpBoundaryHandler. After  the  boundary

update the solver (block) starts for the next it-
eration. This synchronization strategy increases
dramatically the efficiency of the dynamic load
balancing.
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Illustration 5: UML Diagram for the JUSTGrid Solver Interface

interface

cle.just.share.JpMultiblockSolver

+void initSolver( JpBlock block, int nodeId)

interface

cle.just.share.JpGenericSolver

+void initSolver( int maxNumberOfNeighbors, int nodeId)
+void preSolveUpdate( int iteration)
+void postSolveUpdate( int iteration)
+void finishSolver()
+void setNeighborObject( JpSolver neighborObject, int edge)

Exception

cle.just.share.JpSolverException

+ JpSolverException()

+ JpSolverException( String message)

+String toString()

 String message

interface

cle.just.share.JpSolver

+boolean solve( int iteration)
+Object getDataObject( int dataId)
+void setDataObject( int dataId, Object object)

Illustration  4: JUSTGrid Architecture Overview. The server itself,  in principle, can be
distributed over the internet. 
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4.2 Server Class Diagram

The central class on the server side is  JpMas-
terImp. It provides the remote view of the cli-
ent onto the server  implementing the  JpMas-
ter interface. It is responsible for the creation,
monitoring and deletion of the servers sessions
and  io  stream  severs.  The  JpIoStream-
Server is  used  to  transport  large  amount  of
data  sets  between  client  and  server  where  the
packet  oriented  RMI (Remote  Method Invoca-
tion) is inefficient.  Before the  JpMasterImp
is  started  on  the  server  machine  the
rmiregistry has to be started on the same
computer.  The
rmiregistry is
a  java  based  nam-
ing service that as-
sociates  a  name
(String) with an re-
mote  object  and  is
part  of  the  Java  2
Standard  Edition.
This  registry  gives
the client the ability
to  get  in  contact
with  a  registered
JpMasterImp
object.

4.3 Session Class Diagram

In illustration  7
the  JpSes-
sion provides
all  functional-
ity's for interac-
tive  steering  of
a  computation
like  initializa-
tion, data trans-
fer,  start  and
stop.  The
JpSolver-
Handler is
responsible  for
the  initializa-
tion  and  moni-
toring  of  all

compute  nodes.  that  are  represented  by  the
JpNodeImp class.  It  is  also  dealing  with the
JpBoundaryHandler which  is  responsible
for  the  boundary  update.  If  the  computational
problem requires a totally different initialization
or data transfer, e.g. integration of legacy FOR-
TRAN code,  the default  JpSolverHandler
and  JpBoundaryHandler can  also  be  re-
placed on demand in the JUSTGrid framework
like the solver or the cell implementation.
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Illustration 6: UML diagram of the JUSTGrid Server classes

interface
cle.just.share.JpIoStreamStatus

Remote
interface

cle.just.share.JpMaster

Remote
interface

cle.just.share.JpSession

Serializable
...server.JpIoStreamStatusImp

Runnable
cle.just.server.JpIoStreamSession

interface
cle.just.share.JpServerSession

UnicastRemoteObject

JpSession

JpServerSession
cle.just.server.JpSessionImp

UnicastRemoteObject
cle.just.server.JpMasterImp

Runnable

cle.just.server.JpIoStreamServer

Illustration 7: UML digram for JUSTGrid Session classes

0..*

0..*

0..*

UnicastRemoteObject
cle.just.server.JpSessionImp

Runnable
cle.just.server.node.JpNodeImp

cle.just.server.node.JpNodeStatusImp

interface
cle.just.share.JpNodeStatus

interface
cle.just.share.JpServerSession

Remote

interface
cle.just.share.JpClientSession

java.io.Serializable
Runnable

cle.just.share.JpSessionEvent

ObjectInputStream

...server.JpObjectInputStream

interface
cle.just.share.JpSolver

Remote

interface
cle.just.share.JpSession

interface
cle.just.share.JpSolverHandler

Runnable
cle.just.server.JpSessionMonitor

ClassLoader
...server.JpSessionClassLoader



4.4 Multiblock Class Diagram

The illustration 8 shows the class diagram of the
JUSTGrid multiblock implementation including
the loader- and writer- packages and its contain-
ing classes.

5 Threads

The thread concept  as the basic  parallelization
strategy,  delivers  an  unlimited  number  of  op-
tions to speed up parallelization, since fine tun-
ing  by  threads  on  all  levels  of  parallelization
(i.e,  domain  decomposition,  numerical  algo-
rithm, loops etc.) of a computation is possible.

5.1 What are Threads?

Multithreaded programs extend the idea of mul-
titasking one level  further  such that individual
programs  (processes)  will  appear  to  perform
multiple  tasks  at  the  same  time.  Each  task  is
called  a  thread which  is  the  short  form  for
thread of control.  Programs that  can run more
than one thread at  a time are said to be  multi-
threaded. A thread consist of three parts : a vir-
tual CPU, the code to be executed and the data
the code works on. (see Illustration 9)

5.2 Threads in the JUSTGrid framework

In  JUSTGrid,  each
subdomain  is  run
within  its  own
thread,  and  is  com-
pletely  independent
of  all  other  threads
(macroscopic  paral-
lelization).  The
mapping  of  threads
onto the set of proc-
essors  as  well  as
thread scheduling is
entirely  left  to  the
underlying  operat-
ing system. 

The issues  of  static
and  of  dynamic
loadbalancing  are
not  the  concern  of
JUSTGrid running
on  a  single  SMP
machine. The situa-
tion  is  different  for
cluster computing.

Within the thread for a singel subdomain, addi-
tional threads can be started, for instance to par-
allelize  the  numerical  algorithm  itself  (micro-
scopic parallization). 

Illustration 12 in Section 6.1.1 on page 10 give a
good  impression  about  the  small  amount  of
scheduling  overhead  dealing  with  threads.  A
straightforward rule is to use a minimum of 4

threads  per  system
processor  but  not
to exceed than 512
threads per proces-
sor.

9 of 14

Illustration 8: UML class diagram of the JUSTGird multiblock implementation

1..*

1..*

1..*

1..*

java.io.Serializable

JpCell
+NUMBER_OF_FACES:int

 volume:double

 faceSurface:double[]

java.io.Serializable

interface

JpBoundaryHandler

+wall:void

+inflow:void

+outflow:void

+init:void

java.io.Serializable

JpVertex
+x:double

+y:double

+z:double

+JpVertex

JpBlock

+NUMBER_OF_FACES:int

-jpVertex:JpVertex[][][]

-jpCell:JpCell[][][]

-boundaryHandler:JpBoundaryHandler

+JpBlock

+setJpFace:void

+setJpVertex:void

+getJpVertex:JpVertex

 jpFace:JpFace[]

 jpFaces:JpFace[]

 volumeI:int

 volumeJ:int

 volumeK:int

 jpVertexCount:int

 uniqueId:int

 blockNumber:int

 blockName:String

JpFace

-jpBlock:JpBlock

+JpFace

+setJpFacePart:void

 parentBlock:JpBlock

 faceNumber:int

 jpFacePart:JpFacePart[]

 jpFaceParts:JpFacePart[]

JpFacePart

+JpFacePart

 parentFace:JpFace

 partNumber:int

 partWidth:int

 partHeight:int

 partX:int

 partY:int

 orientation:int

 boundaryCondition:int

 neighborBlockNumber:int

 neighborFaceNumber:int

 neighborFacePartNumber:int

 neighborFacePart:JpFacePart

loaders

+JpPlot3dLoader

+JpParsingErrorException

+JpLoader
+JpCommandLoader

+JpLoaderAdapter
+JpBoundaryLoader

writers

+JpPlot3dWriter

+JpWriter

+JpWriterAdapter
+JpCommandWriter

+JpBoundaryWriter

+JpCommandReferenceWriter

Illustration  9: A thread or  execu-
tion context
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6 Java Performance

6.1 Scaling

6.1.1 Simple Numeric Benchmark

In  this  ultra-simple
program,  many  iden-
tical  threads are used
for  simple  arithmetic
computing multiplica-
tion's  and  division's.
It  is  an  embarrass-
ingly  parallel  prob-
lem, meaning that the
threads do not have to
communicate,  and
thus there is no need
for  thread  synchroni-
zation.

The code computes a
fixed number of mul-
tiplication's and division's and it splits the work
among  a  variable  number  of  threads.  These
threads then are mapped to the processors by the
operating system, relieving the user of the need
to employing  any kind  of message  passing  li-
brary as well as a load balancing algorithm. The
code runs on any kind of platform as
long  as  a  Java  virtual  machine  is
available. 

The purpose of this code is to deter-
mine  whether  multi-threading  pro-
duces  a parallel  (linear)  speedup on
the target machine.

Every benchmark in the single threaded and also
in  the  multi  threaded  benchmark  was  done  8
times in the same Java runtime environment. 

The performance losses at about every 8 CPUs
noticed in illustration 10 might be a behavior of
the  hardware  architecture  of  the  Sun  Micro-
systems Enterprise 10000 server.

6.1.2 Multi-threaded Simple Numerics

Illustration  12 shows that even in case of some
512 threads  per  CPU
the overall computing
time  rises  only
slightly
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Illustration  12: This  benchmark  shows  the  very  small  amount  of  overhead  using  threads.  This
benchmark was done on a Sun Microsystems Enterprise 6000 with 28 CPUs.
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Illustration  10: Simple  numeric  benchmark  on  a  Sun  Microsystems  Enterprise  10000  with  64
UltraSPARC II CPUs and 256GB main memory.
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Illustration  11: The Enterprise  10000  running all  64 CPUs with  100% load
during the computation.



6.2 Dynamic load balancing

6.2.1 Mandelbrot Benchmark

This  code  tests  the  self-scheduling  of  threads.
Computation of the well-known Mandelbrot set
utilizes a 2D grid in the complex plane, and an
independent  iterative calculation takes  place at
each grid point, where the number of iterations
varies greatly from point to point. We partition
the grid into blocks; we want each block large
enough that thread overhead will be much less
than the computational work associated with the
block, and we want the blocks small enough that
there  are  many  blocks  for  each  processor.  As
explained  above,  each processor  takes  a block
from the  pool,  computes  it,  then  gets  another
block.

Although  this  program  is  still  embarrassingly
parallel,  it  exhibits  a  new feature,  namely  the
computational  load  depends  on  the  position
within the solution domain, which is a rectangle
in this case. Dynamic load balancing would be
needed to run such an application successfully
on a large parallel  architecture. Using PVM or
MPI, the user has to provide a sophisticated al-
gorithm  to  achieve  this  feature,  requiring  a
lengthy  piece  of  code.  Using  the  Java  thread
concept, dynamic load balancing is provided by
the operating system. 

The  parallel  Mandelbrot  concept  is  simple.
There is a nonlinear mapping in a finite region
of  the  complex  plane  (rectangular).  Since  the
mapping can work on any finite region without
interference  to  any  other  region  being  com-
puted, the parallelization strategy is a simple 1D

domain decomposition. This is as far as the idea
goes. The final threaded code, however, shows a
fair degree of complexity. This example can be
used to demonstrate the effect of dynamic load
balancing achieved by the Java thread concept. 

Illustration  13 shows  a  linear  speedup  is
achieved with that configuration.

6.3 Java vs. C++

6.3.1 Matrix multiplication

6.3.1.1 Sequential Matrix Multiplication

A sequential (1 thread) matrix multiplication us-
ing a 30 times 30 matrix doing 10000 iterations
on  a  single  processor  Pentium  4  PC  running
Linux.

Exactly the following source was used for both
benchmarks. (C++ and Java)
// get start time here
  for( n=0; n<maxIterations; n++)
  {
    for( i=0; i<dim; i++ )
    {
      for( j=0; j<dim; j++ )
      {
        for( k=0; k<dim; k++ )
        {
          c[i][j] += a[i][k]*b[k][j];
        }
      }
    }
  }
// get end time here

a and b are the source and c the destination ma-
trix.  dim and  maxIterations  aren't  con-
stant variables so the compilers are not able to
do an unroll loop optimization.
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Illustration 13: Mandelbrot Set dimension 7200 x 4800, max iterations 5000 running 400 threadson a
Sun Microsystems Enterprise 6000 with 28 processors.
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The most  important  result  of this  bench is the
enormous speed improvement after the two war-
mup  phases  in  the  Sun  Java  HotSpot  Server
VM. This runtime is about 1.5 times faster then
the compiled C++ binary.

Due  to  a  Linker  error  we  could  not  use  the
-fast option with the Intel compiler.

6.3.1.2 Multithreaded Matrix Multiplication

In this configuration the C++ and the Java run-
times are on par.

7 Internet based HPCC and Security

These  days  we  sometimes  are  talking  about
internet based HPCC as the holy grail for all of
our HPC problems.  But only a few people are
talking  about  internet  based  SecureHPCC  for
our sensitive data.

Today the Java programming language with the
Java  Runtime  Environment  is  the  best  way to
get a SecureHPCC over the Internet. Java grows
up with the Internet  (World Wide Web) boom
and it  was developed always with the security
problems in mind. Unlike the other popular pro-
gramming languages  ('C/C++',  FORTRAN,  ...)
and development environments the overall sys-

tem security was always one of Java's key fea-
tures.

7.1 Java Language Security

Like  even  all  OOP  (Object-Oriented-Program-
ming) languages Java has different access modi-
fier/level  (private,  default,  public)
for data protection. Attributes that are declared
as  final must not be changed and Java does
not have pointers like 'C/C++' with the possibil-
ity to access arbitrary data at any memory loca-
tion.

7.2 Java Security Model

The Java 2 SDK security architecture is policy-
based,  and  allows  fine-grained  access  control.
When  code  is  loaded,  it  is  assigned  "permis-
sions" based on the security policy currently in
effect.  Each permission  specifies  a  special  ac-
cess to a particular resource, such as "read" and
"write" access to a particular file or directory, or
"connect" access to a given host and port.

7.3 Java Secure Socket Extension (JSSE)

The Java  Secure  Socket  Extension  (JSSE)  en-
able secure Internet communications. It includes
functionality for data encryption, server authen-
tication,  message  integrity,  and  optional  client
authentication. A service can provide the secure
passage  of  data  between a  client  and  a  server
running any application protocol using JSSE.

8 Results from JUSTGrid

Illustration  3 on page  6 shows a  Lava  Nozzle
with the Euler 2D code.

As a reference sample to check the correct com-
munication (boundary update) of the JUSTGrid
we computed  a 3D cone with the JUST Euler
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Table 2: A sequential (1 thread) matrix multiplication using a 30 times 30 matrix doing 10000 iterations on a single proces-
sor Pentium 4 PC running Linux.

Runtime (2GHz Pentium 4, 1GB Memory) 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run
3,15 3,19 3,22 3,16 3,15 3,17 3,16 3,16

3,23 3,23 3,25 3,23 3,23 3,23 3,23 3,25

3,86 3,88 3,90 3,90 3,90 3,90 3,89 3,90

3,55 3,51 2,12 2,12 2,12 2,12 2,13 2,12

GNU g++ -O3 -mcpu=pentium4 -march=pentium4 
-Wall 
(Version 3.3.1)
Intel icc -O3 -mcpu=pentium4 -march=pentium4 
(Version 8.0)
Sun Java HotSpot Client VM (Version 1.4.2_02-
b03)
Sun Java HotSpot Server VM (Version 1.4.2_02-
b03)

Table 3: Multithreaded matrix multiplication using a 100 times
100 matrix doing 10000 iterations  with  400 threads on a  26
CPU Sun Microsystems Enterprise 6000.

Runtime time in s
1.1.8_14 516,94
1.2.2_08 38,97
1.3.0_03 Server 37,47
1.3.1_02 Server 21,69
1.4.0_01 Server 19,51
1.4.1_02 Server 17,31
C++ - GCC 26,65
C++ - Forte 6u1 17,26



3D solver and CFD++ shown in the Illustrations
15 and 16.

Illustration  14 shows a 3D online visualization
(client) of a sphere during the computation with
the JUST Euler 3D solver (server) demonstrat-
ing the high performance client server commu-
nication and visualization of JUSTGrid.

Another  visualization  with  the  JUSTGrid  Vir-
tual  Visualization  Toolkit  (VVTK)  is  shown
with Illustration  17 on page  14. It displays the
surface of the EXTV the European eXperimen-
tal Test Vehicle.

9 Conclusions and Future Work

9.1 Achieved or shown

• With  JUSTGrid a  modern,  well  structured,
easy  to  use  and  extensible  framework  for
HPCC is provided.

• Collaborative  engineering,  online  visualiza-
tion and advanced  security  features  are  im-
plemented in JUSTGrid.

• The  code  developer  is  freed  from  dealing
with complex geometries, dynamic load bal-
ancing and inter block or domain communi-
cation.

• We obtain dynamic load balancing for free, if
the  CPU  workload  is  high  enough  and  the
number of compute threads is about 4 times
higher than the number of processors. These
conditions  can  be  easily  ful-
filled  with  our  computational
problems in mind.

• A  numerical  framework  for  a
system of hyperbolic conserva-
tions laws is installed, based on
the integral form of the conser-
vation equations 

• Today  Java  has  become  THE
modern  object  oriented  lan-
guage for HPCC, providing ex-
cellence  performance  (at  least
as fast as C++) and outstanding
parallelization  features,  as  well
as internet and security features
already  available  in  the  core
system.

9.2 TODO

• The communication layer of JUSTGrid has to
be extended to cluster computing.
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Illustration 14: Online visualization of a 3D sphere with JUST Euler 3D

Illustration  15: 3D  cone  reference  result  computed  with
CFD++, Mach-number distribution, AoA 0, Mach 2.0,

Illustration 16: 3D cone, computed with JUST euler 3D, Mach-
number distribution, AoA 0, Mach 2.0
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Illustration  17: Surface  visualization of the European eXperimental  Test  Vehicle  (EXTV)
with the JUSTGrid Virtual Visualization Toolkit (VVTK) formally known as ShowMe 3D


